| author | nipkow | 
| Wed, 24 Aug 2016 11:02:23 +0200 | |
| changeset 63720 | bcf2123d059a | 
| parent 63649 | e690d6f2185b | 
| child 63918 | 6bf55e6e0b75 | 
| permissions | -rw-r--r-- | 
| 36648 | 1 | (* Title: HOL/Library/Convex.thy | 
| 2 | Author: Armin Heller, TU Muenchen | |
| 3 | Author: Johannes Hoelzl, TU Muenchen | |
| 4 | *) | |
| 5 | ||
| 60423 | 6 | section \<open>Convexity in real vector spaces\<close> | 
| 36648 | 7 | |
| 36623 | 8 | theory Convex | 
| 63485 | 9 | imports Product_Vector | 
| 36623 | 10 | begin | 
| 11 | ||
| 60423 | 12 | subsection \<open>Convexity\<close> | 
| 36623 | 13 | |
| 49609 | 14 | definition convex :: "'a::real_vector set \<Rightarrow> bool" | 
| 15 | where "convex s \<longleftrightarrow> (\<forall>x\<in>s. \<forall>y\<in>s. \<forall>u\<ge>0. \<forall>v\<ge>0. u + v = 1 \<longrightarrow> u *\<^sub>R x + v *\<^sub>R y \<in> s)" | |
| 36623 | 16 | |
| 53676 | 17 | lemma convexI: | 
| 18 | assumes "\<And>x y u v. x \<in> s \<Longrightarrow> y \<in> s \<Longrightarrow> 0 \<le> u \<Longrightarrow> 0 \<le> v \<Longrightarrow> u + v = 1 \<Longrightarrow> u *\<^sub>R x + v *\<^sub>R y \<in> s" | |
| 19 | shows "convex s" | |
| 20 | using assms unfolding convex_def by fast | |
| 21 | ||
| 22 | lemma convexD: | |
| 23 | assumes "convex s" and "x \<in> s" and "y \<in> s" and "0 \<le> u" and "0 \<le> v" and "u + v = 1" | |
| 24 | shows "u *\<^sub>R x + v *\<^sub>R y \<in> s" | |
| 25 | using assms unfolding convex_def by fast | |
| 26 | ||
| 63485 | 27 | lemma convex_alt: "convex s \<longleftrightarrow> (\<forall>x\<in>s. \<forall>y\<in>s. \<forall>u. 0 \<le> u \<and> u \<le> 1 \<longrightarrow> ((1 - u) *\<^sub>R x + u *\<^sub>R y) \<in> s)" | 
| 36623 | 28 | (is "_ \<longleftrightarrow> ?alt") | 
| 29 | proof | |
| 63485 | 30 | show "convex s" if alt: ?alt | 
| 31 | proof - | |
| 32 |     {
 | |
| 33 | fix x y and u v :: real | |
| 34 | assume mem: "x \<in> s" "y \<in> s" | |
| 35 | assume "0 \<le> u" "0 \<le> v" | |
| 36 | moreover | |
| 37 | assume "u + v = 1" | |
| 38 | then have "u = 1 - v" by auto | |
| 39 | ultimately have "u *\<^sub>R x + v *\<^sub>R y \<in> s" | |
| 40 | using alt [rule_format, OF mem] by auto | |
| 41 | } | |
| 42 | then show ?thesis | |
| 43 | unfolding convex_def by auto | |
| 44 | qed | |
| 45 | show ?alt if "convex s" | |
| 46 | using that by (auto simp: convex_def) | |
| 47 | qed | |
| 36623 | 48 | |
| 61426 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61070diff
changeset | 49 | lemma convexD_alt: | 
| 36623 | 50 | assumes "convex s" "a \<in> s" "b \<in> s" "0 \<le> u" "u \<le> 1" | 
| 51 | shows "((1 - u) *\<^sub>R a + u *\<^sub>R b) \<in> s" | |
| 52 | using assms unfolding convex_alt by auto | |
| 53 | ||
| 61520 
8f85bb443d33
Cauchy's integral formula, required lemmas, and a bit of reorganisation
 paulson <lp15@cam.ac.uk> parents: 
61518diff
changeset | 54 | lemma mem_convex_alt: | 
| 
8f85bb443d33
Cauchy's integral formula, required lemmas, and a bit of reorganisation
 paulson <lp15@cam.ac.uk> parents: 
61518diff
changeset | 55 | assumes "convex S" "x \<in> S" "y \<in> S" "u \<ge> 0" "v \<ge> 0" "u + v > 0" | 
| 
8f85bb443d33
Cauchy's integral formula, required lemmas, and a bit of reorganisation
 paulson <lp15@cam.ac.uk> parents: 
61518diff
changeset | 56 | shows "((u/(u+v)) *\<^sub>R x + (v/(u+v)) *\<^sub>R y) \<in> S" | 
| 
8f85bb443d33
Cauchy's integral formula, required lemmas, and a bit of reorganisation
 paulson <lp15@cam.ac.uk> parents: 
61518diff
changeset | 57 | apply (rule convexD) | 
| 
8f85bb443d33
Cauchy's integral formula, required lemmas, and a bit of reorganisation
 paulson <lp15@cam.ac.uk> parents: 
61518diff
changeset | 58 | using assms | 
| 63485 | 59 | apply (simp_all add: zero_le_divide_iff add_divide_distrib [symmetric]) | 
| 61520 
8f85bb443d33
Cauchy's integral formula, required lemmas, and a bit of reorganisation
 paulson <lp15@cam.ac.uk> parents: 
61518diff
changeset | 60 | done | 
| 
8f85bb443d33
Cauchy's integral formula, required lemmas, and a bit of reorganisation
 paulson <lp15@cam.ac.uk> parents: 
61518diff
changeset | 61 | |
| 60303 | 62 | lemma convex_empty[intro,simp]: "convex {}"
 | 
| 36623 | 63 | unfolding convex_def by simp | 
| 64 | ||
| 60303 | 65 | lemma convex_singleton[intro,simp]: "convex {a}"
 | 
| 36623 | 66 | unfolding convex_def by (auto simp: scaleR_left_distrib[symmetric]) | 
| 67 | ||
| 60303 | 68 | lemma convex_UNIV[intro,simp]: "convex UNIV" | 
| 36623 | 69 | unfolding convex_def by auto | 
| 70 | ||
| 63007 
aa894a49f77d
new theorems about convex hulls, etc.; also, renamed some theorems
 paulson <lp15@cam.ac.uk> parents: 
62418diff
changeset | 71 | lemma convex_Inter: "(\<And>s. s\<in>f \<Longrightarrow> convex s) \<Longrightarrow> convex(\<Inter>f)" | 
| 36623 | 72 | unfolding convex_def by auto | 
| 73 | ||
| 74 | lemma convex_Int: "convex s \<Longrightarrow> convex t \<Longrightarrow> convex (s \<inter> t)" | |
| 75 | unfolding convex_def by auto | |
| 76 | ||
| 63007 
aa894a49f77d
new theorems about convex hulls, etc.; also, renamed some theorems
 paulson <lp15@cam.ac.uk> parents: 
62418diff
changeset | 77 | lemma convex_INT: "(\<And>i. i \<in> A \<Longrightarrow> convex (B i)) \<Longrightarrow> convex (\<Inter>i\<in>A. B i)" | 
| 53596 | 78 | unfolding convex_def by auto | 
| 79 | ||
| 80 | lemma convex_Times: "convex s \<Longrightarrow> convex t \<Longrightarrow> convex (s \<times> t)" | |
| 81 | unfolding convex_def by auto | |
| 82 | ||
| 36623 | 83 | lemma convex_halfspace_le: "convex {x. inner a x \<le> b}"
 | 
| 84 | unfolding convex_def | |
| 44142 | 85 | by (auto simp: inner_add intro!: convex_bound_le) | 
| 36623 | 86 | |
| 87 | lemma convex_halfspace_ge: "convex {x. inner a x \<ge> b}"
 | |
| 88 | proof - | |
| 56796 | 89 |   have *: "{x. inner a x \<ge> b} = {x. inner (-a) x \<le> -b}"
 | 
| 90 | by auto | |
| 91 | show ?thesis | |
| 92 | unfolding * using convex_halfspace_le[of "-a" "-b"] by auto | |
| 36623 | 93 | qed | 
| 94 | ||
| 95 | lemma convex_hyperplane: "convex {x. inner a x = b}"
 | |
| 49609 | 96 | proof - | 
| 56796 | 97 |   have *: "{x. inner a x = b} = {x. inner a x \<le> b} \<inter> {x. inner a x \<ge> b}"
 | 
| 98 | by auto | |
| 36623 | 99 | show ?thesis using convex_halfspace_le convex_halfspace_ge | 
| 100 | by (auto intro!: convex_Int simp: *) | |
| 101 | qed | |
| 102 | ||
| 103 | lemma convex_halfspace_lt: "convex {x. inner a x < b}"
 | |
| 104 | unfolding convex_def | |
| 105 | by (auto simp: convex_bound_lt inner_add) | |
| 106 | ||
| 107 | lemma convex_halfspace_gt: "convex {x. inner a x > b}"
 | |
| 108 | using convex_halfspace_lt[of "-a" "-b"] by auto | |
| 109 | ||
| 61518 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 110 | lemma convex_real_interval [iff]: | 
| 36623 | 111 | fixes a b :: "real" | 
| 112 |   shows "convex {a..}" and "convex {..b}"
 | |
| 49609 | 113 |     and "convex {a<..}" and "convex {..<b}"
 | 
| 114 |     and "convex {a..b}" and "convex {a<..b}"
 | |
| 115 |     and "convex {a..<b}" and "convex {a<..<b}"
 | |
| 36623 | 116 | proof - | 
| 60423 | 117 |   have "{a..} = {x. a \<le> inner 1 x}"
 | 
| 118 | by auto | |
| 119 |   then show 1: "convex {a..}"
 | |
| 120 | by (simp only: convex_halfspace_ge) | |
| 121 |   have "{..b} = {x. inner 1 x \<le> b}"
 | |
| 122 | by auto | |
| 123 |   then show 2: "convex {..b}"
 | |
| 124 | by (simp only: convex_halfspace_le) | |
| 125 |   have "{a<..} = {x. a < inner 1 x}"
 | |
| 126 | by auto | |
| 127 |   then show 3: "convex {a<..}"
 | |
| 128 | by (simp only: convex_halfspace_gt) | |
| 129 |   have "{..<b} = {x. inner 1 x < b}"
 | |
| 130 | by auto | |
| 131 |   then show 4: "convex {..<b}"
 | |
| 132 | by (simp only: convex_halfspace_lt) | |
| 133 |   have "{a..b} = {a..} \<inter> {..b}"
 | |
| 134 | by auto | |
