doc-src/TutorialI/CTL/CTLind.thy
author nipkow
Wed, 07 Mar 2001 15:54:11 +0100
changeset 11196 bb4ede27fcb7
parent 10971 6852682eaf16
child 11277 a2bff98d6e5d
permissions -rw-r--r--
*** empty log message ***
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
10218
54411746c549 *** empty log message ***
nipkow
parents:
diff changeset
     1
(*<*)theory CTLind = CTL:(*>*)
54411746c549 *** empty log message ***
nipkow
parents:
diff changeset
     2
10885
90695f46440b lcp's pass over the book, chapters 1-8
paulson
parents: 10855
diff changeset
     3
subsection{*CTL Revisited*}
10218
54411746c549 *** empty log message ***
nipkow
parents:
diff changeset
     4
54411746c549 *** empty log message ***
nipkow
parents:
diff changeset
     5
text{*\label{sec:CTL-revisited}
10281
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10241
diff changeset
     6
The purpose of this section is twofold: we want to demonstrate
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10241
diff changeset
     7
some of the induction principles and heuristics discussed above and we want to
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10241
diff changeset
     8
show how inductive definitions can simplify proofs.
10218
54411746c549 *** empty log message ***
nipkow
parents:
diff changeset
     9
In \S\ref{sec:CTL} we gave a fairly involved proof of the correctness of a
10795
9e888d60d3e5 minor edits to Chapters 1-3
paulson
parents: 10281
diff changeset
    10
model checker for CTL\@. In particular the proof of the
10218
54411746c549 *** empty log message ***
nipkow
parents:
diff changeset
    11
@{thm[source]infinity_lemma} on the way to @{thm[source]AF_lemma2} is not as
54411746c549 *** empty log message ***
nipkow
parents:
diff changeset
    12
simple as one might intuitively expect, due to the @{text SOME} operator
10281
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10241
diff changeset
    13
involved. Below we give a simpler proof of @{thm[source]AF_lemma2}
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10241
diff changeset
    14
based on an auxiliary inductive definition.
10218
54411746c549 *** empty log message ***
nipkow
parents:
diff changeset
    15
54411746c549 *** empty log message ***
nipkow
parents:
diff changeset
    16
Let us call a (finite or infinite) path \emph{@{term A}-avoiding} if it does
54411746c549 *** empty log message ***
nipkow
parents:
diff changeset
    17
not touch any node in the set @{term A}. Then @{thm[source]AF_lemma2} says
54411746c549 *** empty log message ***
nipkow
parents:
diff changeset
    18
that if no infinite path from some state @{term s} is @{term A}-avoiding,
54411746c549 *** empty log message ***
nipkow
parents:
diff changeset
    19
then @{prop"s \<in> lfp(af A)"}. We prove this by inductively defining the set
54411746c549 *** empty log message ***
nipkow
parents:
diff changeset
    20
@{term"Avoid s A"} of states reachable from @{term s} by a finite @{term
54411746c549 *** empty log message ***
nipkow
parents:
diff changeset
    21
A}-avoiding path:
10241
e0428c2778f1 wellfounded -> well-founded
paulson
parents: 10235
diff changeset
    22
% Second proof of opposite direction, directly by well-founded induction
10218
54411746c549 *** empty log message ***
nipkow
parents:
diff changeset
    23
% on the initial segment of M that avoids A.
