author | blanchet |
Tue, 27 Mar 2012 16:59:13 +0300 | |
changeset 47147 | bd064bc71085 |
parent 47108 | 2a1953f0d20d |
child 47163 | 248376f8881d |
permissions | -rw-r--r-- |
24333 | 1 |
(* |
2 |
Author: Jeremy Dawson, NICTA |
|
3 |
||
44939
5930d35c976d
removed unused legacy lemma names, some comment cleanup.
kleing
parents:
44890
diff
changeset
|
4 |
Basic definitions to do with integers, expressed using Pls, Min, BIT. |
24333 | 5 |
*) |
6 |
||
24350 | 7 |
header {* Basic Definitions for Binary Integers *} |
8 |
||
37658 | 9 |
theory Bit_Representation |
41413
64cd30d6b0b8
explicit file specifications -- avoid secondary load path;
wenzelm
parents:
37667
diff
changeset
|
10 |
imports Misc_Numeric "~~/src/HOL/Library/Bit" |
24333 | 11 |
begin |
12 |
||
26557 | 13 |
subsection {* Further properties of numerals *} |
14 |
||
37667 | 15 |
definition bitval :: "bit \<Rightarrow> 'a\<Colon>zero_neq_one" where |
16 |
"bitval = bit_case 0 1" |
|
17 |
||
18 |
lemma bitval_simps [simp]: |
|
19 |
"bitval 0 = 0" |
|
20 |
"bitval 1 = 1" |
|
21 |
by (simp_all add: bitval_def) |
|
22 |
||
37654 | 23 |
definition Bit :: "int \<Rightarrow> bit \<Rightarrow> int" (infixl "BIT" 90) where |
37667 | 24 |
"k BIT b = bitval b + k + k" |
26557 | 25 |
|
45843
c58ce659ce2a
reorder some definitions and proofs, in preparation for new numeral representation
huffman
parents:
45604
diff
changeset
|
26 |
definition bin_last :: "int \<Rightarrow> bit" where |
c58ce659ce2a
reorder some definitions and proofs, in preparation for new numeral representation
huffman
parents:
45604
diff
changeset
|
27 |
"bin_last w = (if w mod 2 = 0 then (0::bit) else (1::bit))" |
c58ce659ce2a
reorder some definitions and proofs, in preparation for new numeral representation
huffman
parents:
45604
diff
changeset
|
28 |
|
c58ce659ce2a
reorder some definitions and proofs, in preparation for new numeral representation
huffman
parents:
45604
diff
changeset
|
29 |
definition bin_rest :: "int \<Rightarrow> int" where |
c58ce659ce2a
reorder some definitions and proofs, in preparation for new numeral representation
huffman
parents:
45604
diff
changeset
|
30 |
"bin_rest w = w div 2" |
c58ce659ce2a
reorder some definitions and proofs, in preparation for new numeral representation
huffman
parents:
45604
diff
changeset
|
31 |
|
c58ce659ce2a
reorder some definitions and proofs, in preparation for new numeral representation
huffman
parents:
45604
diff
changeset
|
32 |
lemma bin_rl_simp [simp]: |
c58ce659ce2a
reorder some definitions and proofs, in preparation for new numeral representation
huffman
parents:
45604
diff
changeset
|
33 |
"bin_rest w BIT bin_last w = w" |
c58ce659ce2a
reorder some definitions and proofs, in preparation for new numeral representation
huffman
parents:
45604
diff
changeset
|
34 |
unfolding bin_rest_def bin_last_def Bit_def |
c58ce659ce2a
reorder some definitions and proofs, in preparation for new numeral representation
huffman
parents:
45604
diff
changeset
|
35 |
using mod_div_equality [of w 2] |
c58ce659ce2a
reorder some definitions and proofs, in preparation for new numeral representation
huffman
parents:
45604
diff
changeset
|
36 |
by (cases "w mod 2 = 0", simp_all) |
c58ce659ce2a
reorder some definitions and proofs, in preparation for new numeral representation
huffman
parents:
45604
diff
changeset
|
37 |
|
46600 | 38 |
lemma bin_rest_BIT [simp]: "bin_rest (x BIT b) = x" |
45843
c58ce659ce2a
reorder some definitions and proofs, in preparation for new numeral representation
huffman
parents:
45604
diff
changeset
|
39 |
unfolding bin_rest_def Bit_def |
c58ce659ce2a
reorder some definitions and proofs, in preparation for new numeral representation
huffman
parents:
45604
diff
changeset
|
40 |
by (cases b, simp_all) |
c58ce659ce2a
reorder some definitions and proofs, in preparation for new numeral representation
huffman
parents:
45604
diff
changeset
|
41 |
|
46600 | 42 |
lemma bin_last_BIT [simp]: "bin_last (x BIT b) = b" |
45843
c58ce659ce2a
reorder some definitions and proofs, in preparation for new numeral representation
huffman
parents:
45604
diff
changeset
|
43 |
unfolding bin_last_def Bit_def |
c58ce659ce2a
reorder some definitions and proofs, in preparation for new numeral representation
huffman
parents:
45604
diff
changeset
|
44 |
by (cases b, simp_all add: z1pmod2) |
c58ce659ce2a
reorder some definitions and proofs, in preparation for new numeral representation
huffman
parents:
45604
diff
changeset
|
45 |
|
45848 | 46 |
lemma BIT_eq_iff [iff]: "u BIT b = v BIT c \<longleftrightarrow> u = v \<and> b = c" |
45843
c58ce659ce2a
reorder some definitions and proofs, in preparation for new numeral representation
huffman
parents:
45604
diff
changeset
|
47 |
by (metis bin_rest_BIT bin_last_BIT) |
c58ce659ce2a
reorder some definitions and proofs, in preparation for new numeral representation
huffman
parents:
45604
diff
changeset
|
48 |
|
45849 | 49 |
lemma BIT_bin_simps [simp]: |
47108
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46607
diff
changeset
|
50 |
"numeral k BIT 0 = numeral (Num.Bit0 k)" |
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46607
diff
changeset
|
51 |
"numeral k BIT 1 = numeral (Num.Bit1 k)" |
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46607
diff
changeset
|
52 |
"neg_numeral k BIT 0 = neg_numeral (Num.Bit0 k)" |
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46607
diff
changeset
|
53 |
"neg_numeral k BIT 1 = neg_numeral (Num.BitM k)" |
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46607
diff
changeset
|
54 |
unfolding neg_numeral_def numeral.simps numeral_BitM |
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46607
diff
changeset
|
55 |
unfolding Bit_def bitval_simps |
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46607
diff
changeset
|
56 |
by (simp_all del: arith_simps add_numeral_special diff_numeral_special) |
45849 | 57 |
|
58 |
lemma BIT_special_simps [simp]: |
|
59 |
shows "0 BIT 0 = 0" and "0 BIT 1 = 1" and "1 BIT 0 = 2" and "1 BIT 1 = 3" |
|
60 |
unfolding Bit_def by simp_all |
|
61 |
||
47108
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46607
diff
changeset
|
62 |
lemma BitM_inc: "Num.BitM (Num.inc w) = Num.Bit1 w" |
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46607
diff
changeset
|
63 |
by (induct w, simp_all) |
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46607
diff
changeset
|
64 |
|
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46607
diff
changeset
|
65 |
lemma expand_BIT: |
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46607
diff
changeset
|
66 |
"numeral (Num.Bit0 w) = numeral w BIT 0" |
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46607
diff
changeset
|
67 |
"numeral (Num.Bit1 w) = numeral w BIT 1" |
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46607
diff
changeset
|
68 |
"neg_numeral (Num.Bit0 w) = neg_numeral w BIT 0" |
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46607
diff
changeset
|
69 |
"neg_numeral (Num.Bit1 w) = neg_numeral (w + Num.One) BIT 1" |
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46607
diff
changeset
|
70 |
unfolding add_One by (simp_all add: BitM_inc) |
