more speaking names
authorhaftmann
Wed, 30 Jun 2010 16:45:47 +0200
changeset 37658 df789294c77a
parent 37657 17e1085d07b2
child 37659 14cabf5fa710
more speaking names
src/HOL/Word/BinBoolList.thy
src/HOL/Word/BinGeneral.thy
src/HOL/Word/BinOperations.thy
src/HOL/Word/Bit_Int.thy
src/HOL/Word/Bit_Representation.thy
src/HOL/Word/Bool_List_Representation.thy
src/HOL/Word/WordDefinition.thy
--- a/src/HOL/Word/BinBoolList.thy	Wed Jun 30 16:41:03 2010 +0200
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,1174 +0,0 @@
-(* 
-  Author: Jeremy Dawson, NICTA
-
-  contains theorems to do with integers, expressed using Pls, Min, BIT,
-  theorems linking them to lists of booleans, and repeated splitting 
-  and concatenation.
-*) 
-
-header "Bool lists and integers"
-
-theory BinBoolList
-imports BinOperations
-begin
-
-subsection {* Operations on lists of booleans *}
-
-primrec bl_to_bin_aux :: "bool list \<Rightarrow> int \<Rightarrow> int" where
-  Nil: "bl_to_bin_aux [] w = w"
-  | Cons: "bl_to_bin_aux (b # bs) w = 
-      bl_to_bin_aux bs (w BIT (if b then 1 else 0))"
-
-definition bl_to_bin :: "bool list \<Rightarrow> int" where
-  bl_to_bin_def : "bl_to_bin bs = bl_to_bin_aux bs Int.Pls"
-
-primrec bin_to_bl_aux :: "nat \<Rightarrow> int \<Rightarrow> bool list \<Rightarrow> bool list" where
-  Z: "bin_to_bl_aux 0 w bl = bl"
-  | Suc: "bin_to_bl_aux (Suc n) w bl =
-      bin_to_bl_aux n (bin_rest w) ((bin_last w = 1) # bl)"
-
-definition bin_to_bl :: "nat \<Rightarrow> int \<Rightarrow> bool list" where
-  bin_to_bl_def : "bin_to_bl n w = bin_to_bl_aux n w []"
-
-primrec bl_of_nth :: "nat \<Rightarrow> (nat \<Rightarrow> bool) \<Rightarrow> bool list" where
-  Suc: "bl_of_nth (Suc n) f = f n # bl_of_nth n f"
-  | Z: "bl_of_nth 0 f = []"
-
-primrec takefill :: "'a \<Rightarrow> nat \<Rightarrow> 'a list \<Rightarrow> 'a list" where
-  Z: "takefill fill 0 xs = []"
-  | Suc: "takefill fill (Suc n) xs = (
-      case xs of [] => fill # takefill fill n xs
-        | y # ys => y # takefill fill n ys)"
-
-definition map2 :: "('a \<Rightarrow> 'b \<Rightarrow> 'c) \<Rightarrow> 'a list \<Rightarrow> 'b list \<Rightarrow> 'c list" where
-  "map2 f as bs = map (split f) (zip as bs)"
-
-lemma map2_Nil [simp]: "map2 f [] ys = []"
-  unfolding map2_def by auto
-
-lemma map2_Nil2 [simp]: "map2 f xs [] = []"
-  unfolding map2_def by auto
-
-lemma map2_Cons [simp]:
-  "map2 f (x # xs) (y # ys) = f x y # map2 f xs ys"
-  unfolding map2_def by auto
-
-
-subsection "Arithmetic in terms of bool lists"
-
-(* arithmetic operations in terms of the reversed bool list,
-  assuming input list(s) the same length, and don't extend them *)
-
-primrec rbl_succ :: "bool list => bool list" where
-  Nil: "rbl_succ Nil = Nil"
-  | Cons: "rbl_succ (x # xs) = (if x then False # rbl_succ xs else True # xs)"
-
-primrec rbl_pred :: "bool list => bool list" where
-  Nil: "rbl_pred Nil = Nil"
-  | Cons: "rbl_pred (x # xs) = (if x then False # xs else True # rbl_pred xs)"
-
-primrec rbl_add :: "bool list => bool list => bool list" where
-    (* result is length of first arg, second arg may be longer *)
-  Nil: "rbl_add Nil x = Nil"
-  | Cons: "rbl_add (y # ys) x = (let ws = rbl_add ys (tl x) in 
-    (y ~= hd x) # (if hd x & y then rbl_succ ws else ws))"
-
-primrec rbl_mult :: "bool list => bool list => bool list" where
-    (* result is length of first arg, second arg may be longer *)
-  Nil: "rbl_mult Nil x = Nil"
-  | Cons: "rbl_mult (y # ys) x = (let ws = False # rbl_mult ys x in 
-    if y then rbl_add ws x else ws)"
-
-lemma butlast_power:
-  "(butlast ^^ n) bl = take (length bl - n) bl"
-  by (induct n) (auto simp: butlast_take)
-
-lemma bin_to_bl_aux_Pls_minus_simp [simp]:
-  "0 < n ==> bin_to_bl_aux n Int.Pls bl = 
-    bin_to_bl_aux (n - 1) Int.Pls (False # bl)"
-  by (cases n) auto
-
-lemma bin_to_bl_aux_Min_minus_simp [simp]:
-  "0 < n ==> bin_to_bl_aux n Int.Min bl = 
-    bin_to_bl_aux (n - 1) Int.Min (True # bl)"
-  by (cases n) auto
-
-lemma bin_to_bl_aux_Bit_minus_simp [simp]:
-  "0 < n ==> bin_to_bl_aux n (w BIT b) bl = 
-    bin_to_bl_aux (n - 1) w ((b = 1) # bl)"
-  by (cases n) auto
-
-lemma bin_to_bl_aux_Bit0_minus_simp [simp]:
-  "0 < n ==> bin_to_bl_aux n (Int.Bit0 w) bl = 
-    bin_to_bl_aux (n - 1) w (False # bl)"
-  by (cases n) auto
-
-lemma bin_to_bl_aux_Bit1_minus_simp [simp]:
-  "0 < n ==> bin_to_bl_aux n (Int.Bit1 w) bl = 
-    bin_to_bl_aux (n - 1) w (True # bl)"
-  by (cases n) auto
-
-(** link between bin and bool list **)
-
-lemma bl_to_bin_aux_append: 
-  "bl_to_bin_aux (bs @ cs) w = bl_to_bin_aux cs (bl_to_bin_aux bs w)"
-  by (induct bs arbitrary: w) auto
-
-lemma bin_to_bl_aux_append: 
-  "bin_to_bl_aux n w bs @ cs = bin_to_bl_aux n w (bs @ cs)"