| 135 |   then show "convex {a..b}"
 | |
| 136 | by (simp only: convex_Int 1 2) | |
| 137 |   have "{a<..b} = {a<..} \<inter> {..b}"
 | |
| 138 | by auto | |
| 139 |   then show "convex {a<..b}"
 | |
| 140 | by (simp only: convex_Int 3 2) | |
| 141 |   have "{a..<b} = {a..} \<inter> {..<b}"
 | |
| 142 | by auto | |
| 143 |   then show "convex {a..<b}"
 | |
| 144 | by (simp only: convex_Int 1 4) | |
| 145 |   have "{a<..<b} = {a<..} \<inter> {..<b}"
 | |
| 146 | by auto | |
| 147 |   then show "convex {a<..<b}"
 | |
| 148 | by (simp only: convex_Int 3 4) | |
| 36623 | 149 | qed | 
| 150 | ||
| 61070 | 151 | lemma convex_Reals: "convex \<real>" | 
| 59862 | 152 | by (simp add: convex_def scaleR_conv_of_real) | 
| 60423 | 153 | |
| 154 | ||
| 155 | subsection \<open>Explicit expressions for convexity in terms of arbitrary sums\<close> | |
| 36623 | 156 | |
| 157 | lemma convex_setsum: | |
| 158 | fixes C :: "'a::real_vector set" | |
| 56796 | 159 | assumes "finite s" | 
| 160 | and "convex C" | |
| 161 | and "(\<Sum> i \<in> s. a i) = 1" | |
| 162 | assumes "\<And>i. i \<in> s \<Longrightarrow> a i \<ge> 0" | |
| 163 | and "\<And>i. i \<in> s \<Longrightarrow> y i \<in> C" | |
| 36623 | 164 | shows "(\<Sum> j \<in> s. a j *\<^sub>R y j) \<in> C" | 
| 55909 | 165 | using assms(1,3,4,5) | 
| 166 | proof (induct arbitrary: a set: finite) | |
| 49609 | 167 | case empty | 
| 55909 | 168 | then show ?case by simp | 
| 36623 | 169 | next | 
| 55909 | 170 | case (insert i s) note IH = this(3) | 
| 56796 | 171 | have "a i + setsum a s = 1" | 
| 172 | and "0 \<le> a i" | |
| 173 | and "\<forall>j\<in>s. 0 \<le> a j" | |
| 174 | and "y i \<in> C" | |
| 175 | and "\<forall>j\<in>s. y j \<in> C" | |
| 55909 | 176 | using insert.hyps(1,2) insert.prems by simp_all | 
| 56796 | 177 | then have "0 \<le> setsum a s" | 
| 178 | by (simp add: setsum_nonneg) | |
| 55909 | 179 | have "a i *\<^sub>R y i + (\<Sum>j\<in>s. a j *\<^sub>R y j) \<in> C" | 
| 63516 | 180 | proof (cases "setsum a s = 0") | 
| 181 | case True | |
| 60423 | 182 | with \<open>a i + setsum a s = 1\<close> have "a i = 1" | 
| 56796 | 183 | by simp | 
| 63516 | 184 | from setsum_nonneg_0 [OF \<open>finite s\<close> _ True] \<open>\<forall>j\<in>s. 0 \<le> a j\<close> have "\<forall>j\<in>s. a j = 0" | 
| 56796 | 185 | by simp | 
| 60423 | 186 | show ?thesis using \<open>a i = 1\<close> and \<open>\<forall>j\<in>s. a j = 0\<close> and \<open>y i \<in> C\<close> | 
| 56796 | 187 | by simp | 
| 55909 | 188 | next | 
| 63516 | 189 | case False | 
| 60423 | 190 | with \<open>0 \<le> setsum a s\<close> have "0 < setsum a s" | 
| 56796 | 191 | by simp | 
| 55909 | 192 | then have "(\<Sum>j\<in>s. (a j / setsum a s) *\<^sub>R y j) \<in> C" | 
| 60423 | 193 | using \<open>\<forall>j\<in>s. 0 \<le> a j\<close> and \<open>\<forall>j\<in>s. y j \<in> C\<close> | 
| 56571 
f4635657d66f
added divide_nonneg_nonneg and co; made it a simp rule
 hoelzl parents: 
56544diff
changeset | 194 | by (simp add: IH setsum_divide_distrib [symmetric]) | 
| 60423 | 195 | from \<open>convex C\<close> and \<open>y i \<in> C\<close> and this and \<open>0 \<le> a i\<close> | 
| 196 | and \<open>0 \<le> setsum a s\<close> and \<open>a i + setsum a s = 1\<close> | |
| 55909 | 197 | have "a i *\<^sub>R y i + setsum a s *\<^sub>R (\<Sum>j\<in>s. (a j / setsum a s) *\<^sub>R y j) \<in> C" | 
| 198 | by (rule convexD) | |
| 56796 | 199 | then show ?thesis | 
| 63516 | 200 | by (simp add: scaleR_setsum_right False) | 
| 55909 | 201 | qed | 
| 60423 | 202 | then show ?case using \<open>finite s\<close> and \<open>i \<notin> s\<close> | 
| 56796 | 203 | by simp | 
| 36623 | 204 | qed | 
| 205 | ||
| 206 | lemma convex: | |
| 49609 | 207 |   "convex s \<longleftrightarrow> (\<forall>(k::nat) u x. (\<forall>i. 1\<le>i \<and> i\<le>k \<longrightarrow> 0 \<le> u i \<and> x i \<in>s) \<and> (setsum u {1..k} = 1)
 | 
| 208 |       \<longrightarrow> setsum (\<lambda>i. u i *\<^sub>R x i) {1..k} \<in> s)"
 | |
| 36623 | 209 | proof safe | 
| 49609 | 210 | fix k :: nat | 
| 211 | fix u :: "nat \<Rightarrow> real" | |
| 212 | fix x | |
| 36623 | 213 | assume "convex s" | 
| 214 | "\<forall>i. 1 \<le> i \<and> i \<le> k \<longrightarrow> 0 \<le> u i \<and> x i \<in> s" | |
| 215 |     "setsum u {1..k} = 1"
 | |
| 60423 | 216 |   with convex_setsum[of "{1 .. k}" s] show "(\<Sum>j\<in>{1 .. k}. u j *\<^sub>R x j) \<in> s"
 | 
| 56796 | 217 | by auto | 
| 36623 | 218 | next | 
| 60423 | 219 |   assume *: "\<forall>k u x. (\<forall> i :: nat. 1 \<le> i \<and> i \<le> k \<longrightarrow> 0 \<le> u i \<and> x i \<in> s) \<and> setsum u {1..k} = 1
 | 
| 36623 | 220 | \<longrightarrow> (\<Sum>i = 1..k. u i *\<^sub>R (x i :: 'a)) \<in> s" | 
| 56796 | 221 |   {
 | 
| 222 | fix \<mu> :: real | |
| 49609 | 223 | fix x y :: 'a | 
| 224 | assume xy: "x \<in> s" "y \<in> s" | |
| 225 | assume mu: "\<mu> \<ge> 0" "\<mu> \<le> 1" | |
| 226 | let ?u = "\<lambda>i. if (i :: nat) = 1 then \<mu> else 1 - \<mu>" | |
| 227 | let ?x = "\<lambda>i. if (i :: nat) = 1 then x else y" | |
| 56796 | 228 |     have "{1 :: nat .. 2} \<inter> - {x. x = 1} = {2}"
 | 
| 229 | by auto | |
| 230 |     then have card: "card ({1 :: nat .. 2} \<inter> - {x. x = 1}) = 1"
 | |
| 231 | by simp | |
| 49609 | 232 |     then have "setsum ?u {1 .. 2} = 1"
 | 
| 57418 | 233 |       using setsum.If_cases[of "{(1 :: nat) .. 2}" "\<lambda> x. x = 1" "\<lambda> x. \<mu>" "\<lambda> x. 1 - \<mu>"]
 | 
| 36623 | 234 | by auto | 
| 60423 | 235 |     with *[rule_format, of "2" ?u ?x] have s: "(\<Sum>j \<in> {1..2}. ?u j *\<^sub>R ?x j) \<in> s"
 | 
| 36623 | 236 | using mu xy by auto | 
| 237 |     have grarr: "(\<Sum>j \<in> {Suc (Suc 0)..2}. ?u j *\<^sub>R ?x j) = (1 - \<mu>) *\<^sub>R y"
 | |
| 238 | using setsum_head_Suc[of "Suc (Suc 0)" 2 "\<lambda> j. (1 - \<mu>) *\<^sub>R y"] by auto | |
| 239 | from setsum_head_Suc[of "Suc 0" 2 "\<lambda> j. ?u j *\<^sub>R ?x j", simplified this] | |
| 56796 | 240 |     have "(\<Sum>j \<in> {1..2}. ?u j *\<^sub>R ?x j) = \<mu> *\<^sub>R x + (1 - \<mu>) *\<^sub>R y"
 | 
| 241 | by auto | |
| 242 | then have "(1 - \<mu>) *\<^sub>R y + \<mu> *\<^sub>R x \<in> s" | |
| 60423 | 243 | using s by (auto simp: add.commute) | 
| 49609 | 244 | } | 
| 56796 | 245 | then show "convex s" | 
| 246 | unfolding convex_alt by auto | |
| 36623 | 247 | qed | 
| 248 | ||
| 249 | ||
| 250 | lemma convex_explicit: | |
| 251 | fixes s :: "'a::real_vector set" | |
| 252 | shows "convex s \<longleftrightarrow> | |
| 49609 | 253 | (\<forall>t u. finite t \<and> t \<subseteq> s \<and> (\<forall>x\<in>t. 0 \<le> u x) \<and> setsum u t = 1 \<longrightarrow> setsum (\<lambda>x. u x *\<^sub>R x) t \<in> s)" | 
| 36623 | 254 | proof safe | 
| 49609 | 255 | fix t | 
| 256 | fix u :: "'a \<Rightarrow> real" | |
| 56796 | 257 | assume "convex s" | 
| 258 | and "finite t" | |
| 259 | and "t \<subseteq> s" "\<forall>x\<in>t. 0 \<le> u x" "setsum u t = 1" | |
| 49609 | 260 | then show "(\<Sum>x\<in>t. u x *\<^sub>R x) \<in> s" | 
| 36623 | 261 | using convex_setsum[of t s u "\<lambda> x. x"] by auto | 
| 262 | next | |
| 60423 | 263 | assume *: "\<forall>t. \<forall> u. finite t \<and> t \<subseteq> s \<and> (\<forall>x\<in>t. 0 \<le> u x) \<and> | 
| 56796 | 264 | setsum u t = 1 \<longrightarrow> (\<Sum>x\<in>t. u x *\<^sub>R x) \<in> s" | 
| 36623 | 265 | show "convex s" | 
| 266 | unfolding convex_alt | |
| 267 | proof safe | |
| 49609 | 268 | fix x y | 
| 269 | fix \<mu> :: real | |
| 60423 | 270 | assume **: "x \<in> s" "y \<in> s" "0 \<le> \<mu>" "\<mu> \<le> 1" | 
| 271 | show "(1 - \<mu>) *\<^sub>R x + \<mu> *\<^sub>R y \<in> s" | |
| 272 | proof (cases "x = y") | |
| 273 | case False | |
| 274 | then show ?thesis | |
| 275 |         using *[rule_format, of "{x, y}" "\<lambda> z. if z = x then 1 - \<mu> else \<mu>"] **
 | |