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46607
diff
changeset
|
71 |
|
45851
19f7ac6cf3cc
add simp rules for bin_rest and bin_last applied to numerals
huffman
parents:
45850
diff
changeset
|
72 |
lemma bin_last_numeral_simps [simp]: |
19f7ac6cf3cc
add simp rules for bin_rest and bin_last applied to numerals
huffman
parents:
45850
diff
changeset
|
73 |
"bin_last 0 = 0" |
19f7ac6cf3cc
add simp rules for bin_rest and bin_last applied to numerals
huffman
parents:
45850
diff
changeset
|
74 |
"bin_last 1 = 1" |
19f7ac6cf3cc
add simp rules for bin_rest and bin_last applied to numerals
huffman
parents:
45850
diff
changeset
|
75 |
"bin_last -1 = 1" |
47108
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46607
diff
changeset
|
76 |
"bin_last Numeral1 = 1" |
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46607
diff
changeset
|
77 |
"bin_last (numeral (Num.Bit0 w)) = 0" |
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46607
diff
changeset
|
78 |
"bin_last (numeral (Num.Bit1 w)) = 1" |
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46607
diff
changeset
|
79 |
"bin_last (neg_numeral (Num.Bit0 w)) = 0" |
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46607
diff
changeset
|
80 |
"bin_last (neg_numeral (Num.Bit1 w)) = 1" |
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46607
diff
changeset
|
81 |
unfolding expand_BIT bin_last_BIT by (simp_all add: bin_last_def) |
45851
19f7ac6cf3cc
add simp rules for bin_rest and bin_last applied to numerals
huffman
parents:
45850
diff
changeset
|
82 |
|
19f7ac6cf3cc
add simp rules for bin_rest and bin_last applied to numerals
huffman
parents:
45850
diff
changeset
|
83 |
lemma bin_rest_numeral_simps [simp]: |
19f7ac6cf3cc
add simp rules for bin_rest and bin_last applied to numerals
huffman
parents:
45850
diff
changeset
|
84 |
"bin_rest 0 = 0" |
19f7ac6cf3cc
add simp rules for bin_rest and bin_last applied to numerals
huffman
parents:
45850
diff
changeset
|
85 |
"bin_rest 1 = 0" |
19f7ac6cf3cc
add simp rules for bin_rest and bin_last applied to numerals
huffman
parents:
45850
diff
changeset
|
86 |
"bin_rest -1 = -1" |
47108
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46607
diff
changeset
|
87 |
"bin_rest Numeral1 = 0" |
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46607
diff
changeset
|
88 |
"bin_rest (numeral (Num.Bit0 w)) = numeral w" |
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46607
diff
changeset
|
89 |
"bin_rest (numeral (Num.Bit1 w)) = numeral w" |
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46607
diff
changeset
|
90 |
"bin_rest (neg_numeral (Num.Bit0 w)) = neg_numeral w" |
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46607
diff
changeset
|
91 |
"bin_rest (neg_numeral (Num.Bit1 w)) = neg_numeral (w + Num.One)" |
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46607
diff
changeset
|
92 |
unfolding expand_BIT bin_rest_BIT by (simp_all add: bin_rest_def) |
26557 | 93 |
|
94 |
lemma less_Bits: |
|
37654 | 95 |
"(v BIT b < w BIT c) = (v < w | v <= w & b = (0::bit) & c = (1::bit))" |
37667 | 96 |
unfolding Bit_def by (auto simp add: bitval_def split: bit.split) |
24333 | 97 |
|
26557 | 98 |
lemma le_Bits: |
37654 | 99 |
"(v BIT b <= w BIT c) = (v < w | v <= w & (b ~= (1::bit) | c ~= (0::bit)))" |
37667 | 100 |
unfolding Bit_def by (auto simp add: bitval_def split: bit.split) |
26557 | 101 |
|
102 |
lemma Bit_B0: |
|
37654 | 103 |
"k BIT (0::bit) = k + k" |
26557 | 104 |
by (unfold Bit_def) simp |
105 |
||
106 |
lemma Bit_B1: |
|
37654 | 107 |
"k BIT (1::bit) = k + k + 1" |
26557 | 108 |
by (unfold Bit_def) simp |
109 |
||
37654 | 110 |
lemma Bit_B0_2t: "k BIT (0::bit) = 2 * k" |
26557 | 111 |
by (rule trans, rule Bit_B0) simp |
112 |
||
37654 | 113 |
lemma Bit_B1_2t: "k BIT (1::bit) = 2 * k + 1" |
26557 | 114 |
by (rule trans, rule Bit_B1) simp |
115 |
||
116 |
lemma B_mod_2': |
|
37654 | 117 |
"X = 2 ==> (w BIT (1::bit)) mod X = 1 & (w BIT (0::bit)) mod X = 0" |
26557 | 118 |
apply (simp (no_asm) only: Bit_B0 Bit_B1) |
119 |
apply (simp add: z1pmod2) |
|
24465 | 120 |
done |
24333 | 121 |
|
26557 | 122 |
lemma neB1E [elim!]: |
37654 | 123 |
assumes ne: "y \<noteq> (1::bit)" |
124 |
assumes y: "y = (0::bit) \<Longrightarrow> P" |
|
26557 | 125 |
shows "P" |
126 |
apply (rule y) |
|
127 |
apply (cases y rule: bit.exhaust, simp) |
|
128 |
apply (simp add: ne) |
|
129 |
done |
|
26086
3c243098b64a
New simpler representation of numerals, using Bit0 and Bit1 instead of BIT, B0, and B1
huffman
parents:
25919
diff
changeset
|
130 |
|
26557 | 131 |
lemma bin_ex_rl: "EX w b. w BIT b = bin" |
47108
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46607
diff
changeset
|
132 |
by (metis bin_rl_simp) |
26086
3c243098b64a
New simpler representation of numerals, using Bit0 and Bit1 instead of BIT, B0, and B1
huffman
parents:
25919
diff
changeset
|
133 |
|
26557 | 134 |
lemma bin_exhaust: |
135 |
assumes Q: "\<And>x b. bin = x BIT b \<Longrightarrow> Q" |
|
136 |
shows "Q" |
|
137 |
apply (insert bin_ex_rl [of bin]) |
|
138 |
apply (erule exE)+ |
|
139 |
apply (rule Q) |
|
140 |
apply force |
|
26086
3c243098b64a
New simpler representation of numerals, using Bit0 and Bit1 instead of BIT, B0, and B1
huffman
parents:
25919
diff
changeset
|
141 |
done |
24333 | 142 |
|
143 |
||
24465 | 144 |
subsection {* Destructors for binary integers *} |
24364 | 145 |
|
26514 | 146 |
primrec bin_nth where |
37654 | 147 |
Z: "bin_nth w 0 = (bin_last w = (1::bit))" |
26557 | 148 |
| Suc: "bin_nth w (Suc n) = bin_nth (bin_rest w) n" |
24364 | 149 |
|
26557 | 150 |
lemma bin_abs_lem: |
47108
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46607
diff
changeset
|
151 |
"bin = (w BIT b) ==> bin ~= -1 --> bin ~= 0 --> |
26557 | 152 |
nat (abs w) < nat (abs bin)" |
46598 | 153 |
apply clarsimp |
47108
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46607
diff
changeset
|
154 |
apply (unfold Bit_def) |
26557 | 155 |
apply (cases b) |
156 |
apply (clarsimp, arith) |
|
157 |
apply (clarsimp, arith) |
|
158 |
done |
|
159 |
||
160 |
lemma bin_induct: |
|
47108
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46607
diff
changeset
|
161 |
assumes PPls: "P 0" |
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46607
diff
changeset
|
162 |
and PMin: "P -1" |
26557 | 163 |
and PBit: "!!bin bit. P bin ==> P (bin BIT bit)" |
164 |
shows "P bin" |
|
165 |
apply (rule_tac P=P and a=bin and f1="nat o abs" |
|
166 |
in wf_measure [THEN wf_induct]) |
|
167 |
apply (simp add: measure_def inv_image_def) |
|
168 |
apply (case_tac x rule: bin_exhaust) |
|
169 |
apply (frule bin_abs_lem) |
|
170 |
apply (auto simp add : PPls PMin PBit) |
|
171 |
done |
|
172 |
||
24333 | 173 |
lemma Bit_div2 [simp]: "(w BIT b) div 2 = w" |
46600 | 174 |
unfolding bin_rest_def [symmetric] by (rule bin_rest_BIT) |
24333 | 175 |
|
176 |
lemma bin_nth_lem [rule_format]: |
|
177 |
"ALL y. bin_nth x = bin_nth y --> x = y" |
|
47108
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46607
diff
changeset
|
178 |
apply (induct x rule: bin_induct) |
24333 | 179 |
apply safe |
180 |
apply (erule rev_mp) |
|
47108
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46607
diff
changeset
|
