23146
|
1 |
(* Title: ZF/Int.thy
|
|
2 |
ID: $Id$
|
|
3 |
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
|
|
4 |
Copyright 1993 University of Cambridge
|
|
5 |
|
|
6 |
*)
|
|
7 |
|
|
8 |
header{*The Integers as Equivalence Classes Over Pairs of Natural Numbers*}
|
|
9 |
|
|
10 |
theory Int imports EquivClass ArithSimp begin
|
|
11 |
|
24893
|
12 |
definition
|
|
13 |
intrel :: i where
|
23146
|
14 |
"intrel == {p : (nat*nat)*(nat*nat).
|
|
15 |
\<exists>x1 y1 x2 y2. p=<<x1,y1>,<x2,y2>> & x1#+y2 = x2#+y1}"
|
|
16 |
|
24893
|
17 |
definition
|
|
18 |
int :: i where
|
23146
|
19 |
"int == (nat*nat)//intrel"
|
|
20 |
|
24893
|
21 |
definition
|
|
22 |
int_of :: "i=>i" --{*coercion from nat to int*} ("$# _" [80] 80) where
|
23146
|
23 |
"$# m == intrel `` {<natify(m), 0>}"
|
|
24 |
|
24893
|
25 |
definition
|
|
26 |
intify :: "i=>i" --{*coercion from ANYTHING to int*} where
|
23146
|
27 |
"intify(m) == if m : int then m else $#0"
|
|
28 |
|
24893
|
29 |
definition
|
|
30 |
raw_zminus :: "i=>i" where
|
23146
|
31 |
"raw_zminus(z) == \<Union><x,y>\<in>z. intrel``{<y,x>}"
|
|
32 |
|
24893
|
33 |
definition
|
|
34 |
zminus :: "i=>i" ("$- _" [80] 80) where
|
23146
|
35 |
"$- z == raw_zminus (intify(z))"
|
|
36 |
|
24893
|
37 |
definition
|
|
38 |
znegative :: "i=>o" where
|
23146
|
39 |
"znegative(z) == \<exists>x y. x<y & y\<in>nat & <x,y>\<in>z"
|
|
40 |
|
24893
|
41 |
definition
|
|
42 |
iszero :: "i=>o" where
|
23146
|
43 |
"iszero(z) == z = $# 0"
|
|
44 |
|
24893
|
45 |
definition
|
|
46 |
raw_nat_of :: "i=>i" where
|
23146
|
47 |
"raw_nat_of(z) == natify (\<Union><x,y>\<in>z. x#-y)"
|
|
48 |
|
24893
|
49 |
definition
|
|
50 |
nat_of :: "i=>i" where
|
23146
|
51 |
"nat_of(z) == raw_nat_of (intify(z))"
|
|
52 |
|
24893
|
53 |
definition
|
|
54 |
zmagnitude :: "i=>i" where
|
23146
|
55 |
--{*could be replaced by an absolute value function from int to int?*}
|
|
56 |
"zmagnitude(z) ==
|
|
57 |
THE m. m\<in>nat & ((~ znegative(z) & z = $# m) |
|
|
58 |
(znegative(z) & $- z = $# m))"
|
|
59 |
|
24893
|
60 |
definition
|
|
61 |
raw_zmult :: "[i,i]=>i" where
|
23146
|
62 |
(*Cannot use UN<x1,y2> here or in zadd because of the form of congruent2.
|
|
63 |
Perhaps a "curried" or even polymorphic congruent predicate would be
|
|
64 |
better.*)
|
|
65 |
"raw_zmult(z1,z2) ==
|
|
66 |
\<Union>p1\<in>z1. \<Union>p2\<in>z2. split(%x1 y1. split(%x2 y2.
|
|
67 |
intrel``{<x1#*x2 #+ y1#*y2, x1#*y2 #+ y1#*x2>}, p2), p1)"
|
|
68 |
|
24893
|
69 |
definition
|
|
70 |
zmult :: "[i,i]=>i" (infixl "$*" 70) where
|
23146
|
71 |
"z1 $* z2 == raw_zmult (intify(z1),intify(z2))"
|
|
72 |
|
24893
|
73 |
definition
|
|
74 |
raw_zadd :: "[i,i]=>i" where
|
23146
|
75 |
"raw_zadd (z1, z2) ==
|
|
76 |
\<Union>z1\<in>z1. \<Union>z2\<in>z2. let <x1,y1>=z1; <x2,y2>=z2
|
|
77 |
in intrel``{<x1#+x2, y1#+y2>}"
|
|
78 |
|
24893
|
79 |
definition
|
|
80 |
zadd :: "[i,i]=>i" (infixl "$+" 65) where
|
23146
|
81 |
"z1 $+ z2 == raw_zadd (intify(z1),intify(z2))"
|
|
82 |
|
24893
|
83 |
definition
|
|
84 |
zdiff :: "[i,i]=>i" (infixl "$-" 65) where
|
23146
|
85 |
"z1 $- z2 == z1 $+ zminus(z2)"
|
|
86 |
|
24893
|
87 |
definition
|
|
88 |
zless :: "[i,i]=>o" (infixl "$<" 50) where
|
23146
|
89 |
"z1 $< z2 == znegative(z1 $- z2)"
|
|
90 |
|
24893
|
91 |
definition
|
|
92 |
zle :: "[i,i]=>o" (infixl "$<=" 50) where
|
23146
|
93 |
"z1 $<= z2 == z1 $< z2 | intify(z1)=intify(z2)"
|
|
94 |
|
|
95 |
|
24893
|
96 |
notation (xsymbols)
|
|
97 |
zmult (infixl "$\<times>" 70) and
|
|
98 |
zle (infixl "$\<le>" 50) --{*less than or equals*}
|
23146
|
99 |
|
24893
|
100 |
notation (HTML output)
|
|
101 |
zmult (infixl "$\<times>" 70) and
|
|
102 |
zle (infixl "$\<le>" 50)
|
23146
|
103 |
|
|
104 |
|
|
105 |
declare quotientE [elim!]