-  by (induct n arbitrary: w bs) auto
-
-lemma bl_to_bin_append: 
-  "bl_to_bin (bs @ cs) = bl_to_bin_aux cs (bl_to_bin bs)"
-  unfolding bl_to_bin_def by (rule bl_to_bin_aux_append)
-
-lemma bin_to_bl_aux_alt: 
-  "bin_to_bl_aux n w bs = bin_to_bl n w @ bs" 
-  unfolding bin_to_bl_def by (simp add : bin_to_bl_aux_append)
-
-lemma bin_to_bl_0: "bin_to_bl 0 bs = []"
-  unfolding bin_to_bl_def by auto
-
-lemma size_bin_to_bl_aux: 
-  "size (bin_to_bl_aux n w bs) = n + length bs"
-  by (induct n arbitrary: w bs) auto
-
-lemma size_bin_to_bl: "size (bin_to_bl n w) = n" 
-  unfolding bin_to_bl_def by (simp add : size_bin_to_bl_aux)
-
-lemma bin_bl_bin': 
-  "bl_to_bin (bin_to_bl_aux n w bs) = 
-    bl_to_bin_aux bs (bintrunc n w)"
-  by (induct n arbitrary: w bs) (auto simp add : bl_to_bin_def)
-
-lemma bin_bl_bin: "bl_to_bin (bin_to_bl n w) = bintrunc n w"
-  unfolding bin_to_bl_def bin_bl_bin' by auto
-
-lemma bl_bin_bl':
-  "bin_to_bl (n + length bs) (bl_to_bin_aux bs w) = 
-    bin_to_bl_aux n w bs"
-  apply (induct bs arbitrary: w n)
-   apply auto
-    apply (simp_all only : add_Suc [symmetric])
-    apply (auto simp add : bin_to_bl_def)
-  done
-
-lemma bl_bin_bl: "bin_to_bl (length bs) (bl_to_bin bs) = bs"
-  unfolding bl_to_bin_def
-  apply (rule box_equals)
-    apply (rule bl_bin_bl')
-   prefer 2
-   apply (rule bin_to_bl_aux.Z)
-  apply simp
-  done
-  
-declare 
-  bin_to_bl_0 [simp] 
-  size_bin_to_bl [simp] 
-  bin_bl_bin [simp] 
-  bl_bin_bl [simp]
-
-lemma bl_to_bin_inj:
-  "bl_to_bin bs = bl_to_bin cs ==> length bs = length cs ==> bs = cs"
-  apply (rule_tac box_equals)
-    defer
-    apply (rule bl_bin_bl)
-   apply (rule bl_bin_bl)
-  apply simp
-  done
-
-lemma bl_to_bin_False: "bl_to_bin (False # bl) = bl_to_bin bl"
-  unfolding bl_to_bin_def by auto
-  
-lemma bl_to_bin_Nil: "bl_to_bin [] = Int.Pls"
-  unfolding bl_to_bin_def by auto
-
-lemma bin_to_bl_Pls_aux: 
-  "bin_to_bl_aux n Int.Pls bl = replicate n False @ bl"
-  by (induct n arbitrary: bl) (auto simp: replicate_app_Cons_same)
-
-lemma bin_to_bl_Pls: "bin_to_bl n Int.Pls = replicate n False"
-  unfolding bin_to_bl_def by (simp add : bin_to_bl_Pls_aux)
-
-lemma bin_to_bl_Min_aux [rule_format] : 
-  "ALL bl. bin_to_bl_aux n Int.Min bl = replicate n True @ bl"
-  by (induct n) (auto simp: replicate_app_Cons_same)
-
-lemma bin_to_bl_Min: "bin_to_bl n Int.Min = replicate n True"
-  unfolding bin_to_bl_def by (simp add : bin_to_bl_Min_aux)
-
-lemma bl_to_bin_rep_F: 
-  "bl_to_bin (replicate n False @ bl) = bl_to_bin bl"
-  apply (simp add: bin_to_bl_Pls_aux [symmetric] bin_bl_bin')
-  apply (simp add: bl_to_bin_def)
-  done
-
-lemma bin_to_bl_trunc:
-  "n <= m ==> bin_to_bl n (bintrunc m w) = bin_to_bl n w"
-  by (auto intro: bl_to_bin_inj)
-
-declare 
-  bin_to_bl_trunc [simp] 
-  bl_to_bin_False [simp] 
-  bl_to_bin_Nil [simp]
-
-lemma bin_to_bl_aux_bintr [rule_format] :
-  "ALL m bin bl. bin_to_bl_aux n (bintrunc m bin) bl = 
-    replicate (n - m) False @ bin_to_bl_aux (min n m) bin bl"
-  apply (induct n)
-   apply clarsimp
-  apply clarsimp
-  apply (case_tac "m")
-   apply (clarsimp simp: bin_to_bl_Pls_aux) 
-   apply (erule thin_rl)
-   apply (induct_tac n)   
-    apply auto
-  done
-
-lemmas bin_to_bl_bintr = 
-  bin_to_bl_aux_bintr [where bl = "[]", folded bin_to_bl_def]
-
-lemma bl_to_bin_rep_False: "bl_to_bin (replicate n False) = Int.Pls"
-  by (induct n) auto
-
-lemma len_bin_to_bl_aux: 
-  "length (bin_to_bl_aux n w bs) = n + length bs"
-  by (induct n arbitrary: w bs) auto
-
-lemma len_bin_to_bl [simp]: "length (bin_to_bl n w) = n"
-  unfolding bin_to_bl_def len_bin_to_bl_aux by auto
-  
-lemma sign_bl_bin': 
-  "bin_sign (bl_to_bin_aux bs w) = bin_sign w"
-  by (induct bs arbitrary: w) auto
-  
-lemma sign_bl_bin: "bin_sign (bl_to_bin bs) = Int.Pls"
-  unfolding bl_to_bin_def by (simp add : sign_bl_bin')
-  
-lemma bl_sbin_sign_aux: 
-  "hd (bin_to_bl_aux (Suc n) w bs) = 
-    (bin_sign (sbintrunc n w) = Int.Min)"
-  apply (induct n arbitrary: w bs)
-   apply clarsimp
-   apply (cases w rule: bin_exhaust)
-   apply (simp split add : bit.split)
-  apply clarsimp
-  done
-    
-lemma bl_sbin_sign: 
-  "hd (bin_to_bl (Suc n) w) = (bin_sign (sbintrunc n w) = Int.Min)"
-  unfolding bin_to_bl_def by (rule bl_sbin_sign_aux)
-
-lemma bin_nth_of_bl_aux [rule_format]: 
-  "\<forall>w. bin_nth (bl_to_bin_aux bl w) n = 
-    (n < size bl & rev bl ! n | n >= length bl & bin_nth w (n - size bl))"
-  apply (induct_tac bl)
-   apply clarsimp
-  apply clarsimp
-  apply (cut_tac x=n and y="size list" in linorder_less_linear)
-  apply (erule disjE, simp add: nth_append)+
-  apply auto
-  done
-
-lemma bin_nth_of_bl: "bin_nth (bl_to_bin bl) n = (n < length bl & rev bl ! n)";
