| author | nipkow | 
| Tue, 20 Oct 2009 14:44:02 +0200 | |
| changeset 33019 | bcf56a64ce1a | 
| parent 32960 | 69916a850301 | 
| child 33519 | e31a85f92ce9 | 
| permissions | -rw-r--r-- | 
| 28685 | 1 | (* Title: HOL/Orderings.thy | 
| 15524 | 2 | Author: Tobias Nipkow, Markus Wenzel, and Larry Paulson | 
| 3 | *) | |
| 4 | ||
| 25614 | 5 | header {* Abstract orderings *}
 | 
| 15524 | 6 | |
| 7 | theory Orderings | |
| 30929 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30806diff
changeset | 8 | imports HOL | 
| 32215 | 9 | uses | 
| 10 | "~~/src/Provers/order.ML" | |
| 11 | "~~/src/Provers/quasi.ML" (* FIXME unused? *) | |
| 15524 | 12 | begin | 
| 13 | ||
| 27682 | 14 | subsection {* Quasi orders *}
 | 
| 15524 | 15 | |
| 27682 | 16 | class preorder = ord + | 
| 17 | assumes less_le_not_le: "x < y \<longleftrightarrow> x \<le> y \<and> \<not> (y \<le> x)" | |
| 25062 | 18 | and order_refl [iff]: "x \<le> x" | 
| 19 | and order_trans: "x \<le> y \<Longrightarrow> y \<le> z \<Longrightarrow> x \<le> z" | |
| 21248 | 20 | begin | 
| 21 | ||
| 15524 | 22 | text {* Reflexivity. *}
 | 
| 23 | ||
| 25062 | 24 | lemma eq_refl: "x = y \<Longrightarrow> x \<le> y" | 
| 15524 | 25 |     -- {* This form is useful with the classical reasoner. *}
 | 
| 23212 | 26 | by (erule ssubst) (rule order_refl) | 
| 15524 | 27 | |
| 25062 | 28 | lemma less_irrefl [iff]: "\<not> x < x" | 
| 27682 | 29 | by (simp add: less_le_not_le) | 
| 30 | ||
| 31 | lemma less_imp_le: "x < y \<Longrightarrow> x \<le> y" | |
| 32 | unfolding less_le_not_le by blast | |
| 33 | ||
| 34 | ||
| 35 | text {* Asymmetry. *}
 | |
| 36 | ||
| 37 | lemma less_not_sym: "x < y \<Longrightarrow> \<not> (y < x)" | |
| 38 | by (simp add: less_le_not_le) | |
| 39 | ||
| 40 | lemma less_asym: "x < y \<Longrightarrow> (\<not> P \<Longrightarrow> y < x) \<Longrightarrow> P" | |
| 41 | by (drule less_not_sym, erule contrapos_np) simp | |
| 42 | ||
| 43 | ||
| 44 | text {* Transitivity. *}
 | |
| 45 | ||
| 46 | lemma less_trans: "x < y \<Longrightarrow> y < z \<Longrightarrow> x < z" | |
| 47 | by (auto simp add: less_le_not_le intro: order_trans) | |
| 48 | ||
| 49 | lemma le_less_trans: "x \<le> y \<Longrightarrow> y < z \<Longrightarrow> x < z" | |
| 50 | by (auto simp add: less_le_not_le intro: order_trans) | |
| 51 | ||
| 52 | lemma less_le_trans: "x < y \<Longrightarrow> y \<le> z \<Longrightarrow> x < z" | |
| 53 | by (auto simp add: less_le_not_le intro: order_trans) | |
| 54 | ||
| 55 | ||
| 56 | text {* Useful for simplification, but too risky to include by default. *}
 | |
| 57 | ||
| 58 | lemma less_imp_not_less: "x < y \<Longrightarrow> (\<not> y < x) \<longleftrightarrow> True" | |
| 59 | by (blast elim: less_asym) | |
| 60 | ||
| 61 | lemma less_imp_triv: "x < y \<Longrightarrow> (y < x \<longrightarrow> P) \<longleftrightarrow> True" | |
| 62 | by (blast elim: less_asym) | |
| 63 | ||
| 64 | ||
| 65 | text {* Transitivity rules for calculational reasoning *}
 | |
| 66 | ||
| 67 | lemma less_asym': "a < b \<Longrightarrow> b < a \<Longrightarrow> P" | |
| 68 | by (rule less_asym) | |
| 69 | ||
| 70 | ||
| 71 | text {* Dual order *}
 | |
| 72 | ||
| 73 | lemma dual_preorder: | |
| 74 | "preorder (op \<ge>) (op >)" | |
| 28823 | 75 | proof qed (auto simp add: less_le_not_le intro: order_trans) | 
| 27682 | 76 | |
| 77 | end | |
| 78 | ||
| 79 | ||
| 80 | subsection {* Partial orders *}
 | |
| 81 | ||
| 82 | class order = preorder + | |
| 83 | assumes antisym: "x \<le> y \<Longrightarrow> y \<le> x \<Longrightarrow> x = y" | |
| 84 | begin | |
| 85 | ||
| 86 | text {* Reflexivity. *}
 | |
| 87 | ||
| 88 | lemma less_le: "x < y \<longleftrightarrow> x \<le> y \<and> x \<noteq> y" | |
| 89 | by (auto simp add: less_le_not_le intro: antisym) | |
| 15524 | 90 | |
| 25062 | 91 | lemma le_less: "x \<le> y \<longleftrightarrow> x < y \<or> x = y" | 
| 15524 | 92 |     -- {* NOT suitable for iff, since it can cause PROOF FAILED. *}
 | 
| 23212 | 93 | by (simp add: less_le) blast | 
| 15524 | 94 | |
| 25062 | 95 | lemma le_imp_less_or_eq: "x \<le> y \<Longrightarrow> x < y \<or> x = y" | 
| 23212 | 96 | unfolding less_le by blast | 
| 15524 | 97 | |
| 21329 | 98 | |
| 99 | text {* Useful for simplification, but too risky to include by default. *}
 | |
| 100 | ||
| 25062 | 101 | lemma less_imp_not_eq: "x < y \<Longrightarrow> (x = y) \<longleftrightarrow> False" | 
| 23212 | 102 | by auto | 
| 21329 | 103 | |
| 25062 | 104 | lemma less_imp_not_eq2: "x < y \<Longrightarrow> (y = x) \<longleftrightarrow> False" | 
| 23212 | 105 | by auto | 
| 21329 | 106 | |
| 107 | ||
| 108 | text {* Transitivity rules for calculational reasoning *}
 | |
| 109 | ||
| 25062 | 110 | lemma neq_le_trans: "a \<noteq> b \<Longrightarrow> a \<le> b \<Longrightarrow> a < b" | 
| 23212 | 111 | by (simp add: less_le) | 
| 21329 | 112 | |
| 25062 | 113 | lemma le_neq_trans: "a \<le> b \<Longrightarrow> a \<noteq> b \<Longrightarrow> a < b" | 
| 23212 | 114 | by (simp add: less_le) | 
| 21329 | 115 | |
| 15524 | 116 | |
| 117 | text {* Asymmetry. *}
 | |
| 118 | ||
| 25062 | 119 | lemma eq_iff: "x = y \<longleftrightarrow> x \<le> y \<and> y \<le> x" | 
| 23212 | 120 | by (blast intro: antisym) | 
| 15524 | 121 | |
| 25062 | 122 | lemma antisym_conv: "y \<le> x \<Longrightarrow> x \<le> y \<longleftrightarrow> x = y" | 
| 23212 | 123 | by (blast intro: antisym) | 
| 15524 | 124 | |
| 25062 | 125 | lemma less_imp_neq: "x < y \<Longrightarrow> x \<noteq> y" | 
| 23212 | 126 | by (erule contrapos_pn, erule subst, rule less_irrefl) | 
| 21248 | 127 | |
| 21083 | 128 | |
| 27107 | 129 | text {* Least value operator *}
 | 
| 130 | ||
| 27299 | 131 | definition (in ord) | 
| 27107 | 132 |   Least :: "('a \<Rightarrow> bool) \<Rightarrow> 'a" (binder "LEAST " 10) where
 | 
| 133 | "Least P = (THE x. P x \<and> (\<forall>y. P y \<longrightarrow> x \<le> y))" | |
| 134 | ||
| 135 | lemma Least_equality: | |
| 136 | assumes "P x" | |
| 137 | and "\<And>y. P y \<Longrightarrow> x \<le> y" | |
| 138 | shows "Least P = x" | |
| 139 | unfolding Least_def by (rule the_equality) | |
| 140 | (blast intro: assms antisym)+ | |
| 141 | ||
| 142 | lemma LeastI2_order: | |
| 143 | assumes "P x" | |
| 144 | and "\<And>y. P y \<Longrightarrow> x \<le> y" | |
| 145 | and "\<And>x. P x \<Longrightarrow> \<forall>y. P y \<longrightarrow> x \<le> y \<Longrightarrow> Q x" | |
| 146 | shows "Q (Least P)" | |
| 147 | unfolding Least_def by (rule theI2) | |
| 148 | (blast intro: assms antisym)+ | |
| 149 | ||
| 150 | ||
| 26014 | 151 | text {* Dual order *}
 | 
| 22916 | 152 | |
| 26014 | 153 | lemma dual_order: | 
| 25103 | 154 | "order (op \<ge>) (op >)" | 
| 27682 | 155 | by (intro_locales, rule dual_preorder) (unfold_locales, rule antisym) | 
| 22916 | 156 | |
| 21248 | 157 | end | 
| 15524 | 158 | |
| 21329 | 159 | |
| 160 | subsection {* Linear (total) orders *}
 | |
| 161 | ||
| 22316 | 162 | class linorder = order + | 
| 25207 | 163 | assumes linear: "x \<le> y \<or> y \<le> x" | 
| 21248 | 164 | begin | 
| 165 | ||
| 25062 | 166 | lemma less_linear: "x < y \<or> x = y \<or> y < x" | 
| 23212 | 167 | unfolding less_le using less_le linear by blast | 
| 21248 | 168 | |
| 25062 | 169 | lemma le_less_linear: "x \<le> y \<or> y < x" | 
| 23212 | 170 | by (simp add: le_less less_linear) | 
| 21248 | 171 | |
| 172 | lemma le_cases [case_names le ge]: | |
| 25062 | 173 | "(x \<le> y \<Longrightarrow> P) \<Longrightarrow> (y \<le> x \<Longrightarrow> P) \<Longrightarrow> P" | 
| 23212 | 174 | using linear by blast | 
| 21248 | 175 | |
| 22384 
33a46e6c7f04
prefix of class interpretation not mandatory any longer
 haftmann parents: 
22377diff
changeset | 176 | lemma linorder_cases [case_names less equal greater]: | 
| 25062 | 177 | "(x < y \<Longrightarrow> P) \<Longrightarrow> (x = y \<Longrightarrow> P) \<Longrightarrow> (y < x \<Longrightarrow> P) \<Longrightarrow> P" | 
| 23212 | 178 | using less_linear by blast | 
| 21248 | 179 | |
| 25062 | 180 | lemma not_less: "\<not> x < y \<longleftrightarrow> y \<le> x" | 
| 23212 | 181 | apply (simp add: less_le) | 
| 182 | using linear apply (blast intro: antisym) | |
| 183 | done | |
| 184 | ||
| 185 | lemma not_less_iff_gr_or_eq: | |
| 25062 | 186 | "\<not>(x < y) \<longleftrightarrow> (x > y | x = y)" | 
| 23212 | 187 | apply(simp add:not_less le_less) | 
| 188 | apply blast | |
| 189 | done | |
| 15524 | 190 | |
| 25062 | 191 | lemma not_le: "\<not> x \<le> y \<longleftrightarrow> y < x" | 
| 23212 | 192 | apply (simp add: less_le) | 
| 193 | using linear apply (blast intro: antisym) | |
| 194 | done | |
| 15524 | 195 | |
| 25062 | 196 | lemma neq_iff: "x \<noteq> y \<longleftrightarrow> x < y \<or> y < x" | 
| 23212 | 197 | by (cut_tac x = x and y = y in less_linear, auto) | 
| 15524 | 198 | |
| 25062 | 199 | lemma neqE: "x \<noteq> y \<Longrightarrow> (x < y \<Longrightarrow> R) \<Longrightarrow> (y < x \<Longrightarrow> R) \<Longrightarrow> R" | 
| 23212 | 200 | by (simp add: neq_iff) blast | 
| 15524 | 201 | |
| 25062 | 202 | lemma antisym_conv1: "\<not> x < y \<Longrightarrow> x \<le> y \<longleftrightarrow> x = y" | 
| 23212 | 203 | by (blast intro: antisym dest: not_less [THEN iffD1]) | 
| 15524 | 204 | |
| 25062 | 205 | lemma antisym_conv2: "x \<le> y \<Longrightarrow> \<not> x < y \<longleftrightarrow> x = y" | 
| 23212 | 206 | by (blast intro: antisym dest: not_less [THEN iffD1]) | 
| 15524 | 207 | |
| 25062 | 208 | lemma antisym_conv3: "\<not> y < x \<Longrightarrow> \<not> x < y \<longleftrightarrow> x = y" | 
| 23212 | 209 | by (blast intro: antisym dest: not_less [THEN iffD1]) | 
| 15524 | 210 | |
| 25062 | 211 | lemma leI: "\<not> x < y \<Longrightarrow> y \<le> x" | 
| 23212 | 212 | unfolding not_less . | 
| 16796 | 213 | |
| 25062 | 214 | lemma leD: "y \<le> x \<Longrightarrow> \<not> x < y" | 
| 23212 | 215 | unfolding not_less . | 
| 16796 | 216 | |
| 217 | (*FIXME inappropriate name (or delete altogether)*) | |
| 25062 | 218 | lemma not_leE: "\<not> y \<le> x \<Longrightarrow> x < y" | 
| 23212 | 219 | unfolding not_le . | 
| 21248 | 220 | |
| 22916 | 221 | |
| 26014 | 222 | text {* Dual order *}
 | 
| 22916 | 223 | |