181 |
apply (induct_tac y rule: bin_induct) |
46008
c296c75f4cf4
reverted some changes for set->predicate transition, according to "hg log -u berghofe -r Isabelle2007:Isabelle2008";
wenzelm
parents:
46001
diff
changeset
|
182 |
apply safe |
24333 | 183 |
apply (drule_tac x=0 in fun_cong, force) |
184 |
apply (erule notE, rule ext, |
|
185 |
drule_tac x="Suc x" in fun_cong, force) |
|
46600 | 186 |
apply (drule_tac x=0 in fun_cong, force) |
24333 | 187 |
apply (erule rev_mp) |
47108
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46607
diff
changeset
|
188 |
apply (induct_tac y rule: bin_induct) |
46008
c296c75f4cf4
reverted some changes for set->predicate transition, according to "hg log -u berghofe -r Isabelle2007:Isabelle2008";
wenzelm
parents:
46001
diff
changeset
|
189 |
apply safe |
24333 | 190 |
apply (drule_tac x=0 in fun_cong, force) |
191 |
apply (erule notE, rule ext, |
|
192 |
drule_tac x="Suc x" in fun_cong, force) |
|
46600 | 193 |
apply (drule_tac x=0 in fun_cong, force) |
24333 | 194 |
apply (case_tac y rule: bin_exhaust) |
195 |
apply clarify |
|
196 |
apply (erule allE) |
|
197 |
apply (erule impE) |
|
198 |
prefer 2 |
|
45848 | 199 |
apply (erule conjI) |
24333 | 200 |
apply (drule_tac x=0 in fun_cong, force) |
201 |
apply (rule ext) |
|
202 |
apply (drule_tac x="Suc ?x" in fun_cong, force) |
|
203 |
done |
|
204 |
||
205 |
lemma bin_nth_eq_iff: "(bin_nth x = bin_nth y) = (x = y)" |
|
206 |
by (auto elim: bin_nth_lem) |
|
207 |
||
45604 | 208 |
lemmas bin_eqI = ext [THEN bin_nth_eq_iff [THEN iffD1]] |
24333 | 209 |
|
45543
827bf668c822
HOL-Word: add simp rules for bin_rest, bin_last; shorten several proofs
huffman
parents:
45529
diff
changeset
|
210 |
lemma bin_eq_iff: "x = y \<longleftrightarrow> (\<forall>n. bin_nth x n = bin_nth y n)" |
827bf668c822
HOL-Word: add simp rules for bin_rest, bin_last; shorten several proofs
huffman
parents:
45529
diff
changeset
|
211 |
by (auto intro!: bin_nth_lem del: equalityI) |
827bf668c822
HOL-Word: add simp rules for bin_rest, bin_last; shorten several proofs
huffman
parents:
45529
diff
changeset
|
212 |
|
45853 | 213 |
lemma bin_nth_zero [simp]: "\<not> bin_nth 0 n" |
214 |
by (induct n) auto |
|
215 |
||
46023
fad87bb608fc
restate some lemmas to respect int/bin distinction
huffman
parents:
46001
diff
changeset
|
216 |
lemma bin_nth_1 [simp]: "bin_nth 1 n \<longleftrightarrow> n = 0" |
fad87bb608fc
restate some lemmas to respect int/bin distinction
huffman
parents:
46001
diff
changeset
|
217 |
by (cases n) simp_all |
fad87bb608fc
restate some lemmas to respect int/bin distinction
huffman
parents:
46001
diff
changeset
|
218 |
|
45952 | 219 |
lemma bin_nth_minus1 [simp]: "bin_nth -1 n" |
220 |
by (induct n) auto |
|
221 |
||
37654 | 222 |
lemma bin_nth_0_BIT: "bin_nth (w BIT b) 0 = (b = (1::bit))" |
24333 | 223 |
by auto |
224 |
||
225 |
lemma bin_nth_Suc_BIT: "bin_nth (w BIT b) (Suc n) = bin_nth w n" |
|
226 |
by auto |
|
227 |
||
228 |
lemma bin_nth_minus [simp]: "0 < n ==> bin_nth (w BIT b) n = bin_nth w (n - 1)" |
|
229 |
by (cases n) auto |
|
230 |
||
47108
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46607
diff
changeset
|
231 |
lemma bin_nth_numeral: |
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46607
diff
changeset
|
232 |
"bin_rest x = y \<Longrightarrow> bin_nth x (numeral n) = bin_nth y (numeral n - 1)" |
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46607
diff
changeset
|
233 |
by (subst expand_Suc, simp only: bin_nth.simps) |
26086
3c243098b64a
New simpler representation of numerals, using Bit0 and Bit1 instead of BIT, B0, and B1
huffman
parents:
25919
diff
changeset
|
234 |
|
47108
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46607
diff
changeset
|
235 |
lemmas bin_nth_numeral_simps [simp] = |
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46607
diff
changeset
|
236 |
bin_nth_numeral [OF bin_rest_numeral_simps(2)] |
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46607
diff
changeset
|
237 |
bin_nth_numeral [OF bin_rest_numeral_simps(5)] |
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46607
diff
changeset
|
238 |
bin_nth_numeral [OF bin_rest_numeral_simps(6)] |
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46607
diff
changeset
|
239 |
bin_nth_numeral [OF bin_rest_numeral_simps(7)] |
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46607
diff
changeset
|
240 |
bin_nth_numeral [OF bin_rest_numeral_simps(8)] |
24333 | 241 |
|
242 |
lemmas bin_nth_simps = |
|
47108
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46607
diff
changeset
|
243 |
bin_nth.Z bin_nth.Suc bin_nth_zero bin_nth_minus1 |
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46607
diff
changeset
|
244 |
bin_nth_numeral_simps |
24333 | 245 |
|
26557 | 246 |
|
247 |
subsection {* Truncating binary integers *} |
|
248 |
||
45846 | 249 |
definition bin_sign :: "int \<Rightarrow> int" where |
37667 | 250 |
bin_sign_def: "bin_sign k = (if k \<ge> 0 then 0 else - 1)" |
26557 | 251 |
|
252 |
lemma bin_sign_simps [simp]: |
|
45850 | 253 |
"bin_sign 0 = 0" |
46604
9f9e85264e4d
make uses of bin_sign respect int/bin distinction
huffman
parents:
46601
diff
changeset
|
254 |
"bin_sign 1 = 0" |
47108
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46607
diff
changeset
|
255 |
"bin_sign (numeral k) = 0" |
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46607
diff
changeset
|
256 |
"bin_sign (neg_numeral k) = -1" |
26557 | 257 |
"bin_sign (w BIT b) = bin_sign w" |
46604
9f9e85264e4d
make uses of bin_sign respect int/bin distinction
huffman
parents:
46601
diff
changeset
|
258 |
unfolding bin_sign_def Bit_def bitval_def |
45850 | 259 |
by (simp_all split: bit.split) |
26557 | 260 |
|
24364 | 261 |
lemma bin_sign_rest [simp]: |
37667 | 262 |
"bin_sign (bin_rest w) = bin_sign w" |
26557 | 263 |
by (cases w rule: bin_exhaust) auto |
24364 | 264 |
|
37667 | 265 |
primrec bintrunc :: "nat \<Rightarrow> int \<Rightarrow> int" where |
46001
0b562d564d5f
redefine some binary operations on integers work on abstract numerals instead of Int.Pls and Int.Min
huffman
parents:
46000
diff
changeset
|
266 |
Z : "bintrunc 0 bin = 0" |
37667 | 267 |
| Suc : "bintrunc (Suc n) bin = bintrunc n (bin_rest bin) BIT (bin_last bin)" |
24364 | 268 |
|
37667 | 269 |
primrec sbintrunc :: "nat => int => int" where |
46001
0b562d564d5f
redefine some binary operations on integers work on abstract numerals instead of Int.Pls and Int.Min
huffman
parents:
46000
diff
changeset
|
270 |
Z : "sbintrunc 0 bin = (case bin_last bin of (1::bit) \<Rightarrow> -1 | (0::bit) \<Rightarrow> 0)" |
37667 | 271 |
| Suc : "sbintrunc (Suc n) bin = sbintrunc n (bin_rest bin) BIT (bin_last bin)" |
272 |
||
46001
0b562d564d5f
redefine some binary operations on integers work on abstract numerals instead of Int.Pls and Int.Min
huffman
parents:
46000
diff
changeset
|
273 |
lemma sign_bintr: "bin_sign (bintrunc n w) = 0" |
45954
f67d3bb5f09c
use 'induct arbitrary' instead of universal quantifiers
huffman
parents:
45953
diff
changeset
|
274 |
by (induct n arbitrary: w) auto |
24333 | 275 |
|
45954
f67d3bb5f09c
use 'induct arbitrary' instead of universal quantifiers
huffman