|
|
106 |
|
|
107 |
subsection{*Proving that @{term intrel} is an equivalence relation*}
|
|
108 |
|
|
109 |
(** Natural deduction for intrel **)
|
|
110 |
|
|
111 |
lemma intrel_iff [simp]:
|
|
112 |
"<<x1,y1>,<x2,y2>>: intrel <->
|
|
113 |
x1\<in>nat & y1\<in>nat & x2\<in>nat & y2\<in>nat & x1#+y2 = x2#+y1"
|
|
114 |
by (simp add: intrel_def)
|
|
115 |
|
|
116 |
lemma intrelI [intro!]:
|
|
117 |
"[| x1#+y2 = x2#+y1; x1\<in>nat; y1\<in>nat; x2\<in>nat; y2\<in>nat |]
|
|
118 |
==> <<x1,y1>,<x2,y2>>: intrel"
|
|
119 |
by (simp add: intrel_def)
|
|
120 |
|
|
121 |
lemma intrelE [elim!]:
|
|
122 |
"[| p: intrel;
|
|
123 |
!!x1 y1 x2 y2. [| p = <<x1,y1>,<x2,y2>>; x1#+y2 = x2#+y1;
|
|
124 |
x1\<in>nat; y1\<in>nat; x2\<in>nat; y2\<in>nat |] ==> Q |]
|
|
125 |
==> Q"
|
|
126 |
by (simp add: intrel_def, blast)
|
|
127 |
|
|
128 |
lemma int_trans_lemma:
|
|
129 |
"[| x1 #+ y2 = x2 #+ y1; x2 #+ y3 = x3 #+ y2 |] ==> x1 #+ y3 = x3 #+ y1"
|
|
130 |
apply (rule sym)
|
|
131 |
apply (erule add_left_cancel)+
|
|
132 |
apply (simp_all (no_asm_simp))
|
|
133 |
done
|
|
134 |
|
|
135 |
lemma equiv_intrel: "equiv(nat*nat, intrel)"
|
|
136 |
apply (simp add: equiv_def refl_def sym_def trans_def)
|
|
137 |
apply (fast elim!: sym int_trans_lemma)
|
|
138 |
done
|
|
139 |
|
|
140 |
lemma image_intrel_int: "[| m\<in>nat; n\<in>nat |] ==> intrel `` {<m,n>} : int"
|
|
141 |
by (simp add: int_def)
|
|
142 |
|
|
143 |
declare equiv_intrel [THEN eq_equiv_class_iff, simp]
|
|
144 |
declare conj_cong [cong]
|
|
145 |
|
|
146 |
lemmas eq_intrelD = eq_equiv_class [OF _ equiv_intrel]
|
|
147 |
|
|
148 |
(** int_of: the injection from nat to int **)
|
|
149 |
|
|
150 |
lemma int_of_type [simp,TC]: "$#m : int"
|
|
151 |
by (simp add: int_def quotient_def int_of_def, auto)
|
|
152 |
|
|
153 |
lemma int_of_eq [iff]: "($# m = $# n) <-> natify(m)=natify(n)"
|
|
154 |
by (simp add: int_of_def)
|
|
155 |
|
|
156 |
lemma int_of_inject: "[| $#m = $#n; m\<in>nat; n\<in>nat |] ==> m=n"
|
|
157 |
by (drule int_of_eq [THEN iffD1], auto)
|
|
158 |
|
|
159 |
|
|
160 |
(** intify: coercion from anything to int **)
|
|
161 |
|
|
162 |
lemma intify_in_int [iff,TC]: "intify(x) : int"
|
|
163 |
by (simp add: intify_def)
|
|
164 |
|
|
165 |
lemma intify_ident [simp]: "n : int ==> intify(n) = n"
|
|
166 |
by (simp add: intify_def)
|
|
167 |
|
|
168 |
|
|
169 |
subsection{*Collapsing rules: to remove @{term intify}
|
|
170 |
from arithmetic expressions*}
|
|
171 |
|
|
172 |
lemma intify_idem [simp]: "intify(intify(x)) = intify(x)"
|
|
173 |
by simp
|
|
174 |
|
|
175 |
lemma int_of_natify [simp]: "$# (natify(m)) = $# m"
|
|
176 |
by (simp add: int_of_def)
|
|
177 |
|
|
178 |
lemma zminus_intify [simp]: "$- (intify(m)) = $- m"
|
|
179 |
by (simp add: zminus_def)
|
|
180 |
|
|
181 |
(** Addition **)
|
|
182 |
|
|
183 |
lemma zadd_intify1 [simp]: "intify(x) $+ y = x $+ y"
|
|
184 |
by (simp add: zadd_def)
|
|
185 |
|
|
186 |
lemma zadd_intify2 [simp]: "x $+ intify(y) = x $+ y"
|
|
187 |
by (simp add: zadd_def)
|
|
188 |
|
|
189 |
(** Subtraction **)
|
|
190 |
|
|
191 |
lemma zdiff_intify1 [simp]:"intify(x) $- y = x $- y"
|
|
192 |
by (simp add: zdiff_def)
|
|
193 |
|
|
194 |
lemma zdiff_intify2 [simp]:"x $- intify(y) = x $- y"
|
|
195 |
by (simp add: zdiff_def)
|
|
196 |
|
|
197 |
(** Multiplication **)
|
|
198 |
|
|
199 |
lemma zmult_intify1 [simp]:"intify(x) $* y = x $* y"
|
|
200 |
by (simp add: zmult_def)
|
|
201 |
|
|
202 |
lemma zmult_intify2 [simp]:"x $* intify(y) = x $* y"
|
|
203 |
by (simp add: zmult_def)
|
|
204 |
|
|
205 |
(** Orderings **)
|
|
206 |
|
|
207 |
lemma zless_intify1 [simp]:"intify(x) $< y <-> x $< y"
|
|
208 |
by (simp add: zless_def)
|
|
209 |
|
|
210 |
lemma zless_intify2 [simp]:"x $< intify(y) <-> x $< y"
|
|
211 |
by (simp add: zless_def)
|
|
212 |
|
|
213 |
lemma zle_intify1 [simp]:"intify(x) $<= y <-> x $<= y"
|
|
214 |
by (simp add: zle_def)
|
|
215 |
|
|
216 |
lemma zle_intify2 [simp]:"x $<= intify(y) <-> x $<= y"
|
|
217 |
by (simp add: zle_def)
|
|
218 |
|
|
219 |
|
|
220 |
subsection{*@{term zminus}: unary negation on @{term int}*}
|
|
221 |
|
|
222 |
lemma zminus_congruent: "(%<x,y>. intrel``{<y,x>}) respects intrel"
|
|
223 |
by (auto simp add: congruent_def add_ac)
|
|
224 |
|
|
225 |
lemma raw_zminus_type: "z : int ==> raw_zminus(z) : int"
|
|
226 |
apply (simp add: int_def raw_zminus_def)
|
|
227 |
apply (typecheck add: UN_equiv_class_type [OF equiv_intrel zminus_congruent])
|
|
228 |
done
|
|
229 |
|
|
230 |
lemma zminus_type [TC,iff]: "$-z : int"
|
|
231 |
by (simp add: zminus_def raw_zminus_type)
|
|
232 |
|
|
233 |
lemma raw_zminus_inject:
|
|
234 |
"[| raw_zminus(z) = raw_zminus(w); z: int; w: int |] ==> z=w"
|
|
235 |
apply (simp add: int_def raw_zminus_def)
|
|
236 |
apply (erule UN_equiv_class_inject [OF equiv_intrel zminus_congruent], safe)
|
|
237 |
apply (auto dest: eq_intrelD simp add: add_ac)
|
|
238 |
done
|
|
239 |
|
|
240 |
lemma zminus_inject_intify [dest!]: "$-z = $-w ==> intify(z) = intify(w)"
|
|
241 |
apply (simp add: zminus_def)
|
|
242 |
apply (blast dest!: raw_zminus_inject)
|
|
243 |
done
|
|
244 |
|
|
245 |
lemma zminus_inject: "[| $-z = $-w; z: int; w: int |] ==> z=w"
|
|
246 |
by auto
|
|
247 |
|
|
248 |
lemma raw_zminus:
|
|
249 |
"[| x\<in>nat; y\<in>nat |] ==> raw_zminus(intrel``{<x,y>}) = intrel `` {<y,x>}"