| 63485 | 276 | by auto | 
| 60423 | 277 | next | 
| 278 | case True | |
| 279 | then show ?thesis | |
| 280 |         using *[rule_format, of "{x, y}" "\<lambda> z. 1"] **
 | |
| 63485 | 281 | by (auto simp: field_simps real_vector.scale_left_diff_distrib) | 
| 60423 | 282 | qed | 
| 36623 | 283 | qed | 
| 284 | qed | |
| 285 | ||
| 49609 | 286 | lemma convex_finite: | 
| 287 | assumes "finite s" | |
| 56796 | 288 | shows "convex s \<longleftrightarrow> (\<forall>u. (\<forall>x\<in>s. 0 \<le> u x) \<and> setsum u s = 1 \<longrightarrow> setsum (\<lambda>x. u x *\<^sub>R x) s \<in> s)" | 
| 36623 | 289 | unfolding convex_explicit | 
| 63649 | 290 | apply safe | 
| 291 | subgoal for u by (erule allE [where x=s], erule allE [where x=u]) auto | |
| 292 | subgoal for t u | |
| 293 | proof - | |
| 294 | have if_distrib_arg: "\<And>P f g x. (if P then f else g) x = (if P then f x else g x)" | |
| 295 | by simp | |
| 296 | assume sum: "\<forall>u. (\<forall>x\<in>s. 0 \<le> u x) \<and> setsum u s = 1 \<longrightarrow> (\<Sum>x\<in>s. u x *\<^sub>R x) \<in> s" | |
| 297 | assume *: "\<forall>x\<in>t. 0 \<le> u x" "setsum u t = 1" | |
| 298 | assume "t \<subseteq> s" | |
| 299 | then have "s \<inter> t = t" by auto | |
| 300 | with sum[THEN spec[where x="\<lambda>x. if x\<in>t then u x else 0"]] * show "(\<Sum>x\<in>t. u x *\<^sub>R x) \<in> s" | |
| 301 | by (auto simp: assms setsum.If_cases if_distrib if_distrib_arg) | |
| 302 | qed | |
| 303 | done | |
| 36623 | 304 | |
| 56796 | 305 | |
| 60423 | 306 | subsection \<open>Functions that are convex on a set\<close> | 
| 55909 | 307 | |
| 49609 | 308 | definition convex_on :: "'a::real_vector set \<Rightarrow> ('a \<Rightarrow> real) \<Rightarrow> bool"
 | 
| 309 | where "convex_on s f \<longleftrightarrow> | |
| 310 | (\<forall>x\<in>s. \<forall>y\<in>s. \<forall>u\<ge>0. \<forall>v\<ge>0. u + v = 1 \<longrightarrow> f (u *\<^sub>R x + v *\<^sub>R y) \<le> u * f x + v * f y)" | |
| 36623 | 311 | |
| 61531 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 312 | lemma convex_onI [intro?]: | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 313 | assumes "\<And>t x y. t > 0 \<Longrightarrow> t < 1 \<Longrightarrow> x \<in> A \<Longrightarrow> y \<in> A \<Longrightarrow> | 
| 63485 | 314 | f ((1 - t) *\<^sub>R x + t *\<^sub>R y) \<le> (1 - t) * f x + t * f y" | 
| 315 | shows "convex_on A f" | |
| 61531 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 316 | unfolding convex_on_def | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 317 | proof clarify | 
| 63485 | 318 | fix x y | 
| 319 | fix u v :: real | |
| 320 | assume A: "x \<in> A" "y \<in> A" "u \<ge> 0" "v \<ge> 0" "u + v = 1" | |
| 321 | from A(5) have [simp]: "v = 1 - u" | |
| 322 | by (simp add: algebra_simps) | |
| 323 | from A(1-4) show "f (u *\<^sub>R x + v *\<^sub>R y) \<le> u * f x + v * f y" | |
| 324 | using assms[of u y x] | |
| 61531 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 325 | by (cases "u = 0 \<or> u = 1") (auto simp: algebra_simps) | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 326 | qed | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 327 | |
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 328 | lemma convex_on_linorderI [intro?]: | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 329 |   fixes A :: "('a::{linorder,real_vector}) set"
 | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 330 | assumes "\<And>t x y. t > 0 \<Longrightarrow> t < 1 \<Longrightarrow> x \<in> A \<Longrightarrow> y \<in> A \<Longrightarrow> x < y \<Longrightarrow> | 
| 63485 | 331 | f ((1 - t) *\<^sub>R x + t *\<^sub>R y) \<le> (1 - t) * f x + t * f y" | 
| 332 | shows "convex_on A f" | |
| 61531 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 333 | proof | 
| 63485 | 334 | fix x y | 
| 335 | fix t :: real | |
| 336 | assume A: "x \<in> A" "y \<in> A" "t > 0" "t < 1" | |
| 337 | with assms [of t x y] assms [of "1 - t" y x] | |
| 62418 | 338 | show "f ((1 - t) *\<^sub>R x + t *\<^sub>R y) \<le> (1 - t) * f x + t * f y" | 
| 339 | by (cases x y rule: linorder_cases) (auto simp: algebra_simps) | |
| 61531 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 340 | qed | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 341 | |
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 342 | lemma convex_onD: | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 343 | assumes "convex_on A f" | 
| 63485 | 344 | shows "\<And>t x y. t \<ge> 0 \<Longrightarrow> t \<le> 1 \<Longrightarrow> x \<in> A \<Longrightarrow> y \<in> A \<Longrightarrow> | 
| 345 | f ((1 - t) *\<^sub>R x + t *\<^sub>R y) \<le> (1 - t) * f x + t * f y" | |
| 346 | using assms by (auto simp: convex_on_def) | |
| 61531 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 347 | |
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 348 | lemma convex_onD_Icc: | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 349 |   assumes "convex_on {x..y} f" "x \<le> (y :: _ :: {real_vector,preorder})"
 | 
| 63485 | 350 | shows "\<And>t. t \<ge> 0 \<Longrightarrow> t \<le> 1 \<Longrightarrow> | 
| 351 | f ((1 - t) *\<^sub>R x + t *\<^sub>R y) \<le> (1 - t) * f x + t * f y" | |
| 352 | using assms(2) by (intro convex_onD [OF assms(1)]) simp_all | |
| 61531 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 353 | |
| 36623 | 354 | lemma convex_on_subset: "convex_on t f \<Longrightarrow> s \<subseteq> t \<Longrightarrow> convex_on s f" | 
| 355 | unfolding convex_on_def by auto | |
| 356 | ||
| 53620 
3c7f5e7926dc
generalized and simplified proofs of several theorems about convex sets
 huffman parents: 
53596diff
changeset | 357 | lemma convex_on_add [intro]: | 
| 56796 | 358 | assumes "convex_on s f" | 
| 359 | and "convex_on s g" | |
| 36623 | 360 | shows "convex_on s (\<lambda>x. f x + g x)" | 
| 49609 | 361 | proof - | 
| 56796 | 362 |   {
 | 
| 363 | fix x y | |
| 364 | assume "x \<in> s" "y \<in> s" | |
| 49609 | 365 | moreover | 
| 366 | fix u v :: real | |
| 367 | assume "0 \<le> u" "0 \<le> v" "u + v = 1" | |
| 368 | ultimately | |
| 369 | have "f (u *\<^sub>R x + v *\<^sub>R y) + g (u *\<^sub>R x + v *\<^sub>R y) \<le> (u * f x + v * f y) + (u * g x + v * g y)" | |
| 60423 | 370 | using assms unfolding convex_on_def by (auto simp: add_mono) | 
| 49609 | 371 | then have "f (u *\<^sub>R x + v *\<^sub>R y) + g (u *\<^sub>R x + v *\<^sub>R y) \<le> u * (f x + g x) + v * (f y + g y)" | 
| 372 | by (simp add: field_simps) | |
| 373 | } | |
| 56796 | 374 | then show ?thesis | 
| 375 | unfolding convex_on_def by auto | |
| 36623 | 376 | qed | 
| 377 | ||
| 53620 
3c7f5e7926dc
generalized and simplified proofs of several theorems about convex sets
 huffman parents: 
53596diff
changeset | 378 | lemma convex_on_cmul [intro]: | 
| 56796 | 379 | fixes c :: real | 
| 380 | assumes "0 \<le> c" | |
| 381 | and "convex_on s f" | |
| 36623 | 382 | shows "convex_on s (\<lambda>x. c * f x)" | 
| 56796 | 383 | proof - | 
| 63485 | 384 | have *: "u * (c * fx) + v * (c * fy) = c * (u * fx + v * fy)" | 
| 385 | for u c fx v fy :: real | |
| 49609 | 386 | by (simp add: field_simps) | 
| 387 | show ?thesis using assms(2) and mult_left_mono [OF _ assms(1)] | |
| 388 | unfolding convex_on_def and * by auto | |
| 36623 | 389 | qed | 
| 390 | ||
| 391 | lemma convex_lower: | |
| 56796 | 392 | assumes "convex_on s f" | 
| 393 | and "x \<in> s" | |
| 394 | and "y \<in> s" | |
| 395 | and "0 \<le> u" | |
| 396 | and "0 \<le> v" | |
| 397 | and "u + v = 1" | |
| 36623 | 398 | shows "f (u *\<^sub>R x + v *\<^sub>R y) \<le> max (f x) (f y)" | 
| 56796 | 399 | proof - | 
| 36623 | 400 | let ?m = "max (f x) (f y)" | 
| 401 | have "u * f x + v * f y \<le> u * max (f x) (f y) + v * max (f x) (f y)" | |
| 60423 | 402 | using assms(4,5) by (auto simp: mult_left_mono add_mono) | 
| 56796 | 403 | also have "\<dots> = max (f x) (f y)" | 
