36581
|
1 |
(* Title: Library/Operator_Norm.thy
|
|
2 |
Author: Amine Chaieb, University of Cambridge
|
|
3 |
*)
|
|
4 |
|
|
5 |
header {* Operator Norm *}
|
|
6 |
|
|
7 |
theory Operator_Norm
|
|
8 |
imports Euclidean_Space
|
|
9 |
begin
|
|
10 |
|
|
11 |
definition "onorm f = Sup {norm (f x)| x. norm x = 1}"
|
|
12 |
|
|
13 |
lemma norm_bound_generalize:
|
|
14 |
fixes f:: "real ^'n \<Rightarrow> real^'m"
|
|
15 |
assumes lf: "linear f"
|
|
16 |
shows "(\<forall>x. norm x = 1 \<longrightarrow> norm (f x) \<le> b) \<longleftrightarrow> (\<forall>x. norm (f x) \<le> b * norm x)" (is "?lhs \<longleftrightarrow> ?rhs")
|
|
17 |
proof-
|
|
18 |
{assume H: ?rhs
|
|
19 |
{fix x :: "real^'n" assume x: "norm x = 1"
|
|
20 |
from H[rule_format, of x] x have "norm (f x) \<le> b" by simp}
|
|
21 |
then have ?lhs by blast }
|
|
22 |
|
|
23 |
moreover
|
|
24 |
{assume H: ?lhs
|
|
25 |
from H[rule_format, of "basis arbitrary"]
|
|
26 |
have bp: "b \<ge> 0" using norm_ge_zero[of "f (basis arbitrary)"]
|
|
27 |
by (auto simp add: norm_basis elim: order_trans [OF norm_ge_zero])
|
|
28 |
{fix x :: "real ^'n"
|
|
29 |
{assume "x = 0"
|
|
30 |
then have "norm (f x) \<le> b * norm x" by (simp add: linear_0[OF lf] bp)}
|
|
31 |
moreover
|
|
32 |
{assume x0: "x \<noteq> 0"
|
|
33 |
hence n0: "norm x \<noteq> 0" by (metis norm_eq_zero)
|
|
34 |
let ?c = "1/ norm x"
|
|
35 |
have "norm (?c*s x) = 1" using x0 by (simp add: n0)
|
|
36 |
with H have "norm (f(?c*s x)) \<le> b" by blast
|
|
37 |
hence "?c * norm (f x) \<le> b"
|
|
38 |
by (simp add: linear_cmul[OF lf])
|
|
39 |
hence "norm (f x) \<le> b * norm x"
|
|
40 |
using n0 norm_ge_zero[of x] by (auto simp add: field_simps)}
|
|
41 |
ultimately have "norm (f x) \<le> b * norm x" by blast}
|
|
42 |
then have ?rhs by blast}
|
|
43 |
ultimately show ?thesis by blast
|
|
44 |
qed
|
|
45 |
|
|
46 |
lemma onorm:
|
|
47 |
fixes f:: "real ^'n \<Rightarrow> real ^'m"
|
|
48 |
assumes lf: "linear f"
|
|
49 |
shows "norm (f x) <= onorm f * norm x"
|
|
50 |
and "\<forall>x. norm (f x) <= b * norm x \<Longrightarrow> onorm f <= b"
|
|
51 |
proof-
|
|
52 |
{
|
|
53 |
let ?S = "{norm (f x) |x. norm x = 1}"
|
|
54 |
have Se: "?S \<noteq> {}" using norm_basis by auto
|
|
55 |
from linear_bounded[OF lf] have b: "\<exists> b. ?S *<= b"
|
|
56 |
unfolding norm_bound_generalize[OF lf, symmetric] by (auto simp add: setle_def)
|
|
57 |
{from Sup[OF Se b, unfolded onorm_def[symmetric]]
|
|
58 |
show "norm (f x) <= onorm f * norm x"
|
|
59 |
apply -
|
|
60 |
apply (rule spec[where x = x])
|
|
61 |
unfolding norm_bound_generalize[OF lf, symmetric]
|
|
62 |
by (auto simp add: isLub_def isUb_def leastP_def setge_def setle_def)}
|
|
63 |
{
|
|
64 |
show "\<forall>x. norm (f x) <= b * norm x \<Longrightarrow> onorm f <= b"
|
|
65 |
using Sup[OF Se b, unfolded onorm_def[symmetric]]
|
|
66 |
unfolding norm_bound_generalize[OF lf, symmetric]
|
|
67 |
by (auto simp add: isLub_def isUb_def leastP_def setge_def setle_def)}
|
|
68 |
}
|
|
69 |
qed
|
|
70 |
|
|
71 |
lemma onorm_pos_le: assumes lf: "linear (f::real ^'n \<Rightarrow> real ^'m)" shows "0 <= onorm f"
|
|
72 |
using order_trans[OF norm_ge_zero onorm(1)[OF lf, of "basis arbitrary"], unfolded norm_basis] by simp
|
|
73 |
|
|
74 |