|
|
250 |
apply (simp add: raw_zminus_def UN_equiv_class [OF equiv_intrel zminus_congruent])
|
|
251 |
done
|
|
252 |
|
|
253 |
lemma zminus:
|
|
254 |
"[| x\<in>nat; y\<in>nat |]
|
|
255 |
==> $- (intrel``{<x,y>}) = intrel `` {<y,x>}"
|
|
256 |
by (simp add: zminus_def raw_zminus image_intrel_int)
|
|
257 |
|
|
258 |
lemma raw_zminus_zminus: "z : int ==> raw_zminus (raw_zminus(z)) = z"
|
|
259 |
by (auto simp add: int_def raw_zminus)
|
|
260 |
|
|
261 |
lemma zminus_zminus_intify [simp]: "$- ($- z) = intify(z)"
|
|
262 |
by (simp add: zminus_def raw_zminus_type raw_zminus_zminus)
|
|
263 |
|
|
264 |
lemma zminus_int0 [simp]: "$- ($#0) = $#0"
|
|
265 |
by (simp add: int_of_def zminus)
|
|
266 |
|
|
267 |
lemma zminus_zminus: "z : int ==> $- ($- z) = z"
|
|
268 |
by simp
|
|
269 |
|
|
270 |
|
|
271 |
subsection{*@{term znegative}: the test for negative integers*}
|
|
272 |
|
|
273 |
lemma znegative: "[| x\<in>nat; y\<in>nat |] ==> znegative(intrel``{<x,y>}) <-> x<y"
|
|
274 |
apply (cases "x<y")
|
|
275 |
apply (auto simp add: znegative_def not_lt_iff_le)
|
|
276 |
apply (subgoal_tac "y #+ x2 < x #+ y2", force)
|
|
277 |
apply (rule add_le_lt_mono, auto)
|
|
278 |
done
|
|
279 |
|
|
280 |
(*No natural number is negative!*)
|
|
281 |
lemma not_znegative_int_of [iff]: "~ znegative($# n)"
|
|
282 |
by (simp add: znegative int_of_def)
|
|
283 |
|
|
284 |
lemma znegative_zminus_int_of [simp]: "znegative($- $# succ(n))"
|
|
285 |
by (simp add: znegative int_of_def zminus natify_succ)
|
|
286 |
|
|
287 |
lemma not_znegative_imp_zero: "~ znegative($- $# n) ==> natify(n)=0"
|
|
288 |
by (simp add: znegative int_of_def zminus Ord_0_lt_iff [THEN iff_sym])
|
|
289 |
|
|
290 |
|
|
291 |
subsection{*@{term nat_of}: Coercion of an Integer to a Natural Number*}
|
|
292 |
|
|
293 |
lemma nat_of_intify [simp]: "nat_of(intify(z)) = nat_of(z)"
|
|
294 |
by (simp add: nat_of_def)
|
|
295 |
|
|
296 |
lemma nat_of_congruent: "(\<lambda>x. (\<lambda>\<langle>x,y\<rangle>. x #- y)(x)) respects intrel"
|
|
297 |
by (auto simp add: congruent_def split add: nat_diff_split)
|
|
298 |
|
|
299 |
lemma raw_nat_of:
|
|
300 |
"[| x\<in>nat; y\<in>nat |] ==> raw_nat_of(intrel``{<x,y>}) = x#-y"
|
|
301 |
by (simp add: raw_nat_of_def UN_equiv_class [OF equiv_intrel nat_of_congruent])
|
|
302 |
|
|
303 |
lemma raw_nat_of_int_of: "raw_nat_of($# n) = natify(n)"
|
|
304 |
by (simp add: int_of_def raw_nat_of)
|
|
305 |
|
|
306 |
lemma nat_of_int_of [simp]: "nat_of($# n) = natify(n)"
|
|
307 |
by (simp add: raw_nat_of_int_of nat_of_def)
|
|
308 |
|
|
309 |
lemma raw_nat_of_type: "raw_nat_of(z) \<in> nat"
|
|
310 |
by (simp add: raw_nat_of_def)
|
|
311 |
|
|
312 |
lemma nat_of_type [iff,TC]: "nat_of(z) \<in> nat"
|
|
313 |
by (simp add: nat_of_def raw_nat_of_type)
|
|
314 |
|
|
315 |
subsection{*zmagnitude: magnitide of an integer, as a natural number*}
|
|
316 |
|
|
317 |
lemma zmagnitude_int_of [simp]: "zmagnitude($# n) = natify(n)"
|
|
318 |
by (auto simp add: zmagnitude_def int_of_eq)
|
|
319 |
|
|
320 |
lemma natify_int_of_eq: "natify(x)=n ==> $#x = $# n"
|
|
321 |
apply (drule sym)
|
|
322 |
apply (simp (no_asm_simp) add: int_of_eq)
|
|
323 |
done
|
|
324 |
|
|
325 |
lemma zmagnitude_zminus_int_of [simp]: "zmagnitude($- $# n) = natify(n)"
|
|
326 |
apply (simp add: zmagnitude_def)
|
|
327 |
apply (rule the_equality)
|
|
328 |
apply (auto dest!: not_znegative_imp_zero natify_int_of_eq
|
|
329 |
iff del: int_of_eq, auto)
|
|
330 |
done
|
|
331 |
|
|
332 |
lemma zmagnitude_type [iff,TC]: "zmagnitude(z)\<in>nat"
|
|
333 |
apply (simp add: zmagnitude_def)
|
|
334 |
apply (rule theI2, auto)
|
|
335 |
done
|
|
336 |
|
|
337 |
lemma not_zneg_int_of:
|
|
338 |
"[| z: int; ~ znegative(z) |] ==> \<exists>n\<in>nat. z = $# n"
|
|
339 |
apply (auto simp add: int_def znegative int_of_def not_lt_iff_le)
|
|
340 |
apply (rename_tac x y)
|
|
341 |
apply (rule_tac x="x#-y" in bexI)
|
|
342 |
apply (auto simp add: add_diff_inverse2)
|
|
343 |
done
|
|
344 |
|
|
345 |
lemma not_zneg_mag [simp]:
|
|
346 |
"[| z: int; ~ znegative(z) |] ==> $# (zmagnitude(z)) = z"
|
|
347 |
by (drule not_zneg_int_of, auto)
|
|
348 |
|
|
349 |
lemma zneg_int_of:
|
|
350 |
"[| znegative(z); z: int |] ==> \<exists>n\<in>nat. z = $- ($# succ(n))"
|
|
351 |
by (auto simp add: int_def znegative zminus int_of_def dest!: less_imp_succ_add)
|
|
352 |
|
|
353 |
lemma zneg_mag [simp]:
|
|
354 |
"[| znegative(z); z: int |] ==> $# (zmagnitude(z)) = $- z"
|
|
355 |
by (drule zneg_int_of, auto)
|
|
356 |
|
|
357 |
lemma int_cases: "z : int ==> \<exists>n\<in>nat. z = $# n | z = $- ($# succ(n))"
|
|
358 |
apply (case_tac "znegative (z) ")
|
|
359 |
prefer 2 apply (blast dest: not_zneg_mag sym)
|
|
360 |
apply (blast dest: zneg_int_of)
|
|
361 |
done
|
|
362 |
|
|
363 |
lemma not_zneg_raw_nat_of:
|
|
364 |
"[| ~ znegative(z); z: int |] ==> $# (raw_nat_of(z)) = z"
|
|
365 |
apply (drule not_zneg_int_of)
|
|
366 |
apply (auto simp add: raw_nat_of_type raw_nat_of_int_of)
|
|
367 |
done
|
|
368 |
|
|
369 |
lemma not_zneg_nat_of_intify:
|
|
370 |
"~ znegative(intify(z)) ==> $# (nat_of(z)) = intify(z)"
|
|
371 |
by (simp (no_asm_simp) add: nat_of_def not_zneg_raw_nat_of)
|
|
372 |
|
|
373 |
lemma not_zneg_nat_of: "[| ~ znegative(z); z: int |] ==> $# (nat_of(z)) = z"
|
|
374 |
apply (simp (no_asm_simp) add: not_zneg_nat_of_intify)