| 60423 | 404 | using assms(6) by (simp add: distrib_right [symmetric]) | 
| 36623 | 405 | finally show ?thesis | 
| 44890 
22f665a2e91c
new fastforce replacing fastsimp - less confusing name
 nipkow parents: 
44282diff
changeset | 406 | using assms unfolding convex_on_def by fastforce | 
| 36623 | 407 | qed | 
| 408 | ||
| 53620 
3c7f5e7926dc
generalized and simplified proofs of several theorems about convex sets
 huffman parents: 
53596diff
changeset | 409 | lemma convex_on_dist [intro]: | 
| 36623 | 410 | fixes s :: "'a::real_normed_vector set" | 
| 411 | shows "convex_on s (\<lambda>x. dist a x)" | |
| 60423 | 412 | proof (auto simp: convex_on_def dist_norm) | 
| 49609 | 413 | fix x y | 
| 56796 | 414 | assume "x \<in> s" "y \<in> s" | 
| 49609 | 415 | fix u v :: real | 
| 56796 | 416 | assume "0 \<le> u" | 
| 417 | assume "0 \<le> v" | |
| 418 | assume "u + v = 1" | |
| 49609 | 419 | have "a = u *\<^sub>R a + v *\<^sub>R a" | 
| 60423 | 420 | unfolding scaleR_left_distrib[symmetric] and \<open>u + v = 1\<close> by simp | 
| 49609 | 421 | then have *: "a - (u *\<^sub>R x + v *\<^sub>R y) = (u *\<^sub>R (a - x)) + (v *\<^sub>R (a - y))" | 
| 60423 | 422 | by (auto simp: algebra_simps) | 
| 36623 | 423 | show "norm (a - (u *\<^sub>R x + v *\<^sub>R y)) \<le> u * norm (a - x) + v * norm (a - y)" | 
| 424 | unfolding * using norm_triangle_ineq[of "u *\<^sub>R (a - x)" "v *\<^sub>R (a - y)"] | |
| 60423 | 425 | using \<open>0 \<le> u\<close> \<open>0 \<le> v\<close> by auto | 
| 36623 | 426 | qed | 
| 427 | ||
| 49609 | 428 | |
| 60423 | 429 | subsection \<open>Arithmetic operations on sets preserve convexity\<close> | 
| 49609 | 430 | |
| 53620 
3c7f5e7926dc
generalized and simplified proofs of several theorems about convex sets
 huffman parents: 
53596diff
changeset | 431 | lemma convex_linear_image: | 
| 56796 | 432 | assumes "linear f" | 
| 433 | and "convex s" | |
| 434 | shows "convex (f ` s)" | |
| 53620 
3c7f5e7926dc
generalized and simplified proofs of several theorems about convex sets
 huffman parents: 
53596diff
changeset | 435 | proof - | 
| 
3c7f5e7926dc
generalized and simplified proofs of several theorems about convex sets
 huffman parents: 
53596diff
changeset | 436 | interpret f: linear f by fact | 
| 60423 | 437 | from \<open>convex s\<close> show "convex (f ` s)" | 
| 53620 
3c7f5e7926dc
generalized and simplified proofs of several theorems about convex sets
 huffman parents: 
53596diff
changeset | 438 | by (simp add: convex_def f.scaleR [symmetric] f.add [symmetric]) | 
| 36623 | 439 | qed | 
| 440 | ||
| 53620 
3c7f5e7926dc
generalized and simplified proofs of several theorems about convex sets
 huffman parents: 
53596diff
changeset | 441 | lemma convex_linear_vimage: | 
| 56796 | 442 | assumes "linear f" | 
| 443 | and "convex s" | |
| 444 | shows "convex (f -` s)" | |
| 53620 
3c7f5e7926dc
generalized and simplified proofs of several theorems about convex sets
 huffman parents: 
53596diff
changeset | 445 | proof - | 
| 
3c7f5e7926dc
generalized and simplified proofs of several theorems about convex sets
 huffman parents: 
53596diff
changeset | 446 | interpret f: linear f by fact | 
| 60423 | 447 | from \<open>convex s\<close> show "convex (f -` s)" | 
| 53620 
3c7f5e7926dc
generalized and simplified proofs of several theorems about convex sets
 huffman parents: 
53596diff
changeset | 448 | by (simp add: convex_def f.add f.scaleR) | 
| 
3c7f5e7926dc
generalized and simplified proofs of several theorems about convex sets
 huffman parents: 
53596diff
changeset | 449 | qed | 
| 
3c7f5e7926dc
generalized and simplified proofs of several theorems about convex sets
 huffman parents: 
53596diff
changeset | 450 | |
| 
3c7f5e7926dc
generalized and simplified proofs of several theorems about convex sets
 huffman parents: 
53596diff
changeset | 451 | lemma convex_scaling: | 
| 56796 | 452 | assumes "convex s" | 
| 453 | shows "convex ((\<lambda>x. c *\<^sub>R x) ` s)" | |
| 53620 
3c7f5e7926dc
generalized and simplified proofs of several theorems about convex sets
 huffman parents: 
53596diff
changeset | 454 | proof - | 
| 56796 | 455 | have "linear (\<lambda>x. c *\<^sub>R x)" | 
| 456 | by (simp add: linearI scaleR_add_right) | |
| 457 | then show ?thesis | |
| 60423 | 458 | using \<open>convex s\<close> by (rule convex_linear_image) | 
| 53620 
3c7f5e7926dc
generalized and simplified proofs of several theorems about convex sets
 huffman parents: 
53596diff
changeset | 459 | qed | 
| 
3c7f5e7926dc
generalized and simplified proofs of several theorems about convex sets
 huffman parents: 
53596diff
changeset | 460 | |
| 60178 
f620c70f9e9b
generalized differentiable_bound; some further variations of differentiable_bound
 immler parents: 
59862diff
changeset | 461 | lemma convex_scaled: | 
| 
f620c70f9e9b
generalized differentiable_bound; some further variations of differentiable_bound
 immler parents: 
59862diff
changeset | 462 | assumes "convex s" | 
| 
f620c70f9e9b
generalized differentiable_bound; some further variations of differentiable_bound
 immler parents: 
59862diff
changeset | 463 | shows "convex ((\<lambda>x. x *\<^sub>R c) ` s)" | 
| 
f620c70f9e9b
generalized differentiable_bound; some further variations of differentiable_bound
 immler parents: 
59862diff
changeset | 464 | proof - | 
| 
f620c70f9e9b
generalized differentiable_bound; some further variations of differentiable_bound
 immler parents: 
59862diff
changeset | 465 | have "linear (\<lambda>x. x *\<^sub>R c)" | 
| 
f620c70f9e9b
generalized differentiable_bound; some further variations of differentiable_bound
 immler parents: 
59862diff
changeset | 466 | by (simp add: linearI scaleR_add_left) | 
| 
f620c70f9e9b
generalized differentiable_bound; some further variations of differentiable_bound
 immler parents: 
59862diff
changeset | 467 | then show ?thesis | 
| 60423 | 468 | using \<open>convex s\<close> by (rule convex_linear_image) | 
| 60178 
f620c70f9e9b
generalized differentiable_bound; some further variations of differentiable_bound
 immler parents: 
59862diff
changeset | 469 | qed | 
| 
f620c70f9e9b
generalized differentiable_bound; some further variations of differentiable_bound
 immler parents: 
59862diff
changeset | 470 | |
| 53620 
3c7f5e7926dc
generalized and simplified proofs of several theorems about convex sets
 huffman parents: 
53596diff
changeset | 471 | lemma convex_negations: | 
| 56796 | 472 | assumes "convex s" | 
| 473 | shows "convex ((\<lambda>x. - x) ` s)" | |
| 53620 
3c7f5e7926dc
generalized and simplified proofs of several theorems about convex sets
 huffman parents: 
53596diff
changeset | 474 | proof - | 
| 56796 | 475 | have "linear (\<lambda>x. - x)" | 
| 476 | by (simp add: linearI) | |
| 477 | then show ?thesis | |
| 60423 | 478 | using \<open>convex s\<close> by (rule convex_linear_image) | 
| 36623 | 479 | qed | 
| 480 | ||
| 481 | lemma convex_sums: | |
| 56796 | 482 | assumes "convex s" | 
| 483 | and "convex t" | |
| 36623 | 484 |   shows "convex {x + y| x y. x \<in> s \<and> y \<in> t}"
 | 
| 53620 
3c7f5e7926dc
generalized and simplified proofs of several theorems about convex sets
 huffman parents: 
53596diff
changeset | 485 | proof - | 
| 
3c7f5e7926dc
generalized and simplified proofs of several theorems about convex sets
 huffman parents: 
53596diff
changeset | 486 | have "linear (\<lambda>(x, y). x + y)" | 
| 60423 | 487 | by (auto intro: linearI simp: scaleR_add_right) | 
| 53620 
3c7f5e7926dc
generalized and simplified proofs of several theorems about convex sets
 huffman parents: 
53596diff
changeset | 488 | with assms have "convex ((\<lambda>(x, y). x + y) ` (s \<times> t))" | 
| 
3c7f5e7926dc
generalized and simplified proofs of several theorems about convex sets
 huffman parents: 
53596diff