parents:
45953
diff
changeset
|
276 |
lemma bintrunc_mod2p: "bintrunc n w = (w mod 2 ^ n)" |
47108
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46607
diff
changeset
|
277 |
apply (induct n arbitrary: w, clarsimp) |
45954
f67d3bb5f09c
use 'induct arbitrary' instead of universal quantifiers
huffman
parents:
45953
diff
changeset
|
278 |
apply (simp add: bin_last_def bin_rest_def Bit_def zmod_zmult2_eq) |
24333 | 279 |
done |
280 |
||
45954
f67d3bb5f09c
use 'induct arbitrary' instead of universal quantifiers
huffman
parents:
45953
diff
changeset
|
281 |
lemma sbintrunc_mod2p: "sbintrunc n w = (w + 2 ^ n) mod 2 ^ (Suc n) - 2 ^ n" |
f67d3bb5f09c
use 'induct arbitrary' instead of universal quantifiers
huffman
parents:
45953
diff
changeset
|
282 |
apply (induct n arbitrary: w) |
47108
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46607
diff
changeset
|
283 |
apply simp |
30034 | 284 |
apply (subst mod_add_left_eq) |
45529
0e1037d4e049
remove redundant lemmas bin_last_mod and bin_rest_div, use bin_last_def and bin_rest_def instead
huffman
parents:
44939
diff
changeset
|
285 |
apply (simp add: bin_last_def) |
46001
0b562d564d5f
redefine some binary operations on integers work on abstract numerals instead of Int.Pls and Int.Min
huffman
parents:
46000
diff
changeset
|
286 |
apply (simp add: bin_last_def bin_rest_def Bit_def) |
30940
663af91c0720
zmod_zmult_zmult1 now subsumed by mod_mult_mult1
haftmann
parents:
30034
diff
changeset
|
287 |
apply (clarsimp simp: mod_mult_mult1 [symmetric] |
24333 | 288 |
zmod_zdiv_equality [THEN diff_eq_eq [THEN iffD2 [THEN sym]]]) |
289 |
apply (rule trans [symmetric, OF _ emep1]) |
|
290 |
apply auto |
|
291 |
apply (auto simp: even_def) |
|
292 |
done |
|
293 |
||
24465 | 294 |
subsection "Simplifications for (s)bintrunc" |
295 |
||
45852 | 296 |
lemma bintrunc_n_0 [simp]: "bintrunc n 0 = 0" |
46001
0b562d564d5f
redefine some binary operations on integers work on abstract numerals instead of Int.Pls and Int.Min
huffman
parents:
46000
diff
changeset
|
297 |
by (induct n) auto |
45852 | 298 |
|
45855 | 299 |
lemma sbintrunc_n_0 [simp]: "sbintrunc n 0 = 0" |
46001
0b562d564d5f
redefine some binary operations on integers work on abstract numerals instead of Int.Pls and Int.Min
huffman
parents:
46000
diff
changeset
|
300 |
by (induct n) auto |
45855 | 301 |
|
45856 | 302 |
lemma sbintrunc_n_minus1 [simp]: "sbintrunc n -1 = -1" |
46001
0b562d564d5f
redefine some binary operations on integers work on abstract numerals instead of Int.Pls and Int.Min
huffman
parents:
46000
diff
changeset
|
303 |
by (induct n) auto |
45856 | 304 |
|
45852 | 305 |
lemma bintrunc_Suc_numeral: |
306 |
"bintrunc (Suc n) 1 = 1" |
|
307 |
"bintrunc (Suc n) -1 = bintrunc n -1 BIT 1" |
|
47108
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46607
diff
changeset
|
308 |
"bintrunc (Suc n) (numeral (Num.Bit0 w)) = bintrunc n (numeral w) BIT 0" |
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46607
diff
changeset
|
309 |
"bintrunc (Suc n) (numeral (Num.Bit1 w)) = bintrunc n (numeral w) BIT 1" |
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46607
diff
changeset
|
310 |
"bintrunc (Suc n) (neg_numeral (Num.Bit0 w)) = |
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46607
diff
changeset
|
311 |
bintrunc n (neg_numeral w) BIT 0" |
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46607
diff
changeset
|
312 |
"bintrunc (Suc n) (neg_numeral (Num.Bit1 w)) = |
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46607
diff
changeset
|
313 |
bintrunc n (neg_numeral (w + Num.One)) BIT 1" |
45852 | 314 |
by simp_all |
315 |
||
45856 | 316 |
lemma sbintrunc_0_numeral [simp]: |
317 |
"sbintrunc 0 1 = -1" |
|
47108
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46607
diff
changeset
|
318 |
"sbintrunc 0 (numeral (Num.Bit0 w)) = 0" |
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46607
diff
changeset
|
319 |
"sbintrunc 0 (numeral (Num.Bit1 w)) = -1" |
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46607
diff
changeset
|
320 |
"sbintrunc 0 (neg_numeral (Num.Bit0 w)) = 0" |
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46607
diff
changeset
|
321 |
"sbintrunc 0 (neg_numeral (Num.Bit1 w)) = -1" |
46001
0b562d564d5f
redefine some binary operations on integers work on abstract numerals instead of Int.Pls and Int.Min
huffman
parents:
46000
diff
changeset
|
322 |
by simp_all |
45856 | 323 |
|
45855 | 324 |
lemma sbintrunc_Suc_numeral: |
325 |
"sbintrunc (Suc n) 1 = 1" |
|
47108
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46607
diff
changeset
|
326 |
"sbintrunc (Suc n) (numeral (Num.Bit0 w)) = |
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46607
diff
changeset
|
327 |
sbintrunc n (numeral w) BIT 0" |
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46607
diff
changeset
|
328 |
"sbintrunc (Suc n) (numeral (Num.Bit1 w)) = |
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46607
diff
changeset
|
329 |
sbintrunc n (numeral w) BIT 1" |
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46607
diff
changeset
|
330 |
"sbintrunc (Suc n) (neg_numeral (Num.Bit0 w)) = |
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46607
diff
changeset
|
331 |
sbintrunc n (neg_numeral w) BIT 0" |
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46607
diff
changeset
|
332 |
"sbintrunc (Suc n) (neg_numeral (Num.Bit1 w)) = |
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46607
diff
changeset
|
333 |
sbintrunc n (neg_numeral (w + Num.One)) BIT 1" |
45855 | 334 |
by simp_all |
335 |
||
24465 | 336 |
lemma bit_bool: |
37654 | 337 |
"(b = (b' = (1::bit))) = (b' = (if b then (1::bit) else (0::bit)))" |
24465 | 338 |
by (cases b') auto |
339 |
||
340 |
lemmas bit_bool1 [simp] = refl [THEN bit_bool [THEN iffD1], symmetric] |
|
24333 | 341 |
|
46001
0b562d564d5f
redefine some binary operations on integers work on abstract numerals instead of Int.Pls and Int.Min
huffman
parents:
46000
diff
changeset
|
342 |
lemma bin_sign_lem: "(bin_sign (sbintrunc n bin) = -1) = bin_nth bin n" |
45954
f67d3bb5f09c
use 'induct arbitrary' instead of universal quantifiers
huffman
parents:
45953
diff
changeset
|
343 |
apply (induct n arbitrary: bin) |
47108
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46607
diff
changeset
|
344 |
apply (case_tac bin rule: bin_exhaust, case_tac b, auto) |
24333 | 345 |
done |
346 |
||
45954
f67d3bb5f09c
use 'induct arbitrary' instead of universal quantifiers
huffman
parents:
45953
diff
changeset
|
347 |
lemma nth_bintr: "bin_nth (bintrunc m w) n = (n < m & bin_nth w n)" |
f67d3bb5f09c
use 'induct arbitrary' instead of universal quantifiers
huffman
parents:
45953
diff
changeset
|
348 |
apply (induct n arbitrary: w m) |
24333 | 349 |
apply (case_tac m, auto)[1] |
350 |
apply (case_tac m, auto)[1] |
|
351 |
done |
|
352 |
||
353 |
lemma nth_sbintr: |
|
45954
f67d3bb5f09c
use 'induct arbitrary' instead of universal quantifiers
huffman
parents:
45953
diff
changeset
|
354 |
"bin_nth (sbintrunc m w) n = |
24333 | 355 |
(if n < m then bin_nth w n else bin_nth w m)" |
45954
f67d3bb5f09c
use 'induct arbitrary' instead of universal quantifiers
huffman
parents:
45953
diff