|
|
375 |
done
|
|
376 |
|
|
377 |
lemma zneg_nat_of [simp]: "znegative(intify(z)) ==> nat_of(z) = 0"
|
|
378 |
apply (subgoal_tac "intify(z) \<in> int")
|
|
379 |
apply (simp add: int_def)
|
|
380 |
apply (auto simp add: znegative nat_of_def raw_nat_of
|
|
381 |
split add: nat_diff_split)
|
|
382 |
done
|
|
383 |
|
|
384 |
|
|
385 |
subsection{*@{term zadd}: addition on int*}
|
|
386 |
|
|
387 |
text{*Congruence Property for Addition*}
|
|
388 |
lemma zadd_congruent2:
|
|
389 |
"(%z1 z2. let <x1,y1>=z1; <x2,y2>=z2
|
|
390 |
in intrel``{<x1#+x2, y1#+y2>})
|
|
391 |
respects2 intrel"
|
|
392 |
apply (simp add: congruent2_def)
|
|
393 |
(*Proof via congruent2_commuteI seems longer*)
|
|
394 |
apply safe
|
|
395 |
apply (simp (no_asm_simp) add: add_assoc Let_def)
|
|
396 |
(*The rest should be trivial, but rearranging terms is hard
|
|
397 |
add_ac does not help rewriting with the assumptions.*)
|
|
398 |
apply (rule_tac m1 = x1a in add_left_commute [THEN ssubst])
|
|
399 |
apply (rule_tac m1 = x2a in add_left_commute [THEN ssubst])
|
|
400 |
apply (simp (no_asm_simp) add: add_assoc [symmetric])
|
|
401 |
done
|
|
402 |
|
|
403 |
lemma raw_zadd_type: "[| z: int; w: int |] ==> raw_zadd(z,w) : int"
|
|
404 |
apply (simp add: int_def raw_zadd_def)
|
|
405 |
apply (rule UN_equiv_class_type2 [OF equiv_intrel zadd_congruent2], assumption+)
|
|
406 |
apply (simp add: Let_def)
|
|
407 |
done
|
|
408 |
|
|
409 |
lemma zadd_type [iff,TC]: "z $+ w : int"
|
|
410 |
by (simp add: zadd_def raw_zadd_type)
|
|
411 |
|
|
412 |
lemma raw_zadd:
|
|
413 |
"[| x1\<in>nat; y1\<in>nat; x2\<in>nat; y2\<in>nat |]
|
|
414 |
==> raw_zadd (intrel``{<x1,y1>}, intrel``{<x2,y2>}) =
|
|
415 |
intrel `` {<x1#+x2, y1#+y2>}"
|
|
416 |
apply (simp add: raw_zadd_def
|
|
417 |
UN_equiv_class2 [OF equiv_intrel equiv_intrel zadd_congruent2])
|
|
418 |
apply (simp add: Let_def)
|
|
419 |
done
|
|
420 |
|
|
421 |
lemma zadd:
|
|
422 |
"[| x1\<in>nat; y1\<in>nat; x2\<in>nat; y2\<in>nat |]
|
|
423 |
==> (intrel``{<x1,y1>}) $+ (intrel``{<x2,y2>}) =
|
|
424 |
intrel `` {<x1#+x2, y1#+y2>}"
|
|
425 |
by (simp add: zadd_def raw_zadd image_intrel_int)
|
|
426 |
|
|
427 |
lemma raw_zadd_int0: "z : int ==> raw_zadd ($#0,z) = z"
|
|
428 |
by (auto simp add: int_def int_of_def raw_zadd)
|
|
429 |
|
|
430 |
lemma zadd_int0_intify [simp]: "$#0 $+ z = intify(z)"
|
|
431 |
by (simp add: zadd_def raw_zadd_int0)
|
|
432 |
|
|
433 |
lemma zadd_int0: "z: int ==> $#0 $+ z = z"
|
|
434 |
by simp
|
|
435 |
|
|
436 |
lemma raw_zminus_zadd_distrib:
|
|
437 |
"[| z: int; w: int |] ==> $- raw_zadd(z,w) = raw_zadd($- z, $- w)"
|
|
438 |
by (auto simp add: zminus raw_zadd int_def)
|
|
439 |
|
|
440 |
lemma zminus_zadd_distrib [simp]: "$- (z $+ w) = $- z $+ $- w"
|
|
441 |
by (simp add: zadd_def raw_zminus_zadd_distrib)
|
|
442 |
|
|
443 |
lemma raw_zadd_commute:
|
|
444 |
"[| z: int; w: int |] ==> raw_zadd(z,w) = raw_zadd(w,z)"
|
|
445 |
by (auto simp add: raw_zadd add_ac int_def)
|
|
446 |
|
|
447 |
lemma zadd_commute: "z $+ w = w $+ z"
|
|
448 |
by (simp add: zadd_def raw_zadd_commute)
|
|
449 |
|
|
450 |
lemma raw_zadd_assoc:
|
|
451 |
"[| z1: int; z2: int; z3: int |]
|
|
452 |
==> raw_zadd (raw_zadd(z1,z2),z3) = raw_zadd(z1,raw_zadd(z2,z3))"
|
|
453 |
by (auto simp add: int_def raw_zadd add_assoc)
|
|
454 |
|
|
455 |
lemma zadd_assoc: "(z1 $+ z2) $+ z3 = z1 $+ (z2 $+ z3)"
|
|
456 |
by (simp add: zadd_def raw_zadd_type raw_zadd_assoc)
|
|
457 |
|
|
458 |
(*For AC rewriting*)
|
|
459 |
lemma zadd_left_commute: "z1$+(z2$+z3) = z2$+(z1$+z3)"
|
|
460 |
apply (simp add: zadd_assoc [symmetric])
|
|
461 |
apply (simp add: zadd_commute)
|
|
462 |
done
|
|
463 |
|
|
464 |
(*Integer addition is an AC operator*)
|
|
465 |
lemmas zadd_ac = zadd_assoc zadd_commute zadd_left_commute
|
|
466 |
|
|
467 |
lemma int_of_add: "$# (m #+ n) = ($#m) $+ ($#n)"
|
|
468 |
by (simp add: int_of_def zadd)
|
|
469 |
|
|
470 |
lemma int_succ_int_1: "$# succ(m) = $# 1 $+ ($# m)"
|
|
471 |
by (simp add: int_of_add [symmetric] natify_succ)
|
|
472 |
|
|
473 |
lemma int_of_diff:
|
|
474 |
"[| m\<in>nat; n le m |] ==> $# (m #- n) = ($#m) $- ($#n)"
|
|
475 |
apply (simp add: int_of_def zdiff_def)
|
|
476 |
apply (frule lt_nat_in_nat)
|
|
477 |
apply (simp_all add: zadd zminus add_diff_inverse2)
|
|
478 |
done
|
|
479 |
|
|
480 |
lemma raw_zadd_zminus_inverse: "z : int ==> raw_zadd (z, $- z) = $#0"
|
|
481 |
by (auto simp add: int_def int_of_def zminus raw_zadd add_commute)
|
|
482 |
|
|
483 |
lemma zadd_zminus_inverse [simp]: "z $+ ($- z) = $#0"
|
|
484 |
apply (simp add: zadd_def)
|
|
485 |
apply (subst zminus_intify [symmetric])
|
|
486 |
apply (rule intify_in_int [THEN raw_zadd_zminus_inverse])
|
|
487 |
done
|
|
488 |
|
|
489 |
lemma zadd_zminus_inverse2 [simp]: "($- z) $+ z = $#0"
|
|
490 |
by (simp add: zadd_commute zadd_zminus_inverse)
|
|
491 |
|
|
492 |
lemma zadd_int0_right_intify [simp]: "z $+ $#0 = intify(z)"
|
|
493 |
by (rule trans [OF zadd_commute zadd_int0_intify])
|
|
494 |
|
|
495 |
lemma zadd_int0_right: "z:int ==> z $+ $#0 = z"
|
|
496 |
by simp
|
|
497 |
|
|
498 |
|
|
499 |
subsection{*@{term zmult}: Integer Multiplication*}
|
|
500 |
|
|
501 |
text{*Congruence property for multiplication*}
|
|
502 |
lemma zmult_congruent2:
|
|
503 |
"(%p1 p2. split(%x1 y1. split(%x2 y2.