lemma onorm_eq_0: assumes lf: "linear (f::real ^'n \<Rightarrow> real ^'m)"
|
|
75 |
shows "onorm f = 0 \<longleftrightarrow> (\<forall>x. f x = 0)"
|
|
76 |
using onorm[OF lf]
|
|
77 |
apply (auto simp add: onorm_pos_le)
|
|
78 |
apply atomize
|
|
79 |
apply (erule allE[where x="0::real"])
|
|
80 |
using onorm_pos_le[OF lf]
|
|
81 |
apply arith
|
|
82 |
done
|
|
83 |
|
|
84 |
lemma onorm_const: "onorm(\<lambda>x::real^'n. (y::real ^'m)) = norm y"
|
|
85 |
proof-
|
|
86 |
let ?f = "\<lambda>x::real^'n. (y::real ^ 'm)"
|
|
87 |
have th: "{norm (?f x)| x. norm x = 1} = {norm y}"
|
|
88 |
by(auto intro: vector_choose_size set_ext)
|
|
89 |
show ?thesis
|
|
90 |
unfolding onorm_def th
|
|
91 |
apply (rule Sup_unique) by (simp_all add: setle_def)
|
|
92 |
qed
|
|
93 |
|
|
94 |
lemma onorm_pos_lt: assumes lf: "linear (f::real ^ 'n \<Rightarrow> real ^'m)"
|
|
95 |
shows "0 < onorm f \<longleftrightarrow> ~(\<forall>x. f x = 0)"
|
|
96 |
unfolding onorm_eq_0[OF lf, symmetric]
|
|
97 |
using onorm_pos_le[OF lf] by arith
|
|
98 |
|
|
99 |
lemma onorm_compose:
|
|
100 |
assumes lf: "linear (f::real ^'n \<Rightarrow> real ^'m)"
|
|
101 |
and lg: "linear (g::real^'k \<Rightarrow> real^'n)"
|
|
102 |
shows "onorm (f o g) <= onorm f * onorm g"
|
|
103 |
apply (rule onorm(2)[OF linear_compose[OF lg lf], rule_format])
|
|
104 |
unfolding o_def
|
|
105 |
apply (subst mult_assoc)
|
|
106 |
apply (rule order_trans)
|
|
107 |
apply (rule onorm(1)[OF lf])
|
|
108 |
apply (rule mult_mono1)
|
|
109 |
apply (rule onorm(1)[OF lg])
|
|
110 |
apply (rule onorm_pos_le[OF lf])
|
|
111 |
done
|
|
112 |
|
|
113 |
lemma onorm_neg_lemma: assumes lf: "linear (f::real ^'n \<Rightarrow> real^'m)"
|
|
114 |
shows "onorm (\<lambda>x. - f x) \<le> onorm f"
|
|
115 |
using onorm[OF linear_compose_neg[OF lf]] onorm[OF lf]
|
|
116 |
unfolding norm_minus_cancel by metis
|
|
117 |
|
|
118 |
lemma onorm_neg: assumes lf: "linear (f::real ^'n \<Rightarrow> real^'m)"
|
|
119 |
shows "onorm (\<lambda>x. - f x) = onorm f"
|
|
120 |
using onorm_neg_lemma[OF lf] onorm_neg_lemma[OF linear_compose_neg[OF lf]]
|
|
121 |
by simp
|
|
122 |
|
|
123 |
lemma onorm_triangle:
|
|
124 |
assumes lf: "linear (f::real ^'n \<Rightarrow> real ^'m)" and lg: "linear g"
|
|
125 |
shows "onorm (\<lambda>x. f x + g x) <= onorm f + onorm g"
|
|
126 |
apply(rule onorm(2)[OF linear_compose_add[OF lf lg], rule_format])
|
|
127 |
apply (rule order_trans)
|
|
128 |
apply (rule norm_triangle_ineq)
|
|
129 |
apply (simp add: distrib)
|
|
130 |
apply (rule add_mono)
|
|
131 |
apply (rule onorm(1)[OF lf])
|
|
132 |
apply (rule onorm(1)[OF lg])
|
|
133 |
done
|
|
134 |
|
|
135 |
lemma onorm_triangle_le: "linear (f::real ^'n \<Rightarrow> real ^'m) \<Longrightarrow> linear g \<Longrightarrow> onorm(f) + onorm(g) <= e
|
|
136 |
\<Longrightarrow> onorm(\<lambda>x. f x + g x) <= e"
|
|
137 |
apply (rule order_trans)
|
|
138 |
apply (rule onorm_triangle)
|
|
139 |
apply assumption+
|
|
140 |
done
|
|
141 |
|
|
142 |
lemma onorm_triangle_lt: "linear (f::real ^'n \<Rightarrow> real ^'m) \<Longrightarrow> linear g \<Longrightarrow> onorm(f) + onorm(g) < e
|
|
143 |
==> onorm(\<lambda>x. f x + g x) < e"
|
|
144 |
apply (rule order_le_less_trans)
|
|
145 |
apply (rule onorm_triangle)
|
|
146 |
by assumption+
|
|
147 |
|
|
148 |
end
|