| author | wenzelm | 
| Wed, 07 Aug 2013 14:47:50 +0200 | |
| changeset 52891 | b8dede3a4f1d | 
| parent 45605 | a89b4bc311a5 | 
| child 58889 | 5b7a9633cfa8 | 
| permissions | -rw-r--r-- | 
| 37936 | 1 | (* Title: HOL/Auth/OtwayRees.thy | 
| 11251 | 2 | Author: Lawrence C Paulson, Cambridge University Computer Laboratory | 
| 3 | Copyright 1996 University of Cambridge | |
| 1941 | 4 | *) | 
| 5 | ||
| 14207 
f20fbb141673
Conversion of all main protocols from "Shared" to "Public".
 paulson parents: 
14200diff
changeset | 6 | header{*The Original Otway-Rees Protocol*}
 | 
| 
f20fbb141673
Conversion of all main protocols from "Shared" to "Public".
 paulson parents: 
14200diff
changeset | 7 | |
| 16417 | 8 | theory OtwayRees imports Public begin | 
| 13907 | 9 | |
| 14207 
f20fbb141673
Conversion of all main protocols from "Shared" to "Public".
 paulson parents: 
14200diff
changeset | 10 | text{* From page 244 of
 | 
| 
f20fbb141673
Conversion of all main protocols from "Shared" to "Public".
 paulson parents: 
14200diff
changeset | 11 | Burrows, Abadi and Needham (1989). A Logic of Authentication. | 
| 
f20fbb141673
Conversion of all main protocols from "Shared" to "Public".
 paulson parents: 
14200diff
changeset | 12 | Proc. Royal Soc. 426 | 
| 1941 | 13 | |
| 14207 
f20fbb141673
Conversion of all main protocols from "Shared" to "Public".
 paulson parents: 
14200diff
changeset | 14 | This is the original version, which encrypts Nonce NB.*} | 
| 6308 
76f3865a2b1d
Added Bella's "Gets" model for Otway_Rees.  Also affects some other theories.
 paulson parents: 
5434diff
changeset | 15 | |
| 23746 | 16 | inductive_set otway :: "event list set" | 
| 17 | where | |
| 1941 | 18 | (*Initial trace is empty*) | 
| 11251 | 19 | Nil: "[] \<in> otway" | 
| 5434 
9b4bed3f394c
Got rid of not_Says_to_self and most uses of ~= in definitions and theorems
 paulson parents: 
5359diff
changeset | 20 | |
| 2032 | 21 | (*The spy MAY say anything he CAN say. We do not expect him to | 
| 1941 | 22 | invent new nonces here, but he can also use NS1. Common to | 
| 23 | all similar protocols.*) | |
| 23746 | 24 | | Fake: "[| evsf \<in> otway; X \<in> synth (analz (knows Spy evsf)) |] | 
| 11251 | 25 | ==> Says Spy B X # evsf \<in> otway" | 
| 6308 
76f3865a2b1d
Added Bella's "Gets" model for Otway_Rees.  Also affects some other theories.
 paulson parents: 
5434diff
changeset | 26 | |
| 
76f3865a2b1d
Added Bella's "Gets" model for Otway_Rees.  Also affects some other theories.
 paulson parents: 
5434diff
changeset | 27 | (*A message that has been sent can be received by the | 
| 
76f3865a2b1d
Added Bella's "Gets" model for Otway_Rees.  Also affects some other theories.
 paulson parents: 
5434diff
changeset | 28 | intended recipient.*) | 
| 23746 | 29 | | Reception: "[| evsr \<in> otway; Says A B X \<in>set evsr |] | 
| 11251 | 30 | ==> Gets B X # evsr \<in> otway" | 
| 1941 | 31 | |
| 32 | (*Alice initiates a protocol run*) | |
| 23746 | 33 | | OR1: "[| evs1 \<in> otway; Nonce NA \<notin> used evs1 |] | 
| 11251 | 34 |           ==> Says A B {|Nonce NA, Agent A, Agent B,
 | 
| 35 |                          Crypt (shrK A) {|Nonce NA, Agent A, Agent B|} |}
 | |
| 3659 
eddedfe2f3f8
Renamed "evs" to "evs1", "evs2", etc. in protocol inductive definition
 paulson parents: 
3519diff
changeset | 36 | # evs1 : otway" | 
| 1941 | 37 | |
| 6333 | 38 | (*Bob's response to Alice's message. Note that NB is encrypted.*) | 
| 23746 | 39 | | OR2: "[| evs2 \<in> otway; Nonce NB \<notin> used evs2; | 
| 6308 
76f3865a2b1d
Added Bella's "Gets" model for Otway_Rees.  Also affects some other theories.