|
|
504 |
intrel``{<x1#*x2 #+ y1#*y2, x1#*y2 #+ y1#*x2>}, p2), p1))
|
|
505 |
respects2 intrel"
|
|
506 |
apply (rule equiv_intrel [THEN congruent2_commuteI], auto)
|
|
507 |
(*Proof that zmult is congruent in one argument*)
|
|
508 |
apply (rename_tac x y)
|
|
509 |
apply (frule_tac t = "%u. x#*u" in sym [THEN subst_context])
|
|
510 |
apply (drule_tac t = "%u. y#*u" in subst_context)
|
|
511 |
apply (erule add_left_cancel)+
|
|
512 |
apply (simp_all add: add_mult_distrib_left)
|
|
513 |
done
|
|
514 |
|
|
515 |
|
|
516 |
lemma raw_zmult_type: "[| z: int; w: int |] ==> raw_zmult(z,w) : int"
|
|
517 |
apply (simp add: int_def raw_zmult_def)
|
|
518 |
apply (rule UN_equiv_class_type2 [OF equiv_intrel zmult_congruent2], assumption+)
|
|
519 |
apply (simp add: Let_def)
|
|
520 |
done
|
|
521 |
|
|
522 |
lemma zmult_type [iff,TC]: "z $* w : int"
|
|
523 |
by (simp add: zmult_def raw_zmult_type)
|
|
524 |
|
|
525 |
lemma raw_zmult:
|
|
526 |
"[| x1\<in>nat; y1\<in>nat; x2\<in>nat; y2\<in>nat |]
|
|
527 |
==> raw_zmult(intrel``{<x1,y1>}, intrel``{<x2,y2>}) =
|
|
528 |
intrel `` {<x1#*x2 #+ y1#*y2, x1#*y2 #+ y1#*x2>}"
|
|
529 |
by (simp add: raw_zmult_def
|
|
530 |
UN_equiv_class2 [OF equiv_intrel equiv_intrel zmult_congruent2])
|
|
531 |
|
|
532 |
lemma zmult:
|
|
533 |
"[| x1\<in>nat; y1\<in>nat; x2\<in>nat; y2\<in>nat |]
|
|
534 |
==> (intrel``{<x1,y1>}) $* (intrel``{<x2,y2>}) =
|
|
535 |
intrel `` {<x1#*x2 #+ y1#*y2, x1#*y2 #+ y1#*x2>}"
|
|
536 |
by (simp add: zmult_def raw_zmult image_intrel_int)
|
|
537 |
|
|
538 |
lemma raw_zmult_int0: "z : int ==> raw_zmult ($#0,z) = $#0"
|
|
539 |
by (auto simp add: int_def int_of_def raw_zmult)
|
|
540 |
|
|
541 |
lemma zmult_int0 [simp]: "$#0 $* z = $#0"
|
|
542 |
by (simp add: zmult_def raw_zmult_int0)
|
|
543 |
|
|
544 |
lemma raw_zmult_int1: "z : int ==> raw_zmult ($#1,z) = z"
|
|
545 |
by (auto simp add: int_def int_of_def raw_zmult)
|
|
546 |
|
|
547 |
lemma zmult_int1_intify [simp]: "$#1 $* z = intify(z)"
|
|
548 |
by (simp add: zmult_def raw_zmult_int1)
|
|
549 |
|
|
550 |
lemma zmult_int1: "z : int ==> $#1 $* z = z"
|
|
551 |
by simp
|
|
552 |
|
|
553 |
lemma raw_zmult_commute:
|
|
554 |
"[| z: int; w: int |] ==> raw_zmult(z,w) = raw_zmult(w,z)"
|
|
555 |
by (auto simp add: int_def raw_zmult add_ac mult_ac)
|
|
556 |
|
|
557 |
lemma zmult_commute: "z $* w = w $* z"
|
|
558 |
by (simp add: zmult_def raw_zmult_commute)
|
|
559 |
|
|
560 |
lemma raw_zmult_zminus:
|
|
561 |
"[| z: int; w: int |] ==> raw_zmult($- z, w) = $- raw_zmult(z, w)"
|
|
562 |
by (auto simp add: int_def zminus raw_zmult add_ac)
|
|
563 |
|
|
564 |
lemma zmult_zminus [simp]: "($- z) $* w = $- (z $* w)"
|
|
565 |
apply (simp add: zmult_def raw_zmult_zminus)
|
|
566 |
apply (subst zminus_intify [symmetric], rule raw_zmult_zminus, auto)
|
|
567 |
done
|
|
568 |
|
|
569 |
lemma zmult_zminus_right [simp]: "w $* ($- z) = $- (w $* z)"
|
|
570 |
by (simp add: zmult_commute [of w])
|
|
571 |
|
|
572 |
lemma raw_zmult_assoc:
|
|
573 |
"[| z1: int; z2: int; z3: int |]
|
|
574 |
==> raw_zmult (raw_zmult(z1,z2),z3) = raw_zmult(z1,raw_zmult(z2,z3))"
|
|
575 |
by (auto simp add: int_def raw_zmult add_mult_distrib_left add_ac mult_ac)
|
|
576 |
|
|
577 |
lemma zmult_assoc: "(z1 $* z2) $* z3 = z1 $* (z2 $* z3)"
|
|
578 |
by (simp add: zmult_def raw_zmult_type raw_zmult_assoc)
|
|
579 |
|
|
580 |
(*For AC rewriting*)
|
|
581 |
lemma zmult_left_commute: "z1$*(z2$*z3) = z2$*(z1$*z3)"
|
|
582 |
apply (simp add: zmult_assoc [symmetric])
|
|
583 |
apply (simp add: zmult_commute)
|
|
584 |
done
|
|
585 |
|
|
586 |
(*Integer multiplication is an AC operator*)
|
|
587 |
lemmas zmult_ac = zmult_assoc zmult_commute zmult_left_commute
|
|
588 |
|
|
589 |
lemma raw_zadd_zmult_distrib:
|
|
590 |
"[| z1: int; z2: int; w: int |]
|
|
591 |
==> raw_zmult(raw_zadd(z1,z2), w) =
|
|
592 |
raw_zadd (raw_zmult(z1,w), raw_zmult(z2,w))"
|
|
593 |
by (auto simp add: int_def raw_zadd raw_zmult add_mult_distrib_left add_ac mult_ac)
|
|
594 |
|
|
595 |
lemma zadd_zmult_distrib: "(z1 $+ z2) $* w = (z1 $* w) $+ (z2 $* w)"
|
|
596 |
by (simp add: zmult_def zadd_def raw_zadd_type raw_zmult_type
|
|
597 |
raw_zadd_zmult_distrib)
|
|
598 |
|
|
599 |
lemma zadd_zmult_distrib2: "w $* (z1 $+ z2) = (w $* z1) $+ (w $* z2)"
|
|
600 |
by (simp add: zmult_commute [of w] zadd_zmult_distrib)
|
|
601 |
|
|
602 |
lemmas int_typechecks =
|
|
603 |
int_of_type zminus_type zmagnitude_type zadd_type zmult_type