changeset
|
356 |
apply (induct n arbitrary: w m) |
24333 | 357 |
apply (case_tac m, simp_all split: bit.splits)[1] |
358 |
apply (case_tac m, simp_all split: bit.splits)[1] |
|
359 |
done |
|
360 |
||
361 |
lemma bin_nth_Bit: |
|
37654 | 362 |
"bin_nth (w BIT b) n = (n = 0 & b = (1::bit) | (EX m. n = Suc m & bin_nth w m))" |
24333 | 363 |
by (cases n) auto |
364 |
||
26086
3c243098b64a
New simpler representation of numerals, using Bit0 and Bit1 instead of BIT, B0, and B1
huffman
parents:
25919
diff
changeset
|
365 |
lemma bin_nth_Bit0: |
47108
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46607
diff
changeset
|
366 |
"bin_nth (numeral (Num.Bit0 w)) n \<longleftrightarrow> |
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46607
diff
changeset
|
367 |
(\<exists>m. n = Suc m \<and> bin_nth (numeral w) m)" |
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46607
diff
changeset
|
368 |
using bin_nth_Bit [where w="numeral w" and b="(0::bit)"] by simp |
26086
3c243098b64a
New simpler representation of numerals, using Bit0 and Bit1 instead of BIT, B0, and B1
huffman
parents:
25919
diff
changeset
|
369 |
|
3c243098b64a
New simpler representation of numerals, using Bit0 and Bit1 instead of BIT, B0, and B1
huffman
parents:
25919
diff
changeset
|
370 |
lemma bin_nth_Bit1: |
47108
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46607
diff
changeset
|
371 |
"bin_nth (numeral (Num.Bit1 w)) n \<longleftrightarrow> |
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46607
diff
changeset
|
372 |
n = 0 \<or> (\<exists>m. n = Suc m \<and> bin_nth (numeral w) m)" |
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46607
diff
changeset
|
373 |
using bin_nth_Bit [where w="numeral w" and b="(1::bit)"] by simp |
26086
3c243098b64a
New simpler representation of numerals, using Bit0 and Bit1 instead of BIT, B0, and B1
huffman
parents:
25919
diff
changeset
|
374 |
|
24333 | 375 |
lemma bintrunc_bintrunc_l: |
376 |
"n <= m ==> (bintrunc m (bintrunc n w) = bintrunc n w)" |
|
377 |
by (rule bin_eqI) (auto simp add : nth_bintr) |
|
378 |
||
379 |
lemma sbintrunc_sbintrunc_l: |
|
380 |
"n <= m ==> (sbintrunc m (sbintrunc n w) = sbintrunc n w)" |
|
32439 | 381 |
by (rule bin_eqI) (auto simp: nth_sbintr) |
24333 | 382 |
|
383 |
lemma bintrunc_bintrunc_ge: |
|
384 |
"n <= m ==> (bintrunc n (bintrunc m w) = bintrunc n w)" |
|
385 |
by (rule bin_eqI) (auto simp: nth_bintr) |
|
386 |
||
387 |
lemma bintrunc_bintrunc_min [simp]: |
|
388 |
"bintrunc m (bintrunc n w) = bintrunc (min m n) w" |
|
389 |
apply (rule bin_eqI) |
|
390 |
apply (auto simp: nth_bintr) |
|
391 |
done |
|
392 |
||
393 |
lemma sbintrunc_sbintrunc_min [simp]: |
|
394 |
"sbintrunc m (sbintrunc n w) = sbintrunc (min m n) w" |
|
395 |
apply (rule bin_eqI) |
|
32642
026e7c6a6d08
be more cautious wrt. simp rules: inf_absorb1, inf_absorb2, sup_absorb1, sup_absorb2 are no simp rules by default any longer
haftmann
parents:
32439
diff
changeset
|
396 |
apply (auto simp: nth_sbintr min_max.inf_absorb1 min_max.inf_absorb2) |
24333 | 397 |
done |
398 |
||
399 |
lemmas bintrunc_Pls = |
|
47108
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46607
diff
changeset
|
400 |
bintrunc.Suc [where bin="0", simplified bin_last_numeral_simps bin_rest_numeral_simps] |
24333 | 401 |
|
402 |
lemmas bintrunc_Min [simp] = |
|
47108
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46607
diff
changeset
|
403 |
bintrunc.Suc [where bin="-1", simplified bin_last_numeral_simps bin_rest_numeral_simps] |
24333 | 404 |
|
405 |
lemmas bintrunc_BIT [simp] = |
|
46600 | 406 |
bintrunc.Suc [where bin="w BIT b", simplified bin_last_BIT bin_rest_BIT] for w b |
24333 | 407 |
|
408 |
lemmas bintrunc_Sucs = bintrunc_Pls bintrunc_Min bintrunc_BIT |
|
45852 | 409 |
bintrunc_Suc_numeral |
24333 | 410 |
|
411 |
lemmas sbintrunc_Suc_Pls = |
|
47108
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46607
diff
changeset
|
412 |
sbintrunc.Suc [where bin="0", simplified bin_last_numeral_simps bin_rest_numeral_simps] |
24333 | 413 |
|
414 |
lemmas sbintrunc_Suc_Min = |
|
47108
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46607
diff
changeset
|
415 |
sbintrunc.Suc [where bin="-1", simplified bin_last_numeral_simps bin_rest_numeral_simps] |
24333 | 416 |
|
417 |
lemmas sbintrunc_Suc_BIT [simp] = |
|
46600 | 418 |
sbintrunc.Suc [where bin="w BIT b", simplified bin_last_BIT bin_rest_BIT] for w b |
24333 | 419 |
|
420 |
lemmas sbintrunc_Sucs = sbintrunc_Suc_Pls sbintrunc_Suc_Min sbintrunc_Suc_BIT |
|
45855 | 421 |
sbintrunc_Suc_numeral |
24333 | 422 |
|
423 |
lemmas sbintrunc_Pls = |
|
47108
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46607
diff
changeset
|
424 |
sbintrunc.Z [where bin="0", |
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46607
diff
changeset
|
425 |
simplified bin_last_numeral_simps bin_rest_numeral_simps bit.simps] |
24333 | 426 |
|
427 |
lemmas sbintrunc_Min = |
|
47108
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46607
diff
changeset
|
428 |
sbintrunc.Z [where bin="-1", |
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46607
diff
changeset
|
429 |
simplified bin_last_numeral_simps bin_rest_numeral_simps bit.simps] |
24333 | 430 |
|
431 |
lemmas sbintrunc_0_BIT_B0 [simp] = |
|
37654 | 432 |
sbintrunc.Z [where bin="w BIT (0::bit)", |
47108
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46607
diff
changeset
|
433 |
simplified bin_last_numeral_simps bin_rest_numeral_simps bit.simps] for w |
24333 | 434 |
|
435 |
lemmas sbintrunc_0_BIT_B1 [simp] = |
|
37654 | 436 |
sbintrunc.Z [where bin="w BIT (1::bit)", |
47108
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46607
diff
changeset
|
437 |
simplified bin_last_BIT bin_rest_numeral_simps bit.simps] for w |
26086
3c243098b64a
New simpler representation of numerals, using Bit0 and Bit1 instead of BIT, B0, and B1
huffman
parents:
25919
diff
changeset
|
438 |
|
24333 | 439 |
lemmas sbintrunc_0_simps = |
440 |
sbintrunc_Pls sbintrunc_Min sbintrunc_0_BIT_B0 sbintrunc_0_BIT_B1 |
|
441 |
||
442 |
lemmas bintrunc_simps = bintrunc.Z bintrunc_Sucs |
|
443 |
lemmas sbintrunc_simps = sbintrunc_0_simps sbintrunc_Sucs |
|
444 |
||
445 |
lemma bintrunc_minus: |
|
446 |
"0 < n ==> bintrunc (Suc (n - 1)) w = bintrunc n w" |
|
447 |
by auto |
|
448 |
||
449 |
lemma sbintrunc_minus: |
|
450 |
"0 < n ==> sbintrunc (Suc (n - 1)) w = sbintrunc n w" |
|
451 |
by auto |
|
452 |
||
453 |
lemmas bintrunc_minus_simps = |
|
45604 | 454 |
bintrunc_Sucs [THEN [2] bintrunc_minus [symmetric, THEN trans]] |
24333 | 455 |
lemmas sbintrunc_minus_simps = |
45604 | 456 |
sbintrunc_Sucs [THEN [2] sbintrunc_minus [symmetric, THEN trans]] |
24333 | 457 |
|
45604 | 458 |
lemmas thobini1 = arg_cong [where f = "%w. w BIT b"] for b |
24333 | 459 |
|
460 |
lemmas bintrunc_BIT_I = trans [OF bintrunc_BIT thobini1] |
|
461 |
lemmas bintrunc_Min_I = trans [OF bintrunc_Min thobini1] |
|
462 |
||
45604 | 463 |
lemmas bmsts = bintrunc_minus_simps(1-3) [THEN thobini1 [THEN [2] trans]] |
24333 | 464 |
lemmas bintrunc_Pls_minus_I = bmsts(1) |
465 |
lemmas bintrunc_Min_minus_I = bmsts(2) |
|
466 |
lemmas bintrunc_BIT_minus_I = bmsts(3) |
|
467 |
||
468 |