 paulson parents: 
5434diff
changeset | 40 |              Gets B {|Nonce NA, Agent A, Agent B, X|} : set evs2 |]
 | 
| 11251 | 41 | ==> Says B Server | 
| 42 |                   {|Nonce NA, Agent A, Agent B, X,
 | |
| 2451 
ce85a2aafc7a
Extensive tidying and simplification, largely stemming from
 paulson parents: 
2378diff
changeset | 43 | Crypt (shrK B) | 
| 2516 
4d68fbe6378b
Now with Andy Gordon's treatment of freshness to replace newN/K
 paulson parents: 
2451diff
changeset | 44 |                       {|Nonce NA, Nonce NB, Agent A, Agent B|}|}
 | 
| 3659 
eddedfe2f3f8
Renamed "evs" to "evs1", "evs2", etc. in protocol inductive definition
 paulson parents: 
3519diff
changeset | 45 | # evs2 : otway" | 
| 1941 | 46 | |
| 47 | (*The Server receives Bob's message and checks that the three NAs | |
| 48 | match. Then he sends a new session key to Bob with a packet for | |
| 49 | forwarding to Alice.*) | |
| 23746 | 50 | | OR3: "[| evs3 \<in> otway; Key KAB \<notin> used evs3; | 
| 11251 | 51 | Gets Server | 
| 52 |                   {|Nonce NA, Agent A, Agent B,
 | |
| 53 |                     Crypt (shrK A) {|Nonce NA, Agent A, Agent B|},
 | |
| 2284 
80ebd1a213fd
Swapped arguments of Crypt (for clarity and because it is conventional)
 paulson parents: 
2135diff
changeset | 54 |                     Crypt (shrK B) {|Nonce NA, Nonce NB, Agent A, Agent B|}|}
 | 
| 3659 
eddedfe2f3f8
Renamed "evs" to "evs1", "evs2", etc. in protocol inductive definition
 paulson parents: 
3519diff
changeset | 55 | : set evs3 |] | 
| 11251 | 56 | ==> Says Server B | 
| 57 |                   {|Nonce NA,
 | |
| 2516 
4d68fbe6378b
Now with Andy Gordon's treatment of freshness to replace newN/K
 paulson parents: 
2451diff
changeset | 58 |                     Crypt (shrK A) {|Nonce NA, Key KAB|},
 | 
| 
4d68fbe6378b
Now with Andy Gordon's treatment of freshness to replace newN/K
 paulson parents: 
2451diff
changeset | 59 |                     Crypt (shrK B) {|Nonce NB, Key KAB|}|}
 | 
| 3659 
eddedfe2f3f8
Renamed "evs" to "evs1", "evs2", etc. in protocol inductive definition
 paulson parents: 
3519diff
changeset | 60 | # evs3 : otway" | 
| 1941 | 61 | |
| 62 | (*Bob receives the Server's (?) message and compares the Nonces with | |
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
23746diff
changeset | 63 | those in the message he previously sent the Server. | 
| 11251 | 64 | Need B \<noteq> Server because we allow messages to self.*) | 
| 23746 | 65 | | OR4: "[| evs4 \<in> otway; B \<noteq> Server; | 
| 11251 | 66 |              Says B Server {|Nonce NA, Agent A, Agent B, X',
 | 
| 2284 
80ebd1a213fd
Swapped arguments of Crypt (for clarity and because it is conventional)
 paulson parents: 
2135diff
changeset | 67 | Crypt (shrK B) | 
| 
80ebd1a213fd
Swapped arguments of Crypt (for clarity and because it is conventional)
 paulson parents: 
2135diff
changeset | 68 |                                    {|Nonce NA, Nonce NB, Agent A, Agent B|}|}
 | 
| 3659 
eddedfe2f3f8
Renamed "evs" to "evs1", "evs2", etc. in protocol inductive definition
 paulson parents: 
3519diff
changeset | 69 | : set evs4; | 
| 6308 
76f3865a2b1d
Added Bella's "Gets" model for Otway_Rees.  Also affects some other theories.