changeset | 489 | by (intro convex_linear_image convex_Times) | 
| 
3c7f5e7926dc
generalized and simplified proofs of several theorems about convex sets
 huffman parents: 
53596diff
changeset | 490 |   also have "((\<lambda>(x, y). x + y) ` (s \<times> t)) = {x + y| x y. x \<in> s \<and> y \<in> t}"
 | 
| 
3c7f5e7926dc
generalized and simplified proofs of several theorems about convex sets
 huffman parents: 
53596diff
changeset | 491 | by auto | 
| 
3c7f5e7926dc
generalized and simplified proofs of several theorems about convex sets
 huffman parents: 
53596diff
changeset | 492 | finally show ?thesis . | 
| 36623 | 493 | qed | 
| 494 | ||
| 495 | lemma convex_differences: | |
| 496 | assumes "convex s" "convex t" | |
| 497 |   shows "convex {x - y| x y. x \<in> s \<and> y \<in> t}"
 | |
| 498 | proof - | |
| 499 |   have "{x - y| x y. x \<in> s \<and> y \<in> t} = {x + y |x y. x \<in> s \<and> y \<in> uminus ` t}"
 | |
| 60423 | 500 | by (auto simp: diff_conv_add_uminus simp del: add_uminus_conv_diff) | 
| 49609 | 501 | then show ?thesis | 
| 502 | using convex_sums[OF assms(1) convex_negations[OF assms(2)]] by auto | |
| 36623 | 503 | qed | 
| 504 | ||
| 49609 | 505 | lemma convex_translation: | 
| 506 | assumes "convex s" | |
| 507 | shows "convex ((\<lambda>x. a + x) ` s)" | |
| 508 | proof - | |
| 56796 | 509 |   have "{a + y |y. y \<in> s} = (\<lambda>x. a + x) ` s"
 | 
| 510 | by auto | |
| 49609 | 511 | then show ?thesis | 
| 512 | using convex_sums[OF convex_singleton[of a] assms] by auto | |
| 513 | qed | |
| 36623 | 514 | |
| 49609 | 515 | lemma convex_affinity: | 
| 516 | assumes "convex s" | |
| 517 | shows "convex ((\<lambda>x. a + c *\<^sub>R x) ` s)" | |
| 518 | proof - | |
| 56796 | 519 | have "(\<lambda>x. a + c *\<^sub>R x) ` s = op + a ` op *\<^sub>R c ` s" | 
| 520 | by auto | |
| 49609 | 521 | then show ?thesis | 
| 522 | using convex_translation[OF convex_scaling[OF assms], of a c] by auto | |
| 523 | qed | |
| 36623 | 524 | |
| 49609 | 525 | lemma pos_is_convex: "convex {0 :: real <..}"
 | 
| 526 | unfolding convex_alt | |
| 36623 | 527 | proof safe | 
| 528 | fix y x \<mu> :: real | |
| 60423 | 529 | assume *: "y > 0" "x > 0" "\<mu> \<ge> 0" "\<mu> \<le> 1" | 
| 56796 | 530 |   {
 | 
| 531 | assume "\<mu> = 0" | |
| 63485 | 532 | then have "\<mu> *\<^sub>R x + (1 - \<mu>) *\<^sub>R y = y" | 
| 533 | by simp | |
| 534 | then have "\<mu> *\<^sub>R x + (1 - \<mu>) *\<^sub>R y > 0" | |
| 535 | using * by simp | |
| 56796 | 536 | } | 
| 36623 | 537 | moreover | 
| 56796 | 538 |   {
 | 
| 539 | assume "\<mu> = 1" | |
| 63485 | 540 | then have "\<mu> *\<^sub>R x + (1 - \<mu>) *\<^sub>R y > 0" | 
| 541 | using * by simp | |
| 56796 | 542 | } | 
| 36623 | 543 | moreover | 
| 56796 | 544 |   {
 | 
| 545 | assume "\<mu> \<noteq> 1" "\<mu> \<noteq> 0" | |
| 63485 | 546 | then have "\<mu> > 0" "(1 - \<mu>) > 0" | 
| 547 | using * by auto | |
| 548 | then have "\<mu> *\<^sub>R x + (1 - \<mu>) *\<^sub>R y > 0" | |
| 549 | using * by (auto simp: add_pos_pos) | |
| 56796 | 550 | } | 
| 551 | ultimately show "(1 - \<mu>) *\<^sub>R y + \<mu> *\<^sub>R x > 0" | |
| 63092 | 552 | by fastforce | 
| 36623 | 553 | qed | 
| 554 | ||
| 555 | lemma convex_on_setsum: | |
| 556 | fixes a :: "'a \<Rightarrow> real" | |
| 49609 | 557 | and y :: "'a \<Rightarrow> 'b::real_vector" | 
| 558 | and f :: "'b \<Rightarrow> real" | |
| 36623 | 559 |   assumes "finite s" "s \<noteq> {}"
 | 
| 49609 | 560 | and "convex_on C f" | 
| 561 | and "convex C" | |
| 562 | and "(\<Sum> i \<in> s. a i) = 1" | |
| 563 | and "\<And>i. i \<in> s \<Longrightarrow> a i \<ge> 0" | |
| 564 | and "\<And>i. i \<in> s \<Longrightarrow> y i \<in> C" | |
| 36623 | 565 | shows "f (\<Sum> i \<in> s. a i *\<^sub>R y i) \<le> (\<Sum> i \<in> s. a i * f (y i))" | 
| 49609 | 566 | using assms | 
| 567 | proof (induct s arbitrary: a rule: finite_ne_induct) | |
| 36623 | 568 | case (singleton i) | 
| 63485 | 569 | then have ai: "a i = 1" | 
| 570 | by auto | |
| 571 | then show ?case | |
| 572 | by auto | |
| 36623 | 573 | next | 
| 60423 | 574 | case (insert i s) | 
| 63485 | 575 | then have "convex_on C f" | 
| 576 | by simp | |
| 36623 | 577 | from this[unfolded convex_on_def, rule_format] | 
| 56796 | 578 | have conv: "\<And>x y \<mu>. x \<in> C \<Longrightarrow> y \<in> C \<Longrightarrow> 0 \<le> \<mu> \<Longrightarrow> \<mu> \<le> 1 \<Longrightarrow> | 
| 579 | f (\<mu> *\<^sub>R x + (1 - \<mu>) *\<^sub>R y) \<le> \<mu> * f x + (1 - \<mu>) * f y" | |
| 36623 | 580 | by simp | 
| 60423 | 581 | show ?case | 
| 582 | proof (cases "a i = 1") | |
| 583 | case True | |
| 49609 | 584 | then have "(\<Sum> j \<in> s. a j) = 0" | 
| 60423 | 585 | using insert by auto | 
| 49609 | 586 | then have "\<And>j. j \<in> s \<Longrightarrow> a j = 0" | 
| 62376 
85f38d5f8807
Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
 hoelzl parents: 
61694diff
changeset | 587 | using insert by (fastforce simp: setsum_nonneg_eq_0_iff) | 
| 60423 | 588 | then show ?thesis | 
| 589 | using insert by auto | |
| 590 | next | |
| 591 | case False | |
| 592 | from insert have yai: "y i \<in> C" "a i \<ge> 0" | |
| 593 | by auto | |
| 594 | have fis: "finite (insert i s)" | |
| 595 | using insert by auto | |
| 596 | then have ai1: "a i \<le> 1" | |
| 597 | using setsum_nonneg_leq_bound[of "insert i s" a] insert by simp | |
| 598 | then have "a i < 1" | |
| 599 | using False by auto | |
| 600 | then have i0: "1 - a i > 0" | |
| 601 | by auto | |
| 49609 | 602 | let ?a = "\<lambda>j. a j / (1 - a i)" | 
| 60423 | 603 | have a_nonneg: "?a j \<ge> 0" if "j \<in> s" for j | 
| 60449 | 604 | using i0 insert that by fastforce | 
| 60423 | 605 | have "(\<Sum> j \<in> insert i s. a j) = 1" | 
| 606 | using insert by auto | |
| 607 | then have "(\<Sum> j \<in> s. a j) = 1 - a i" | |
| 608 | using setsum.insert insert by fastforce | |
| 609 | then have "(\<Sum> j \<in> s. a j) / (1 - a i) = 1" | |
| 610 | using i0 by auto | |
| 611 | then have a1: "(\<Sum> j \<in> s. ?a j) = 1" | |
| 612 | unfolding setsum_divide_distrib by simp | |
| 613 | have "convex C" using insert by auto | |
| 49609 | 614 | then have asum: "(\<Sum> j \<in> s. ?a j *\<^sub>R y j) \<in> C" | 
| 63485 | 615 | using insert convex_setsum [OF \<open>finite s\<close> \<open>convex C\<close> a1 a_nonneg] by auto | 
| 36623 | 616 | have asum_le: "f (\<Sum> j \<in> s. ?a j *\<^sub>R y j) \<le> (\<Sum> j \<in> s. ?a j * f (y j))" | 
| 60423 | 617 | using a_nonneg a1 insert by blast | 
| 36623 | 618 | have "f (\<Sum> j \<in> insert i s. a j *\<^sub>R y j) = f ((\<Sum> j \<in> s. a j *\<^sub>R y j) + a i *\<^sub>R y i)" | 
| 60423 | 619 | using setsum.insert[of s i "\<lambda> j. a j *\<^sub>R y j", OF \<open>finite s\<close> \<open>i \<notin> s\<close>] insert | 
| 620 | by (auto simp only: add.commute) | |
| 36623 | 621 | also have "\<dots> = f (((1 - a i) * inverse (1 - a i)) *\<^sub>R (\<Sum> j \<in> s. a j *\<^sub>R y j) + a i *\<^sub>R y i)" | 
| 622 | using i0 by auto | |
| 623 | also have "\<dots> = f ((1 - a i) *\<^sub>R (\<Sum> j \<in> s. (a j * inverse (1 - a i)) *\<^sub>R y j) + a i *\<^sub>R y i)" | |
| 49609 | 624 | using scaleR_right.setsum[of "inverse (1 - a i)" "\<lambda> j. a j *\<^sub>R y j" s, symmetric] | 
| 60423 | 625 | by (auto simp: algebra_simps) | 
| 36623 | 626 | also have "\<dots> = f ((1 - a i) *\<^sub>R (\<Sum> j \<in> s. ?a j *\<^sub>R y j) + a i *\<^sub>R y i)" | 
| 36778 
739a9379e29b
avoid using real-specific versions of generic lemmas
 huffman parents: 
36648diff
changeset | 627 | by (auto simp: divide_inverse) | 
| 36623 | 628 | also have "\<dots> \<le> (1 - a i) *\<^sub>R f ((\<Sum> j \<in> s. ?a j *\<^sub>R y j)) + a i * f (y i)" | 
| 629 | using conv[of "y i" "(\<Sum> j \<in> s. ?a j *\<^sub>R y j)" "a i", OF yai(1) asum yai(2) ai1] | |
| 60423 | 630 | by (auto simp: add.commute) | 