lemma bintrunc_Suc_lem: |
|
469 |
"bintrunc (Suc n) x = y ==> m = Suc n ==> bintrunc m x = y" |
|
470 |
by auto |
|
471 |
||
472 |
lemmas bintrunc_Suc_Ialts = |
|
45604 | 473 |
bintrunc_Min_I [THEN bintrunc_Suc_lem] |
474 |
bintrunc_BIT_I [THEN bintrunc_Suc_lem] |
|
24333 | 475 |
|
476 |
lemmas sbintrunc_BIT_I = trans [OF sbintrunc_Suc_BIT thobini1] |
|
477 |
||
478 |
lemmas sbintrunc_Suc_Is = |
|
45604 | 479 |
sbintrunc_Sucs(1-3) [THEN thobini1 [THEN [2] trans]] |
24333 | 480 |
|
481 |
lemmas sbintrunc_Suc_minus_Is = |
|
45604 | 482 |
sbintrunc_minus_simps(1-3) [THEN thobini1 [THEN [2] trans]] |
24333 | 483 |
|
484 |
lemma sbintrunc_Suc_lem: |
|
485 |
"sbintrunc (Suc n) x = y ==> m = Suc n ==> sbintrunc m x = y" |
|
486 |
by auto |
|
487 |
||
488 |
lemmas sbintrunc_Suc_Ialts = |
|
45604 | 489 |
sbintrunc_Suc_Is [THEN sbintrunc_Suc_lem] |
24333 | 490 |
|
491 |
lemma sbintrunc_bintrunc_lt: |
|
492 |
"m > n ==> sbintrunc n (bintrunc m w) = sbintrunc n w" |
|
493 |
by (rule bin_eqI) (auto simp: nth_sbintr nth_bintr) |
|
494 |
||
495 |
lemma bintrunc_sbintrunc_le: |
|
496 |
"m <= Suc n ==> bintrunc m (sbintrunc n w) = bintrunc m w" |
|
497 |
apply (rule bin_eqI) |
|
498 |
apply (auto simp: nth_sbintr nth_bintr) |
|
499 |
apply (subgoal_tac "x=n", safe, arith+)[1] |
|
500 |
apply (subgoal_tac "x=n", safe, arith+)[1] |
|
501 |
done |
|
502 |
||
503 |
lemmas bintrunc_sbintrunc [simp] = order_refl [THEN bintrunc_sbintrunc_le] |
|
504 |
lemmas sbintrunc_bintrunc [simp] = lessI [THEN sbintrunc_bintrunc_lt] |
|
505 |
lemmas bintrunc_bintrunc [simp] = order_refl [THEN bintrunc_bintrunc_l] |
|
506 |
lemmas sbintrunc_sbintrunc [simp] = order_refl [THEN sbintrunc_sbintrunc_l] |
|
507 |
||
508 |
lemma bintrunc_sbintrunc' [simp]: |
|
509 |
"0 < n \<Longrightarrow> bintrunc n (sbintrunc (n - 1) w) = bintrunc n w" |
|
510 |
by (cases n) (auto simp del: bintrunc.Suc) |
|
511 |
||
512 |
lemma sbintrunc_bintrunc' [simp]: |
|
513 |
"0 < n \<Longrightarrow> sbintrunc (n - 1) (bintrunc n w) = sbintrunc (n - 1) w" |
|
514 |
by (cases n) (auto simp del: bintrunc.Suc) |
|
515 |
||
516 |
lemma bin_sbin_eq_iff: |
|
517 |
"bintrunc (Suc n) x = bintrunc (Suc n) y <-> |
|
518 |
sbintrunc n x = sbintrunc n y" |
|
519 |
apply (rule iffI) |
|
520 |
apply (rule box_equals [OF _ sbintrunc_bintrunc sbintrunc_bintrunc]) |
|
521 |
apply simp |
|
522 |
apply (rule box_equals [OF _ bintrunc_sbintrunc bintrunc_sbintrunc]) |
|
523 |
apply simp |
|
524 |
done |
|
525 |
||
526 |
lemma bin_sbin_eq_iff': |
|
527 |
"0 < n \<Longrightarrow> bintrunc n x = bintrunc n y <-> |
|
528 |
sbintrunc (n - 1) x = sbintrunc (n - 1) y" |
|
529 |
by (cases n) (simp_all add: bin_sbin_eq_iff del: bintrunc.Suc) |
|
530 |
||
531 |
lemmas bintrunc_sbintruncS0 [simp] = bintrunc_sbintrunc' [unfolded One_nat_def] |
|
532 |
lemmas sbintrunc_bintruncS0 [simp] = sbintrunc_bintrunc' [unfolded One_nat_def] |
|
533 |
||
534 |
lemmas bintrunc_bintrunc_l' = le_add1 [THEN bintrunc_bintrunc_l] |
|
535 |
lemmas sbintrunc_sbintrunc_l' = le_add1 [THEN sbintrunc_sbintrunc_l] |
|
536 |
||
537 |
(* although bintrunc_minus_simps, if added to default simpset, |
|
538 |
tends to get applied where it's not wanted in developing the theories, |
|
539 |
we get a version for when the word length is given literally *) |
|
540 |
||
541 |
lemmas nat_non0_gr = |
|
45604 | 542 |
trans [OF iszero_def [THEN Not_eq_iff [THEN iffD2]] refl] |
24333 | 543 |
|
47108
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46607
diff
changeset
|
544 |
lemma bintrunc_numeral: |
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46607
diff
changeset
|
545 |
"bintrunc (numeral k) x = |
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46607
diff
changeset
|
546 |
bintrunc (numeral k - 1) (bin_rest x) BIT bin_last x" |
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46607
diff
changeset
|
547 |
by (subst expand_Suc, rule bintrunc.simps) |
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46607
diff
changeset
|
548 |
|
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46607
diff
changeset
|
549 |
lemma sbintrunc_numeral: |
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46607
diff
changeset
|
550 |
"sbintrunc (numeral k) x = |
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46607
diff
changeset
|
551 |
sbintrunc (numeral k - 1) (bin_rest x) BIT bin_last x" |
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46607
diff
changeset
|
552 |
by (subst expand_Suc, rule sbintrunc.simps) |
24333 | 553 |
|
47108
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46607
diff
changeset
|
554 |
lemma bintrunc_numeral_simps [simp]: |
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46607
diff
changeset
|
555 |
"bintrunc (numeral k) (numeral (Num.Bit0 w)) = |
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46607
diff
changeset
|
556 |
bintrunc (numeral k - 1) (numeral w) BIT 0" |
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46607
diff
changeset
|
557 |
"bintrunc (numeral k) (numeral (Num.Bit1 w)) = |
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46607
diff
changeset
|
558 |
bintrunc (numeral k - 1) (numeral w) BIT 1" |
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46607
diff
changeset
|
559 |
"bintrunc (numeral k) (neg_numeral (Num.Bit0 w)) = |
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46607
diff
changeset
|
560 |
bintrunc (numeral k - 1) (neg_numeral w) BIT 0" |
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46607
diff
changeset
|
561 |
"bintrunc (numeral k) (neg_numeral (Num.Bit1 w)) = |
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46607
diff
changeset
|
562 |
bintrunc (numeral k - 1) (neg_numeral (w + Num.One)) BIT 1" |
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46607
diff
changeset
|
563 |
"bintrunc (numeral k) 1 = 1" |
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46607
diff
changeset
|
564 |
by (simp_all add: bintrunc_numeral) |
24333 | 565 |
|
47108
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46607
diff
changeset
|
566 |
lemma sbintrunc_numeral_simps [simp]: |
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46607
diff
changeset
|
567 |
"sbintrunc (numeral k) (numeral (Num.Bit0 w)) = |
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46607
diff
changeset
|
568 |
sbintrunc (numeral k - 1) (numeral w) BIT 0" |
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46607
diff
changeset
|
569 |
"sbintrunc (numeral k) (numeral (Num.Bit1 w)) = |
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46607
diff
changeset
|
570 |
sbintrunc (numeral k - 1) (numeral w) BIT 1" |
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46607
diff
changeset
|
571 |
"sbintrunc (numeral k) (neg_numeral (Num.Bit0 w)) = |
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46607
diff
changeset
|
572 |
sbintrunc (numeral k - 1) (neg_numeral w) BIT 0" |
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46607
diff
changeset
|
573 |
"sbintrunc (numeral k) (neg_numeral (Num.Bit1 w)) = |
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46607
diff
changeset
|
574 |
sbintrunc (numeral k - 1) (neg_numeral (w + Num.One)) BIT 1" |