 paulson parents: 
5434diff
changeset | 70 |              Gets B {|Nonce NA, X, Crypt (shrK B) {|Nonce NB, Key K|}|}
 | 
| 3659 
eddedfe2f3f8
Renamed "evs" to "evs1", "evs2", etc. in protocol inductive definition
 paulson parents: 
3519diff
changeset | 71 | : set evs4 |] | 
| 
eddedfe2f3f8
Renamed "evs" to "evs1", "evs2", etc. in protocol inductive definition
 paulson parents: 
3519diff
changeset | 72 |           ==> Says B A {|Nonce NA, X|} # evs4 : otway"
 | 
| 1941 | 73 | |
| 2135 | 74 | (*This message models possible leaks of session keys. The nonces | 
| 75 | identify the protocol run.*) | |
| 23746 | 76 | | Oops: "[| evso \<in> otway; | 
| 2284 
80ebd1a213fd
Swapped arguments of Crypt (for clarity and because it is conventional)
 paulson parents: 
2135diff
changeset | 77 |              Says Server B {|Nonce NA, X, Crypt (shrK B) {|Nonce NB, Key K|}|}
 | 
| 3659 
eddedfe2f3f8
Renamed "evs" to "evs1", "evs2", etc. in protocol inductive definition
 paulson parents: 
3519diff
changeset | 78 | : set evso |] | 
| 4537 
4e835bd9fada
Expressed most Oops rules using Notes instead of Says, and other tidying
 paulson parents: 
3683diff
changeset | 79 |           ==> Notes Spy {|Nonce NA, Nonce NB, Key K|} # evso : otway"
 | 
| 1941 | 80 | |
| 11251 | 81 | |
| 18570 | 82 | declare Says_imp_analz_Spy [dest] | 
| 11251 | 83 | declare parts.Body [dest] | 
| 84 | declare analz_into_parts [dest] | |
| 85 | declare Fake_parts_insert_in_Un [dest] | |
| 86 | ||
| 87 | ||
| 13907 | 88 | text{*A "possibility property": there are traces that reach the end*}
 | 
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
13907diff
changeset | 89 | lemma "[| B \<noteq> Server; Key K \<notin> used [] |] | 
| 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
13907diff
changeset | 90 | ==> \<exists>evs \<in> otway. | 
| 11251 | 91 |              Says B A {|Nonce NA, Crypt (shrK A) {|Nonce NA, Key K|}|}
 | 
| 92 | \<in> set evs" | |
| 93 | apply (intro exI bexI) | |
| 94 | apply (rule_tac [2] otway.Nil | |
| 95 | [THEN otway.OR1, THEN otway.Reception, | |
| 96 | THEN otway.OR2, THEN otway.Reception, | |
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
13907diff
changeset | 97 | THEN otway.OR3, THEN otway.Reception, THEN otway.OR4]) | 
| 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
13907diff
changeset | 98 | apply (possibility, simp add: used_Cons) | 
| 11251 | 99 | done | 
| 100 | ||
| 101 | lemma Gets_imp_Says [dest!]: | |
| 102 | "[| Gets B X \<in> set evs; evs \<in> otway |] ==> \<exists>A. Says A B X \<in> set evs" | |
| 103 | apply (erule rev_mp) | |
| 13507 | 104 | apply (erule otway.induct, auto) | 
| 11251 | 105 | done | 
| 106 | ||
| 107 | ||
| 108 | (** For reasoning about the encrypted portion of messages **) | |
| 109 | ||
| 110 | lemma OR2_analz_knows_Spy: | |
| 111 |      "[| Gets B {|N, Agent A, Agent B, X|} \<in> set evs;  evs \<in> otway |]
 | |
| 112 | ==> X \<in> analz (knows Spy evs)" | |
| 113 | by blast | |
| 114 | ||
| 115 | lemma OR4_analz_knows_Spy: | |
| 116 |      "[| Gets B {|N, X, Crypt (shrK B) X'|} \<in> set evs;  evs \<in> otway |]
 | |
| 117 | ==> X \<in> analz (knows Spy evs)" | |
| 118 | by blast | |
| 119 | ||
| 120 | (*These lemmas assist simplification by removing forwarded X-variables. | |