-  unfolding bl_to_bin_def by (simp add : bin_nth_of_bl_aux)
-
-lemma bin_nth_bl [rule_format] : "ALL m w. n < m --> 
-    bin_nth w n = nth (rev (bin_to_bl m w)) n"
-  apply (induct n)
-   apply clarsimp
-   apply (case_tac m, clarsimp)
-   apply (clarsimp simp: bin_to_bl_def)
-   apply (simp add: bin_to_bl_aux_alt)
-  apply clarsimp
-  apply (case_tac m, clarsimp)
-  apply (clarsimp simp: bin_to_bl_def)
-  apply (simp add: bin_to_bl_aux_alt)
-  done
-
-lemma nth_rev [rule_format] : 
-  "n < length xs --> rev xs ! n = xs ! (length xs - 1 - n)"
-  apply (induct_tac "xs")
-   apply simp
-  apply (clarsimp simp add : nth_append nth.simps split add : nat.split)
-  apply (rule_tac f = "%n. list ! n" in arg_cong) 
-  apply arith
-  done
-
-lemmas nth_rev_alt = nth_rev [where xs = "rev ys", simplified, standard]
-
-lemma nth_bin_to_bl_aux [rule_format] : 
-  "ALL w n bl. n < m + length bl --> (bin_to_bl_aux m w bl) ! n = 
-    (if n < m then bin_nth w (m - 1 - n) else bl ! (n - m))"
-  apply (induct m)
-   apply clarsimp
-  apply clarsimp
-  apply (case_tac w rule: bin_exhaust)
-  apply clarsimp
-  apply (case_tac "n - m")
-   apply arith
-  apply simp
-  apply (rule_tac f = "%n. bl ! n" in arg_cong) 
-  apply arith
-  done
-  
-lemma nth_bin_to_bl: "n < m ==> (bin_to_bl m w) ! n = bin_nth w (m - Suc n)"
-  unfolding bin_to_bl_def by (simp add : nth_bin_to_bl_aux)
-
-lemma bl_to_bin_lt2p_aux [rule_format]: 
-  "\<forall>w. bl_to_bin_aux bs w < (w + 1) * (2 ^ length bs)"
-  apply (induct bs)
-   apply clarsimp
-  apply clarsimp
-  apply safe
-  apply (erule allE, erule xtr8 [rotated],
-         simp add: numeral_simps algebra_simps cong add : number_of_False_cong)+
-  done
-
-lemma bl_to_bin_lt2p: "bl_to_bin bs < (2 ^ length bs)"
-  apply (unfold bl_to_bin_def)
-  apply (rule xtr1)
-   prefer 2
-   apply (rule bl_to_bin_lt2p_aux)
-  apply simp
-  done
-
-lemma bl_to_bin_ge2p_aux [rule_format] : 
-  "\<forall>w. bl_to_bin_aux bs w >= w * (2 ^ length bs)"
-  apply (induct bs)
-   apply clarsimp
-  apply clarsimp
-  apply safe
-   apply (erule allE, erule preorder_class.order_trans [rotated],
-          simp add: numeral_simps algebra_simps cong add : number_of_False_cong)+
-  done
-
-lemma bl_to_bin_ge0: "bl_to_bin bs >= 0"
-  apply (unfold bl_to_bin_def)
-  apply (rule xtr4)
-   apply (rule bl_to_bin_ge2p_aux)
-  apply simp
-  done
-
-lemma butlast_rest_bin: 
-  "butlast (bin_to_bl n w) = bin_to_bl (n - 1) (bin_rest w)"
-  apply (unfold bin_to_bl_def)
-  apply (cases w rule: bin_exhaust)
-  apply (cases n, clarsimp)
-  apply clarsimp
-  apply (auto simp add: bin_to_bl_aux_alt)
-  done
-
-lemmas butlast_bin_rest = butlast_rest_bin
-  [where w="bl_to_bin bl" and n="length bl", simplified, standard]
-
-lemma butlast_rest_bl2bin_aux:
-  "bl ~= [] \<Longrightarrow>
-    bl_to_bin_aux (butlast bl) w = bin_rest (bl_to_bin_aux bl w)"
-  by (induct bl arbitrary: w) auto
-  
-lemma butlast_rest_bl2bin: 
-  "bl_to_bin (butlast bl) = bin_rest (bl_to_bin bl)"
-  apply (unfold bl_to_bin_def)
-  apply (cases bl)
-   apply (auto simp add: butlast_rest_bl2bin_aux)
-  done
-
-lemma trunc_bl2bin_aux [rule_format]: 
-  "ALL w. bintrunc m (bl_to_bin_aux bl w) = 
-    bl_to_bin_aux (drop (length bl - m) bl) (bintrunc (m - length bl) w)"
-  apply (induct_tac bl)
-   apply clarsimp
-  apply clarsimp
-  apply safe
-   apply (case_tac "m - size list")
-    apply (simp add : diff_is_0_eq [THEN iffD1, THEN Suc_diff_le])
-   apply simp
-   apply (rule_tac f = "%nat. bl_to_bin_aux list (Int.Bit1 (bintrunc nat w))" 
-                   in arg_cong) 
-   apply simp
-  apply (case_tac "m - size list")
-   apply (simp add: diff_is_0_eq [THEN iffD1, THEN Suc_diff_le])
-  apply simp
-  apply (rule_tac f = "%nat. bl_to_bin_aux list (Int.Bit0 (bintrunc nat w))" 
-                  in arg_cong) 
-  apply simp
-  done
-
-lemma trunc_bl2bin: 
-  "bintrunc m (bl_to_bin bl) = bl_to_bin (drop (length bl - m) bl)"
-  unfolding bl_to_bin_def by (simp add : trunc_bl2bin_aux)
-  
-lemmas trunc_bl2bin_len [simp] =
-  trunc_bl2bin [of "length bl" bl, simplified, standard]  
-
-lemma bl2bin_drop: 
-  "bl_to_bin (drop k bl) = bintrunc (length bl - k) (bl_to_bin bl)"
-  apply (rule trans)
-   prefer 2
-   apply (rule trunc_bl2bin [symmetric])
-  apply (cases "k <= length bl")
-   apply auto
-  done
-
-lemma nth_rest_power_bin [rule_format] :
-  "ALL n. bin_nth ((bin_rest ^^ k) w) n = bin_nth w (n + k)"
-  apply (induct k, clarsimp)
-  apply clarsimp
-  apply (simp only: bin_nth.Suc [symmetric] add_Suc)
-  done
-
-lemma take_rest_power_bin:
-  "m <= n ==> take m (bin_to_bl n w) = bin_to_bl m ((bin_rest ^^ (n - m)) w)" 
-  apply (rule nth_equalityI)