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46607
diff
changeset
|
575 |
"sbintrunc (numeral k) 1 = 1" |
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46607
diff
changeset
|
576 |
by (simp_all add: sbintrunc_numeral) |
24333 | 577 |
|
578 |
lemma no_bintr_alt1: "bintrunc n = (%w. w mod 2 ^ n :: int)" |
|
579 |
by (rule ext) (rule bintrunc_mod2p) |
|
580 |
||
581 |
lemma range_bintrunc: "range (bintrunc n) = {i. 0 <= i & i < 2 ^ n}" |
|
582 |
apply (unfold no_bintr_alt1) |
|
583 |
apply (auto simp add: image_iff) |
|
584 |
apply (rule exI) |
|
585 |
apply (auto intro: int_mod_lem [THEN iffD1, symmetric]) |
|
586 |
done |
|
587 |
||
588 |
lemma no_sbintr_alt2: |
|
589 |
"sbintrunc n = (%w. (w + 2 ^ n) mod 2 ^ Suc n - 2 ^ n :: int)" |
|
590 |
by (rule ext) (simp add : sbintrunc_mod2p) |
|
591 |
||
592 |
lemma range_sbintrunc: |
|
593 |
"range (sbintrunc n) = {i. - (2 ^ n) <= i & i < 2 ^ n}" |
|
594 |
apply (unfold no_sbintr_alt2) |
|
595 |
apply (auto simp add: image_iff eq_diff_eq) |
|
596 |
apply (rule exI) |
|
597 |
apply (auto intro: int_mod_lem [THEN iffD1, symmetric]) |
|
598 |
done |
|
599 |
||
25349
0d46bea01741
eliminated illegal schematic variables in where/of;
wenzelm
parents:
25134
diff
changeset
|
600 |
lemma sb_inc_lem: |
0d46bea01741
eliminated illegal schematic variables in where/of;
wenzelm
parents:
25134
diff
changeset
|
601 |
"(a::int) + 2^k < 0 \<Longrightarrow> a + 2^k + 2^(Suc k) <= (a + 2^k) mod 2^(Suc k)" |
0d46bea01741
eliminated illegal schematic variables in where/of;
wenzelm
parents:
25134
diff
changeset
|
602 |
apply (erule int_mod_ge' [where n = "2 ^ (Suc k)" and b = "a + 2 ^ k", simplified zless2p]) |
0d46bea01741
eliminated illegal schematic variables in where/of;
wenzelm
parents:
25134
diff
changeset
|
603 |
apply (rule TrueI) |
0d46bea01741
eliminated illegal schematic variables in where/of;
wenzelm
parents:
25134
diff
changeset
|
604 |
done |
24333 | 605 |
|
25349
0d46bea01741
eliminated illegal schematic variables in where/of;
wenzelm
parents:
25134
diff
changeset
|
606 |
lemma sb_inc_lem': |
0d46bea01741
eliminated illegal schematic variables in where/of;
wenzelm
parents:
25134
diff
changeset
|
607 |
"(a::int) < - (2^k) \<Longrightarrow> a + 2^k + 2^(Suc k) <= (a + 2^k) mod 2^(Suc k)" |
35048 | 608 |
by (rule sb_inc_lem) simp |
24333 | 609 |
|
610 |
lemma sbintrunc_inc: |
|
25349
0d46bea01741
eliminated illegal schematic variables in where/of;
wenzelm
parents:
25134
diff
changeset
|
611 |
"x < - (2^n) ==> x + 2^(Suc n) <= sbintrunc n x" |
24333 | 612 |
unfolding no_sbintr_alt2 by (drule sb_inc_lem') simp |
613 |
||
25349
0d46bea01741
eliminated illegal schematic variables in where/of;
wenzelm
parents:
25134
diff
changeset
|
614 |
lemma sb_dec_lem: |
0d46bea01741
eliminated illegal schematic variables in where/of;
wenzelm
parents:
25134
diff
changeset
|
615 |
"(0::int) <= - (2^k) + a ==> (a + 2^k) mod (2 * 2 ^ k) <= - (2 ^ k) + a" |
0d46bea01741
eliminated illegal schematic variables in where/of;
wenzelm
parents:
25134
diff
changeset
|
616 |
by (rule int_mod_le' [where n = "2 ^ (Suc k)" and b = "a + 2 ^ k", |
0d46bea01741
eliminated illegal schematic variables in where/of;
wenzelm
parents:
25134
diff
changeset
|
617 |
simplified zless2p, OF _ TrueI, simplified]) |
24333 | 618 |
|
25349
0d46bea01741
eliminated illegal schematic variables in where/of;
wenzelm
parents:
25134
diff
changeset
|
619 |
lemma sb_dec_lem': |
0d46bea01741
eliminated illegal schematic variables in where/of;
wenzelm
parents:
25134
diff
changeset
|
620 |
"(2::int) ^ k <= a ==> (a + 2 ^ k) mod (2 * 2 ^ k) <= - (2 ^ k) + a" |
0d46bea01741
eliminated illegal schematic variables in where/of;
wenzelm
parents:
25134
diff
changeset
|
621 |
by (rule iffD1 [OF diff_le_eq', THEN sb_dec_lem, simplified]) |
24333 | 622 |
|
623 |
lemma sbintrunc_dec: |
|
624 |
"x >= (2 ^ n) ==> x - 2 ^ (Suc n) >= sbintrunc n x" |
|
625 |
unfolding no_sbintr_alt2 by (drule sb_dec_lem') simp |
|
626 |
||
45604 | 627 |
lemmas zmod_uminus' = zmod_uminus [where b=c] for c |
628 |
lemmas zpower_zmod' = zpower_zmod [where m=c and y=k] for c k |
|
24333 | 629 |
|
630 |
lemmas brdmod1s' [symmetric] = |
|
30034 | 631 |
mod_add_left_eq mod_add_right_eq |
24333 | 632 |
zmod_zsub_left_eq zmod_zsub_right_eq |
633 |
zmod_zmult1_eq zmod_zmult1_eq_rev |
|
634 |
||
635 |
lemmas brdmods' [symmetric] = |
|
636 |
zpower_zmod' [symmetric] |
|
30034 | 637 |
trans [OF mod_add_left_eq mod_add_right_eq] |
24333 | 638 |
trans [OF zmod_zsub_left_eq zmod_zsub_right_eq] |
639 |
trans [OF zmod_zmult1_eq zmod_zmult1_eq_rev] |
|
640 |
zmod_uminus' [symmetric] |
|
30034 | 641 |
mod_add_left_eq [where b = "1::int"] |
24333 | 642 |
zmod_zsub_left_eq [where b = "1"] |
643 |
||
644 |
lemmas bintr_arith1s = |
|
46000 | 645 |
brdmod1s' [where c="2^n::int", folded bintrunc_mod2p] for n |
24333 | 646 |
lemmas bintr_ariths = |
46000 | 647 |
brdmods' [where c="2^n::int", folded bintrunc_mod2p] for n |
24333 | 648 |
|
45604 | 649 |
lemmas m2pths = pos_mod_sign pos_mod_bound [OF zless2p] |
24364 | 650 |
|
47108
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46607
diff
changeset
|
651 |
lemma bintr_ge0: "0 \<le> bintrunc n w" |
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46607
diff
changeset
|
652 |
by (simp add: bintrunc_mod2p) |
24333 | 653 |
|
47108
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46607
diff
changeset
|
654 |
lemma bintr_lt2p: "bintrunc n w < 2 ^ n" |
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46607
diff
changeset
|
655 |
by (simp add: bintrunc_mod2p) |
24333 | 656 |
|
47108
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46607
diff
changeset
|
657 |
lemma bintr_Min: "bintrunc n -1 = 2 ^ n - 1" |
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46607
diff
changeset
|
658 |
by (simp add: bintrunc_mod2p m1mod2k) |
24333 | 659 |
|
47108
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46607
diff
changeset
|
660 |
lemma sbintr_ge: "- (2 ^ n) \<le> sbintrunc n w" |
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46607
diff
changeset
|
661 |
by (simp add: sbintrunc_mod2p) |
24333 | 662 |
|
47108
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46607
diff
changeset
|
663 |
lemma sbintr_lt: "sbintrunc n w < 2 ^ n" |
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46607
diff
changeset
|
664 |
by (simp add: sbintrunc_mod2p) |
24333 | 665 |
|
666 |
lemma sign_Pls_ge_0: |
|
46604
9f9e85264e4d
make uses of bin_sign respect int/bin distinction
huffman
parents:
46601
diff
changeset
|
667 |
"(bin_sign bin = 0) = (bin >= (0 :: int))" |
9f9e85264e4d
make uses of bin_sign respect int/bin distinction
huffman
parents:
46601
diff
changeset
|
668 |
unfolding bin_sign_def by simp |
24333 | 669 |
|
670 |
lemma sign_Min_lt_0: |
|
46604
9f9e85264e4d
make uses of bin_sign respect int/bin distinction
huffman
parents:
46601
diff
changeset
|
671 |
"(bin_sign bin = -1) = (bin < (0 :: int))" |
9f9e85264e4d
make uses of bin_sign respect int/bin distinction
huffman
parents:
46601
diff
changeset
|
672 |
unfolding bin_sign_def by simp |
24333 | 673 |
|
674 |
lemma bin_rest_trunc: |
|
45954
f67d3bb5f09c
use 'induct arbitrary' instead of universal quantifiers