| 121 | We can replace them by rewriting with parts_insert2 and proving using | |
| 122 | dest: parts_cut, but the proofs become more difficult.*) | |
| 123 | lemmas OR2_parts_knows_Spy = | |
| 45605 | 124 | OR2_analz_knows_Spy [THEN analz_into_parts] | 
| 11251 | 125 | |
| 126 | (*There could be OR4_parts_knows_Spy and Oops_parts_knows_Spy, but for | |
| 127 | some reason proofs work without them!*) | |
| 128 | ||
| 129 | ||
| 14225 | 130 | text{*Theorems of the form @{term "X \<notin> parts (spies evs)"} imply that
 | 
| 131 | NOBODY sends messages containing X! *} | |
| 11251 | 132 | |
| 14225 | 133 | text{*Spy never sees a good agent's shared key!*}
 | 
| 11251 | 134 | lemma Spy_see_shrK [simp]: | 
| 135 | "evs \<in> otway ==> (Key (shrK A) \<in> parts (knows Spy evs)) = (A \<in> bad)" | |
| 13907 | 136 | by (erule otway.induct, force, | 
| 137 | drule_tac [4] OR2_parts_knows_Spy, simp_all, blast+) | |
| 138 | ||
| 11251 | 139 | |
| 140 | lemma Spy_analz_shrK [simp]: | |
| 141 | "evs \<in> otway ==> (Key (shrK A) \<in> analz (knows Spy evs)) = (A \<in> bad)" | |
| 142 | by auto | |
| 143 | ||
| 144 | lemma Spy_see_shrK_D [dest!]: | |
| 145 | "[|Key (shrK A) \<in> parts (knows Spy evs); evs \<in> otway|] ==> A \<in> bad" | |
| 146 | by (blast dest: Spy_see_shrK) | |
| 147 | ||
| 148 | ||
| 13907 | 149 | subsection{*Towards Secrecy: Proofs Involving @{term analz}*}
 | 
| 11251 | 150 | |
| 151 | (*Describes the form of K and NA when the Server sends this message. Also | |
| 152 | for Oops case.*) | |
| 153 | lemma Says_Server_message_form: | |
| 154 |      "[| Says Server B {|NA, X, Crypt (shrK B) {|NB, Key K|}|} \<in> set evs;
 | |
| 155 | evs \<in> otway |] | |
| 156 | ==> K \<notin> range shrK & (\<exists>i. NA = Nonce i) & (\<exists>j. NB = Nonce j)" | |
| 17778 | 157 | by (erule rev_mp, erule otway.induct, simp_all) | 
| 11251 | 158 | |
| 159 | ||
| 160 | (**** | |
| 161 | The following is to prove theorems of the form | |
| 162 | ||
| 163 | Key K \<in> analz (insert (Key KAB) (knows Spy evs)) ==> | |
| 164 | Key K \<in> analz (knows Spy evs) | |
| 165 | ||
| 166 | A more general formula must be proved inductively. | |
| 167 | ****) | |
| 168 | ||
| 169 | ||
| 13907 | 170 | text{*Session keys are not used to encrypt other session keys*}
 | 
| 11251 | 171 | |
| 14225 | 172 | text{*The equality makes the induction hypothesis easier to apply*}
 | 
| 11251 | 173 | lemma analz_image_freshK [rule_format]: | 
| 174 | "evs \<in> otway ==> | |
| 175 | \<forall>K KK. KK <= -(range shrK) --> | |
| 176 | (Key K \<in> analz (Key`KK Un (knows Spy evs))) = | |
| 177 | (K \<in> KK | Key K \<in> analz (knows Spy evs))" | |
| 14207 
f20fbb141673
Conversion of all main protocols from "Shared" to "Public".
 paulson parents: 
14200diff
changeset | 178 | apply (erule otway.induct) | 
| 
f20fbb141673
Conversion of all main protocols from "Shared" to "Public".
 paulson parents: 
14200diff
changeset | 179 | apply (frule_tac [8] Says_Server_message_form) | 
| 
f20fbb141673
Conversion of all main protocols from "Shared" to "Public".
 paulson parents: 
14200diff
changeset | 180 | apply (drule_tac [7] OR4_analz_knows_Spy) | 
| 
f20fbb141673
Conversion of all main protocols from "Shared" to "Public".