| 36623 | 631 | also have "\<dots> \<le> (1 - a i) * (\<Sum> j \<in> s. ?a j * f (y j)) + a i * f (y i)" | 
| 63485 | 632 | using add_right_mono [OF mult_left_mono [of _ _ "1 - a i", | 
| 633 | OF asum_le less_imp_le[OF i0]], of "a i * f (y i)"] | |
| 634 | by simp | |
| 36623 | 635 | also have "\<dots> = (\<Sum> j \<in> s. (1 - a i) * ?a j * f (y j)) + a i * f (y i)" | 
| 63485 | 636 | unfolding setsum_right_distrib[of "1 - a i" "\<lambda> j. ?a j * f (y j)"] | 
| 637 | using i0 by auto | |
| 60423 | 638 | also have "\<dots> = (\<Sum> j \<in> s. a j * f (y j)) + a i * f (y i)" | 
| 639 | using i0 by auto | |
| 640 | also have "\<dots> = (\<Sum> j \<in> insert i s. a j * f (y j))" | |
| 641 | using insert by auto | |
| 642 | finally show ?thesis | |
| 56796 | 643 | by simp | 
| 60423 | 644 | qed | 
| 36623 | 645 | qed | 
| 646 | ||
| 647 | lemma convex_on_alt: | |
| 648 | fixes C :: "'a::real_vector set" | |
| 649 | assumes "convex C" | |
| 56796 | 650 | shows "convex_on C f \<longleftrightarrow> | 
| 651 | (\<forall>x \<in> C. \<forall> y \<in> C. \<forall> \<mu> :: real. \<mu> \<ge> 0 \<and> \<mu> \<le> 1 \<longrightarrow> | |
| 652 | f (\<mu> *\<^sub>R x + (1 - \<mu>) *\<^sub>R y) \<le> \<mu> * f x + (1 - \<mu>) * f y)" | |
| 36623 | 653 | proof safe | 
| 49609 | 654 | fix x y | 
| 655 | fix \<mu> :: real | |
| 60423 | 656 | assume *: "convex_on C f" "x \<in> C" "y \<in> C" "0 \<le> \<mu>" "\<mu> \<le> 1" | 
| 36623 | 657 | from this[unfolded convex_on_def, rule_format] | 
| 63485 | 658 | have "0 \<le> u \<Longrightarrow> 0 \<le> v \<Longrightarrow> u + v = 1 \<Longrightarrow> f (u *\<^sub>R x + v *\<^sub>R y) \<le> u * f x + v * f y" for u v | 
| 56796 | 659 | by auto | 
| 63485 | 660 | from this [of "\<mu>" "1 - \<mu>", simplified] * | 
| 56796 | 661 | show "f (\<mu> *\<^sub>R x + (1 - \<mu>) *\<^sub>R y) \<le> \<mu> * f x + (1 - \<mu>) * f y" | 
| 662 | by auto | |
| 36623 | 663 | next | 
| 60423 | 664 | assume *: "\<forall>x\<in>C. \<forall>y\<in>C. \<forall>\<mu>. 0 \<le> \<mu> \<and> \<mu> \<le> 1 \<longrightarrow> | 
| 56796 | 665 | f (\<mu> *\<^sub>R x + (1 - \<mu>) *\<^sub>R y) \<le> \<mu> * f x + (1 - \<mu>) * f y" | 
| 666 |   {
 | |
| 667 | fix x y | |
| 49609 | 668 | fix u v :: real | 
| 60423 | 669 | assume **: "x \<in> C" "y \<in> C" "u \<ge> 0" "v \<ge> 0" "u + v = 1" | 
| 49609 | 670 | then have[simp]: "1 - u = v" by auto | 
| 60423 | 671 | from *[rule_format, of x y u] | 
| 56796 | 672 | have "f (u *\<^sub>R x + v *\<^sub>R y) \<le> u * f x + v * f y" | 
| 60423 | 673 | using ** by auto | 
| 49609 | 674 | } | 
| 56796 | 675 | then show "convex_on C f" | 
| 676 | unfolding convex_on_def by auto | |
| 36623 | 677 | qed | 
| 678 | ||
| 43337 | 679 | lemma convex_on_diff: | 
| 680 | fixes f :: "real \<Rightarrow> real" | |
| 56796 | 681 | assumes f: "convex_on I f" | 
| 682 | and I: "x \<in> I" "y \<in> I" | |
| 683 | and t: "x < t" "t < y" | |
| 49609 | 684 | shows "(f x - f t) / (x - t) \<le> (f x - f y) / (x - y)" | 
| 56796 | 685 | and "(f x - f y) / (x - y) \<le> (f t - f y) / (t - y)" | 
| 43337 | 686 | proof - | 
| 63040 | 687 | define a where "a \<equiv> (t - y) / (x - y)" | 
| 56796 | 688 | with t have "0 \<le> a" "0 \<le> 1 - a" | 
| 689 | by (auto simp: field_simps) | |
| 60423 | 690 | with f \<open>x \<in> I\<close> \<open>y \<in> I\<close> have cvx: "f (a * x + (1 - a) * y) \<le> a * f x + (1 - a) * f y" | 
| 43337 | 691 | by (auto simp: convex_on_def) | 
| 56796 | 692 | have "a * x + (1 - a) * y = a * (x - y) + y" | 
| 693 | by (simp add: field_simps) | |
| 694 | also have "\<dots> = t" | |
| 60423 | 695 | unfolding a_def using \<open>x < t\<close> \<open>t < y\<close> by simp | 
| 56796 | 696 | finally have "f t \<le> a * f x + (1 - a) * f y" | 
| 697 | using cvx by simp | |
| 698 | also have "\<dots> = a * (f x - f y) + f y" | |
| 699 | by (simp add: field_simps) | |
| 700 | finally have "f t - f y \<le> a * (f x - f y)" | |
| 701 | by simp | |
| 43337 | 702 | with t show "(f x - f t) / (x - t) \<le> (f x - f y) / (x - y)" | 
| 44142 | 703 | by (simp add: le_divide_eq divide_le_eq field_simps a_def) | 
| 43337 | 704 | with t show "(f x - f y) / (x - y) \<le> (f t - f y) / (t - y)" | 
| 44142 | 705 | by (simp add: le_divide_eq divide_le_eq field_simps) | 
| 43337 | 706 | qed | 
| 36623 | 707 | |
| 708 | lemma pos_convex_function: | |
| 709 | fixes f :: "real \<Rightarrow> real" | |
| 710 | assumes "convex C" | |
| 56796 | 711 | and leq: "\<And>x y. x \<in> C \<Longrightarrow> y \<in> C \<Longrightarrow> f' x * (y - x) \<le> f y - f x" | 
| 36623 | 712 | shows "convex_on C f" | 
| 49609 | 713 | unfolding convex_on_alt[OF assms(1)] | 
| 714 | using assms | |
| 36623 | 715 | proof safe | 
| 716 | fix x y \<mu> :: real | |
| 717 | let ?x = "\<mu> *\<^sub>R x + (1 - \<mu>) *\<^sub>R y" | |
| 60423 | 718 | assume *: "convex C" "x \<in> C" "y \<in> C" "\<mu> \<ge> 0" "\<mu> \<le> 1" | 
| 49609 | 719 | then have "1 - \<mu> \<ge> 0" by auto | 
| 56796 | 720 | then have xpos: "?x \<in> C" | 
| 60423 | 721 | using * unfolding convex_alt by fastforce | 
| 56796 | 722 | have geq: "\<mu> * (f x - f ?x) + (1 - \<mu>) * (f y - f ?x) \<ge> | 
| 723 | \<mu> * f' ?x * (x - ?x) + (1 - \<mu>) * f' ?x * (y - ?x)" | |
| 63485 | 724 | using add_mono [OF mult_left_mono [OF leq [OF xpos *(2)] \<open>\<mu> \<ge> 0\<close>] | 
| 725 | mult_left_mono [OF leq [OF xpos *(3)] \<open>1 - \<mu> \<ge> 0\<close>]] | |
| 56796 | 726 | by auto | 
| 49609 | 727 | then have "\<mu> * f x + (1 - \<mu>) * f y - f ?x \<ge> 0" | 
| 60423 | 728 | by (auto simp: field_simps) | 
| 49609 | 729 | then show "f (\<mu> *\<^sub>R x + (1 - \<mu>) *\<^sub>R y) \<le> \<mu> * f x + (1 - \<mu>) * f y" | 
| 36623 | 730 | using convex_on_alt by auto | 
| 731 | qed | |
| 732 | ||
| 733 | lemma atMostAtLeast_subset_convex: | |
| 734 | fixes C :: "real set" | |
| 735 | assumes "convex C" | |
| 49609 | 736 | and "x \<in> C" "y \<in> C" "x < y" | 
| 36623 | 737 |   shows "{x .. y} \<subseteq> C"
 | 
| 738 | proof safe | |
| 60423 | 739 |   fix z assume z: "z \<in> {x .. y}"
 | 
| 740 | have less: "z \<in> C" if *: "x < z" "z < y" | |
| 741 | proof - | |
| 49609 | 742 | let ?\<mu> = "(y - z) / (y - x)" | 
| 56796 | 743 | have "0 \<le> ?\<mu>" "?\<mu> \<le> 1" | 
| 60423 | 744 | using assms * by (auto simp: field_simps) | 
| 49609 | 745 | then have comb: "?\<mu> * x + (1 - ?\<mu>) * y \<in> C" | 
| 746 | using assms iffD1[OF convex_alt, rule_format, of C y x ?\<mu>] | |
| 747 | by (simp add: algebra_simps) | |
| 36623 | 748 | have "?\<mu> * x + (1 - ?\<mu>) * y = (y - z) * x / (y - x) + (1 - (y - z) / (y - x)) * y" | 
| 60423 | 749 | by (auto simp: field_simps) | 
| 36623 | 750 | also have "\<dots> = ((y - z) * x + (y - x - (y - z)) * y) / (y - x)" | 
| 63485 | 751 | using assms by (simp only: add_divide_distrib) (auto simp: field_simps) | 
| 36623 | 752 | also have "\<dots> = z" | 
| 49609 | 753 | using assms by (auto simp: field_simps) | 
| 60423 | 754 | finally show ?thesis | 
| 56796 | 755 | using comb by auto | 
| 60423 | 756 | qed | 
| 63485 | 757 | show "z \<in> C" | 
| 758 | using z less assms by (auto simp: le_less) | |
| 36623 | 759 | qed | 
| 760 | ||
| 761 | lemma f''_imp_f': | |
| 762 | fixes f :: "real \<Rightarrow> real" | |
| 763 | assumes "convex C" | |
| 49609 | 764 | and f': "\<And>x. x \<in> C \<Longrightarrow> DERIV f x :> (f' x)" | 
| 765 | and f'': "\<And>x. x \<in> C \<Longrightarrow> DERIV f' x :> (f'' x)" | |
| 766 | and pos: "\<And>x. x \<in> C \<Longrightarrow> f'' x \<ge> 0" | |
| 63485 | 767 | and x: "x \<in> C" | 
| 768 | and y: "y \<in> C" | |
| 36623 | 769 | shows "f' x * (y - x) \<le> f y - f x" | 
| 49609 | 770 | using assms | 
| 36623 | 771 | proof - | 
| 63485 | 772 | have less_imp: "f y - f x \<ge> f' x * (y - x)" "f' y * (x - y) \<le> f x - f y" | 