-   apply simp
-  apply (clarsimp simp add: nth_bin_to_bl nth_rest_power_bin)
-  done
-
-lemma hd_butlast: "size xs > 1 ==> hd (butlast xs) = hd xs"
-  by (cases xs) auto
-
-lemma last_bin_last': 
-  "size xs > 0 \<Longrightarrow> last xs = (bin_last (bl_to_bin_aux xs w) = 1)" 
-  by (induct xs arbitrary: w) auto
-
-lemma last_bin_last: 
-  "size xs > 0 ==> last xs = (bin_last (bl_to_bin xs) = 1)" 
-  unfolding bl_to_bin_def by (erule last_bin_last')
-  
-lemma bin_last_last: 
-  "bin_last w = (if last (bin_to_bl (Suc n) w) then 1 else 0)" 
-  apply (unfold bin_to_bl_def)
-  apply simp
-  apply (auto simp add: bin_to_bl_aux_alt)
-  done
-
-(** links between bit-wise operations and operations on bool lists **)
-    
-lemma bl_xor_aux_bin [rule_format] : "ALL v w bs cs. 
-    map2 (%x y. x ~= y) (bin_to_bl_aux n v bs) (bin_to_bl_aux n w cs) = 
-    bin_to_bl_aux n (v XOR w) (map2 (%x y. x ~= y) bs cs)"
-  apply (induct_tac n)
-   apply safe
-   apply simp
-  apply (case_tac v rule: bin_exhaust)
-  apply (case_tac w rule: bin_exhaust)
-  apply clarsimp
-  apply (case_tac b)
-  apply (case_tac ba, safe, simp_all)+
-  done
-    
-lemma bl_or_aux_bin [rule_format] : "ALL v w bs cs. 
-    map2 (op | ) (bin_to_bl_aux n v bs) (bin_to_bl_aux n w cs) = 
-    bin_to_bl_aux n (v OR w) (map2 (op | ) bs cs)" 
-  apply (induct_tac n)
-   apply safe
-   apply simp
-  apply (case_tac v rule: bin_exhaust)
-  apply (case_tac w rule: bin_exhaust)
-  apply clarsimp
-  apply (case_tac b)
-  apply (case_tac ba, safe, simp_all)+
-  done
-    
-lemma bl_and_aux_bin [rule_format] : "ALL v w bs cs. 
-    map2 (op & ) (bin_to_bl_aux n v bs) (bin_to_bl_aux n w cs) = 
-    bin_to_bl_aux n (v AND w) (map2 (op & ) bs cs)" 
-  apply (induct_tac n)
-   apply safe
-   apply simp
-  apply (case_tac v rule: bin_exhaust)
-  apply (case_tac w rule: bin_exhaust)
-  apply clarsimp
-  apply (case_tac b)
-  apply (case_tac ba, safe, simp_all)+
-  done
-    
-lemma bl_not_aux_bin [rule_format] : 
-  "ALL w cs. map Not (bin_to_bl_aux n w cs) = 
-    bin_to_bl_aux n (NOT w) (map Not cs)"
-  apply (induct n)
-   apply clarsimp
-  apply clarsimp
-  apply (case_tac w rule: bin_exhaust)
-  apply (case_tac b)
-   apply auto
-  done
-
-lemmas bl_not_bin = bl_not_aux_bin
-  [where cs = "[]", unfolded bin_to_bl_def [symmetric] map.simps]
-
-lemmas bl_and_bin = bl_and_aux_bin [where bs="[]" and cs="[]", 
-                                    unfolded map2_Nil, folded bin_to_bl_def]
-
-lemmas bl_or_bin = bl_or_aux_bin [where bs="[]" and cs="[]", 
-                                  unfolded map2_Nil, folded bin_to_bl_def]
-
-lemmas bl_xor_bin = bl_xor_aux_bin [where bs="[]" and cs="[]", 
-                                    unfolded map2_Nil, folded bin_to_bl_def]
-
-lemma drop_bin2bl_aux [rule_format] : 
-  "ALL m bin bs. drop m (bin_to_bl_aux n bin bs) = 
-    bin_to_bl_aux (n - m) bin (drop (m - n) bs)"
-  apply (induct n, clarsimp)
-  apply clarsimp
-  apply (case_tac bin rule: bin_exhaust)
-  apply (case_tac "m <= n", simp)
-  apply (case_tac "m - n", simp)
-  apply simp
-  apply (rule_tac f = "%nat. drop nat bs" in arg_cong) 
-  apply simp
-  done
-
-lemma drop_bin2bl: "drop m (bin_to_bl n bin) = bin_to_bl (n - m) bin"
-  unfolding bin_to_bl_def by (simp add : drop_bin2bl_aux)
-
-lemma take_bin2bl_lem1 [rule_format] : 
-  "ALL w bs. take m (bin_to_bl_aux m w bs) = bin_to_bl m w"
-  apply (induct m, clarsimp)
-  apply clarsimp
-  apply (simp add: bin_to_bl_aux_alt)
-  apply (simp add: bin_to_bl_def)
-  apply (simp add: bin_to_bl_aux_alt)
-  done
-
-lemma take_bin2bl_lem [rule_format] : 
-  "ALL w bs. take m (bin_to_bl_aux (m + n) w bs) = 
-    take m (bin_to_bl (m + n) w)"
-  apply (induct n)
-   apply clarify
-   apply (simp_all (no_asm) add: bin_to_bl_def take_bin2bl_lem1)
-  apply simp
-  done
-
-lemma bin_split_take [rule_format] : 
-  "ALL b c. bin_split n c = (a, b) --> 
-    bin_to_bl m a = take m (bin_to_bl (m + n) c)"
-  apply (induct n)
-   apply clarsimp
-  apply (clarsimp simp: Let_def split: ls_splits)
-  apply (simp add: bin_to_bl_def)
-  apply (simp add: take_bin2bl_lem)
-  done
-
-lemma bin_split_take1: 
-  "k = m + n ==> bin_split n c = (a, b) ==> 
-    bin_to_bl m a = take m (bin_to_bl k c)"
-  by (auto elim: bin_split_take)
-  
-lemma nth_takefill [rule_format] : "ALL m l. m < n --> 
-    takefill fill n l ! m = (if m < length l then l ! m else fill)"
-  apply (induct n, clarsimp)
-  apply clarsimp
-  apply (case_tac m)
-   apply (simp split: list.split)
-  apply clarsimp
-  apply (erule allE)+
-  apply (erule (1) impE)
-  apply (simp split: list.split)
-  done
-
-lemma takefill_alt [rule_format] :
-  "ALL l. takefill fill n l = take n l @ replicate (n - length l) fill"