| 26014 | 224 | lemma dual_linorder: | 
| 25103 | 225 | "linorder (op \<ge>) (op >)" | 
| 27682 | 226 | by (rule linorder.intro, rule dual_order) (unfold_locales, rule linear) | 
| 22916 | 227 | |
| 228 | ||
| 23881 | 229 | text {* min/max *}
 | 
| 230 | ||
| 27299 | 231 | definition (in ord) min :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" where | 
| 28516 | 232 | [code del]: "min a b = (if a \<le> b then a else b)" | 
| 23881 | 233 | |
| 27299 | 234 | definition (in ord) max :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" where | 
| 28516 | 235 | [code del]: "max a b = (if a \<le> b then b else a)" | 
| 22384 
33a46e6c7f04
prefix of class interpretation not mandatory any longer
 haftmann parents: 
22377diff
changeset | 236 | |
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 237 | lemma min_le_iff_disj: | 
| 25062 | 238 | "min x y \<le> z \<longleftrightarrow> x \<le> z \<or> y \<le> z" | 
| 23212 | 239 | unfolding min_def using linear by (auto intro: order_trans) | 
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 240 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 241 | lemma le_max_iff_disj: | 
| 25062 | 242 | "z \<le> max x y \<longleftrightarrow> z \<le> x \<or> z \<le> y" | 
| 23212 | 243 | unfolding max_def using linear by (auto intro: order_trans) | 
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 244 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 245 | lemma min_less_iff_disj: | 
| 25062 | 246 | "min x y < z \<longleftrightarrow> x < z \<or> y < z" | 
| 23212 | 247 | unfolding min_def le_less using less_linear by (auto intro: less_trans) | 
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 248 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 249 | lemma less_max_iff_disj: | 
| 25062 | 250 | "z < max x y \<longleftrightarrow> z < x \<or> z < y" | 
| 23212 | 251 | unfolding max_def le_less using less_linear by (auto intro: less_trans) | 
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 252 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 253 | lemma min_less_iff_conj [simp]: | 
| 25062 | 254 | "z < min x y \<longleftrightarrow> z < x \<and> z < y" | 
| 23212 | 255 | unfolding min_def le_less using less_linear by (auto intro: less_trans) | 
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 256 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 257 | lemma max_less_iff_conj [simp]: | 
| 25062 | 258 | "max x y < z \<longleftrightarrow> x < z \<and> y < z" | 
| 23212 | 259 | unfolding max_def le_less using less_linear by (auto intro: less_trans) | 
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 260 | |
| 24286 
7619080e49f0
ATP blacklisting is now in theory data, attribute noatp
 paulson parents: 
23948diff
changeset | 261 | lemma split_min [noatp]: | 
| 25062 | 262 | "P (min i j) \<longleftrightarrow> (i \<le> j \<longrightarrow> P i) \<and> (\<not> i \<le> j \<longrightarrow> P j)" | 
| 23212 | 263 | by (simp add: min_def) | 
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 264 | |
| 24286 
7619080e49f0
ATP blacklisting is now in theory data, attribute noatp
 paulson parents: 
23948diff
changeset | 265 | lemma split_max [noatp]: | 
| 25062 | 266 | "P (max i j) \<longleftrightarrow> (i \<le> j \<longrightarrow> P j) \<and> (\<not> i \<le> j \<longrightarrow> P i)" | 
| 23212 | 267 | by (simp add: max_def) | 
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 268 | |
| 21248 | 269 | end | 
| 270 | ||
| 28516 | 271 | text {* Explicit dictionaries for code generation *}
 | 
| 272 | ||
| 31998 
2c7a24f74db9
code attributes use common underscore convention
 haftmann parents: 
30929diff
changeset | 273 | lemma min_ord_min [code, code_unfold, code_inline del]: | 
| 28516 | 274 | "min = ord.min (op \<le>)" | 
| 275 | by (rule ext)+ (simp add: min_def ord.min_def) | |
| 276 | ||
| 277 | declare ord.min_def [code] | |
| 278 | ||
| 31998 
2c7a24f74db9
code attributes use common underscore convention
 haftmann parents: 
30929diff
changeset | 279 | lemma max_ord_max [code, code_unfold, code_inline del]: | 
| 28516 | 280 | "max = ord.max (op \<le>)" | 
| 281 | by (rule ext)+ (simp add: max_def ord.max_def) | |
| 282 | ||
| 283 | declare ord.max_def [code] | |
| 284 | ||
| 23948 | 285 | |
| 21083 | 286 | subsection {* Reasoning tools setup *}
 | 
| 287 | ||
| 21091 | 288 | ML {*
 | 
| 289 | ||
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 290 | signature ORDERS = | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 291 | sig | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 292 | val print_structures: Proof.context -> unit | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 293 | val setup: theory -> theory | 
| 32215 | 294 | val order_tac: Proof.context -> thm list -> int -> tactic | 
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 295 | end; | 
| 21091 | 296 | |
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 297 | structure Orders: ORDERS = | 
| 21248 | 298 | struct | 
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 299 | |
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 300 | (** Theory and context data **) | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 301 | |
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 302 | fun struct_eq ((s1: string, ts1), (s2, ts2)) = | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 303 | (s1 = s2) andalso eq_list (op aconv) (ts1, ts2); | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 304 | |
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 305 | structure Data = GenericDataFun | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 306 | ( | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 307 | type T = ((string * term list) * Order_Tac.less_arith) list; | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 308 | (* Order structures: | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 309 | identifier of the structure, list of operations and record of theorems | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 310 | needed to set up the transitivity reasoner, | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 311 | identifier and operations identify the structure uniquely. *) | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 312 | val empty = []; | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 313 | val extend = I; | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 314 | fun merge _ = AList.join struct_eq (K fst); | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 315 | ); | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 316 | |
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 317 | fun print_structures ctxt = | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 318 | let | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 319 | val structs = Data.get (Context.Proof ctxt); | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 320 | fun pretty_term t = Pretty.block | 
| 24920 | 321 | [Pretty.quote (Syntax.pretty_term ctxt t), Pretty.brk 1, | 
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 322 | Pretty.str "::", Pretty.brk 1, | 
| 24920 | 323 | Pretty.quote (Syntax.pretty_typ ctxt (type_of t))]; | 
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 324 | fun pretty_struct ((s, ts), _) = Pretty.block | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 325 | [Pretty.str s, Pretty.str ":", Pretty.brk 1, | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 326 |        Pretty.enclose "(" ")" (Pretty.breaks (map pretty_term ts))];
 | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 327 | in | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 328 | Pretty.writeln (Pretty.big_list "Order structures:" (map pretty_struct structs)) | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 329 | end; | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 330 | |
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 331 | |
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 332 | (** Method **) | 
| 21091 | 333 | |
| 32215 | 334 | fun struct_tac ((s, [eq, le, less]), thms) ctxt prems = | 
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 335 | let | 
| 30107 
f3b3b0e3d184
Fixed nonexhaustive match problem in decomp, to make it fail more gracefully
 berghofe parents: 
29823diff
changeset | 336 |     fun decomp thy (@{const Trueprop} $ t) =
 | 
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 337 | let | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 338 | fun excluded t = | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 339 | (* exclude numeric types: linear arithmetic subsumes transitivity *) | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 340 | let val T = type_of t | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 341 | in | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32899diff
changeset | 342 | T = HOLogic.natT orelse T = HOLogic.intT orelse T = HOLogic.realT | 
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 343 | end; | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32899diff
changeset | 344 | fun rel (bin_op $ t1 $ t2) = | 
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 345 | if excluded t1 then NONE | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 346 | else if Pattern.matches thy (eq, bin_op) then SOME (t1, "=", t2) | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 347 | else if Pattern.matches thy (le, bin_op) then SOME (t1, "<=", t2) | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 348 | else if Pattern.matches thy (less, bin_op) then SOME (t1, "<", t2) | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 349 | else NONE | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32899diff
changeset | 350 | | rel _ = NONE; | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32899diff
changeset | 351 |         fun dec (Const (@{const_name Not}, _) $ t) = (case rel t
 | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32899diff
changeset | 352 | of NONE => NONE | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32899diff
changeset | 353 | | SOME (t1, rel, t2) => SOME (t1, "~" ^ rel, t2)) | 
| 24741 
a53f5db5acbb
Fixed setup of transitivity reasoner (function decomp).