 paulson parents: 
14200diff
changeset | 181 | apply (drule_tac [5] OR2_analz_knows_Spy, analz_freshK, spy_analz, auto) | 
| 11251 | 182 | done | 
| 183 | ||
| 184 | lemma analz_insert_freshK: | |
| 185 | "[| evs \<in> otway; KAB \<notin> range shrK |] ==> | |
| 11655 | 186 | (Key K \<in> analz (insert (Key KAB) (knows Spy evs))) = | 
| 11251 | 187 | (K = KAB | Key K \<in> analz (knows Spy evs))" | 
| 188 | by (simp only: analz_image_freshK analz_image_freshK_simps) | |
| 189 | ||
| 190 | ||
| 14225 | 191 | text{*The Key K uniquely identifies the Server's  message. *}
 | 
| 11251 | 192 | lemma unique_session_keys: | 
| 193 |      "[| Says Server B {|NA, X, Crypt (shrK B) {|NB, K|}|}   \<in> set evs;
 | |
| 194 |          Says Server B' {|NA',X',Crypt (shrK B') {|NB',K|}|} \<in> set evs;
 | |
| 195 | evs \<in> otway |] ==> X=X' & B=B' & NA=NA' & NB=NB'" | |
| 196 | apply (erule rev_mp) | |
| 197 | apply (erule rev_mp) | |
| 198 | apply (erule otway.induct, simp_all) | |
| 14225 | 199 | apply blast+  --{*OR3 and OR4*}
 | 
| 11251 | 200 | done | 
| 201 | ||
| 202 | ||
| 13907 | 203 | subsection{*Authenticity properties relating to NA*}
 | 
| 11251 | 204 | |
| 14225 | 205 | text{*Only OR1 can have caused such a part of a message to appear.*}
 | 
| 11251 | 206 | lemma Crypt_imp_OR1 [rule_format]: | 
| 207 | "[| A \<notin> bad; evs \<in> otway |] | |
| 208 |   ==> Crypt (shrK A) {|NA, Agent A, Agent B|} \<in> parts (knows Spy evs) -->
 | |
| 209 |       Says A B {|NA, Agent A, Agent B,
 | |
| 210 |                  Crypt (shrK A) {|NA, Agent A, Agent B|}|}
 | |
| 211 | \<in> set evs" | |
| 14225 | 212 | by (erule otway.induct, force, | 
| 213 | drule_tac [4] OR2_parts_knows_Spy, simp_all, blast+) | |
| 11251 | 214 | |
| 215 | lemma Crypt_imp_OR1_Gets: | |
| 216 |      "[| Gets B {|NA, Agent A, Agent B,
 | |
| 217 |                   Crypt (shrK A) {|NA, Agent A, Agent B|}|} \<in> set evs;
 | |
| 218 | A \<notin> bad; evs \<in> otway |] | |
| 219 |        ==> Says A B {|NA, Agent A, Agent B,
 | |
| 220 |                       Crypt (shrK A) {|NA, Agent A, Agent B|}|}
 | |
| 221 | \<in> set evs" | |
| 222 | by (blast dest: Crypt_imp_OR1) | |
| 223 | ||
| 224 | ||
| 13907 | 225 | text{*The Nonce NA uniquely identifies A's message*}
 | 
| 11251 | 226 | lemma unique_NA: | 
| 227 |      "[| Crypt (shrK A) {|NA, Agent A, Agent B|} \<in> parts (knows Spy evs);
 | |
| 228 |          Crypt (shrK A) {|NA, Agent A, Agent C|} \<in> parts (knows Spy evs);
 | |
| 229 | evs \<in> otway; A \<notin> bad |] | |
| 230 | ==> B = C" | |
| 231 | apply (erule rev_mp, erule rev_mp) | |
| 232 | apply (erule otway.induct, force, | |
| 13507 | 233 | drule_tac [4] OR2_parts_knows_Spy, simp_all, blast+) | 
| 11251 | 234 | done | 
| 235 | ||
| 236 | ||
| 14225 | 237 | text{*It is impossible to re-use a nonce in both OR1 and OR2.  This holds because
 | 
| 11251 | 238 | OR2 encrypts Nonce NB. It prevents the attack that can occur in the | 
| 17411 | 239 |   over-simplified version of this protocol: see @{text OtwayRees_Bad}.*}
 | 
| 11251 | 240 | lemma no_nonce_OR1_OR2: | 
| 241 |    "[| Crypt (shrK A) {|NA, Agent A, Agent B|} \<in> parts (knows Spy evs);
 | |
| 242 | A \<notin> bad; evs \<in> otway |] | |
| 243 |     ==> Crypt (shrK A) {|NA', NA, Agent A', Agent A|} \<notin> parts (knows Spy evs)"
 | |
| 244 | apply (erule rev_mp) | |
| 245 | apply (erule otway.induct, force, | |
| 13507 | 246 | drule_tac [4] OR2_parts_knows_Spy, simp_all, blast+) | 
| 11251 | 247 | done | 
| 248 | ||
| 14225 | 249 | text{*Crucial property: If the encrypted message appears, and A has used NA