-  by (induct n) (auto split: list.split)
-
-lemma takefill_replicate [simp]:
-  "takefill fill n (replicate m fill) = replicate n fill"
-  by (simp add : takefill_alt replicate_add [symmetric])
-
-lemma takefill_le' [rule_format] :
-  "ALL l n. n = m + k --> takefill x m (takefill x n l) = takefill x m l"
-  by (induct m) (auto split: list.split)
-
-lemma length_takefill [simp]: "length (takefill fill n l) = n"
-  by (simp add : takefill_alt)
-
-lemma take_takefill':
-  "!!w n.  n = k + m ==> take k (takefill fill n w) = takefill fill k w"
-  by (induct k) (auto split add : list.split) 
-
-lemma drop_takefill:
-  "!!w. drop k (takefill fill (m + k) w) = takefill fill m (drop k w)"
-  by (induct k) (auto split add : list.split) 
-
-lemma takefill_le [simp]:
-  "m \<le> n \<Longrightarrow> takefill x m (takefill x n l) = takefill x m l"
-  by (auto simp: le_iff_add takefill_le')
-
-lemma take_takefill [simp]:
-  "m \<le> n \<Longrightarrow> take m (takefill fill n w) = takefill fill m w"
-  by (auto simp: le_iff_add take_takefill')
- 
-lemma takefill_append:
-  "takefill fill (m + length xs) (xs @ w) = xs @ (takefill fill m w)"
-  by (induct xs) auto
-
-lemma takefill_same': 
-  "l = length xs ==> takefill fill l xs = xs"
-  by clarify (induct xs, auto)
- 
-lemmas takefill_same [simp] = takefill_same' [OF refl]
-
-lemma takefill_bintrunc:
-  "takefill False n bl = rev (bin_to_bl n (bl_to_bin (rev bl)))"
-  apply (rule nth_equalityI)
-   apply simp
-  apply (clarsimp simp: nth_takefill nth_rev nth_bin_to_bl bin_nth_of_bl)
-  done
-
-lemma bl_bin_bl_rtf:
-  "bin_to_bl n (bl_to_bin bl) = rev (takefill False n (rev bl))"
-  by (simp add : takefill_bintrunc)
-  
-lemmas bl_bin_bl_rep_drop = 
-  bl_bin_bl_rtf [simplified takefill_alt,
-                 simplified, simplified rev_take, simplified]
-
-lemma tf_rev:
-  "n + k = m + length bl ==> takefill x m (rev (takefill y n bl)) = 
-    rev (takefill y m (rev (takefill x k (rev bl))))"
-  apply (rule nth_equalityI)
-   apply (auto simp add: nth_takefill nth_rev)
-  apply (rule_tac f = "%n. bl ! n" in arg_cong) 
-  apply arith 
-  done
-
-lemma takefill_minus:
-  "0 < n ==> takefill fill (Suc (n - 1)) w = takefill fill n w"
-  by auto
-
-lemmas takefill_Suc_cases = 
-  list.cases [THEN takefill.Suc [THEN trans], standard]
-
-lemmas takefill_Suc_Nil = takefill_Suc_cases (1)
-lemmas takefill_Suc_Cons = takefill_Suc_cases (2)
-
-lemmas takefill_minus_simps = takefill_Suc_cases [THEN [2] 
-  takefill_minus [symmetric, THEN trans], standard]
-
-lemmas takefill_pred_simps [simp] =
-  takefill_minus_simps [where n="number_of bin", simplified nobm1, standard]
-
-(* links with function bl_to_bin *)
-
-lemma bl_to_bin_aux_cat: 
-  "!!nv v. bl_to_bin_aux bs (bin_cat w nv v) = 
-    bin_cat w (nv + length bs) (bl_to_bin_aux bs v)"
-  apply (induct bs)
-   apply simp
-  apply (simp add: bin_cat_Suc_Bit [symmetric] del: bin_cat.simps)
-  done
-
-lemma bin_to_bl_aux_cat: 
-  "!!w bs. bin_to_bl_aux (nv + nw) (bin_cat v nw w) bs = 
-    bin_to_bl_aux nv v (bin_to_bl_aux nw w bs)"
-  by (induct nw) auto 
-
-lemmas bl_to_bin_aux_alt = 
-  bl_to_bin_aux_cat [where nv = "0" and v = "Int.Pls", 
-    simplified bl_to_bin_def [symmetric], simplified]
-
-lemmas bin_to_bl_cat =
-  bin_to_bl_aux_cat [where bs = "[]", folded bin_to_bl_def]
-
-lemmas bl_to_bin_aux_app_cat = 
-  trans [OF bl_to_bin_aux_append bl_to_bin_aux_alt]
-
-lemmas bin_to_bl_aux_cat_app =
-  trans [OF bin_to_bl_aux_cat bin_to_bl_aux_alt]
-
-lemmas bl_to_bin_app_cat = bl_to_bin_aux_app_cat
-  [where w = "Int.Pls", folded bl_to_bin_def]
-
-lemmas bin_to_bl_cat_app = bin_to_bl_aux_cat_app
-  [where bs = "[]", folded bin_to_bl_def]
-
-(* bl_to_bin_app_cat_alt and bl_to_bin_app_cat are easily interderivable *)
-lemma bl_to_bin_app_cat_alt: 
-  "bin_cat (bl_to_bin cs) n w = bl_to_bin (cs @ bin_to_bl n w)"
-  by (simp add : bl_to_bin_app_cat)
-
-lemma mask_lem: "(bl_to_bin (True # replicate n False)) = 
-    Int.succ (bl_to_bin (replicate n True))"
-  apply (unfold bl_to_bin_def)
-  apply (induct n)
-   apply simp
-  apply (simp only: Suc_eq_plus1 replicate_add
-                    append_Cons [symmetric] bl_to_bin_aux_append)
-  apply simp
-  done
-
-(* function bl_of_nth *)
-lemma length_bl_of_nth [simp]: "length (bl_of_nth n f) = n"
-  by (induct n)  auto
-
-lemma nth_bl_of_nth [simp]:
-  "m < n \<Longrightarrow> rev (bl_of_nth n f) ! m = f m"
-  apply (induct n)
-   apply simp
-  apply (clarsimp simp add : nth_append)
-  apply (rule_tac f = "f" in arg_cong) 
-  apply simp
-  done
-
-lemma bl_of_nth_inj: 
-  "(!!k. k < n ==> f k = g k) ==> bl_of_nth n f = bl_of_nth n g"
-  by (induct n)  auto
-
-lemma bl_of_nth_nth_le [rule_format] : "ALL xs. 