huffman
parents:
45953
diff
changeset
|
675 |
"(bin_rest (bintrunc n bin)) = bintrunc (n - 1) (bin_rest bin)" |
f67d3bb5f09c
use 'induct arbitrary' instead of universal quantifiers
huffman
parents:
45953
diff
changeset
|
676 |
by (induct n arbitrary: bin) auto |
24333 | 677 |
|
678 |
lemma bin_rest_power_trunc [rule_format] : |
|
30971 | 679 |
"(bin_rest ^^ k) (bintrunc n bin) = |
680 |
bintrunc (n - k) ((bin_rest ^^ k) bin)" |
|
24333 | 681 |
by (induct k) (auto simp: bin_rest_trunc) |
682 |
||
683 |
lemma bin_rest_trunc_i: |
|
684 |
"bintrunc n (bin_rest bin) = bin_rest (bintrunc (Suc n) bin)" |
|
685 |
by auto |
|
686 |
||
687 |
lemma bin_rest_strunc: |
|
45954
f67d3bb5f09c
use 'induct arbitrary' instead of universal quantifiers
huffman
parents:
45953
diff
changeset
|
688 |
"bin_rest (sbintrunc (Suc n) bin) = sbintrunc n (bin_rest bin)" |
f67d3bb5f09c
use 'induct arbitrary' instead of universal quantifiers
huffman
parents:
45953
diff
changeset
|
689 |
by (induct n arbitrary: bin) auto |
24333 | 690 |
|
691 |
lemma bintrunc_rest [simp]: |
|
45954
f67d3bb5f09c
use 'induct arbitrary' instead of universal quantifiers
huffman
parents:
45953
diff
changeset
|
692 |
"bintrunc n (bin_rest (bintrunc n bin)) = bin_rest (bintrunc n bin)" |
f67d3bb5f09c
use 'induct arbitrary' instead of universal quantifiers
huffman
parents:
45953
diff
changeset
|
693 |
apply (induct n arbitrary: bin, simp) |
24333 | 694 |
apply (case_tac bin rule: bin_exhaust) |
695 |
apply (auto simp: bintrunc_bintrunc_l) |
|
696 |
done |
|
697 |
||
698 |
lemma sbintrunc_rest [simp]: |
|
45954
f67d3bb5f09c
use 'induct arbitrary' instead of universal quantifiers
huffman
parents:
45953
diff
changeset
|
699 |
"sbintrunc n (bin_rest (sbintrunc n bin)) = bin_rest (sbintrunc n bin)" |
f67d3bb5f09c
use 'induct arbitrary' instead of universal quantifiers
huffman
parents:
45953
diff
changeset
|
700 |
apply (induct n arbitrary: bin, simp) |
24333 | 701 |
apply (case_tac bin rule: bin_exhaust) |
702 |
apply (auto simp: bintrunc_bintrunc_l split: bit.splits) |
|
703 |
done |
|
704 |
||
705 |
lemma bintrunc_rest': |
|
706 |
"bintrunc n o bin_rest o bintrunc n = bin_rest o bintrunc n" |
|
707 |
by (rule ext) auto |
|
708 |
||
709 |
lemma sbintrunc_rest' : |
|
710 |
"sbintrunc n o bin_rest o sbintrunc n = bin_rest o sbintrunc n" |
|
711 |
by (rule ext) auto |
|
712 |
||
713 |
lemma rco_lem: |
|
30971 | 714 |
"f o g o f = g o f ==> f o (g o f) ^^ n = g ^^ n o f" |
24333 | 715 |
apply (rule ext) |
716 |
apply (induct_tac n) |
|
717 |
apply (simp_all (no_asm)) |
|
718 |
apply (drule fun_cong) |
|
719 |
apply (unfold o_def) |
|
720 |
apply (erule trans) |
|
721 |
apply simp |
|
722 |
done |
|
723 |
||
30971 | 724 |
lemma rco_alt: "(f o g) ^^ n o f = f o (g o f) ^^ n" |
24333 | 725 |
apply (rule ext) |
726 |
apply (induct n) |
|
727 |
apply (simp_all add: o_def) |
|
728 |
done |
|
729 |
||
730 |
lemmas rco_bintr = bintrunc_rest' |
|
731 |
[THEN rco_lem [THEN fun_cong], unfolded o_def] |
|
732 |
lemmas rco_sbintr = sbintrunc_rest' |
|
733 |
[THEN rco_lem [THEN fun_cong], unfolded o_def] |
|
734 |
||
24364 | 735 |
subsection {* Splitting and concatenation *} |
736 |
||
26557 | 737 |
primrec bin_split :: "nat \<Rightarrow> int \<Rightarrow> int \<times> int" where |
46001
0b562d564d5f
redefine some binary operations on integers work on abstract numerals instead of Int.Pls and Int.Min
huffman
parents:
46000
diff
changeset
|
738 |
Z: "bin_split 0 w = (w, 0)" |
26557 | 739 |
| Suc: "bin_split (Suc n) w = (let (w1, w2) = bin_split n (bin_rest w) |
740 |
in (w1, w2 BIT bin_last w))" |
|
24364 | 741 |
|
37667 | 742 |
lemma [code]: |
743 |
"bin_split (Suc n) w = (let (w1, w2) = bin_split n (bin_rest w) in (w1, w2 BIT bin_last w))" |
|
744 |
"bin_split 0 w = (w, 0)" |
|
47108
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46607
diff
changeset
|
745 |
by simp_all |
37667 | 746 |
|
26557 | 747 |
primrec bin_cat :: "int \<Rightarrow> nat \<Rightarrow> int \<Rightarrow> int" where |
748 |
Z: "bin_cat w 0 v = w" |
|
749 |
| Suc: "bin_cat w (Suc n) v = bin_cat w n (bin_rest v) BIT bin_last v" |
|
24364 | 750 |
|
751 |
subsection {* Miscellaneous lemmas *} |
|
752 |
||
30952
7ab2716dd93b
power operation on functions with syntax o^; power operation on relations with syntax ^^
haftmann
parents:
30940
diff
changeset
|
753 |
lemma funpow_minus_simp: |
30971 | 754 |
"0 < n \<Longrightarrow> f ^^ n = f \<circ> f ^^ (n - 1)" |
30952
7ab2716dd93b
power operation on functions with syntax o^; power operation on relations with syntax ^^
haftmann
parents:
30940
diff
changeset
|
755 |
by (cases n) simp_all |
24364 | 756 |
|
47108
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46607
diff
changeset
|
757 |
lemma funpow_numeral [simp]: |
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46607
diff
changeset
|
758 |
"f ^^ numeral k = f \<circ> f ^^ (numeral k - 1)" |
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46607
diff
changeset
|
759 |
by (subst expand_Suc, rule funpow.simps) |
24364 | 760 |
|
47108
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46607
diff
changeset
|
761 |
lemma replicate_numeral [simp]: (* TODO: move to List.thy *) |
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46607
diff
changeset
|
762 |
"replicate (numeral k) x = x # replicate (numeral k - 1) x" |
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46607
diff
changeset
|
763 |
by (subst expand_Suc, rule replicate_Suc) |
24364 | 764 |
|
765 |
lemmas power_minus_simp = |
|
45604 | 766 |
trans [OF gen_minus [where f = "power f"] power_Suc] for f |
24364 | 767 |
|
768 |
lemma list_exhaust_size_gt0: |
|
769 |
assumes y: "\<And>a list. y = a # list \<Longrightarrow> P" |
|
770 |
shows "0 < length y \<Longrightarrow> P" |
|
771 |
apply (cases y, simp) |
|
772 |
apply (rule y) |
|
44890
22f665a2e91c
new fastforce replacing fastsimp - less confusing name
nipkow
parents:
41413
diff
changeset
|
773 |
apply fastforce |
24364 | 774 |
done |
775 |
||
776 |
lemma list_exhaust_size_eq0: |
|
777 |
assumes y: "y = [] \<Longrightarrow> P" |
|
778 |
shows "length y = 0 \<Longrightarrow> P" |
|
779 |
apply (cases y) |
|
780 |
apply (rule y, simp) |
|
781 |
apply simp |
|
782 |
done |
|
783 |
||
784 |
lemma size_Cons_lem_eq: |
|
785 |
"y = xa # list ==> size y = Suc k ==> size list = k" |
|
786 |
by auto |
|
787 |
||
44939
5930d35c976d
removed unused legacy lemma names, some comment cleanup.
kleing
parents:
44890
diff
changeset
|
788 |
lemmas ls_splits = prod.split prod.split_asm split_if_asm |
24333 | 789 |
|
37654 | 790 |
lemma not_B1_is_B0: "y \<noteq> (1::bit) \<Longrightarrow> y = (0::bit)" |
24333 | 791 |
by (cases y) auto |
792 |
||
793 |
lemma B1_ass_B0: |
|
37654 | 794 |
assumes y: "y = (0::bit) \<Longrightarrow> y = (1::bit)" |
795 |
shows "y = (1::bit)" |
|
24333 | 796 |
apply (rule classical) |
797 |
apply (drule not_B1_is_B0) |
|
798 |
apply (erule y) |
|
799 |
done |
|
800 |
||
801 |
-- "simplifications for specific word lengths" |
|
802 |
lemmas n2s_ths [THEN eq_reflection] = add_2_eq_Suc add_2_eq_Suc' |
|
803 |
||
804 |
lemmas s2n_ths = n2s_ths [symmetric] |
|
805 |
||
806 |
end |