 ballarin parents: 
24704diff
changeset | 354 | | dec x = rel x; | 
| 30107 
f3b3b0e3d184
Fixed nonexhaustive match problem in decomp, to make it fail more gracefully
 berghofe parents: 
29823diff
changeset | 355 | in dec t end | 
| 
f3b3b0e3d184
Fixed nonexhaustive match problem in decomp, to make it fail more gracefully
 berghofe parents: 
29823diff
changeset | 356 | | decomp thy _ = NONE; | 
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 357 | in | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 358 | case s of | 
| 32215 | 359 | "order" => Order_Tac.partial_tac decomp thms ctxt prems | 
| 360 | | "linorder" => Order_Tac.linear_tac decomp thms ctxt prems | |
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 361 |     | _ => error ("Unknown kind of order `" ^ s ^ "' encountered in transitivity reasoner.")
 | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 362 | end | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 363 | |
| 32215 | 364 | fun order_tac ctxt prems = | 
| 365 | FIRST' (map (fn s => CHANGED o struct_tac s ctxt prems) (Data.get (Context.Proof ctxt))); | |
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 366 | |
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 367 | |
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 368 | (** Attribute **) | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 369 | |
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 370 | fun add_struct_thm s tag = | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 371 | Thm.declaration_attribute | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 372 | (fn thm => Data.map (AList.map_default struct_eq (s, Order_Tac.empty TrueI) (Order_Tac.update tag thm))); | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 373 | fun del_struct s = | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 374 | Thm.declaration_attribute | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 375 | (fn _ => Data.map (AList.delete struct_eq s)); | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 376 | |
| 30722 
623d4831c8cf
simplified attribute and method setup: eliminating bottom-up styles makes it easier to keep things in one place, and also SML/NJ happy;
 wenzelm parents: 
30528diff
changeset | 377 | val attrib_setup = | 
| 
623d4831c8cf
simplified attribute and method setup: eliminating bottom-up styles makes it easier to keep things in one place, and also SML/NJ happy;
 wenzelm parents: 
30528diff
changeset | 378 |   Attrib.setup @{binding order}
 | 
| 
623d4831c8cf
simplified attribute and method setup: eliminating bottom-up styles makes it easier to keep things in one place, and also SML/NJ happy;
 wenzelm parents: 
30528diff
changeset | 379 | (Scan.lift ((Args.add -- Args.name >> (fn (_, s) => SOME s) || Args.del >> K NONE) --| | 
| 
623d4831c8cf
simplified attribute and method setup: eliminating bottom-up styles makes it easier to keep things in one place, and also SML/NJ happy;
 wenzelm parents: 
30528diff
changeset | 380 | Args.colon (* FIXME || Scan.succeed true *) ) -- Scan.lift Args.name -- | 
| 
623d4831c8cf
simplified attribute and method setup: eliminating bottom-up styles makes it easier to keep things in one place, and also SML/NJ happy;
 wenzelm parents: 
30528diff
changeset | 381 | Scan.repeat Args.term | 
| 
623d4831c8cf
simplified attribute and method setup: eliminating bottom-up styles makes it easier to keep things in one place, and also SML/NJ happy;
 wenzelm parents: 
30528diff
changeset | 382 | >> (fn ((SOME tag, n), ts) => add_struct_thm (n, ts) tag | 
| 
623d4831c8cf
simplified attribute and method setup: eliminating bottom-up styles makes it easier to keep things in one place, and also SML/NJ happy;
 wenzelm parents: 
30528diff
changeset | 383 | | ((NONE, n), ts) => del_struct (n, ts))) | 
| 
623d4831c8cf
simplified attribute and method setup: eliminating bottom-up styles makes it easier to keep things in one place, and also SML/NJ happy;
 wenzelm parents: 
30528diff
changeset | 384 | "theorems controlling transitivity reasoner"; | 
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 385 | |
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 386 | |
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 387 | (** Diagnostic command **) | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 388 | |
| 24867 | 389 | val _ = | 
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 390 | OuterSyntax.improper_command "print_orders" | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 391 | "print order structures available to transitivity reasoner" OuterKeyword.diag | 
| 30806 | 392 | (Scan.succeed (Toplevel.no_timing o Toplevel.unknown_context o | 
| 393 | Toplevel.keep (print_structures o Toplevel.context_of))); | |
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 394 | |
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 395 | |
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 396 | (** Setup **) | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 397 | |
| 24867 | 398 | val setup = | 
| 32215 | 399 |   Method.setup @{binding order} (Scan.succeed (fn ctxt => SIMPLE_METHOD' (order_tac ctxt [])))
 | 
| 30722 
623d4831c8cf
simplified attribute and method setup: eliminating bottom-up styles makes it easier to keep things in one place, and also SML/NJ happy;
 wenzelm parents: 
30528diff
changeset | 400 | "transitivity reasoner" #> | 
| 
623d4831c8cf
simplified attribute and method setup: eliminating bottom-up styles makes it easier to keep things in one place, and also SML/NJ happy;
 wenzelm parents: 
30528diff
changeset | 401 | attrib_setup; | 
| 21091 | 402 | |
| 403 | end; | |
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 404 | |
| 21091 | 405 | *} | 
| 406 | ||
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 407 | setup Orders.setup | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 408 | |
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 409 | |
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 410 | text {* Declarations to set up transitivity reasoner of partial and linear orders. *}
 | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 411 | |
| 25076 | 412 | context order | 
| 413 | begin | |
| 414 | ||
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 415 | (* The type constraint on @{term op =} below is necessary since the operation
 | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 416 | is not a parameter of the locale. *) | 
| 25076 | 417 | |
| 27689 | 418 | declare less_irrefl [THEN notE, order add less_reflE: order "op = :: 'a \<Rightarrow> 'a \<Rightarrow> bool" "op <=" "op <"] | 
| 419 | ||
| 420 | declare order_refl [order add le_refl: order "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 421 | ||
| 422 | declare less_imp_le [order add less_imp_le: order "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 423 | ||
| 424 | declare antisym [order add eqI: order "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 425 | ||
| 426 | declare eq_refl [order add eqD1: order "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 427 | ||
| 428 | declare sym [THEN eq_refl, order add eqD2: order "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 429 | ||
| 430 | declare less_trans [order add less_trans: order "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 431 | ||
| 432 | declare less_le_trans [order add less_le_trans: order "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 433 | ||
| 434 | declare le_less_trans [order add le_less_trans: order "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 435 | ||
| 436 | declare order_trans [order add le_trans: order "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 437 | ||
| 438 | declare le_neq_trans [order add le_neq_trans: order "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 439 | ||
| 440 | declare neq_le_trans [order add neq_le_trans: order "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 441 | ||
| 442 | declare less_imp_neq [order add less_imp_neq: order "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 443 | ||
| 444 | declare eq_neq_eq_imp_neq [order add eq_neq_eq_imp_neq: order "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 445 | ||
| 446 | declare not_sym [order add not_sym: order "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 447 | |
| 25076 | 448 | end | 
| 449 | ||
| 450 | context linorder | |
| 451 | begin | |
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 452 | |
| 27689 | 453 | declare [[order del: order "op = :: 'a => 'a => bool" "op <=" "op <"]] | 
| 454 | ||
| 455 | declare less_irrefl [THEN notE, order add less_reflE: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 456 | ||
| 457 | declare order_refl [order add le_refl: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 458 | ||
| 459 | declare less_imp_le [order add less_imp_le: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 460 | ||
| 461 | declare not_less [THEN iffD2, order add not_lessI: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 462 | ||
| 463 | declare not_le [THEN iffD2, order add not_leI: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 464 | ||
| 465 | declare not_less [THEN iffD1, order add not_lessD: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 466 | ||
| 467 | declare not_le [THEN iffD1, order add not_leD: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 468 | ||