|
|
604 |
|
|
605 |
|
|
606 |
(*** Subtraction laws ***)
|
|
607 |
|
|
608 |
lemma zdiff_type [iff,TC]: "z $- w : int"
|
|
609 |
by (simp add: zdiff_def)
|
|
610 |
|
|
611 |
lemma zminus_zdiff_eq [simp]: "$- (z $- y) = y $- z"
|
|
612 |
by (simp add: zdiff_def zadd_commute)
|
|
613 |
|
|
614 |
lemma zdiff_zmult_distrib: "(z1 $- z2) $* w = (z1 $* w) $- (z2 $* w)"
|
|
615 |
apply (simp add: zdiff_def)
|
|
616 |
apply (subst zadd_zmult_distrib)
|
|
617 |
apply (simp add: zmult_zminus)
|
|
618 |
done
|
|
619 |
|
|
620 |
lemma zdiff_zmult_distrib2: "w $* (z1 $- z2) = (w $* z1) $- (w $* z2)"
|
|
621 |
by (simp add: zmult_commute [of w] zdiff_zmult_distrib)
|
|
622 |
|
|
623 |
lemma zadd_zdiff_eq: "x $+ (y $- z) = (x $+ y) $- z"
|
|
624 |
by (simp add: zdiff_def zadd_ac)
|
|
625 |
|
|
626 |
lemma zdiff_zadd_eq: "(x $- y) $+ z = (x $+ z) $- y"
|
|
627 |
by (simp add: zdiff_def zadd_ac)
|
|
628 |
|
|
629 |
|
|
630 |
subsection{*The "Less Than" Relation*}
|
|
631 |
|
|
632 |
(*"Less than" is a linear ordering*)
|
|
633 |
lemma zless_linear_lemma:
|
|
634 |
"[| z: int; w: int |] ==> z$<w | z=w | w$<z"
|
|
635 |
apply (simp add: int_def zless_def znegative_def zdiff_def, auto)
|
|
636 |
apply (simp add: zadd zminus image_iff Bex_def)
|
|
637 |
apply (rule_tac i = "xb#+ya" and j = "xc #+ y" in Ord_linear_lt)
|
|
638 |
apply (force dest!: spec simp add: add_ac)+
|
|
639 |
done
|
|
640 |
|
|
641 |
lemma zless_linear: "z$<w | intify(z)=intify(w) | w$<z"
|
|
642 |
apply (cut_tac z = " intify (z) " and w = " intify (w) " in zless_linear_lemma)
|
|
643 |
apply auto
|
|
644 |
done
|
|
645 |
|
|
646 |
lemma zless_not_refl [iff]: "~ (z$<z)"
|
|
647 |
by (auto simp add: zless_def znegative_def int_of_def zdiff_def)
|
|
648 |
|
|
649 |
lemma neq_iff_zless: "[| x: int; y: int |] ==> (x ~= y) <-> (x $< y | y $< x)"
|
|
650 |
by (cut_tac z = x and w = y in zless_linear, auto)
|
|
651 |
|
|
652 |
lemma zless_imp_intify_neq: "w $< z ==> intify(w) ~= intify(z)"
|
|
653 |
apply auto
|
|
654 |
apply (subgoal_tac "~ (intify (w) $< intify (z))")
|
|
655 |
apply (erule_tac [2] ssubst)
|
|
656 |
apply (simp (no_asm_use))
|
|
657 |
apply auto
|
|
658 |
done
|
|
659 |
|
|
660 |
(*This lemma allows direct proofs of other <-properties*)
|
|
661 |
lemma zless_imp_succ_zadd_lemma:
|
|
662 |
"[| w $< z; w: int; z: int |] ==> (\<exists>n\<in>nat. z = w $+ $#(succ(n)))"
|
|
663 |
apply (simp add: zless_def znegative_def zdiff_def int_def)
|
|
664 |
apply (auto dest!: less_imp_succ_add simp add: zadd zminus int_of_def)
|
|
665 |
apply (rule_tac x = k in bexI)
|
|
666 |
apply (erule add_left_cancel, auto)
|
|
667 |
done
|
|
668 |
|
|
669 |
lemma zless_imp_succ_zadd:
|
|
670 |
"w $< z ==> (\<exists>n\<in>nat. w $+ $#(succ(n)) = intify(z))"
|
|
671 |
apply (subgoal_tac "intify (w) $< intify (z) ")
|
|
672 |
apply (drule_tac w = "intify (w) " in zless_imp_succ_zadd_lemma)
|
|
673 |
apply auto
|
|
674 |
done
|
|
675 |
|
|
676 |
lemma zless_succ_zadd_lemma:
|
|
677 |
"w : int ==> w $< w $+ $# succ(n)"
|
|
678 |
apply (simp add: zless_def znegative_def zdiff_def int_def)
|
|
679 |
apply (auto simp add: zadd zminus int_of_def image_iff)
|
|
680 |
apply (rule_tac x = 0 in exI, auto)
|
|
681 |
done
|
|
682 |
|
|
683 |
lemma zless_succ_zadd: "w $< w $+ $# succ(n)"
|
|
684 |
by (cut_tac intify_in_int [THEN zless_succ_zadd_lemma], auto)
|
|
685 |
|
|
686 |
lemma zless_iff_succ_zadd:
|
|
687 |
"w $< z <-> (\<exists>n\<in>nat. w $+ $#(succ(n)) = intify(z))"
|
|
688 |
apply (rule iffI)
|
|
689 |
apply (erule zless_imp_succ_zadd, auto)
|
|
690 |
apply (rename_tac "n")
|
|
691 |
apply (cut_tac w = w and n = n in zless_succ_zadd, auto)
|
|
692 |
done
|
|
693 |
|
|
694 |
lemma zless_int_of [simp]: "[| m\<in>nat; n\<in>nat |] ==> ($#m $< $#n) <-> (m<n)"
|
|
695 |
apply (simp add: less_iff_succ_add zless_iff_succ_zadd int_of_add [symmetric])
|
|
696 |
apply (blast intro: sym)
|
|
697 |
done
|
|
698 |
|
|
699 |
lemma zless_trans_lemma:
|
|
700 |
"[| x $< y; y $< z; x: int; y : int; z: int |] ==> x $< z"
|
|
701 |
apply (simp add: zless_def znegative_def zdiff_def int_def)
|
|
702 |
apply (auto simp add: zadd zminus image_iff)
|
|
703 |
apply (rename_tac x1 x2 y1 y2)
|
|
704 |
apply (rule_tac x = "x1#+x2" in exI)
|
|
705 |
apply (rule_tac x = "y1#+y2" in exI)
|
|
706 |
apply (auto simp add: add_lt_mono)
|
|
707 |
apply (rule sym)
|
|
708 |
apply (erule add_left_cancel)+
|
|
709 |
