2525
|
1 |
(* Title: HOL/MiniML/Generalize.thy
|
|
2 |
ID: $Id$
|
|
3 |
Author: Wolfgang Naraschewski and Tobias Nipkow
|
|
4 |
Copyright 1996 TU Muenchen
|
|
5 |
|
|
6 |
Generalizing type schemes with respect to a context
|
|
7 |
*)
|
|
8 |
|
14422
|
9 |
theory Generalize = Instance:
|
2525
|
10 |
|
|
11 |
|
2625
|
12 |
(* gen: binding (generalising) the variables which are not free in the context *)
|
2525
|
13 |
|
14422
|
14 |
types ctxt = "type_scheme list"
|
2525
|
15 |
|
|
16 |
consts
|
14422
|
17 |
gen :: "[ctxt, typ] => type_scheme"
|
2525
|
18 |
|
5184
|
19 |
primrec
|
2525
|
20 |
"gen A (TVar n) = (if (n:(free_tv A)) then (FVar n) else (BVar n))"
|
2625
|
21 |
"gen A (t1 -> t2) = (gen A t1) =-> (gen A t2)"
|
2525
|
22 |
|
|
23 |
(* executable version of gen: Implementation with free_tv_ML *)
|
|
24 |
|
|
25 |
consts
|
14422
|
26 |
gen_ML_aux :: "[nat list, typ] => type_scheme"
|
5184
|
27 |
primrec
|
5518
|
28 |
"gen_ML_aux A (TVar n) = (if (n: set A) then (FVar n) else (BVar n))"
|
2625
|
29 |
"gen_ML_aux A (t1 -> t2) = (gen_ML_aux A t1) =-> (gen_ML_aux A t2)"
|
2525
|
30 |
|
|
31 |
consts
|
14422
|
32 |
gen_ML :: "[ctxt, typ] => type_scheme"
|
|
33 |
defs
|
|
34 |
gen_ML_def: "gen_ML A t == gen_ML_aux (free_tv_ML A) t"
|
|
35 |
|
|
36 |
|
|
37 |
declare equalityE [elim!]
|
|
38 |
|
|
39 |
lemma gen_eq_on_free_tv: "free_tv A = free_tv B ==> gen A t = gen B t"
|
|
40 |
apply (induct_tac "t")
|
|
41 |
apply (simp_all (no_asm_simp))
|
|
42 |
done
|
|
43 |
|
|
44 |
lemma gen_without_effect [rule_format (no_asm)]: "(free_tv t) <= (free_tv sch) --> gen sch t = (mk_scheme t)"
|
|
45 |
apply (induct_tac "t")
|
|
46 |
apply (simp (no_asm_simp))
|
|
47 |
apply (simp (no_asm))
|
|
48 |
apply fast
|
|
49 |
done
|
|
50 |
|
|
51 |
declare gen_without_effect [simp]
|
|
52 |
|
|
53 |
lemma free_tv_gen: "free_tv (gen ($ S A) t) = free_tv t Int free_tv ($ S A)"
|
|
54 |
apply (induct_tac "t")
|
|
55 |
apply (simp (no_asm))
|
|
56 |
apply (case_tac "nat : free_tv ($ S A) ")
|
|
57 |
apply (simp (no_asm_simp))
|
|
58 |
apply fast
|
|
59 |
apply (simp (no_asm_simp))
|
|
60 |
apply fast
|
|
61 |
apply simp
|
|
62 |
apply fast
|
|
63 |
done
|
|
64 |
|
|
65 |
declare free_tv_gen [simp]
|
|
66 |
|
|
67 |
lemma free_tv_gen_cons: "free_tv (gen ($ S A) t # $ S A) = free_tv ($ S A)"
|
|
68 |
apply (simp (no_asm))
|
|
69 |
apply fast
|
|
70 |
done
|
|
71 |
|
|
72 |
declare free_tv_gen_cons [simp]
|
|
73 |
|
|
74 |
lemma bound_tv_gen: "bound_tv (gen A t1) = (free_tv t1) - (free_tv A)"
|
|
75 |
apply (induct_tac "t1")
|
|
76 |
apply (simp (no_asm))
|
|
77 |
apply (case_tac "nat : free_tv A")
|
|
78 |
apply (simp (no_asm_simp))
|
|
79 |
apply (simp (no_asm_simp))
|
|
80 |
apply fast
|
|
81 |
apply (simp (no_asm_simp))
|
|
82 |
apply fast
|
|
83 |
done
|
|
84 |
|
|
85 |
declare bound_tv_gen [simp]
|
|
86 |
|
|
87 |
lemma new_tv_compatible_gen [rule_format (no_asm)]: "new_tv n t --> new_tv n (gen A t)"
|
|
88 |
apply (induct_tac "t")
|
|
89 |
apply auto
|
|
90 |
done
|
|
91 |
|
|
92 |
lemma gen_eq_gen_ML: "gen A t = gen_ML A t"