54411746c549 *** empty log message ***
nipkow
parents:
diff changeset
    24
*}
54411746c549 *** empty log message ***
nipkow
parents:
diff changeset
    25
54411746c549 *** empty log message ***
nipkow
parents:
diff changeset
    26
consts Avoid :: "state \<Rightarrow> state set \<Rightarrow> state set";
54411746c549 *** empty log message ***
nipkow
parents:
diff changeset
    27
inductive "Avoid s A"
54411746c549 *** empty log message ***
nipkow
parents:
diff changeset
    28
intros "s \<in> Avoid s A"
54411746c549 *** empty log message ***
nipkow
parents:
diff changeset
    29
       "\<lbrakk> t \<in> Avoid s A; t \<notin> A; (t,u) \<in> M \<rbrakk> \<Longrightarrow> u \<in> Avoid s A";
54411746c549 *** empty log message ***
nipkow
parents:
diff changeset
    30
54411746c549 *** empty log message ***
nipkow
parents:
diff changeset
    31
text{*
54411746c549 *** empty log message ***
nipkow
parents:
diff changeset
    32
It is easy to see that for any infinite @{term A}-avoiding path @{term f}
54411746c549 *** empty log message ***
nipkow
parents:
diff changeset
    33
with @{prop"f 0 \<in> Avoid s A"} there is an infinite @{term A}-avoiding path
54411746c549 *** empty log message ***
nipkow
parents:
diff changeset
    34
starting with @{term s} because (by definition of @{term Avoid}) there is a
54411746c549 *** empty log message ***
nipkow
parents:
diff changeset
    35
finite @{term A}-avoiding path from @{term s} to @{term"f 0"}.
54411746c549 *** empty log message ***
nipkow
parents:
diff changeset
    36
The proof is by induction on @{prop"f 0 \<in> Avoid s A"}. However,
54411746c549 *** empty log message ***
nipkow
parents:
diff changeset
    37
this requires the following
54411746c549 *** empty log message ***
nipkow
parents:
diff changeset
    38
reformulation, as explained in \S\ref{sec:ind-var-in-prems} above;
54411746c549 *** empty log message ***
nipkow
parents:
diff changeset
    39
the @{text rule_format} directive undoes the reformulation after the proof.
54411746c549 *** empty log message ***
nipkow
parents:
diff changeset
    40
*}
54411746c549 *** empty log message ***
nipkow
parents:
diff changeset
    41
54411746c549 *** empty log message ***
nipkow
parents:
diff changeset
    42
lemma ex_infinite_path[rule_format]:
54411746c549 *** empty log message ***
nipkow
parents:
diff changeset
    43
  "t \<in> Avoid s A  \<Longrightarrow>
54411746c549 *** empty log message ***
nipkow
parents:
diff changeset
    44
   \<forall>f\<in>Paths t. (\<forall>i. f i \<notin> A) \<longrightarrow> (\<exists>p\<in>Paths s. \<forall>i. p i \<notin> A)";
54411746c549 *** empty log message ***
nipkow
parents:
diff changeset
    45
apply(erule Avoid.induct);
54411746c549 *** empty log message ***
nipkow
parents:
diff changeset
    46
 apply(blast);
54411746c549 *** empty log message ***
nipkow
parents:
diff changeset
    47
apply(clarify);
54411746c549 *** empty log message ***
nipkow
parents:
diff changeset
    48
apply(drule_tac x = "\<lambda>i. case i of 0 \<Rightarrow> t | Suc i \<Rightarrow> f i" in bspec);
54411746c549 *** empty log message ***
nipkow
parents:
diff changeset
    49
apply(simp_all add:Paths_def split:nat.split);
54411746c549 *** empty log message ***
nipkow
parents:
diff changeset
    50
done
54411746c549 *** empty log message ***
nipkow
parents:
diff changeset
    51
54411746c549 *** empty log message ***
nipkow
parents:
diff changeset
    52
text{*\noindent
54411746c549 *** empty log message ***
nipkow
parents:
diff changeset
    53
The base case (@{prop"t = s"}) is trivial (@{text blast}).
54411746c549 *** empty log message ***
nipkow
parents:
diff changeset
    54
In the induction step, we have an infinite @{term A}-avoiding path @{term f}
54411746c549 *** empty log message ***
nipkow
parents:
diff changeset
    55
starting from @{term u}, a successor of @{term t}. Now we simply instantiate
54411746c549 *** empty log message ***
nipkow
parents:
diff changeset
    56
the @{text"\<forall>f\<in>Paths t"} in the induction hypothesis by the path starting with
54411746c549 *** empty log message ***
nipkow
parents:
diff changeset
    57
@{term t} and continuing with @{term f}. That is what the above $\lambda$-term
10885
90695f46440b lcp's pass over the book, chapters 1-8
paulson
parents: 10855
diff changeset
    58
expresses.  Simplification shows that this is a path starting with @{term t} 
90695f46440b lcp's pass over the book, chapters 1-8
paulson
parents: 10855
diff changeset
    59
and that the instantiated induction hypothesis implies the conclusion.