| 469 | declare antisym [order add eqI: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 470 | ||
| 471 | declare eq_refl [order add eqD1: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 25076 | 472 | |
| 27689 | 473 | declare sym [THEN eq_refl, order add eqD2: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] | 
| 474 | ||
| 475 | declare less_trans [order add less_trans: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 476 | ||
| 477 | declare less_le_trans [order add less_le_trans: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 478 | ||
| 479 | declare le_less_trans [order add le_less_trans: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 480 | ||
| 481 | declare order_trans [order add le_trans: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 482 | ||
| 483 | declare le_neq_trans [order add le_neq_trans: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 484 | ||
| 485 | declare neq_le_trans [order add neq_le_trans: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 486 | ||
| 487 | declare less_imp_neq [order add less_imp_neq: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 488 | ||
| 489 | declare eq_neq_eq_imp_neq [order add eq_neq_eq_imp_neq: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 490 | ||
| 491 | declare not_sym [order add not_sym: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 492 | |
| 25076 | 493 | end | 
| 494 | ||
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 495 | |
| 21083 | 496 | setup {*
 | 
| 497 | let | |
| 498 | ||
| 499 | fun prp t thm = (#prop (rep_thm thm) = t); | |
| 15524 | 500 | |
| 21083 | 501 | fun prove_antisym_le sg ss ((le as Const(_,T)) $ r $ s) = | 
| 502 | let val prems = prems_of_ss ss; | |
| 22916 | 503 |       val less = Const (@{const_name less}, T);
 | 
| 21083 | 504 | val t = HOLogic.mk_Trueprop(le $ s $ r); | 
| 505 | in case find_first (prp t) prems of | |
| 506 | NONE => | |
| 507 | let val t = HOLogic.mk_Trueprop(HOLogic.Not $ (less $ r $ s)) | |
| 508 | in case find_first (prp t) prems of | |
| 509 | NONE => NONE | |
| 24422 | 510 |             | SOME thm => SOME(mk_meta_eq(thm RS @{thm linorder_class.antisym_conv1}))
 | 
| 21083 | 511 | end | 
| 24422 | 512 |      | SOME thm => SOME(mk_meta_eq(thm RS @{thm order_class.antisym_conv}))
 | 
| 21083 | 513 | end | 
| 514 | handle THM _ => NONE; | |
| 15524 | 515 | |
| 21083 | 516 | fun prove_antisym_less sg ss (NotC $ ((less as Const(_,T)) $ r $ s)) = | 
| 517 | let val prems = prems_of_ss ss; | |
| 22916 | 518 |       val le = Const (@{const_name less_eq}, T);
 | 
| 21083 | 519 | val t = HOLogic.mk_Trueprop(le $ r $ s); | 
| 520 | in case find_first (prp t) prems of | |
| 521 | NONE => | |
| 522 | let val t = HOLogic.mk_Trueprop(NotC $ (less $ s $ r)) | |
| 523 | in case find_first (prp t) prems of | |
| 524 | NONE => NONE | |
| 24422 | 525 |             | SOME thm => SOME(mk_meta_eq(thm RS @{thm linorder_class.antisym_conv3}))
 | 
| 21083 | 526 | end | 
| 24422 | 527 |      | SOME thm => SOME(mk_meta_eq(thm RS @{thm linorder_class.antisym_conv2}))
 | 
| 21083 | 528 | end | 
| 529 | handle THM _ => NONE; | |
| 15524 | 530 | |
| 21248 | 531 | fun add_simprocs procs thy = | 
| 26496 
49ae9456eba9
purely functional setup of claset/simpset/clasimpset;
 wenzelm parents: 
26324diff
changeset | 532 | Simplifier.map_simpset (fn ss => ss | 
| 21248 | 533 | addsimprocs (map (fn (name, raw_ts, proc) => | 
| 26496 
49ae9456eba9
purely functional setup of claset/simpset/clasimpset;
 wenzelm parents: 
26324diff
changeset | 534 | Simplifier.simproc thy name raw_ts proc) procs)) thy; | 
| 
49ae9456eba9
purely functional setup of claset/simpset/clasimpset;
 wenzelm parents: 
26324diff
changeset | 535 | fun add_solver name tac = | 
| 
49ae9456eba9
purely functional setup of claset/simpset/clasimpset;
 wenzelm parents: 
26324diff
changeset | 536 | Simplifier.map_simpset (fn ss => ss addSolver | 
| 32215 | 537 | mk_solver' name (fn ss => tac (Simplifier.the_context ss) (Simplifier.prems_of_ss ss))); | 
| 21083 | 538 | |
| 539 | in | |
| 21248 | 540 | add_simprocs [ | 
| 541 |        ("antisym le", ["(x::'a::order) <= y"], prove_antisym_le),
 | |
| 542 |        ("antisym less", ["~ (x::'a::linorder) < y"], prove_antisym_less)
 | |
| 543 | ] | |
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 544 | #> add_solver "Transitivity" Orders.order_tac | 
| 21248 | 545 | (* Adding the transitivity reasoners also as safe solvers showed a slight | 
| 546 | speed up, but the reasoning strength appears to be not higher (at least | |
| 547 | no breaking of additional proofs in the entire HOL distribution, as | |
| 548 | of 5 March 2004, was observed). *) | |
| 21083 | 549 | end | 
| 550 | *} | |
| 15524 | 551 | |
| 552 | ||
| 24422 | 553 | subsection {* Name duplicates *}
 | 
| 554 | ||
| 555 | lemmas order_less_le = less_le | |
| 27682 | 556 | lemmas order_eq_refl = preorder_class.eq_refl | 
| 557 | lemmas order_less_irrefl = preorder_class.less_irrefl | |
| 24422 | 558 | lemmas order_le_less = order_class.le_less | 
| 559 | lemmas order_le_imp_less_or_eq = order_class.le_imp_less_or_eq | |
| 27682 | 560 | lemmas order_less_imp_le = preorder_class.less_imp_le | 
| 24422 | 561 | lemmas order_less_imp_not_eq = order_class.less_imp_not_eq | 
| 562 | lemmas order_less_imp_not_eq2 = order_class.less_imp_not_eq2 | |
| 563 | lemmas order_neq_le_trans = order_class.neq_le_trans | |
| 564 | lemmas order_le_neq_trans = order_class.le_neq_trans | |
| 565 | ||
| 566 | lemmas order_antisym = antisym | |
| 27682 | 567 | lemmas order_less_not_sym = preorder_class.less_not_sym | 
| 568 | lemmas order_less_asym = preorder_class.less_asym | |
| 24422 | 569 | lemmas order_eq_iff = order_class.eq_iff | 
| 570 | lemmas order_antisym_conv = order_class.antisym_conv | |
| 27682 | 571 | lemmas order_less_trans = preorder_class.less_trans | 
| 572 | lemmas order_le_less_trans = preorder_class.le_less_trans | |
| 573 | lemmas order_less_le_trans = preorder_class.less_le_trans | |
| 574 | lemmas order_less_imp_not_less = preorder_class.less_imp_not_less | |
| 575 | lemmas order_less_imp_triv = preorder_class.less_imp_triv | |
| 576 | lemmas order_less_asym' = preorder_class.less_asym' | |
| 24422 | 577 | |
| 578 | lemmas linorder_linear = linear | |
| 579 | lemmas linorder_less_linear = linorder_class.less_linear | |
| 580 | lemmas linorder_le_less_linear = linorder_class.le_less_linear | |
| 581 | lemmas linorder_le_cases = linorder_class.le_cases | |
| 582 | lemmas linorder_not_less = linorder_class.not_less | |
| 583 | lemmas linorder_not_le = linorder_class.not_le | |
| 584 | lemmas linorder_neq_iff = linorder_class.neq_iff | |
| 585 | lemmas linorder_neqE = linorder_class.neqE | |
| 586 | lemmas linorder_antisym_conv1 = linorder_class.antisym_conv1 | |
| 587 | lemmas linorder_antisym_conv2 = linorder_class.antisym_conv2 | |
| 588 | lemmas linorder_antisym_conv3 = linorder_class.antisym_conv3 | |
| 589 | ||
| 590 | ||
| 21083 | 591 | subsection {* Bounded quantifiers *}
 | 
| 592 | ||
| 593 | syntax | |
| 21180 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 594 |   "_All_less" :: "[idt, 'a, bool] => bool"    ("(3ALL _<_./ _)"  [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 595 |   "_Ex_less" :: "[idt, 'a, bool] => bool"    ("(3EX _<_./ _)"  [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 596 |   "_All_less_eq" :: "[idt, 'a, bool] => bool"    ("(3ALL _<=_./ _)" [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 597 |   "_Ex_less_eq" :: "[idt, 'a, bool] => bool"    ("(3EX _<=_./ _)" [0, 0, 10] 10)
 | 
| 21083 | 598 | |
| 21180 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 599 |   "_All_greater" :: "[idt, 'a, bool] => bool"    ("(3ALL _>_./ _)"  [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 600 |   "_Ex_greater" :: "[idt, 'a, bool] => bool"    ("(3EX _>_./ _)"  [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 601 |   "_All_greater_eq" :: "[idt, 'a, bool] => bool"    ("(3ALL _>=_./ _)" [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 602 |   "_Ex_greater_eq" :: "[idt, 'a, bool] => bool"    ("(3EX _>=_./ _)" [0, 0, 10] 10)
 | 
| 21083 | 603 | |
| 604 | syntax (xsymbols) | |
| 21180 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 605 |   "_All_less" :: "[idt, 'a, bool] => bool"    ("(3\<forall>_<_./ _)"  [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 606 |   "_Ex_less" :: "[idt, 'a, bool] => bool"    ("(3\<exists>_<_./ _)"  [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 607 |   "_All_less_eq" :: "[idt, 'a, bool] => bool"    ("(3\<forall>_\<le>_./ _)" [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 608 |   "_Ex_less_eq" :: "[idt, 'a, bool] => bool"    ("(3\<exists>_\<le>_./ _)" [0, 0, 10] 10)
 | 
| 21083 | 609 | |
| 21180 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 610 |   "_All_greater" :: "[idt, 'a, bool] => bool"    ("(3\<forall>_>_./ _)"  [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 611 |   "_Ex_greater" :: "[idt, 'a, bool] => bool"    ("(3\<exists>_>_./ _)"  [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 612 |   "_All_greater_eq" :: "[idt, 'a, bool] => bool"    ("(3\<forall>_\<ge>_./ _)" [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 613 |   "_Ex_greater_eq" :: "[idt, 'a, bool] => bool"    ("(3\<exists>_\<ge>_./ _)" [0, 0, 10] 10)