|
|
93 |
apply (unfold gen_ML_def)
|
|
94 |
apply (induct_tac "t")
|
|
95 |
apply (simp (no_asm) add: free_tv_ML_scheme_list)
|
|
96 |
apply (simp (no_asm_simp) add: free_tv_ML_scheme_list)
|
|
97 |
done
|
2525
|
98 |
|
14422
|
99 |
lemma gen_subst_commutes [rule_format (no_asm)]: "(free_tv S) Int ((free_tv t) - (free_tv A)) = {}
|
|
100 |
--> gen ($ S A) ($ S t) = $ S (gen A t)"
|
|
101 |
apply (induct_tac "t")
|
|
102 |
apply (intro strip)
|
|
103 |
apply (case_tac "nat: (free_tv A) ")
|
|
104 |
apply (simp (no_asm_simp))
|
|
105 |
apply simp
|
|
106 |
apply (subgoal_tac "nat ~: free_tv S")
|
|
107 |
prefer 2 apply (fast)
|
|
108 |
apply (simp add: free_tv_subst dom_def)
|
|
109 |
apply (cut_tac free_tv_app_subst_scheme_list)
|
|
110 |
apply fast
|
|
111 |
apply (simp (no_asm_simp))
|
|
112 |
apply blast
|
|
113 |
done
|
|
114 |
|
|
115 |
lemma bound_typ_inst_gen [rule_format (no_asm)]: "free_tv(t::typ) <= free_tv(A) --> bound_typ_inst S (gen A t) = t"
|
|
116 |
apply (induct_tac "t")
|
|
117 |
apply (simp_all (no_asm_simp))
|
|
118 |
apply fast
|
|
119 |
done
|
|
120 |
declare bound_typ_inst_gen [simp]
|
|
121 |
|
|
122 |
lemma gen_bound_typ_instance:
|
|
123 |
"gen ($ S A) ($ S t) <= $ S (gen A t)"
|
|
124 |
apply (unfold le_type_scheme_def is_bound_typ_instance)
|
|
125 |
apply safe
|
|
126 |
apply (rename_tac "R")
|
|
127 |
apply (rule_tac x = " (%a. bound_typ_inst R (gen ($S A) (S a))) " in exI)
|
|
128 |
apply (induct_tac "t")
|
|
129 |
apply (simp (no_asm))
|
|
130 |
apply (simp (no_asm_simp))
|
|
131 |
done
|
|
132 |
|
|
133 |
lemma free_tv_subset_gen_le:
|
|
134 |
"free_tv B <= free_tv A ==> gen A t <= gen B t"
|
|
135 |
apply (unfold le_type_scheme_def is_bound_typ_instance)
|
|
136 |
apply safe
|
|
137 |
apply (rename_tac "S")
|
|
138 |
apply (rule_tac x = "%b. if b:free_tv A then TVar b else S b" in exI)
|
|
139 |
apply (induct_tac "t")
|
|
140 |
apply (simp (no_asm_simp))
|
|
141 |
apply fast
|
|
142 |
apply (simp (no_asm_simp))
|
|
143 |
done
|
|
144 |
|
|
145 |
lemma gen_t_le_gen_alpha_t [rule_format (no_asm)]:
|
|
146 |
"new_tv n A -->
|
|
147 |
gen A t <= gen A ($ (%x. TVar (if x : free_tv A then x else n + x)) t)"
|
|
148 |
apply (unfold le_type_scheme_def is_bound_typ_instance)
|
|
149 |
apply (intro strip)
|
|
150 |
apply (erule exE)
|
|
151 |
apply (hypsubst)
|
|
152 |
apply (rule_tac x = " (%x. S (if n <= x then x - n else x))" in exI)
|
|
153 |
apply (induct_tac "t")
|
|
154 |
apply (simp (no_asm))
|
|
155 |
apply (case_tac "nat : free_tv A")
|
|
156 |
apply (simp (no_asm_simp))
|
|
157 |
apply (simp (no_asm_simp))
|
|
158 |
apply (subgoal_tac "n <= n + nat")
|
|
159 |
apply (frule_tac t = "A" in new_tv_le)
|
|
160 |
apply assumption
|
|
161 |
apply (drule new_tv_not_free_tv)
|
|
162 |
apply (drule new_tv_not_free_tv)
|
|
163 |
apply (simp (no_asm_simp) add: diff_add_inverse)
|
|
164 |
apply (simp (no_asm) add: le_add1)
|
|
165 |
apply (simp (no_asm_simp))
|
|
166 |
done
|
|
167 |
|
|
168 |
declare gen_t_le_gen_alpha_t [simp]
|
|
169 |
|
2525
|
170 |
|
|
171 |
end
|