| 773 | if *: "x \<in> C" "y \<in> C" "y > x" for x y :: real | |
| 774 | proof - | |
| 775 | from * have ge: "y - x > 0" "y - x \<ge> 0" | |
| 60423 | 776 | by auto | 
| 777 | from * have le: "x - y < 0" "x - y \<le> 0" | |
| 778 | by auto | |
| 36623 | 779 | then obtain z1 where z1: "z1 > x" "z1 < y" "f y - f x = (y - x) * f' z1" | 
| 60423 | 780 | using subsetD[OF atMostAtLeast_subset_convex[OF \<open>convex C\<close> \<open>x \<in> C\<close> \<open>y \<in> C\<close> \<open>x < y\<close>], | 
| 63485 | 781 | THEN f', THEN MVT2[OF \<open>x < y\<close>, rule_format, unfolded atLeastAtMost_iff[symmetric]]] | 
| 36623 | 782 | by auto | 
| 60423 | 783 | then have "z1 \<in> C" | 
| 784 | using atMostAtLeast_subset_convex \<open>convex C\<close> \<open>x \<in> C\<close> \<open>y \<in> C\<close> \<open>x < y\<close> | |
| 785 | by fastforce | |
| 36623 | 786 | from z1 have z1': "f x - f y = (x - y) * f' z1" | 
| 60423 | 787 | by (simp add: field_simps) | 
| 36623 | 788 | obtain z2 where z2: "z2 > x" "z2 < z1" "f' z1 - f' x = (z1 - x) * f'' z2" | 
| 60423 | 789 | using subsetD[OF atMostAtLeast_subset_convex[OF \<open>convex C\<close> \<open>x \<in> C\<close> \<open>z1 \<in> C\<close> \<open>x < z1\<close>], | 
| 63485 | 790 | THEN f'', THEN MVT2[OF \<open>x < z1\<close>, rule_format, unfolded atLeastAtMost_iff[symmetric]]] z1 | 
| 36623 | 791 | by auto | 
| 792 | obtain z3 where z3: "z3 > z1" "z3 < y" "f' y - f' z1 = (y - z1) * f'' z3" | |
| 60423 | 793 | using subsetD[OF atMostAtLeast_subset_convex[OF \<open>convex C\<close> \<open>z1 \<in> C\<close> \<open>y \<in> C\<close> \<open>z1 < y\<close>], | 
| 63485 | 794 | THEN f'', THEN MVT2[OF \<open>z1 < y\<close>, rule_format, unfolded atLeastAtMost_iff[symmetric]]] z1 | 
| 36623 | 795 | by auto | 
| 796 | have "f' y - (f x - f y) / (x - y) = f' y - f' z1" | |
| 60423 | 797 | using * z1' by auto | 
| 798 | also have "\<dots> = (y - z1) * f'' z3" | |
| 799 | using z3 by auto | |
| 800 | finally have cool': "f' y - (f x - f y) / (x - y) = (y - z1) * f'' z3" | |
| 801 | by simp | |
| 802 | have A': "y - z1 \<ge> 0" | |
| 803 | using z1 by auto | |
| 804 | have "z3 \<in> C" | |
| 805 | using z3 * atMostAtLeast_subset_convex \<open>convex C\<close> \<open>x \<in> C\<close> \<open>z1 \<in> C\<close> \<open>x < z1\<close> | |
| 806 | by fastforce | |
| 807 | then have B': "f'' z3 \<ge> 0" | |
| 808 | using assms by auto | |
| 809 | from A' B' have "(y - z1) * f'' z3 \<ge> 0" | |
| 810 | by auto | |
| 811 | from cool' this have "f' y - (f x - f y) / (x - y) \<ge> 0" | |
| 812 | by auto | |
| 36623 | 813 | from mult_right_mono_neg[OF this le(2)] | 
| 814 | have "f' y * (x - y) - (f x - f y) / (x - y) * (x - y) \<le> 0 * (x - y)" | |
| 36778 
739a9379e29b
avoid using real-specific versions of generic lemmas
 huffman parents: 
36648diff
changeset | 815 | by (simp add: algebra_simps) | 
| 60423 | 816 | then have "f' y * (x - y) - (f x - f y) \<le> 0" | 
| 817 | using le by auto | |
| 818 | then have res: "f' y * (x - y) \<le> f x - f y" | |
| 819 | by auto | |
| 36623 | 820 | have "(f y - f x) / (y - x) - f' x = f' z1 - f' x" | 
| 60423 | 821 | using * z1 by auto | 
| 822 | also have "\<dots> = (z1 - x) * f'' z2" | |
| 823 | using z2 by auto | |
| 824 | finally have cool: "(f y - f x) / (y - x) - f' x = (z1 - x) * f'' z2" | |
| 825 | by simp | |
| 826 | have A: "z1 - x \<ge> 0" | |
| 827 | using z1 by auto | |
| 828 | have "z2 \<in> C" | |
| 829 | using z2 z1 * atMostAtLeast_subset_convex \<open>convex C\<close> \<open>z1 \<in> C\<close> \<open>y \<in> C\<close> \<open>z1 < y\<close> | |
| 830 | by fastforce | |
| 831 | then have B: "f'' z2 \<ge> 0" | |
| 832 | using assms by auto | |
| 833 | from A B have "(z1 - x) * f'' z2 \<ge> 0" | |
| 834 | by auto | |
| 835 | with cool have "(f y - f x) / (y - x) - f' x \<ge> 0" | |
| 836 | by auto | |
| 36623 | 837 | from mult_right_mono[OF this ge(2)] | 
| 838 | have "(f y - f x) / (y - x) * (y - x) - f' x * (y - x) \<ge> 0 * (y - x)" | |
| 36778 
739a9379e29b
avoid using real-specific versions of generic lemmas
 huffman parents: 
36648diff
changeset | 839 | by (simp add: algebra_simps) | 
| 60423 | 840 | then have "f y - f x - f' x * (y - x) \<ge> 0" | 
| 841 | using ge by auto | |
| 63485 | 842 | then show "f y - f x \<ge> f' x * (y - x)" "f' y * (x - y) \<le> f x - f y" | 
| 60423 | 843 | using res by auto | 
| 63485 | 844 | qed | 
| 845 | show ?thesis | |
| 846 | proof (cases "x = y") | |
| 847 | case True | |
| 848 | with x y show ?thesis by auto | |
| 849 | next | |
| 850 | case False | |
| 851 | with less_imp x y show ?thesis | |
| 852 | by (auto simp: neq_iff) | |
| 853 | qed | |
| 36623 | 854 | qed | 
| 855 | ||
| 856 | lemma f''_ge0_imp_convex: | |
| 857 | fixes f :: "real \<Rightarrow> real" | |
| 858 | assumes conv: "convex C" | |
| 49609 | 859 | and f': "\<And>x. x \<in> C \<Longrightarrow> DERIV f x :> (f' x)" | 
| 860 | and f'': "\<And>x. x \<in> C \<Longrightarrow> DERIV f' x :> (f'' x)" | |
| 861 | and pos: "\<And>x. x \<in> C \<Longrightarrow> f'' x \<ge> 0" | |
| 36623 | 862 | shows "convex_on C f" | 
| 56796 | 863 | using f''_imp_f'[OF conv f' f'' pos] assms pos_convex_function | 
| 864 | by fastforce | |
| 36623 | 865 | |
| 866 | lemma minus_log_convex: | |
| 867 | fixes b :: real | |
| 868 | assumes "b > 1" | |
| 869 |   shows "convex_on {0 <..} (\<lambda> x. - log b x)"
 | |
| 870 | proof - | |
| 56796 | 871 | have "\<And>z. z > 0 \<Longrightarrow> DERIV (log b) z :> 1 / (ln b * z)" | 
| 872 | using DERIV_log by auto | |
| 49609 | 873 | then have f': "\<And>z. z > 0 \<Longrightarrow> DERIV (\<lambda> z. - log b z) z :> - 1 / (ln b * z)" | 
| 56479 
91958d4b30f7
revert c1bbd3e22226, a14831ac3023, and 36489d77c484: divide_minus_left/right are again simp rules
 hoelzl parents: 
56409diff
changeset | 874 | by (auto simp: DERIV_minus) | 
| 63485 | 875 | have "\<And>z::real. z > 0 \<Longrightarrow> DERIV inverse z :> - (inverse z ^ Suc (Suc 0))" | 
| 36623 | 876 | using less_imp_neq[THEN not_sym, THEN DERIV_inverse] by auto | 
| 877 | from this[THEN DERIV_cmult, of _ "- 1 / ln b"] | |
| 63485 | 878 | have "\<And>z::real. z > 0 \<Longrightarrow> | 
| 49609 | 879 | DERIV (\<lambda> z. (- 1 / ln b) * inverse z) z :> (- 1 / ln b) * (- (inverse z ^ Suc (Suc 0)))" | 
| 36623 | 880 | by auto | 
| 56796 | 881 | then have f''0: "\<And>z::real. z > 0 \<Longrightarrow> | 
| 882 | DERIV (\<lambda> z. - 1 / (ln b * z)) z :> 1 / (ln b * z * z)" | |
| 60423 | 883 | unfolding inverse_eq_divide by (auto simp: mult.assoc) | 
| 56796 | 884 | have f''_ge0: "\<And>z::real. z > 0 \<Longrightarrow> 1 / (ln b * z * z) \<ge> 0" | 
| 60423 | 885 | using \<open>b > 1\<close> by (auto intro!: less_imp_le) | 
| 63485 | 886 | from f''_ge0_imp_convex[OF pos_is_convex, unfolded greaterThan_iff, OF f' f''0 f''_ge0] | 
| 887 | show ?thesis | |
| 888 | by auto | |
| 36623 | 889 | qed | 
| 890 | ||
| 61531 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 891 | |
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 892 | subsection \<open>Convexity of real functions\<close> | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 893 | |
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 894 | lemma convex_on_realI: | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 895 | assumes "connected A" | 
| 63485 | 896 | and "\<And>x. x \<in> A \<Longrightarrow> (f has_real_derivative f' x) (at x)" | 
| 897 | and "\<And>x y. x \<in> A \<Longrightarrow> y \<in> A \<Longrightarrow> x \<le> y \<Longrightarrow> f' x \<le> f' y" | |
| 898 | shows "convex_on A f" | |
| 61531 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 899 | proof (rule convex_on_linorderI) | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 900 | fix t x y :: real | 
| 63485 | 901 | assume t: "t > 0" "t < 1" | 
| 902 | assume xy: "x \<in> A" "y \<in> A" "x < y" | |