 | 
| 250 | to start a run, then it originated with the Server!*} | |
| 11251 | 251 | lemma NA_Crypt_imp_Server_msg [rule_format]: | 
| 252 | "[| A \<notin> bad; evs \<in> otway |] | |
| 253 |       ==> Says A B {|NA, Agent A, Agent B,
 | |
| 254 |                      Crypt (shrK A) {|NA, Agent A, Agent B|}|} \<in> set evs -->
 | |
| 255 |           Crypt (shrK A) {|NA, Key K|} \<in> parts (knows Spy evs)
 | |
| 256 | --> (\<exists>NB. Says Server B | |
| 257 |                          {|NA,
 | |
| 258 |                            Crypt (shrK A) {|NA, Key K|},
 | |
| 259 |                            Crypt (shrK B) {|NB, Key K|}|} \<in> set evs)"
 | |
| 260 | apply (erule otway.induct, force, | |
| 13507 | 261 | drule_tac [4] OR2_parts_knows_Spy, simp_all, blast) | 
| 14225 | 262 | apply blast  --{*OR1: by freshness*}
 | 
| 263 | apply (blast dest!: no_nonce_OR1_OR2 intro: unique_NA)  --{*OR3*}
 | |
| 264 | apply (blast intro!: Crypt_imp_OR1)  --{*OR4*}
 | |
| 11251 | 265 | done | 
| 266 | ||
| 267 | ||
| 14225 | 268 | text{*Corollary: if A receives B's OR4 message and the nonce NA agrees
 | 
| 11251 | 269 | then the key really did come from the Server! CANNOT prove this of the | 
| 270 | bad form of this protocol, even though we can prove | |
| 17411 | 271 |   @{text Spy_not_see_encrypted_key} *}
 | 
| 11251 | 272 | lemma A_trusts_OR4: | 
| 273 |      "[| Says A  B {|NA, Agent A, Agent B,
 | |
| 274 |                      Crypt (shrK A) {|NA, Agent A, Agent B|}|} \<in> set evs;
 | |
| 275 |          Says B' A {|NA, Crypt (shrK A) {|NA, Key K|}|} \<in> set evs;
 | |
| 276 | A \<notin> bad; evs \<in> otway |] | |
| 277 | ==> \<exists>NB. Says Server B | |
| 278 |                {|NA,
 | |
| 279 |                  Crypt (shrK A) {|NA, Key K|},
 | |
| 280 |                  Crypt (shrK B) {|NB, Key K|}|}
 | |
| 281 | \<in> set evs" | |
| 282 | by (blast intro!: NA_Crypt_imp_Server_msg) | |
| 283 | ||
| 284 | ||
| 14225 | 285 | text{*Crucial secrecy property: Spy does not see the keys sent in msg OR3
 | 
| 11251 | 286 | Does not in itself guarantee security: an attack could violate | 
| 14225 | 287 |     the premises, e.g. by having @{term "A=Spy"}*}
 | 
| 11251 | 288 | lemma secrecy_lemma: | 
| 289 | "[| A \<notin> bad; B \<notin> bad; evs \<in> otway |] | |
| 290 | ==> Says Server B | |
| 291 |         {|NA, Crypt (shrK A) {|NA, Key K|},
 | |
| 292 |           Crypt (shrK B) {|NB, Key K|}|} \<in> set evs -->
 | |
| 293 |       Notes Spy {|NA, NB, Key K|} \<notin> set evs -->
 | |
| 294 | Key K \<notin> analz (knows Spy evs)" | |
| 295 | apply (erule otway.induct, force) | |
| 296 | apply (frule_tac [7] Says_Server_message_form) | |
| 297 | apply (drule_tac [6] OR4_analz_knows_Spy) | |
| 298 | apply (drule_tac [4] OR2_analz_knows_Spy) | |
| 14225 | 299 | apply (simp_all add: analz_insert_eq analz_insert_freshK pushes) | 
| 300 | apply spy_analz  --{*Fake*}
 | |
| 301 | apply (blast dest: unique_session_keys)+  --{*OR3, OR4, Oops*}
 | |
| 11251 | 302 | done | 
| 303 | ||
| 13907 | 304 | theorem Spy_not_see_encrypted_key: | 
| 11251 | 305 | "[| Says Server B | 
| 306 |           {|NA, Crypt (shrK A) {|NA, Key K|},
 | |
| 307 |                 Crypt (shrK B) {|NB, Key K|}|} \<in> set evs;
 | |
| 308 |          Notes Spy {|NA, NB, Key K|} \<notin> set evs;
 | |
| 309 | A \<notin> bad; B \<notin> bad; evs \<in> otway |] | |
| 310 | ==> Key K \<notin> analz (knows Spy evs)" | |
| 311 | by (blast dest: Says_Server_message_form secrecy_lemma) | |
| 312 | ||
| 13907 | 313 | text{*This form is an immediate consequence of the previous result.  It is 