apply auto
|
|
710 |
done
|
|
711 |
|
|
712 |
lemma zless_trans: "[| x $< y; y $< z |] ==> x $< z"
|
|
713 |
apply (subgoal_tac "intify (x) $< intify (z) ")
|
|
714 |
apply (rule_tac [2] y = "intify (y) " in zless_trans_lemma)
|
|
715 |
apply auto
|
|
716 |
done
|
|
717 |
|
|
718 |
lemma zless_not_sym: "z $< w ==> ~ (w $< z)"
|
|
719 |
by (blast dest: zless_trans)
|
|
720 |
|
|
721 |
(* [| z $< w; ~ P ==> w $< z |] ==> P *)
|
|
722 |
lemmas zless_asym = zless_not_sym [THEN swap, standard]
|
|
723 |
|
|
724 |
lemma zless_imp_zle: "z $< w ==> z $<= w"
|
|
725 |
by (simp add: zle_def)
|
|
726 |
|
|
727 |
lemma zle_linear: "z $<= w | w $<= z"
|
|
728 |
apply (simp add: zle_def)
|
|
729 |
apply (cut_tac zless_linear, blast)
|
|
730 |
done
|
|
731 |
|
|
732 |
|
|
733 |
subsection{*Less Than or Equals*}
|
|
734 |
|
|
735 |
lemma zle_refl: "z $<= z"
|
|
736 |
by (simp add: zle_def)
|
|
737 |
|
|
738 |
lemma zle_eq_refl: "x=y ==> x $<= y"
|
|
739 |
by (simp add: zle_refl)
|
|
740 |
|
|
741 |
lemma zle_anti_sym_intify: "[| x $<= y; y $<= x |] ==> intify(x) = intify(y)"
|
|
742 |
apply (simp add: zle_def, auto)
|
|
743 |
apply (blast dest: zless_trans)
|
|
744 |
done
|
|
745 |
|
|
746 |
lemma zle_anti_sym: "[| x $<= y; y $<= x; x: int; y: int |] ==> x=y"
|
|
747 |
by (drule zle_anti_sym_intify, auto)
|
|
748 |
|
|
749 |
lemma zle_trans_lemma:
|
|
750 |
"[| x: int; y: int; z: int; x $<= y; y $<= z |] ==> x $<= z"
|
|
751 |
apply (simp add: zle_def, auto)
|
|
752 |
apply (blast intro: zless_trans)
|
|
753 |
done
|
|
754 |
|
|
755 |
lemma zle_trans: "[| x $<= y; y $<= z |] ==> x $<= z"
|
|
756 |
apply (subgoal_tac "intify (x) $<= intify (z) ")
|
|
757 |
apply (rule_tac [2] y = "intify (y) " in zle_trans_lemma)
|
|
758 |
apply auto
|
|
759 |
done
|
|
760 |
|
|
761 |
lemma zle_zless_trans: "[| i $<= j; j $< k |] ==> i $< k"
|
|
762 |
apply (auto simp add: zle_def)
|
|
763 |
apply (blast intro: zless_trans)
|
|
764 |
apply (simp add: zless_def zdiff_def zadd_def)
|
|
765 |
done
|
|
766 |
|
|
767 |
lemma zless_zle_trans: "[| i $< j; j $<= k |] ==> i $< k"
|
|
768 |
apply (auto simp add: zle_def)
|
|
769 |
apply (blast intro: zless_trans)
|
|
770 |
apply (simp add: zless_def zdiff_def zminus_def)
|
|
771 |
done
|
|
772 |
|
|
773 |
lemma not_zless_iff_zle: "~ (z $< w) <-> (w $<= z)"
|
|
774 |
apply (cut_tac z = z and w = w in zless_linear)
|
|
775 |
apply (auto dest: zless_trans simp add: zle_def)
|
|
776 |
apply (auto dest!: zless_imp_intify_neq)
|
|
777 |
done
|
|
778 |
|
|
779 |
lemma not_zle_iff_zless: "~ (z $<= w) <-> (w $< z)"
|
|
780 |
by (simp add: not_zless_iff_zle [THEN iff_sym])
|
|
781 |
|
|
782 |
|
|
783 |
subsection{*More subtraction laws (for @{text zcompare_rls})*}
|
|
784 |
|
|
785 |
lemma zdiff_zdiff_eq: "(x $- y) $- z = x $- (y $+ z)"
|
|
786 |
by (simp add: zdiff_def zadd_ac)
|
|
787 |
|
|
788 |
lemma zdiff_zdiff_eq2: "x $- (y $- z) = (x $+ z) $- y"
|
|
789 |
by (simp add: zdiff_def zadd_ac)
|
|
790 |
|
|
791 |
lemma zdiff_zless_iff: "(x$-y $< z) <-> (x $< z $+ y)"
|
|
792 |
by (simp add: zless_def zdiff_def zadd_ac)
|
|
793 |
|
|
794 |
lemma zless_zdiff_iff: "(x $< z$-y) <-> (x $+ y $< z)"
|
|
795 |
by (simp add: zless_def zdiff_def zadd_ac)
|
|
796 |
|
|
797 |
lemma zdiff_eq_iff: "[| x: int; z: int |] ==> (x$-y = z) <-> (x = z $+ y)"
|
|
798 |
by (auto simp add: zdiff_def zadd_assoc)
|
|
799 |
|
|
800 |
lemma eq_zdiff_iff: "[| x: int; z: int |] ==> (x = z$-y) <-> (x $+ y = z)"
|
|
801 |
by (auto simp add: zdiff_def zadd_assoc)
|
|
802 |
|
|
803 |
lemma zdiff_zle_iff_lemma:
|
|
804 |
"[| x: int; z: int |] ==> (x$-y $<= z) <-> (x $<= z $+ y)"
|
|
805 |
by (auto simp add: zle_def zdiff_eq_iff zdiff_zless_iff)
|
|
806 |
|
|
807 |
lemma zdiff_zle_iff: "(x$-y $<= z) <-> (x $<= z $+ y)"
|
|
808 |
by (cut_tac zdiff_zle_iff_lemma [OF intify_in_int intify_in_int], simp)
|
|
809 |
|
|
810 |
lemma zle_zdiff_iff_lemma:
|
|
811 |
"[| x: int; z: int |] ==>(x $<= z$-y) <-> (x $+ y $<= z)"
|
|
812 |
apply (auto simp add: zle_def zdiff_eq_iff zless_zdiff_iff)
|
|
813 |
apply (auto simp add: zdiff_def zadd_assoc)
|
|
814 |
done
|
|
815 |
|
|
816 |
lemma zle_zdiff_iff: "(x $<= z$-y) <-> (x $+ y $<= z)"
|
|
817 |
by (cut_tac zle_zdiff_iff_lemma [ OF intify_in_int intify_in_int], simp)
|
|
818 |
|
|
819 |
text{*This list of rewrites simplifies (in)equalities by bringing subtractions
|
|
820 |
to the top and then moving negative terms to the other side.