 | 
| 21083 | 614 | |
| 615 | syntax (HOL) | |
| 21180 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 616 |   "_All_less" :: "[idt, 'a, bool] => bool"    ("(3! _<_./ _)"  [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 617 |   "_Ex_less" :: "[idt, 'a, bool] => bool"    ("(3? _<_./ _)"  [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 618 |   "_All_less_eq" :: "[idt, 'a, bool] => bool"    ("(3! _<=_./ _)" [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 619 |   "_Ex_less_eq" :: "[idt, 'a, bool] => bool"    ("(3? _<=_./ _)" [0, 0, 10] 10)
 | 
| 21083 | 620 | |
| 621 | syntax (HTML output) | |
| 21180 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 622 |   "_All_less" :: "[idt, 'a, bool] => bool"    ("(3\<forall>_<_./ _)"  [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 623 |   "_Ex_less" :: "[idt, 'a, bool] => bool"    ("(3\<exists>_<_./ _)"  [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 624 |   "_All_less_eq" :: "[idt, 'a, bool] => bool"    ("(3\<forall>_\<le>_./ _)" [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 625 |   "_Ex_less_eq" :: "[idt, 'a, bool] => bool"    ("(3\<exists>_\<le>_./ _)" [0, 0, 10] 10)
 | 
| 21083 | 626 | |
| 21180 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 627 |   "_All_greater" :: "[idt, 'a, bool] => bool"    ("(3\<forall>_>_./ _)"  [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 628 |   "_Ex_greater" :: "[idt, 'a, bool] => bool"    ("(3\<exists>_>_./ _)"  [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 629 |   "_All_greater_eq" :: "[idt, 'a, bool] => bool"    ("(3\<forall>_\<ge>_./ _)" [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 630 |   "_Ex_greater_eq" :: "[idt, 'a, bool] => bool"    ("(3\<exists>_\<ge>_./ _)" [0, 0, 10] 10)
 | 
| 21083 | 631 | |
| 632 | translations | |
| 633 | "ALL x<y. P" => "ALL x. x < y \<longrightarrow> P" | |
| 634 | "EX x<y. P" => "EX x. x < y \<and> P" | |
| 635 | "ALL x<=y. P" => "ALL x. x <= y \<longrightarrow> P" | |
| 636 | "EX x<=y. P" => "EX x. x <= y \<and> P" | |
| 637 | "ALL x>y. P" => "ALL x. x > y \<longrightarrow> P" | |
| 638 | "EX x>y. P" => "EX x. x > y \<and> P" | |
| 639 | "ALL x>=y. P" => "ALL x. x >= y \<longrightarrow> P" | |
| 640 | "EX x>=y. P" => "EX x. x >= y \<and> P" | |
| 641 | ||
| 642 | print_translation {*
 | |
| 643 | let | |
| 22916 | 644 |   val All_binder = Syntax.binder_name @{const_syntax All};
 | 
| 645 |   val Ex_binder = Syntax.binder_name @{const_syntax Ex};
 | |
| 22377 | 646 |   val impl = @{const_syntax "op -->"};
 | 
| 647 |   val conj = @{const_syntax "op &"};
 | |
| 22916 | 648 |   val less = @{const_syntax less};
 | 
| 649 |   val less_eq = @{const_syntax less_eq};
 | |
| 21180 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 650 | |
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 651 | val trans = | 
| 21524 | 652 |    [((All_binder, impl, less), ("_All_less", "_All_greater")),
 | 
| 653 |     ((All_binder, impl, less_eq), ("_All_less_eq", "_All_greater_eq")),
 | |
| 654 |     ((Ex_binder, conj, less), ("_Ex_less", "_Ex_greater")),
 | |
| 655 |     ((Ex_binder, conj, less_eq), ("_Ex_less_eq", "_Ex_greater_eq"))];
 | |
| 21180 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 656 | |
| 22344 
eddeabf16b5d
Fixed print translations for quantifiers a la "ALL x>=t. P x". These used
 krauss parents: 
22316diff
changeset | 657 | fun matches_bound v t = | 
| 
eddeabf16b5d
Fixed print translations for quantifiers a la "ALL x>=t. P x". These used
 krauss parents: 
22316diff
changeset | 658 |      case t of (Const ("_bound", _) $ Free (v', _)) => (v = v')
 | 
| 
eddeabf16b5d
Fixed print translations for quantifiers a la "ALL x>=t. P x". These used
 krauss parents: 
22316diff
changeset | 659 | | _ => false | 
| 
eddeabf16b5d
Fixed print translations for quantifiers a la "ALL x>=t. P x". These used
 krauss parents: 
22316diff
changeset | 660 | fun contains_var v = Term.exists_subterm (fn Free (x, _) => x = v | _ => false) | 
| 
eddeabf16b5d
Fixed print translations for quantifiers a la "ALL x>=t. P x". These used
 krauss parents: 
22316diff
changeset | 661 | fun mk v c n P = Syntax.const c $ Syntax.mark_bound v $ n $ P | 
| 21180 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 662 | |
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 663 | fun tr' q = (q, | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 664 |     fn [Const ("_bound", _) $ Free (v, _), Const (c, _) $ (Const (d, _) $ t $ u) $ P] =>
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 665 | (case AList.lookup (op =) trans (q, c, d) of | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 666 | NONE => raise Match | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 667 | | SOME (l, g) => | 
| 22344 
eddeabf16b5d
Fixed print translations for quantifiers a la "ALL x>=t. P x". These used
 krauss parents: 
22316diff
changeset | 668 | if matches_bound v t andalso not (contains_var v u) then mk v l u P | 
| 
eddeabf16b5d
Fixed print translations for quantifiers a la "ALL x>=t. P x". These used
 krauss parents: 
22316diff
changeset | 669 | else if matches_bound v u andalso not (contains_var v t) then mk v g t P | 
| 
eddeabf16b5d
Fixed print translations for quantifiers a la "ALL x>=t. P x". These used
 krauss parents: 
22316diff
changeset | 670 | else raise Match) | 
| 21180 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 671 | | _ => raise Match); | 
| 21524 | 672 | in [tr' All_binder, tr' Ex_binder] end | 
| 21083 | 673 | *} | 
| 674 | ||
| 675 | ||
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 676 | subsection {* Transitivity reasoning *}
 | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 677 | |
| 25193 | 678 | context ord | 
| 679 | begin | |
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 680 | |
| 25193 | 681 | lemma ord_le_eq_trans: "a \<le> b \<Longrightarrow> b = c \<Longrightarrow> a \<le> c" | 
| 682 | by (rule subst) | |
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 683 | |
| 25193 | 684 | lemma ord_eq_le_trans: "a = b \<Longrightarrow> b \<le> c \<Longrightarrow> a \<le> c" | 
| 685 | by (rule ssubst) | |
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 686 | |
| 25193 | 687 | lemma ord_less_eq_trans: "a < b \<Longrightarrow> b = c \<Longrightarrow> a < c" | 
| 688 | by (rule subst) | |
| 689 | ||
| 690 | lemma ord_eq_less_trans: "a = b \<Longrightarrow> b < c \<Longrightarrow> a < c" | |
| 691 | by (rule ssubst) | |
| 692 | ||
| 693 | end | |
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 694 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 695 | lemma order_less_subst2: "(a::'a::order) < b ==> f b < (c::'c::order) ==> | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 696 | (!!x y. x < y ==> f x < f y) ==> f a < c" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 697 | proof - | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 698 | assume r: "!!x y. x < y ==> f x < f y" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 699 | assume "a < b" hence "f a < f b" by (rule r) | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 700 | also assume "f b < c" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 701 | finally (order_less_trans) show ?thesis . | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 702 | qed | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 703 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 704 | lemma order_less_subst1: "(a::'a::order) < f b ==> (b::'b::order) < c ==> | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 705 | (!!x y. x < y ==> f x < f y) ==> a < f c" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 706 | proof - | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 707 | assume r: "!!x y. x < y ==> f x < f y" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 708 | assume "a < f b" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 709 | also assume "b < c" hence "f b < f c" by (rule r) | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 710 | finally (order_less_trans) show ?thesis . | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 711 | qed | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 712 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 713 | lemma order_le_less_subst2: "(a::'a::order) <= b ==> f b < (c::'c::order) ==> | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 714 | (!!x y. x <= y ==> f x <= f y) ==> f a < c" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 715 | proof - | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 716 | assume r: "!!x y. x <= y ==> f x <= f y" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 717 | assume "a <= b" hence "f a <= f b" by (rule r) | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 718 | also assume "f b < c" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 719 | finally (order_le_less_trans) show ?thesis . | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 720 | qed | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 721 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 722 | lemma order_le_less_subst1: "(a::'a::order) <= f b ==> (b::'b::order) < c ==> | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 723 | (!!x y. x < y ==> f x < f y) ==> a < f c" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 724 | proof - | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 725 | assume r: "!!x y. x < y ==> f x < f y" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 726 | assume "a <= f b" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 727 | also assume "b < c" hence "f b < f c" by (rule r) | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 728 | finally (order_le_less_trans) show ?thesis . | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 729 | qed | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 730 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 731 | lemma order_less_le_subst2: "(a::'a::order) < b ==> f b <= (c::'c::order) ==> | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 732 | (!!x y. x < y ==> f x < f y) ==> f a < c" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 733 | proof - | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 734 | assume r: "!!x y. x < y ==> f x < f y" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 735 | assume "a < b" hence "f a < f b" by (rule r) | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 736 | also assume "f b <= c" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 737 | finally (order_less_le_trans) show ?thesis . | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 738 | qed | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 739 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 740 | lemma order_less_le_subst1: "(a::'a::order) < f b ==> (b::'b::order) <= c ==> | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 741 | (!!x y. x <= y ==> f x <= f y) ==> a < f c" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 742 | proof - | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 743 | assume r: "!!x y. x <= y ==> f x <= f y" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 744 | assume "a < f b" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 745 | also assume "b <= c" hence "f b <= f c" by (rule r) | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 746 | finally (order_less_le_trans) show ?thesis . | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 747 | qed | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 748 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 749 | lemma order_subst1: "(a::'a::order) <= f b ==> (b::'b::order) <= c ==> | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 750 | (!!x y. x <= y ==> f x <= f y) ==> a <= f c" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 751 | proof - | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 752 | assume r: "!!x y. x <= y ==> f x <= f y" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 753 | assume "a <= f b" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 754 | also assume "b <= c" hence "f b <= f c" by (rule r) | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 755 | finally (order_trans) show ?thesis . | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 756 | qed | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 757 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 758 | lemma order_subst2: "(a::'a::order) <= b ==> f b <= (c::'c::order) ==> | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 759 | (!!x y. x <= y ==> f x <= f y) ==> f a <= c" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 760 | proof - | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 761 | assume r: "!!x y. x <= y ==> f x <= f y" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 762 | assume "a <= b" hence "f a <= f b" by (rule r) | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 763 | also assume "f b <= c" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 764 | finally (order_trans) show ?thesis . | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 765 | qed | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 766 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 767 | lemma ord_le_eq_subst: "a <= b ==> f b = c ==> | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 768 | (!!x y. x <= y ==> f x <= f y) ==> f a <= c" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 769 | proof - | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 770 | assume r: "!!x y. x <= y ==> f x <= f y" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 771 | assume "a <= b" hence "f a <= f b" by (rule r) | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 772 | also assume "f b = c" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 773 | finally (ord_le_eq_trans) show ?thesis . | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 774 | qed | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 775 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 776 | lemma ord_eq_le_subst: "a = f b ==> b <= c ==> | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 777 | (!!x y. x <= y ==> f x <= f y) ==> a <= f c" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 778 | proof - | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 779 | assume r: "!!x y. x <= y ==> f x <= f y" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 780 | assume "a = f b" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 781 | also assume "b <= c" hence "f b <= f c" by (rule r) | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 782 | finally (ord_eq_le_trans) show ?thesis . | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 783 | qed | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 784 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 785 | lemma ord_less_eq_subst: "a < b ==> f b = c ==> | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 786 | (!!x y. x < y ==> f x < f y) ==> f a < c" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 787 | proof - | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 788 | assume r: "!!x y. x < y ==> f x < f y" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 789 | assume "a < b" hence "f a < f b" by (rule r) | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 790 | also assume "f b = c" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 791 | finally (ord_less_eq_trans) show ?thesis . | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 792 | qed | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 793 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 794 | lemma ord_eq_less_subst: "a = f b ==> b < c ==> | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 795 | (!!x y. x < y ==> f x < f y) ==> a < f c" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 796 | proof - | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 797 | assume r: "!!x y. x < y ==> f x < f y" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 798 | assume "a = f b" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 799 | also assume "b < c" hence "f b < f c" by (rule r) | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 800 | finally (ord_eq_less_trans) show ?thesis . | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 801 | qed | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 802 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 803 | text {*
 | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 804 | Note that this list of rules is in reverse order of priorities. | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 805 | *} | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 806 | |
| 27682 | 807 | lemmas [trans] = | 
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 808 | order_less_subst2 | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 809 | order_less_subst1 | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 810 | order_le_less_subst2 | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 811 | order_le_less_subst1 | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 812 | order_less_le_subst2 | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 813 | order_less_le_subst1 | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 814 | order_subst2 | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 815 | order_subst1 | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 816 | ord_le_eq_subst | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 817 | ord_eq_le_subst | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 818 | ord_less_eq_subst | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 819 | ord_eq_less_subst | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 820 | forw_subst | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 821 | back_subst | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 822 | rev_mp | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 823 | mp | 
| 27682 | 824 | |
| 825 | lemmas (in order) [trans] = | |
| 826 | neq_le_trans | |
| 827 | le_neq_trans | |
| 828 | ||
| 829 | lemmas (in preorder) [trans] = | |
| 830 | less_trans | |
| 831 | less_asym' | |
| 832 | le_less_trans | |
| 833 | less_le_trans | |
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 834 | order_trans | 
| 27682 | 835 | |
| 836 | lemmas (in order) [trans] = | |
| 837 | antisym | |
| 838 | ||
| 839 | lemmas (in ord) [trans] = | |
| 840 | ord_le_eq_trans | |
| 841 | ord_eq_le_trans | |
| 842 | ord_less_eq_trans | |
| 843 | ord_eq_less_trans | |
| 844 | ||
| 845 | lemmas [trans] = | |
| 846 | trans | |
| 847 | ||
| 848 | lemmas order_trans_rules = | |
| 849 | order_less_subst2 | |
| 850 | order_less_subst1 | |
| 851 | order_le_less_subst2 | |