10218
54411746c549 *** empty log message ***
nipkow
parents:
diff changeset
    60
11196
bb4ede27fcb7 *** empty log message ***
nipkow
parents: 10971
diff changeset
    61
Now we come to the key lemma. Assuming that no infinite @{term A}-avoiding
bb4ede27fcb7 *** empty log message ***
nipkow
parents: 10971
diff changeset
    62
path starts from @{term s}, we want to show @{prop"s \<in> lfp(af A)"}. This
bb4ede27fcb7 *** empty log message ***
nipkow
parents: 10971
diff changeset
    63
can be generalized by proving that every point @{term t} ``between''
bb4ede27fcb7 *** empty log message ***
nipkow
parents: 10971
diff changeset
    64
@{term s} and @{term A}, i.e.\ all of @{term"Avoid s A"},
bb4ede27fcb7 *** empty log message ***
nipkow
parents: 10971
diff changeset
    65
is contained in @{term"lfp(af A)"}:
10218
54411746c549 *** empty log message ***
nipkow
parents:
diff changeset
    66
*}
54411746c549 *** empty log message ***
nipkow
parents:
diff changeset
    67
54411746c549 *** empty log message ***
nipkow
parents:
diff changeset
    68
lemma Avoid_in_lfp[rule_format(no_asm)]:
54411746c549 *** empty log message ***
nipkow
parents:
diff changeset
    69
  "\<forall>p\<in>Paths s. \<exists>i. p i \<in> A \<Longrightarrow> t \<in> Avoid s A \<longrightarrow> t \<in> lfp(af A)";
11196
bb4ede27fcb7 *** empty log message ***
nipkow
parents: 10971
diff changeset
    70
10218
54411746c549 *** empty log message ***
nipkow
parents:
diff changeset
    71
txt{*\noindent
11196
bb4ede27fcb7 *** empty log message ***
nipkow
parents: 10971
diff changeset
    72
The proof is by induction on the ``distance'' between @{term t} and @{term
bb4ede27fcb7 *** empty log message ***
nipkow
parents: 10971
diff changeset
    73
A}. Remember that @{prop"lfp(af A) = A \<union> M\<inverse> `` lfp(af A)"}.
bb4ede27fcb7 *** empty log message ***
nipkow
parents: 10971
diff changeset
    74
If @{term t} is already in @{term A}, then @{prop"t \<in> lfp(af A)"} is
bb4ede27fcb7 *** empty log message ***
nipkow
parents: 10971
diff changeset
    75
trivial. If @{term t} is not in @{term A} but all successors are in
bb4ede27fcb7 *** empty log message ***
nipkow
parents: 10971
diff changeset
    76
@{term"lfp(af A)"} (induction hypothesis), then @{prop"t \<in> lfp(af A)"} is
bb4ede27fcb7 *** empty log message ***
nipkow
parents: 10971
diff changeset
    77
again trivial.