|
|
821 |
Use with @{text zadd_ac}*}
|
|
822 |
lemmas zcompare_rls =
|
|
823 |
zdiff_def [symmetric]
|
|
824 |
zadd_zdiff_eq zdiff_zadd_eq zdiff_zdiff_eq zdiff_zdiff_eq2
|
|
825 |
zdiff_zless_iff zless_zdiff_iff zdiff_zle_iff zle_zdiff_iff
|
|
826 |
zdiff_eq_iff eq_zdiff_iff
|
|
827 |
|
|
828 |
|
|
829 |
subsection{*Monotonicity and Cancellation Results for Instantiation
|
|
830 |
of the CancelNumerals Simprocs*}
|
|
831 |
|
|
832 |
lemma zadd_left_cancel:
|
|
833 |
"[| w: int; w': int |] ==> (z $+ w' = z $+ w) <-> (w' = w)"
|
|
834 |
apply safe
|
|
835 |
apply (drule_tac t = "%x. x $+ ($-z) " in subst_context)
|
|
836 |
apply (simp add: zadd_ac)
|
|
837 |
done
|
|
838 |
|
|
839 |
lemma zadd_left_cancel_intify [simp]:
|
|
840 |
"(z $+ w' = z $+ w) <-> intify(w') = intify(w)"
|
|
841 |
apply (rule iff_trans)
|
|
842 |
apply (rule_tac [2] zadd_left_cancel, auto)
|
|
843 |
done
|
|
844 |
|
|
845 |
lemma zadd_right_cancel:
|
|
846 |
"[| w: int; w': int |] ==> (w' $+ z = w $+ z) <-> (w' = w)"
|
|
847 |
apply safe
|
|
848 |
apply (drule_tac t = "%x. x $+ ($-z) " in subst_context)
|
|
849 |
apply (simp add: zadd_ac)
|
|
850 |
done
|
|
851 |
|
|
852 |
lemma zadd_right_cancel_intify [simp]:
|
|
853 |
"(w' $+ z = w $+ z) <-> intify(w') = intify(w)"
|
|
854 |
apply (rule iff_trans)
|
|
855 |
apply (rule_tac [2] zadd_right_cancel, auto)
|
|
856 |
done
|
|
857 |
|
|
858 |
lemma zadd_right_cancel_zless [simp]: "(w' $+ z $< w $+ z) <-> (w' $< w)"
|
|
859 |
by (simp add: zdiff_zless_iff [THEN iff_sym] zdiff_def zadd_assoc)
|
|
860 |
|
|
861 |
lemma zadd_left_cancel_zless [simp]: "(z $+ w' $< z $+ w) <-> (w' $< w)"
|
|
862 |
by (simp add: zadd_commute [of z] zadd_right_cancel_zless)
|
|
863 |
|
|
864 |
lemma zadd_right_cancel_zle [simp]: "(w' $+ z $<= w $+ z) <-> w' $<= w"
|
|
865 |
by (simp add: zle_def)
|
|
866 |
|
|
867 |
lemma zadd_left_cancel_zle [simp]: "(z $+ w' $<= z $+ w) <-> w' $<= w"
|
|
868 |
by (simp add: zadd_commute [of z] zadd_right_cancel_zle)
|
|
869 |
|
|
870 |
|
|
871 |
(*"v $<= w ==> v$+z $<= w$+z"*)
|
|
872 |
lemmas zadd_zless_mono1 = zadd_right_cancel_zless [THEN iffD2, standard]
|
|
873 |
|
|
874 |
(*"v $<= w ==> z$+v $<= z$+w"*)
|
|
875 |
lemmas zadd_zless_mono2 = zadd_left_cancel_zless [THEN iffD2, standard]
|
|
876 |
|
|
877 |
(*"v $<= w ==> v$+z $<= w$+z"*)
|
|
878 |
lemmas zadd_zle_mono1 = zadd_right_cancel_zle [THEN iffD2, standard]
|
|
879 |
|
|
880 |
(*"v $<= w ==> z$+v $<= z$+w"*)
|
|
881 |
lemmas zadd_zle_mono2 = zadd_left_cancel_zle [THEN iffD2, standard]
|
|
882 |
|
|
883 |
lemma zadd_zle_mono: "[| w' $<= w; z' $<= z |] ==> w' $+ z' $<= w $+ z"
|
|
884 |
by (erule zadd_zle_mono1 [THEN zle_trans], simp)
|
|
885 |
|
|
886 |
lemma zadd_zless_mono: "[| w' $< w; z' $<= z |] ==> w' $+ z' $< w $+ z"
|
|
887 |
by (erule zadd_zless_mono1 [THEN zless_zle_trans], simp)
|
|
888 |
|
|
889 |
|
|
890 |
subsection{*Comparison laws*}
|
|
891 |
|
|
892 |
lemma zminus_zless_zminus [simp]: "($- x $< $- y) <-> (y $< x)"
|
|
893 |
by (simp add: zless_def zdiff_def zadd_ac)
|
|
894 |
|
|
895 |
lemma zminus_zle_zminus [simp]: "($- x $<= $- y) <-> (y $<= x)"
|
|
896 |
by (simp add: not_zless_iff_zle [THEN iff_sym])
|
|
897 |
|
|
898 |
subsubsection{*More inequality lemmas*}
|
|
899 |
|
|
900 |
lemma equation_zminus: "[| x: int; y: int |] ==> (x = $- y) <-> (y = $- x)"
|
|
901 |
by auto
|
|
902 |
|
|
903 |
lemma zminus_equation: "[| x: int; y: int |] ==> ($- x = y) <-> ($- y = x)"
|
|
904 |
by auto
|
|
905 |
|
|
906 |
lemma equation_zminus_intify: "(intify(x) = $- y) <-> (intify(y) = $- x)"
|
|
907 |
apply (cut_tac x = "intify (x) " and y = "intify (y) " in equation_zminus)
|
|
908 |
apply auto
|
|
909 |
done
|
|
910 |
|
|
911 |
lemma zminus_equation_intify: "($- x = intify(y)) <-> ($- y = intify(x))"
|
|
912 |
apply (cut_tac x = "intify (x) " and y = "intify (y) " in zminus_equation)
|
|
913 |
apply auto
|
|
914 |
done
|
|
915 |
|
|
916 |
|
|
917 |
subsubsection{*The next several equations are permutative: watch out!*}
|
|
918 |
|
|
919 |
lemma zless_zminus: "(x $< $- y) <-> (y $< $- x)"
|
|
920 |
by (simp add: zless_def zdiff_def zadd_ac)
|
|
921 |
|
|
922 |
lemma zminus_zless: "($- x $< y) <-> ($- y $< x)"
|
|
923 |
by (simp add: zless_def zdiff_def zadd_ac)
|
|
924 |
|
|
925 |
lemma zle_zminus: "(x $<= $- y) <-> (y $<= $- x)"
|
|
926 |
by (simp add: not_zless_iff_zle [THEN iff_sym] zminus_zless)
|
|
927 |
|
|
928 |
lemma zminus_zle: "($- x $<= y) <-> ($- y $<= x)"
|
|
929 |
by (simp add: not_zless_iff_zle [THEN iff_sym] zless_zminus)
|
|
930 |
|
|
931 |
end
|