| 852 | order_le_less_subst1 | |
| 853 | order_less_le_subst2 | |
| 854 | order_less_le_subst1 | |
| 855 | order_subst2 | |
| 856 | order_subst1 | |
| 857 | ord_le_eq_subst | |
| 858 | ord_eq_le_subst | |
| 859 | ord_less_eq_subst | |
| 860 | ord_eq_less_subst | |
| 861 | forw_subst | |
| 862 | back_subst | |
| 863 | rev_mp | |
| 864 | mp | |
| 865 | neq_le_trans | |
| 866 | le_neq_trans | |
| 867 | less_trans | |
| 868 | less_asym' | |
| 869 | le_less_trans | |
| 870 | less_le_trans | |
| 871 | order_trans | |
| 872 | antisym | |
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 873 | ord_le_eq_trans | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 874 | ord_eq_le_trans | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 875 | ord_less_eq_trans | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 876 | ord_eq_less_trans | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 877 | trans | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 878 | |
| 21180 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 879 | (* FIXME cleanup *) | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 880 | |
| 21083 | 881 | text {* These support proving chains of decreasing inequalities
 | 
| 882 | a >= b >= c ... in Isar proofs. *} | |
| 883 | ||
| 884 | lemma xt1: | |
| 885 | "a = b ==> b > c ==> a > c" | |
| 886 | "a > b ==> b = c ==> a > c" | |
| 887 | "a = b ==> b >= c ==> a >= c" | |
| 888 | "a >= b ==> b = c ==> a >= c" | |
| 889 | "(x::'a::order) >= y ==> y >= x ==> x = y" | |
| 890 | "(x::'a::order) >= y ==> y >= z ==> x >= z" | |
| 891 | "(x::'a::order) > y ==> y >= z ==> x > z" | |
| 892 | "(x::'a::order) >= y ==> y > z ==> x > z" | |
| 23417 | 893 | "(a::'a::order) > b ==> b > a ==> P" | 
| 21083 | 894 | "(x::'a::order) > y ==> y > z ==> x > z" | 
| 895 | "(a::'a::order) >= b ==> a ~= b ==> a > b" | |
| 896 | "(a::'a::order) ~= b ==> a >= b ==> a > b" | |
| 897 | "a = f b ==> b > c ==> (!!x y. x > y ==> f x > f y) ==> a > f c" | |
| 898 | "a > b ==> f b = c ==> (!!x y. x > y ==> f x > f y) ==> f a > c" | |
| 899 | "a = f b ==> b >= c ==> (!!x y. x >= y ==> f x >= f y) ==> a >= f c" | |
| 900 | "a >= b ==> f b = c ==> (!! x y. x >= y ==> f x >= f y) ==> f a >= c" | |
| 25076 | 901 | by auto | 
| 21083 | 902 | |
| 903 | lemma xt2: | |
| 904 | "(a::'a::order) >= f b ==> b >= c ==> (!!x y. x >= y ==> f x >= f y) ==> a >= f c" | |
| 905 | by (subgoal_tac "f b >= f c", force, force) | |
| 906 | ||
| 907 | lemma xt3: "(a::'a::order) >= b ==> (f b::'b::order) >= c ==> | |
| 908 | (!!x y. x >= y ==> f x >= f y) ==> f a >= c" | |
| 909 | by (subgoal_tac "f a >= f b", force, force) | |
| 910 | ||
| 911 | lemma xt4: "(a::'a::order) > f b ==> (b::'b::order) >= c ==> | |
| 912 | (!!x y. x >= y ==> f x >= f y) ==> a > f c" | |
| 913 | by (subgoal_tac "f b >= f c", force, force) | |
| 914 | ||
| 915 | lemma xt5: "(a::'a::order) > b ==> (f b::'b::order) >= c==> | |
| 916 | (!!x y. x > y ==> f x > f y) ==> f a > c" | |
| 917 | by (subgoal_tac "f a > f b", force, force) | |
| 918 | ||
| 919 | lemma xt6: "(a::'a::order) >= f b ==> b > c ==> | |
| 920 | (!!x y. x > y ==> f x > f y) ==> a > f c" | |
| 921 | by (subgoal_tac "f b > f c", force, force) | |
| 922 | ||
| 923 | lemma xt7: "(a::'a::order) >= b ==> (f b::'b::order) > c ==> | |
| 924 | (!!x y. x >= y ==> f x >= f y) ==> f a > c" | |
| 925 | by (subgoal_tac "f a >= f b", force, force) | |
| 926 | ||
| 927 | lemma xt8: "(a::'a::order) > f b ==> (b::'b::order) > c ==> | |
| 928 | (!!x y. x > y ==> f x > f y) ==> a > f c" | |
| 929 | by (subgoal_tac "f b > f c", force, force) | |
| 930 | ||
| 931 | lemma xt9: "(a::'a::order) > b ==> (f b::'b::order) > c ==> | |
| 932 | (!!x y. x > y ==> f x > f y) ==> f a > c" | |
| 933 | by (subgoal_tac "f a > f b", force, force) | |
| 934 | ||
| 935 | lemmas xtrans = xt1 xt2 xt3 xt4 xt5 xt6 xt7 xt8 xt9 | |
| 936 | ||
| 937 | (* | |
| 938 | Since "a >= b" abbreviates "b <= a", the abbreviation "..." stands | |
| 939 | for the wrong thing in an Isar proof. | |
| 940 | ||
| 941 | The extra transitivity rules can be used as follows: | |
| 942 | ||
| 943 | lemma "(a::'a::order) > z" | |
| 944 | proof - | |
| 945 | have "a >= b" (is "_ >= ?rhs") | |
| 946 | sorry | |
| 947 | also have "?rhs >= c" (is "_ >= ?rhs") | |
| 948 | sorry | |
| 949 | also (xtrans) have "?rhs = d" (is "_ = ?rhs") | |
| 950 | sorry | |
| 951 | also (xtrans) have "?rhs >= e" (is "_ >= ?rhs") | |
| 952 | sorry | |
| 953 | also (xtrans) have "?rhs > f" (is "_ > ?rhs") | |
| 954 | sorry | |
| 955 | also (xtrans) have "?rhs > z" | |
| 956 | sorry | |
| 957 | finally (xtrans) show ?thesis . | |
| 958 | qed | |
| 959 | ||
| 960 | Alternatively, one can use "declare xtrans [trans]" and then | |
| 961 | leave out the "(xtrans)" above. | |
| 962 | *) | |
| 963 | ||
| 23881 | 964 | |
| 965 | subsection {* Monotonicity, least value operator and min/max *}
 | |
| 21083 | 966 | |
| 25076 | 967 | context order | 
| 968 | begin | |
| 969 | ||
| 30298 | 970 | definition mono :: "('a \<Rightarrow> 'b\<Colon>order) \<Rightarrow> bool" where
 | 
| 25076 | 971 | "mono f \<longleftrightarrow> (\<forall>x y. x \<le> y \<longrightarrow> f x \<le> f y)" | 
| 972 | ||
| 973 | lemma monoI [intro?]: | |
| 974 | fixes f :: "'a \<Rightarrow> 'b\<Colon>order" | |
| 975 | shows "(\<And>x y. x \<le> y \<Longrightarrow> f x \<le> f y) \<Longrightarrow> mono f" | |
| 976 | unfolding mono_def by iprover | |
| 21216 
1c8580913738
made locale partial_order compatible with axclass order; changed import order; consecutive changes
 haftmann parents: 
21204diff
changeset | 977 | |
| 25076 | 978 | lemma monoD [dest?]: | 
| 979 | fixes f :: "'a \<Rightarrow> 'b\<Colon>order" | |
| 980 | shows "mono f \<Longrightarrow> x \<le> y \<Longrightarrow> f x \<le> f y" | |
| 981 | unfolding mono_def by iprover | |
| 982 | ||
| 30298 | 983 | definition strict_mono :: "('a \<Rightarrow> 'b\<Colon>order) \<Rightarrow> bool" where
 | 
| 984 | "strict_mono f \<longleftrightarrow> (\<forall>x y. x < y \<longrightarrow> f x < f y)" | |
| 985 | ||
| 986 | lemma strict_monoI [intro?]: | |
| 987 | assumes "\<And>x y. x < y \<Longrightarrow> f x < f y" | |
| 988 | shows "strict_mono f" | |
| 989 | using assms unfolding strict_mono_def by auto | |
| 990 | ||
| 991 | lemma strict_monoD [dest?]: | |
| 992 | "strict_mono f \<Longrightarrow> x < y \<Longrightarrow> f x < f y" | |
| 993 | unfolding strict_mono_def by auto | |
| 994 | ||
| 995 | lemma strict_mono_mono [dest?]: | |
| 996 | assumes "strict_mono f" | |
| 997 | shows "mono f" | |
| 998 | proof (rule monoI) | |
| 999 | fix x y | |
| 1000 | assume "x \<le> y" | |
| 1001 | show "f x \<le> f y" | |
| 1002 | proof (cases "x = y") | |
| 1003 | case True then show ?thesis by simp | |
| 1004 | next | |
| 1005 | case False with `x \<le> y` have "x < y" by simp | |
| 1006 | with assms strict_monoD have "f x < f y" by auto | |
| 1007 | then show ?thesis by simp | |
| 1008 | qed | |
| 1009 | qed | |
| 1010 | ||
| 25076 | 1011 | end | 
| 1012 | ||
| 1013 | context linorder | |
| 1014 | begin | |
| 1015 | ||
| 30298 | 1016 | lemma strict_mono_eq: | 
| 1017 | assumes "strict_mono f" | |
| 1018 | shows "f x = f y \<longleftrightarrow> x = y" | |
| 1019 | proof | |
| 1020 | assume "f x = f y" | |
| 1021 | show "x = y" proof (cases x y rule: linorder_cases) | |
| 1022 | case less with assms strict_monoD have "f x < f y" by auto | |
| 1023 | with `f x = f y` show ?thesis by simp | |
| 1024 | next | |
| 1025 | case equal then show ?thesis . | |
| 1026 | next | |
| 1027 | case greater with assms strict_monoD have "f y < f x" by auto | |
| 1028 | with `f x = f y` show ?thesis by simp | |
| 1029 | qed | |
| 1030 | qed simp | |
| 1031 | ||
| 1032 | lemma strict_mono_less_eq: | |
| 1033 | assumes "strict_mono f" | |
| 1034 | shows "f x \<le> f y \<longleftrightarrow> x \<le> y" | |
| 1035 | proof | |
| 1036 | assume "x \<le> y" | |
| 1037 | with assms strict_mono_mono monoD show "f x \<le> f y" by auto | |
| 1038 | next | |
| 1039 | assume "f x \<le> f y" | |
| 1040 | show "x \<le> y" proof (rule ccontr) | |
| 1041 | assume "\<not> x \<le> y" then have "y < x" by simp | |
| 1042 | with assms strict_monoD have "f y < f x" by auto | |
| 1043 | with `f x \<le> f y` show False by simp | |
| 1044 | qed | |
| 1045 | qed | |
| 1046 | ||
| 1047 | lemma strict_mono_less: | |
| 1048 | assumes "strict_mono f" | |
| 1049 | shows "f x < f y \<longleftrightarrow> x < y" | |
| 1050 | using assms | |
| 1051 | by (auto simp add: less_le Orderings.less_le strict_mono_eq strict_mono_less_eq) | |
| 1052 | ||
| 25076 | 1053 | lemma min_of_mono: | 
| 1054 | fixes f :: "'a \<Rightarrow> 'b\<Colon>linorder" | |
| 25377 | 1055 | shows "mono f \<Longrightarrow> min (f m) (f n) = f (min m n)" | 
| 25076 | 1056 | by (auto simp: mono_def Orderings.min_def min_def intro: Orderings.antisym) | 
| 1057 | ||
| 1058 | lemma max_of_mono: | |
| 1059 | fixes f :: "'a \<Rightarrow> 'b\<Colon>linorder" | |
| 25377 | 1060 | shows "mono f \<Longrightarrow> max (f m) (f n) = f (max m n)" | 
| 25076 | 1061 | by (auto simp: mono_def Orderings.max_def max_def intro: Orderings.antisym) | 
| 1062 | ||
| 1063 | end | |
| 21083 | 1064 | |
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 1065 | lemma min_leastL: "(!!x. least <= x) ==> min least x = least" | 
| 23212 | 1066 | by (simp add: min_def) | 