 | 
| 314 | similar to the assertions established by other methods. It is equivalent | |
| 315 | to the previous result in that the Spy already has @{term analz} and
 | |
| 316 | @{term synth} at his disposal.  However, the conclusion 
 | |
| 317 | @{term "Key K \<notin> knows Spy evs"} appears not to be inductive: all the cases
 | |
| 318 | other than Fake are trivial, while Fake requires | |
| 319 | @{term "Key K \<notin> analz (knows Spy evs)"}. *}
 | |
| 320 | lemma Spy_not_know_encrypted_key: | |
| 321 | "[| Says Server B | |
| 322 |           {|NA, Crypt (shrK A) {|NA, Key K|},
 | |
| 323 |                 Crypt (shrK B) {|NB, Key K|}|} \<in> set evs;
 | |
| 324 |          Notes Spy {|NA, NB, Key K|} \<notin> set evs;
 | |
| 325 | A \<notin> bad; B \<notin> bad; evs \<in> otway |] | |
| 326 | ==> Key K \<notin> knows Spy evs" | |
| 327 | by (blast dest: Spy_not_see_encrypted_key) | |
| 328 | ||
| 11251 | 329 | |
| 14225 | 330 | text{*A's guarantee.  The Oops premise quantifies over NB because A cannot know
 | 
| 331 | what it is.*} | |
| 11251 | 332 | lemma A_gets_good_key: | 
| 333 |      "[| Says A  B {|NA, Agent A, Agent B,
 | |
| 334 |                      Crypt (shrK A) {|NA, Agent A, Agent B|}|} \<in> set evs;
 | |
| 335 |          Says B' A {|NA, Crypt (shrK A) {|NA, Key K|}|} \<in> set evs;
 | |
| 336 |          \<forall>NB. Notes Spy {|NA, NB, Key K|} \<notin> set evs;
 | |
| 337 | A \<notin> bad; B \<notin> bad; evs \<in> otway |] | |
| 338 | ==> Key K \<notin> analz (knows Spy evs)" | |
| 339 | by (blast dest!: A_trusts_OR4 Spy_not_see_encrypted_key) | |
| 340 | ||
| 341 | ||
| 13907 | 342 | subsection{*Authenticity properties relating to NB*}
 | 
| 11251 | 343 | |
| 14225 | 344 | text{*Only OR2 can have caused such a part of a message to appear.  We do not
 | 
| 345 | know anything about X: it does NOT have to have the right form.*} | |
| 11251 | 346 | lemma Crypt_imp_OR2: | 
| 347 |      "[| Crypt (shrK B) {|NA, NB, Agent A, Agent B|} \<in> parts (knows Spy evs);
 | |
| 348 | B \<notin> bad; evs \<in> otway |] | |
| 349 | ==> \<exists>X. Says B Server | |
| 350 |                  {|NA, Agent A, Agent B, X,
 | |
| 351 |                    Crypt (shrK B) {|NA, NB, Agent A, Agent B|}|}
 | |
| 352 | \<in> set evs" | |
| 353 | apply (erule rev_mp) | |
| 354 | apply (erule otway.induct, force, | |
| 13507 | 355 | drule_tac [4] OR2_parts_knows_Spy, simp_all, blast+) | 
| 11251 | 356 | done | 
| 357 | ||
| 358 | ||
| 13907 | 359 | text{*The Nonce NB uniquely identifies B's  message*}
 | 
| 11251 | 360 | lemma unique_NB: | 
| 361 |      "[| Crypt (shrK B) {|NA, NB, Agent A, Agent B|} \<in> parts(knows Spy evs);
 | |
| 362 |          Crypt (shrK B) {|NC, NB, Agent C, Agent B|} \<in> parts(knows Spy evs);
 | |
| 363 | evs \<in> otway; B \<notin> bad |] | |
| 364 | ==> NC = NA & C = A" | |
| 365 | apply (erule rev_mp, erule rev_mp) | |
| 366 | apply (erule otway.induct, force, | |
| 367 | drule_tac [4] OR2_parts_knows_Spy, simp_all) | |
| 14225 | 368 | apply blast+  --{*Fake, OR2*}
 | 
| 11251 | 369 | done | 
| 370 | ||
| 14225 | 371 | text{*If the encrypted message appears, and B has used Nonce NB,
 | 
| 372 | then it originated with the Server! Quite messy proof.*} | |
| 11251 | 373 | lemma NB_Crypt_imp_Server_msg [rule_format]: | 
| 374 | "[| B \<notin> bad; evs \<in> otway |] | |
| 375 |   ==> Crypt (shrK B) {|NB, Key K|} \<in> parts (knows Spy evs)
 | |
| 376 | --> (\<forall>X'. Says B Server | |
| 377 |                      {|NA, Agent A, Agent B, X',
 | |
| 378 |                        Crypt (shrK B) {|NA, NB, Agent A, Agent B|}|}