bb4ede27fcb7 *** empty log message ***
nipkow
parents: 10971
diff changeset
    78
bb4ede27fcb7 *** empty log message ***
nipkow
parents: 10971
diff changeset
    79
The formal counterpart of this proof sketch is a well-founded induction
bb4ede27fcb7 *** empty log message ***
nipkow
parents: 10971
diff changeset
    80
w.r.t.\ @{term M} restricted to (roughly speaking) @{term"Avoid s A - A"}:
bb4ede27fcb7 *** empty log message ***
nipkow
parents: 10971
diff changeset
    81
@{term[display]"{(y,x). (x,y) \<in> M \<and> x \<in> Avoid s A \<and> x \<notin> A}"}
10218
54411746c549 *** empty log message ***
nipkow
parents:
diff changeset
    82
As we shall see in a moment, the absence of infinite @{term A}-avoiding paths
10241
e0428c2778f1 wellfounded -> well-founded
paulson
parents: 10235
diff changeset
    83
starting from @{term s} implies well-foundedness of this relation. For the
10218
54411746c549 *** empty log message ***
nipkow
parents:
diff changeset
    84
moment we assume this and proceed with the induction:
54411746c549 *** empty log message ***
nipkow
parents:
diff changeset
    85
*}
54411746c549 *** empty log message ***
nipkow
parents:
diff changeset
    86
11196
bb4ede27fcb7 *** empty log message ***
nipkow
parents: 10971
diff changeset
    87
apply(subgoal_tac "wf{(y,x). (x,y) \<in> M \<and> x \<in> Avoid s A \<and> x \<notin> A}");
10218
54411746c549 *** empty log message ***
nipkow
parents:
diff changeset
    88
 apply(erule_tac a = t in wf_induct);
54411746c549 *** empty log message ***
nipkow
parents:
diff changeset
    89
 apply(clarsimp);
11196
bb4ede27fcb7 *** empty log message ***
nipkow
parents: 10971
diff changeset
    90
(*<*)apply(rename_tac t)(*>*)
10218
54411746c549 *** empty log message ***
nipkow
parents:
diff changeset
    91
54411746c549 *** empty log message ***
nipkow
parents:
diff changeset
    92
txt{*\noindent
10885
90695f46440b lcp's pass over the book, chapters 1-8
paulson
parents: 10855
diff changeset
    93
@{subgoals[display,indent=0,margin=65]}
90695f46440b lcp's pass over the book, chapters 1-8
paulson
parents: 10855
diff changeset
    94
Now the induction hypothesis states that if @{prop"t \<notin> A"}
10218
54411746c549 *** empty log message ***
nipkow
parents:
diff changeset
    95
then all successors of @{term t} that are in @{term"Avoid s A"} are in
11196
bb4ede27fcb7 *** empty log message ***
nipkow
parents: 10971
diff changeset
    96
@{term"lfp (af A)"}. Unfolding @{term lfp} in the conclusion of the first
bb4ede27fcb7 *** empty log message ***
nipkow
parents: 10971
diff changeset
    97
subgoal once, we have to prove that @{term t} is in @{term A} or all successors
bb4ede27fcb7 *** empty log message ***
nipkow
parents: 10971
diff changeset
    98
of @{term t} are in @{term"lfp (af A)"}: if @{term t} is not in @{term A},
bb4ede27fcb7 *** empty log message ***
nipkow
parents: 10971
diff changeset
    99
the second 
10218
54411746c549 *** empty log message ***
nipkow
parents:
diff changeset
   100
@{term Avoid}-rule implies that all successors of @{term t} are in
54411746c549 *** empty log message ***
nipkow
parents:
diff changeset
   101
@{term"Avoid s A"} (because we also assume @{prop"t \<in> Avoid s A"}), and
54411746c549 *** empty log message ***
nipkow
parents:
diff changeset
   102
hence, by the induction hypothesis, all successors of @{term t} are indeed in
54411746c549 *** empty log message ***
nipkow
parents:
diff changeset
   103
@{term"lfp(af A)"}. Mechanically:
54411746c549 *** empty log message ***
nipkow
parents:
diff changeset
   104
*}
54411746c549 *** empty log message ***
nipkow
parents:
diff changeset
   105
11196
bb4ede27fcb7 *** empty log message ***
nipkow
parents: 10971
diff changeset
   106
 apply(subst lfp_unfold[OF mono_af]);
bb4ede27fcb7 *** empty log message ***
nipkow
parents: 10971
diff changeset
   107
 apply(simp (no_asm) add: af_def);
10218
54411746c549 *** empty log message ***
nipkow
parents:
diff changeset
   108
 apply(blast intro:Avoid.intros);
54411746c549 *** empty log message ***
nipkow
parents:
diff changeset
   109
54411746c549 *** empty log message ***
nipkow
parents:
diff changeset
   110
txt{*
54411746c549 *** empty log message ***
nipkow
parents:
diff changeset
   111
Having proved the main goal we return to the proof obligation that the above
10885
90695f46440b lcp's pass over the book, chapters 1-8
paulson
parents: 10855
diff changeset
   112
relation is indeed well-founded. This is proved by contradiction: if
90695f46440b lcp's pass over the book, chapters 1-8
paulson
parents: 10855
diff changeset
   113
the relation is not well-founded then there exists an infinite @{term
10218
54411746c549 *** empty log message ***
nipkow
parents:
diff changeset
   114
A}-avoiding path all in @{term"Avoid s A"}, by theorem
54411746c549 *** empty log message ***
nipkow
parents:
diff changeset
   115
@{thm[source]wf_iff_no_infinite_down_chain}:
54411746c549 *** empty log message ***
nipkow
parents:
diff changeset
   116
@{thm[display]wf_iff_no_infinite_down_chain[no_vars]}
54411746c549 *** empty log message ***
nipkow
parents:
diff changeset
   117
From lemma @{thm[source]ex_infinite_path} the existence of an infinite
10885
90695f46440b lcp's pass over the book, chapters 1-8
paulson
parents: 10855
diff changeset
   118
@{term A}-avoiding path starting in @{term s} follows, contradiction.