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 1067 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 1068 | lemma max_leastL: "(!!x. least <= x) ==> max least x = x" | 
| 23212 | 1069 | by (simp add: max_def) | 
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 1070 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 1071 | lemma min_leastR: "(\<And>x\<Colon>'a\<Colon>order. least \<le> x) \<Longrightarrow> min x least = least" | 
| 23212 | 1072 | apply (simp add: min_def) | 
| 1073 | apply (blast intro: order_antisym) | |
| 1074 | done | |
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 1075 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 1076 | lemma max_leastR: "(\<And>x\<Colon>'a\<Colon>order. least \<le> x) \<Longrightarrow> max x least = x" | 
| 23212 | 1077 | apply (simp add: max_def) | 
| 1078 | apply (blast intro: order_antisym) | |
| 1079 | done | |
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 1080 | |
| 27823 | 1081 | |
| 28685 | 1082 | subsection {* Top and bottom elements *}
 | 
| 1083 | ||
| 1084 | class top = preorder + | |
| 1085 | fixes top :: 'a | |
| 1086 | assumes top_greatest [simp]: "x \<le> top" | |
| 1087 | ||
| 1088 | class bot = preorder + | |
| 1089 | fixes bot :: 'a | |
| 1090 | assumes bot_least [simp]: "bot \<le> x" | |
| 1091 | ||
| 1092 | ||
| 27823 | 1093 | subsection {* Dense orders *}
 | 
| 1094 | ||
| 1095 | class dense_linear_order = linorder + | |
| 1096 | assumes gt_ex: "\<exists>y. x < y" | |
| 1097 | and lt_ex: "\<exists>y. y < x" | |
| 1098 | and dense: "x < y \<Longrightarrow> (\<exists>z. x < z \<and> z < y)" | |
| 1099 | ||
| 1100 | ||
| 1101 | subsection {* Wellorders *}
 | |
| 1102 | ||
| 1103 | class wellorder = linorder + | |
| 1104 | assumes less_induct [case_names less]: "(\<And>x. (\<And>y. y < x \<Longrightarrow> P y) \<Longrightarrow> P x) \<Longrightarrow> P a" | |
| 1105 | begin | |
| 1106 | ||
| 1107 | lemma wellorder_Least_lemma: | |
| 1108 | fixes k :: 'a | |
| 1109 | assumes "P k" | |
| 1110 | shows "P (LEAST x. P x)" and "(LEAST x. P x) \<le> k" | |
| 1111 | proof - | |
| 1112 | have "P (LEAST x. P x) \<and> (LEAST x. P x) \<le> k" | |
| 1113 | using assms proof (induct k rule: less_induct) | |
| 1114 | case (less x) then have "P x" by simp | |
| 1115 | show ?case proof (rule classical) | |
| 1116 | assume assm: "\<not> (P (LEAST a. P a) \<and> (LEAST a. P a) \<le> x)" | |
| 1117 | have "\<And>y. P y \<Longrightarrow> x \<le> y" | |
| 1118 | proof (rule classical) | |
| 1119 | fix y | |
| 1120 | assume "P y" and "\<not> x \<le> y" | |
| 1121 | with less have "P (LEAST a. P a)" and "(LEAST a. P a) \<le> y" | |
| 1122 | by (auto simp add: not_le) | |
| 1123 | with assm have "x < (LEAST a. P a)" and "(LEAST a. P a) \<le> y" | |
| 1124 | by auto | |
| 1125 | then show "x \<le> y" by auto | |
| 1126 | qed | |
| 1127 | with `P x` have Least: "(LEAST a. P a) = x" | |
| 1128 | by (rule Least_equality) | |
| 1129 | with `P x` show ?thesis by simp | |
| 1130 | qed | |
| 1131 | qed | |
| 1132 | then show "P (LEAST x. P x)" and "(LEAST x. P x) \<le> k" by auto | |
| 1133 | qed | |
| 1134 | ||
| 1135 | lemmas LeastI = wellorder_Least_lemma(1) | |
| 1136 | lemmas Least_le = wellorder_Least_lemma(2) | |
| 1137 | ||
| 1138 | -- "The following 3 lemmas are due to Brian Huffman" | |
| 1139 | lemma LeastI_ex: "\<exists>x. P x \<Longrightarrow> P (Least P)" | |
| 1140 | by (erule exE) (erule LeastI) | |
| 1141 | ||
| 1142 | lemma LeastI2: | |
| 1143 | "P a \<Longrightarrow> (\<And>x. P x \<Longrightarrow> Q x) \<Longrightarrow> Q (Least P)" | |
| 1144 | by (blast intro: LeastI) | |
| 1145 | ||
| 1146 | lemma LeastI2_ex: | |
| 1147 | "\<exists>a. P a \<Longrightarrow> (\<And>x. P x \<Longrightarrow> Q x) \<Longrightarrow> Q (Least P)" | |
| 1148 | by (blast intro: LeastI_ex) | |
| 1149 | ||
| 1150 | lemma not_less_Least: "k < (LEAST x. P x) \<Longrightarrow> \<not> P k" | |
| 1151 | apply (simp (no_asm_use) add: not_le [symmetric]) | |
| 1152 | apply (erule contrapos_nn) | |
| 1153 | apply (erule Least_le) | |
| 1154 | done | |
| 1155 | ||
| 1156 | end | |
| 1157 | ||
| 28685 | 1158 | |
| 1159 | subsection {* Order on bool *}
 | |
| 1160 | ||
| 1161 | instantiation bool :: "{order, top, bot}"
 | |
| 1162 | begin | |
| 1163 | ||
| 1164 | definition | |
| 1165 | le_bool_def [code del]: "P \<le> Q \<longleftrightarrow> P \<longrightarrow> Q" | |
| 1166 | ||
| 1167 | definition | |
| 1168 | less_bool_def [code del]: "(P\<Colon>bool) < Q \<longleftrightarrow> \<not> P \<and> Q" | |
| 1169 | ||
| 1170 | definition | |
| 1171 | top_bool_eq: "top = True" | |
| 1172 | ||
| 1173 | definition | |
| 1174 | bot_bool_eq: "bot = False" | |
| 1175 | ||
| 1176 | instance proof | |
| 1177 | qed (auto simp add: le_bool_def less_bool_def top_bool_eq bot_bool_eq) | |
| 1178 | ||
| 15524 | 1179 | end | 
| 28685 | 1180 | |
| 1181 | lemma le_boolI: "(P \<Longrightarrow> Q) \<Longrightarrow> P \<le> Q" | |
| 32899 | 1182 | by (simp add: le_bool_def) | 
| 28685 | 1183 | |
| 1184 | lemma le_boolI': "P \<longrightarrow> Q \<Longrightarrow> P \<le> Q" | |
| 32899 | 1185 | by (simp add: le_bool_def) | 
| 28685 | 1186 | |
| 1187 | lemma le_boolE: "P \<le> Q \<Longrightarrow> P \<Longrightarrow> (Q \<Longrightarrow> R) \<Longrightarrow> R" | |
| 32899 | 1188 | by (simp add: le_bool_def) | 
| 28685 | 1189 | |
| 1190 | lemma le_boolD: "P \<le> Q \<Longrightarrow> P \<longrightarrow> Q" | |
| 32899 | 1191 | by (simp add: le_bool_def) | 
| 1192 | ||
| 1193 | lemma bot_boolE: "bot \<Longrightarrow> P" | |
| 1194 | by (simp add: bot_bool_eq) | |
| 1195 | ||
| 1196 | lemma top_boolI: top | |
| 1197 | by (simp add: top_bool_eq) | |
| 28685 | 1198 | |
| 1199 | lemma [code]: | |
| 1200 | "False \<le> b \<longleftrightarrow> True" | |
| 1201 | "True \<le> b \<longleftrightarrow> b" | |
| 1202 | "False < b \<longleftrightarrow> b" | |
| 1203 | "True < b \<longleftrightarrow> False" | |
| 1204 | unfolding le_bool_def less_bool_def by simp_all | |
| 1205 | ||
| 1206 | ||
| 1207 | subsection {* Order on functions *}
 | |
| 1208 | ||
| 1209 | instantiation "fun" :: (type, ord) ord | |
| 1210 | begin | |
| 1211 | ||
| 1212 | definition | |
| 1213 | le_fun_def [code del]: "f \<le> g \<longleftrightarrow> (\<forall>x. f x \<le> g x)" | |
| 1214 | ||
| 1215 | definition | |
| 1216 | less_fun_def [code del]: "(f\<Colon>'a \<Rightarrow> 'b) < g \<longleftrightarrow> f \<le> g \<and> \<not> (g \<le> f)" | |
| 1217 | ||
| 1218 | instance .. | |
| 1219 | ||
| 1220 | end | |
| 1221 | ||
| 1222 | instance "fun" :: (type, preorder) preorder proof | |
| 1223 | qed (auto simp add: le_fun_def less_fun_def | |
| 1224 | intro: order_trans order_antisym intro!: ext) | |
| 1225 | ||
| 1226 | instance "fun" :: (type, order) order proof | |
| 1227 | qed (auto simp add: le_fun_def intro: order_antisym ext) | |
| 1228 | ||
| 1229 | instantiation "fun" :: (type, top) top | |
| 1230 | begin | |
| 1231 | ||
| 1232 | definition | |
| 1233 | top_fun_eq: "top = (\<lambda>x. top)" | |
| 1234 | ||
| 1235 | instance proof | |
| 1236 | qed (simp add: top_fun_eq le_fun_def) | |
| 1237 | ||
| 1238 | end | |
| 1239 | ||
| 1240 | instantiation "fun" :: (type, bot) bot | |
| 1241 | begin | |
| 1242 | ||
| 1243 | definition | |
| 1244 | bot_fun_eq: "bot = (\<lambda>x. bot)" | |
| 1245 | ||
| 1246 | instance proof | |
| 1247 | qed (simp add: bot_fun_eq le_fun_def) | |
| 1248 | ||
| 1249 | end | |
| 1250 | ||
| 1251 | lemma le_funI: "(\<And>x. f x \<le> g x) \<Longrightarrow> f \<le> g" | |
| 1252 | unfolding le_fun_def by simp | |
| 1253 | ||
| 1254 | lemma le_funE: "f \<le> g \<Longrightarrow> (f x \<le> g x \<Longrightarrow> P) \<Longrightarrow> P" | |
| 1255 | unfolding le_fun_def by simp | |
| 1256 | ||
| 1257 | lemma le_funD: "f \<le> g \<Longrightarrow> f x \<le> g x" | |
| 1258 | unfolding le_fun_def by simp | |
| 1259 | ||
| 1260 | text {*
 | |
| 1261 |   Handy introduction and elimination rules for @{text "\<le>"}
 | |
| 1262 | on unary and binary predicates | |
| 1263 | *} | |
| 1264 | ||
| 1265 | lemma predicate1I: | |
| 1266 | assumes PQ: "\<And>x. P x \<Longrightarrow> Q x" | |
| 1267 | shows "P \<le> Q" | |
| 1268 | apply (rule le_funI) | |
| 1269 | apply (rule le_boolI) | |
| 1270 | apply (rule PQ) | |
| 1271 | apply assumption | |
| 1272 | done | |
| 1273 | ||
| 1274 | lemma predicate1D [Pure.dest, dest]: "P \<le> Q \<Longrightarrow> P x \<Longrightarrow> Q x" | |
| 1275 | apply (erule le_funE) | |
| 1276 | apply (erule le_boolE) | |
| 1277 | apply assumption+ | |
| 1278 | done | |
| 1279 | ||
| 1280 | lemma predicate2I [Pure.intro!, intro!]: | |
| 1281 | assumes PQ: "\<And>x y. P x y \<Longrightarrow> Q x y" | |
| 1282 | shows "P \<le> Q" | |
| 1283 | apply (rule le_funI)+ | |
| 1284 | apply (rule le_boolI) | |
| 1285 | apply (rule PQ) | |
| 1286 | apply assumption | |
| 1287 | done | |
| 1288 | ||
| 1289 | lemma predicate2D [Pure.dest, dest]: "P \<le> Q \<Longrightarrow> P x y \<Longrightarrow> Q x y" | |
| 1290 | apply (erule le_funE)+ | |
| 1291 | apply (erule le_boolE) | |
| 1292 | apply assumption+ | |
| 1293 | done | |
| 1294 | ||
| 1295 | lemma rev_predicate1D: "P x ==> P <= Q ==> Q x" | |
| 1296 | by (rule predicate1D) | |
| 1297 | ||
| 1298 | lemma rev_predicate2D: "P x y ==> P <= Q ==> Q x y" | |
| 1299 | by (rule predicate2D) | |
| 1300 | ||
| 1301 | end |