-    length xs >= n --> bl_of_nth n (nth (rev xs)) = drop (length xs - n) xs";
-  apply (induct n, clarsimp)
-  apply clarsimp
-  apply (rule trans [OF _ hd_Cons_tl])
-   apply (frule Suc_le_lessD)
-   apply (simp add: nth_rev trans [OF drop_Suc drop_tl, symmetric])
-   apply (subst hd_drop_conv_nth)
-     apply force
-    apply simp_all
-  apply (rule_tac f = "%n. drop n xs" in arg_cong) 
-  apply simp
-  done
-
-lemmas bl_of_nth_nth [simp] = order_refl [THEN bl_of_nth_nth_le, simplified]
-
-lemma size_rbl_pred: "length (rbl_pred bl) = length bl"
-  by (induct bl) auto
-
-lemma size_rbl_succ: "length (rbl_succ bl) = length bl"
-  by (induct bl) auto
-
-lemma size_rbl_add:
-  "!!cl. length (rbl_add bl cl) = length bl"
-  by (induct bl) (auto simp: Let_def size_rbl_succ)
-
-lemma size_rbl_mult: 
-  "!!cl. length (rbl_mult bl cl) = length bl"
-  by (induct bl) (auto simp add : Let_def size_rbl_add)
-
-lemmas rbl_sizes [simp] = 
-  size_rbl_pred size_rbl_succ size_rbl_add size_rbl_mult
-
-lemmas rbl_Nils =
-  rbl_pred.Nil rbl_succ.Nil rbl_add.Nil rbl_mult.Nil
-
-lemma rbl_pred: 
-  "!!bin. rbl_pred (rev (bin_to_bl n bin)) = rev (bin_to_bl n (Int.pred bin))"
-  apply (induct n, simp)
-  apply (unfold bin_to_bl_def)
-  apply clarsimp
-  apply (case_tac bin rule: bin_exhaust)
-  apply (case_tac b)
-   apply (clarsimp simp: bin_to_bl_aux_alt)+
-  done
-
-lemma rbl_succ: 
-  "!!bin. rbl_succ (rev (bin_to_bl n bin)) = rev (bin_to_bl n (Int.succ bin))"
-  apply (induct n, simp)
-  apply (unfold bin_to_bl_def)
-  apply clarsimp
-  apply (case_tac bin rule: bin_exhaust)
-  apply (case_tac b)
-   apply (clarsimp simp: bin_to_bl_aux_alt)+
-  done
-
-lemma rbl_add: 
-  "!!bina binb. rbl_add (rev (bin_to_bl n bina)) (rev (bin_to_bl n binb)) = 
-    rev (bin_to_bl n (bina + binb))"
-  apply (induct n, simp)
-  apply (unfold bin_to_bl_def)
-  apply clarsimp
-  apply (case_tac bina rule: bin_exhaust)
-  apply (case_tac binb rule: bin_exhaust)
-  apply (case_tac b)
-   apply (case_tac [!] "ba")
-     apply (auto simp: rbl_succ succ_def bin_to_bl_aux_alt Let_def add_ac)
-  done
-
-lemma rbl_add_app2: 
-  "!!blb. length blb >= length bla ==> 
-    rbl_add bla (blb @ blc) = rbl_add bla blb"
-  apply (induct bla, simp)
-  apply clarsimp
-  apply (case_tac blb, clarsimp)
-  apply (clarsimp simp: Let_def)
-  done
-
-lemma rbl_add_take2: 
-  "!!blb. length blb >= length bla ==> 
-    rbl_add bla (take (length bla) blb) = rbl_add bla blb"
-  apply (induct bla, simp)
-  apply clarsimp
-  apply (case_tac blb, clarsimp)
-  apply (clarsimp simp: Let_def)
-  done
-
-lemma rbl_add_long: 
-  "m >= n ==> rbl_add (rev (bin_to_bl n bina)) (rev (bin_to_bl m binb)) = 
-    rev (bin_to_bl n (bina + binb))"
-  apply (rule box_equals [OF _ rbl_add_take2 rbl_add])
-   apply (rule_tac f = "rbl_add (rev (bin_to_bl n bina))" in arg_cong) 
-   apply (rule rev_swap [THEN iffD1])
-   apply (simp add: rev_take drop_bin2bl)
-  apply simp
-  done
-
-lemma rbl_mult_app2:
-  "!!blb. length blb >= length bla ==> 
-    rbl_mult bla (blb @ blc) = rbl_mult bla blb"
-  apply (induct bla, simp)
-  apply clarsimp
-  apply (case_tac blb, clarsimp)
-  apply (clarsimp simp: Let_def rbl_add_app2)
-  done
-
-lemma rbl_mult_take2: 
-  "length blb >= length bla ==> 
-    rbl_mult bla (take (length bla) blb) = rbl_mult bla blb"
-  apply (rule trans)
-   apply (rule rbl_mult_app2 [symmetric])
-   apply simp
-  apply (rule_tac f = "rbl_mult bla" in arg_cong) 
-  apply (rule append_take_drop_id)
-  done
-    
-lemma rbl_mult_gt1: 
-  "m >= length bl ==> rbl_mult bl (rev (bin_to_bl m binb)) = 
-    rbl_mult bl (rev (bin_to_bl (length bl) binb))"
-  apply (rule trans)
-   apply (rule rbl_mult_take2 [symmetric])
-   apply simp_all
-  apply (rule_tac f = "rbl_mult bl" in arg_cong) 
-  apply (rule rev_swap [THEN iffD1])
-  apply (simp add: rev_take drop_bin2bl)
-  done
-    
-lemma rbl_mult_gt: 
-  "m > n ==> rbl_mult (rev (bin_to_bl n bina)) (rev (bin_to_bl m binb)) = 
-    rbl_mult (rev (bin_to_bl n bina)) (rev (bin_to_bl n binb))"
-  by (auto intro: trans [OF rbl_mult_gt1])
-  
-lemmas rbl_mult_Suc = lessI [THEN rbl_mult_gt]
-
-lemma rbbl_Cons: 
-  "b # rev (bin_to_bl n x) = rev (bin_to_bl (Suc n) (x BIT If b 1 0))"
-  apply (unfold bin_to_bl_def)
-  apply simp
-  apply (simp add: bin_to_bl_aux_alt)
-  done
-  
-lemma rbl_mult: "!!bina binb. 