10218
54411746c549 *** empty log message ***
nipkow
parents:
diff changeset
   119
*}
54411746c549 *** empty log message ***
nipkow
parents:
diff changeset
   120
10235
20cf817f3b4a renaming of contrapos rules
paulson
parents: 10218
diff changeset
   121
apply(erule contrapos_pp);
10218
54411746c549 *** empty log message ***
nipkow
parents:
diff changeset
   122
apply(simp add:wf_iff_no_infinite_down_chain);
54411746c549 *** empty log message ***
nipkow
parents:
diff changeset
   123
apply(erule exE);
54411746c549 *** empty log message ***
nipkow
parents:
diff changeset
   124
apply(rule ex_infinite_path);
54411746c549 *** empty log message ***
nipkow
parents:
diff changeset
   125
apply(auto simp add:Paths_def);
54411746c549 *** empty log message ***
nipkow
parents:
diff changeset
   126
done
54411746c549 *** empty log message ***
nipkow
parents:
diff changeset
   127
54411746c549 *** empty log message ***
nipkow
parents:
diff changeset
   128
text{*
11196
bb4ede27fcb7 *** empty log message ***
nipkow
parents: 10971
diff changeset
   129
The @{text"(no_asm)"} modifier of the @{text"rule_format"} directive in the
bb4ede27fcb7 *** empty log message ***
nipkow
parents: 10971
diff changeset
   130
statement of the lemma means
10971
6852682eaf16 *** empty log message ***
nipkow
parents: 10885
diff changeset
   131
that the assumption is left unchanged --- otherwise the @{text"\<forall>p"} is turned
10218
54411746c549 *** empty log message ***
nipkow
parents:
diff changeset
   132
into a @{text"\<And>p"}, which would complicate matters below. As it is,
54411746c549 *** empty log message ***
nipkow
parents:
diff changeset
   133
@{thm[source]Avoid_in_lfp} is now
54411746c549 *** empty log message ***
nipkow
parents:
diff changeset
   134
@{thm[display]Avoid_in_lfp[no_vars]}
54411746c549 *** empty log message ***
nipkow
parents:
diff changeset
   135
The main theorem is simply the corollary where @{prop"t = s"},
54411746c549 *** empty log message ***
nipkow
parents:
diff changeset
   136
in which case the assumption @{prop"t \<in> Avoid s A"} is trivially true
10845
3696bc935bbd *** empty log message ***
nipkow
parents: 10795
diff changeset
   137
by the first @{term Avoid}-rule. Isabelle confirms this:
10218
54411746c549 *** empty log message ***
nipkow
parents:
diff changeset
   138
*}
54411746c549 *** empty log message ***
nipkow
parents:
diff changeset
   139
10855
140a1ed65665 *** empty log message ***
nipkow
parents: 10845
diff changeset
   140
theorem AF_lemma2:  "{s. \<forall>p \<in> Paths s. \<exists> i. p i \<in> A} \<subseteq> lfp(af A)";
10218
54411746c549 *** empty log message ***
nipkow
parents:
diff changeset
   141
by(auto elim:Avoid_in_lfp intro:Avoid.intros);
54411746c549 *** empty log message ***
nipkow
parents:
diff changeset
   142
54411746c549 *** empty log message ***
nipkow
parents:
diff changeset
   143
54411746c549 *** empty log message ***
nipkow
parents:
diff changeset
   144
(*<*)end(*>*)