 | |
| 379 | \<in> set evs | |
| 380 | --> Says Server B | |
| 381 |                 {|NA, Crypt (shrK A) {|NA, Key K|},
 | |
| 382 |                       Crypt (shrK B) {|NB, Key K|}|}
 | |
| 383 | \<in> set evs)" | |
| 384 | apply simp | |
| 385 | apply (erule otway.induct, force, | |
| 14225 | 386 | drule_tac [4] OR2_parts_knows_Spy, simp_all) | 
| 387 | apply blast  --{*Fake*}
 | |
| 388 | apply blast  --{*OR2*}
 | |
| 389 | apply (blast dest: unique_NB dest!: no_nonce_OR1_OR2)  --{*OR3*}
 | |
| 390 | apply (blast dest!: Crypt_imp_OR2)  --{*OR4*}
 | |
| 11251 | 391 | done | 
| 392 | ||
| 393 | ||
| 13907 | 394 | text{*Guarantee for B: if it gets a message with matching NB then the Server
 | 
| 395 | has sent the correct message.*} | |
| 396 | theorem B_trusts_OR3: | |
| 11251 | 397 |      "[| Says B Server {|NA, Agent A, Agent B, X',
 | 
| 398 |                          Crypt (shrK B) {|NA, NB, Agent A, Agent B|} |}
 | |
| 399 | \<in> set evs; | |
| 400 |          Gets B {|NA, X, Crypt (shrK B) {|NB, Key K|}|} \<in> set evs;
 | |
| 401 | B \<notin> bad; evs \<in> otway |] | |
| 402 | ==> Says Server B | |
| 403 |                {|NA,
 | |
| 404 |                  Crypt (shrK A) {|NA, Key K|},
 | |
| 405 |                  Crypt (shrK B) {|NB, Key K|}|}
 | |
| 406 | \<in> set evs" | |
| 407 | by (blast intro!: NB_Crypt_imp_Server_msg) | |
| 408 | ||
| 409 | ||
| 14225 | 410 | text{*The obvious combination of @{text B_trusts_OR3} with 
 | 
| 411 |       @{text Spy_not_see_encrypted_key}*}
 | |
| 11251 | 412 | lemma B_gets_good_key: | 
| 413 |      "[| Says B Server {|NA, Agent A, Agent B, X',
 | |
| 414 |                          Crypt (shrK B) {|NA, NB, Agent A, Agent B|} |}
 | |
| 415 | \<in> set evs; | |
| 416 |          Gets B {|NA, X, Crypt (shrK B) {|NB, Key K|}|} \<in> set evs;
 | |
| 417 |          Notes Spy {|NA, NB, Key K|} \<notin> set evs;
 | |
| 418 | A \<notin> bad; B \<notin> bad; evs \<in> otway |] | |
| 419 | ==> Key K \<notin> analz (knows Spy evs)" | |
| 420 | by (blast dest!: B_trusts_OR3 Spy_not_see_encrypted_key) | |
| 421 | ||
| 422 | ||
| 423 | lemma OR3_imp_OR2: | |
| 424 | "[| Says Server B | |
| 425 |               {|NA, Crypt (shrK A) {|NA, Key K|},
 | |
| 426 |                 Crypt (shrK B) {|NB, Key K|}|} \<in> set evs;
 | |
| 427 | B \<notin> bad; evs \<in> otway |] | |
| 428 |   ==> \<exists>X. Says B Server {|NA, Agent A, Agent B, X,
 | |
| 429 |                             Crypt (shrK B) {|NA, NB, Agent A, Agent B|} |}
 | |
| 430 | \<in> set evs" | |
| 431 | apply (erule rev_mp) | |
| 432 | apply (erule otway.induct, simp_all) | |
| 433 | apply (blast dest!: Crypt_imp_OR2)+ | |
| 434 | done | |
| 435 | ||
| 436 | ||
| 13907 | 437 | text{*After getting and checking OR4, agent A can trust that B has been active.
 | 
| 11251 | 438 | We could probably prove that X has the expected form, but that is not | 
| 13907 | 439 | strictly necessary for authentication.*} | 
| 440 | theorem A_auths_B: | |
| 11251 | 441 |      "[| Says B' A {|NA, Crypt (shrK A) {|NA, Key K|}|} \<in> set evs;
 | 
| 442 |          Says A  B {|NA, Agent A, Agent B,
 | |
| 443 |                      Crypt (shrK A) {|NA, Agent A, Agent B|}|} \<in> set evs;
 | |
| 444 | A \<notin> bad; B \<notin> bad; evs \<in> otway |] | |
| 445 |   ==> \<exists>NB X. Says B Server {|NA, Agent A, Agent B, X,
 | |
| 446 |                                Crypt (shrK B)  {|NA, NB, Agent A, Agent B|} |}
 | |
| 447 | \<in> set evs" | |
| 448 | by (blast dest!: A_trusts_OR4 OR3_imp_OR2) | |
| 449 | ||
| 1941 | 450 | end |