| 63040 | 903 | define z where "z = (1 - t) * x + t * y" | 
| 63485 | 904 |   with \<open>connected A\<close> and xy have ivl: "{x..y} \<subseteq> A"
 | 
| 905 | using connected_contains_Icc by blast | |
| 61694 
6571c78c9667
Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
 paulson <lp15@cam.ac.uk> parents: 
61585diff
changeset | 906 | |
| 63485 | 907 | from xy t have xz: "z > x" | 
| 908 | by (simp add: z_def algebra_simps) | |
| 909 | have "y - z = (1 - t) * (y - x)" | |
| 910 | by (simp add: z_def algebra_simps) | |
| 911 | also from xy t have "\<dots> > 0" | |
| 912 | by (intro mult_pos_pos) simp_all | |
| 913 | finally have yz: "z < y" | |
| 914 | by simp | |
| 61694 
6571c78c9667
Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
 paulson <lp15@cam.ac.uk> parents: 
61585diff
changeset | 915 | |
| 61531 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 916 | from assms xz yz ivl t have "\<exists>\<xi>. \<xi> > x \<and> \<xi> < z \<and> f z - f x = (z - x) * f' \<xi>" | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 917 | by (intro MVT2) (auto intro!: assms(2)) | 
| 63485 | 918 | then obtain \<xi> where \<xi>: "\<xi> > x" "\<xi> < z" "f' \<xi> = (f z - f x) / (z - x)" | 
| 919 | by auto | |
| 61531 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 920 | from assms xz yz ivl t have "\<exists>\<eta>. \<eta> > z \<and> \<eta> < y \<and> f y - f z = (y - z) * f' \<eta>" | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 921 | by (intro MVT2) (auto intro!: assms(2)) | 
| 63485 | 922 | then obtain \<eta> where \<eta>: "\<eta> > z" "\<eta> < y" "f' \<eta> = (f y - f z) / (y - z)" | 
| 923 | by auto | |
| 61694 
6571c78c9667
Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
 paulson <lp15@cam.ac.uk> parents: 
61585diff
changeset | 924 | |
| 61531 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 925 | from \<eta>(3) have "(f y - f z) / (y - z) = f' \<eta>" .. | 
| 63485 | 926 | also from \<xi> \<eta> ivl have "\<xi> \<in> A" "\<eta> \<in> A" | 
| 927 | by auto | |
| 928 | with \<xi> \<eta> have "f' \<eta> \<ge> f' \<xi>" | |
| 929 | by (intro assms(3)) auto | |
| 61531 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 930 | also from \<xi>(3) have "f' \<xi> = (f z - f x) / (z - x)" . | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 931 | finally have "(f y - f z) * (z - x) \<ge> (f z - f x) * (y - z)" | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 932 | using xz yz by (simp add: field_simps) | 
| 63485 | 933 | also have "z - x = t * (y - x)" | 
| 934 | by (simp add: z_def algebra_simps) | |
| 935 | also have "y - z = (1 - t) * (y - x)" | |
| 936 | by (simp add: z_def algebra_simps) | |
| 937 | finally have "(f y - f z) * t \<ge> (f z - f x) * (1 - t)" | |
| 938 | using xy by simp | |
| 939 | then show "(1 - t) * f x + t * f y \<ge> f ((1 - t) *\<^sub>R x + t *\<^sub>R y)" | |
| 61531 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 940 | by (simp add: z_def algebra_simps) | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 941 | qed | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 942 | |
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 943 | lemma convex_on_inverse: | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 944 |   assumes "A \<subseteq> {0<..}"
 | 
| 63485 | 945 | shows "convex_on A (inverse :: real \<Rightarrow> real)" | 
| 61531 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 946 | proof (rule convex_on_subset[OF _ assms], intro convex_on_realI[of _ _ "\<lambda>x. -inverse (x^2)"]) | 
| 63485 | 947 | fix u v :: real | 
| 948 |   assume "u \<in> {0<..}" "v \<in> {0<..}" "u \<le> v"
 | |
| 61531 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 949 | with assms show "-inverse (u^2) \<le> -inverse (v^2)" | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 950 | by (intro le_imp_neg_le le_imp_inverse_le power_mono) (simp_all) | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 951 | qed (insert assms, auto intro!: derivative_eq_intros simp: divide_simps power2_eq_square) | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 952 | |
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 953 | lemma convex_onD_Icc': | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 954 |   assumes "convex_on {x..y} f" "c \<in> {x..y}"
 | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 955 | defines "d \<equiv> y - x" | 
| 63485 | 956 | shows "f c \<le> (f y - f x) / d * (c - x) + f x" | 
| 957 | proof (cases x y rule: linorder_cases) | |
| 958 | case less | |
| 959 | then have d: "d > 0" | |
| 960 | by (simp add: d_def) | |
| 61694 
6571c78c9667
Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
 paulson <lp15@cam.ac.uk> parents: 
61585diff
changeset | 961 | from assms(2) less have A: "0 \<le> (c - x) / d" "(c - x) / d \<le> 1" | 
| 61531 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 962 | by (simp_all add: d_def divide_simps) | 
| 63485 | 963 | have "f c = f (x + (c - x) * 1)" | 
| 964 | by simp | |
| 965 | also from less have "1 = ((y - x) / d)" | |
| 966 | by (simp add: d_def) | |
| 61694 
6571c78c9667
Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
 paulson <lp15@cam.ac.uk> parents: 
61585diff
changeset | 967 | also from d have "x + (c - x) * \<dots> = (1 - (c - x) / d) *\<^sub>R x + ((c - x) / d) *\<^sub>R y" | 
| 61531 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 968 | by (simp add: field_simps) | 
| 63485 | 969 | also have "f \<dots> \<le> (1 - (c - x) / d) * f x + (c - x) / d * f y" | 
| 970 | using assms less by (intro convex_onD_Icc) simp_all | |
| 971 | also from d have "\<dots> = (f y - f x) / d * (c - x) + f x" | |
| 972 | by (simp add: field_simps) | |
| 61531 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 973 | finally show ?thesis . | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 974 | qed (insert assms(2), simp_all) | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 975 | |
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 976 | lemma convex_onD_Icc'': | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 977 |   assumes "convex_on {x..y} f" "c \<in> {x..y}"
 | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 978 | defines "d \<equiv> y - x" | 
| 63485 | 979 | shows "f c \<le> (f x - f y) / d * (y - c) + f y" | 
| 980 | proof (cases x y rule: linorder_cases) | |
| 981 | case less | |
| 982 | then have d: "d > 0" | |
| 983 | by (simp add: d_def) | |
| 61694 
6571c78c9667
Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
 paulson <lp15@cam.ac.uk> parents: 
61585diff
changeset | 984 | from assms(2) less have A: "0 \<le> (y - c) / d" "(y - c) / d \<le> 1" | 
| 61531 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 985 | by (simp_all add: d_def divide_simps) | 
| 63485 | 986 | have "f c = f (y - (y - c) * 1)" | 
| 987 | by simp | |
| 988 | also from less have "1 = ((y - x) / d)" | |
| 989 | by (simp add: d_def) | |
| 61694 
6571c78c9667
Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
 paulson <lp15@cam.ac.uk> parents: 
61585diff
changeset | 990 | also from d have "y - (y - c) * \<dots> = (1 - (1 - (y - c) / d)) *\<^sub>R x + (1 - (y - c) / d) *\<^sub>R y" | 
| 61531 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 991 | by (simp add: field_simps) | 
| 63485 | 992 | also have "f \<dots> \<le> (1 - (1 - (y - c) / d)) * f x + (1 - (y - c) / d) * f y" | 
| 993 | using assms less by (intro convex_onD_Icc) (simp_all add: field_simps) | |
| 994 | also from d have "\<dots> = (f x - f y) / d * (y - c) + f y" | |
| 995 | by (simp add: field_simps) | |
| 61531 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 996 | finally show ?thesis . | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 997 | qed (insert assms(2), simp_all) | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 998 | |
| 36623 | 999 | end |