-    rbl_mult (rev (bin_to_bl n bina)) (rev (bin_to_bl n binb)) = 
-    rev (bin_to_bl n (bina * binb))"
-  apply (induct n)
-   apply simp
-  apply (unfold bin_to_bl_def)
-  apply clarsimp
-  apply (case_tac bina rule: bin_exhaust)
-  apply (case_tac binb rule: bin_exhaust)
-  apply (case_tac b)
-   apply (case_tac [!] "ba")
-     apply (auto simp: bin_to_bl_aux_alt Let_def)
-     apply (auto simp: rbbl_Cons rbl_mult_Suc rbl_add)
-  done
-
-lemma rbl_add_split: 
-  "P (rbl_add (y # ys) (x # xs)) = 
-    (ALL ws. length ws = length ys --> ws = rbl_add ys xs --> 
-    (y --> ((x --> P (False # rbl_succ ws)) & (~ x -->  P (True # ws)))) &
-    (~ y --> P (x # ws)))"
-  apply (auto simp add: Let_def)
-   apply (case_tac [!] "y")
-     apply auto
-  done
-
-lemma rbl_mult_split: 
-  "P (rbl_mult (y # ys) xs) = 
-    (ALL ws. length ws = Suc (length ys) --> ws = False # rbl_mult ys xs --> 
-    (y --> P (rbl_add ws xs)) & (~ y -->  P ws))"
-  by (clarsimp simp add : Let_def)
-  
-lemma and_len: "xs = ys ==> xs = ys & length xs = length ys"
-  by auto
-
-lemma size_if: "size (if p then xs else ys) = (if p then size xs else size ys)"
-  by auto
-
-lemma tl_if: "tl (if p then xs else ys) = (if p then tl xs else tl ys)"
-  by auto
-
-lemma hd_if: "hd (if p then xs else ys) = (if p then hd xs else hd ys)"
-  by auto
-
-lemma if_Not_x: "(if p then ~ x else x) = (p = (~ x))"
-  by auto
-
-lemma if_x_Not: "(if p then x else ~ x) = (p = x)"
-  by auto
-
-lemma if_same_and: "(If p x y & If p u v) = (if p then x & u else y & v)"
-  by auto
-
-lemma if_same_eq: "(If p x y  = (If p u v)) = (if p then x = (u) else y = (v))"
-  by auto
-
-lemma if_same_eq_not:
-  "(If p x y  = (~ If p u v)) = (if p then x = (~u) else y = (~v))"
-  by auto
-
-(* note - if_Cons can cause blowup in the size, if p is complex,
-  so make a simproc *)
-lemma if_Cons: "(if p then x # xs else y # ys) = If p x y # If p xs ys"
-  by auto
-
-lemma if_single:
-  "(if xc then [xab] else [an]) = [if xc then xab else an]"
-  by auto
-
-lemma if_bool_simps:
-  "If p True y = (p | y) & If p False y = (~p & y) & 
-    If p y True = (p --> y) & If p y False = (p & y)"
-  by auto
-
-lemmas if_simps = if_x_Not if_Not_x if_cancel if_True if_False if_bool_simps
-
-lemmas seqr = eq_reflection [where x = "size w", standard]
-
-lemmas tl_Nil = tl.simps (1)
-lemmas tl_Cons = tl.simps (2)
-
-
-subsection "Repeated splitting or concatenation"
-
-lemma sclem:
-  "size (concat (map (bin_to_bl n) xs)) = length xs * n"
-  by (induct xs) auto
-
-lemma bin_cat_foldl_lem [rule_format] :
-  "ALL x. foldl (%u. bin_cat u n) x xs = 
-    bin_cat x (size xs * n) (foldl (%u. bin_cat u n) y xs)"
-  apply (induct xs)
-   apply simp
-  apply clarify
-  apply (simp (no_asm))
-  apply (frule asm_rl)
-  apply (drule spec)
-  apply (erule trans)
-  apply (drule_tac x = "bin_cat y n a" in spec)
-  apply (simp add : bin_cat_assoc_sym min_max.inf_absorb2)
-  done
-
-lemma bin_rcat_bl:
-  "(bin_rcat n wl) = bl_to_bin (concat (map (bin_to_bl n) wl))"
-  apply (unfold bin_rcat_def)
-  apply (rule sym)
-  apply (induct wl)
-   apply (auto simp add : bl_to_bin_append)
-  apply (simp add : bl_to_bin_aux_alt sclem)
-  apply (simp add : bin_cat_foldl_lem [symmetric])
-  done
-
-lemmas bin_rsplit_aux_simps = bin_rsplit_aux.simps bin_rsplitl_aux.simps
-lemmas rsplit_aux_simps = bin_rsplit_aux_simps
-
-lemmas th_if_simp1 = split_if [where P = "op = l",
-  THEN iffD1, THEN conjunct1, THEN mp, standard]
-lemmas th_if_simp2 = split_if [where P = "op = l",
-  THEN iffD1, THEN conjunct2, THEN mp, standard]
-
-lemmas rsplit_aux_simp1s = rsplit_aux_simps [THEN th_if_simp1]
-
-lemmas rsplit_aux_simp2ls = rsplit_aux_simps [THEN th_if_simp2]
-(* these safe to [simp add] as require calculating m - n *)
-lemmas bin_rsplit_aux_simp2s [simp] = rsplit_aux_simp2ls [unfolded Let_def]
-lemmas rbscl = bin_rsplit_aux_simp2s (2)
-
-lemmas rsplit_aux_0_simps [simp] = 
-  rsplit_aux_simp1s [OF disjI1] rsplit_aux_simp1s [OF disjI2]
-
-lemma bin_rsplit_aux_append:
-  "bin_rsplit_aux n m c (bs @ cs) = bin_rsplit_aux n m c bs @ cs"
-  apply (induct n m c bs rule: bin_rsplit_aux.induct)
-  apply (subst bin_rsplit_aux.simps)
-  apply (subst bin_rsplit_aux.simps)
-  apply (clarsimp split: ls_splits)
-  apply auto
-  done
-
-lemma bin_rsplitl_aux_append:
-  "bin_rsplitl_aux n m c (bs @ cs) = bin_rsplitl_aux n m c bs @ cs"
-  apply (induct n m c bs rule: bin_rsplitl_aux.induct)
-  apply (subst bin_rsplitl_aux.simps)
-  apply (subst bin_rsplitl_aux.simps)
-  apply (clarsimp split: ls_splits)
-  apply auto
-  done
-
-lemmas rsplit_aux_apps [where bs = "[]"] =
-  bin_rsplit_aux_append bin_rsplitl_aux_append
-
-lemmas rsplit_def_auxs = bin_rsplit_def bin_rsplitl_def
-
-lemmas rsplit_aux_alts = rsplit_aux_apps 
-  [unfolded append_Nil rsplit_def_auxs [symmetric]]
-
-lemma bin_split_minus: "0 < n ==> bin_split (Suc (n - 1)) w = bin_split n w"
-  by auto
-
-lemmas bin_split_minus_simp =
-  bin_split.Suc [THEN [2] bin_split_minus [symmetric, THEN trans], standard]
-
-lemma bin_split_pred_simp [simp]: 
-  "(0::nat) < number_of bin \<Longrightarrow>
-  bin_split (number_of bin) w =
-  (let (w1, w2) = bin_split (number_of (Int.pred bin)) (bin_rest w)
-   in (w1, w2 BIT bin_last w))" 
-  by (simp only: nobm1 bin_split_minus_simp)
-
-declare bin_split_pred_simp [simp]
-
-lemma bin_rsplit_aux_simp_alt:
-  "bin_rsplit_aux n m c bs =
-   (if m = 0 \<or> n = 0 
-   then bs
-   else let (a, b) = bin_split n c in bin_rsplit n (m - n, a) @ b # bs)"
-  unfolding bin_rsplit_aux.simps [of n m c bs]
-  apply simp
-  apply (subst rsplit_aux_alts)
-  apply (simp add: bin_rsplit_def)
-  done
-
-lemmas bin_rsplit_simp_alt = 
-  trans [OF bin_rsplit_def
-            bin_rsplit_aux_simp_alt, standard]
-
-lemmas bthrs = bin_rsplit_simp_alt [THEN [2] trans]
-
-lemma bin_rsplit_size_sign' [rule_format] : 
-  "n > 0 ==> (ALL nw w. rev sw = bin_rsplit n (nw, w) --> 
-    (ALL v: set sw. bintrunc n v = v))"
-  apply (induct sw)
-   apply clarsimp
-  apply clarsimp
-  apply (drule bthrs)
-  apply (simp (no_asm_use) add: Let_def split: ls_splits)
-  apply clarify
-  apply (erule impE, rule exI, erule exI)
-  apply (drule split_bintrunc)
-  apply simp
-  done
-
-lemmas bin_rsplit_size_sign = bin_rsplit_size_sign' [OF asm_rl 
-  rev_rev_ident [THEN trans] set_rev [THEN equalityD2 [THEN subsetD]],
-  standard]
-
-lemma bin_nth_rsplit [rule_format] :
-  "n > 0 ==> m < n ==> (ALL w k nw. rev sw = bin_rsplit n (nw, w) --> 
-       k < size sw --> bin_nth (sw ! k) m = bin_nth w (k * n + m))"
-  apply (induct sw)
-   apply clarsimp
-  apply clarsimp
-  apply (drule bthrs)
-  apply (simp (no_asm_use) add: Let_def split: ls_splits)
-  apply clarify
-  apply (erule allE, erule impE, erule exI)
-  apply (case_tac k)
-   apply clarsimp   
-   prefer 2
-   apply clarsimp
-   apply (erule allE)
-   apply (erule (1) impE)
-   apply (drule bin_nth_split, erule conjE, erule allE,
-          erule trans, simp add : add_ac)+
-  done
-
-lemma bin_rsplit_all:
-  "0 < nw ==> nw <= n ==> bin_rsplit n (nw, w) = [bintrunc n w]"
-  unfolding bin_rsplit_def
-  by (clarsimp dest!: split_bintrunc simp: rsplit_aux_simp2ls split: ls_splits)
-
-lemma bin_rsplit_l [rule_format] :
-  "ALL bin. bin_rsplitl n (m, bin) = bin_rsplit n (m, bintrunc m bin)"
-  apply (rule_tac a = "m" in wf_less_than [THEN wf_induct])
-  apply (simp (no_asm) add : bin_rsplitl_def bin_rsplit_def)
-  apply (rule allI)
-  apply (subst bin_rsplitl_aux.simps)
-  apply (subst bin_rsplit_aux.simps)
-  apply (clarsimp simp: Let_def split: ls_splits)
-  apply (drule bin_split_trunc)
-  apply (drule sym [THEN trans], assumption)
-  apply (subst rsplit_aux_alts(1))
-  apply (subst rsplit_aux_alts(2))
-  apply clarsimp
-  unfolding bin_rsplit_def bin_rsplitl_def
-  apply simp
-  done
-
-lemma bin_rsplit_rcat [rule_format] :
-  "n > 0 --> bin_rsplit n (n * size ws, bin_rcat n ws) = map (bintrunc n) ws"
-  apply (unfold bin_rsplit_def bin_rcat_def)
-  apply (rule_tac xs = "ws" in rev_induct)
-   apply clarsimp
-  apply clarsimp
-  apply (subst rsplit_aux_alts)
-  unfolding bin_split_cat
-  apply simp
-  done
-
-lemma bin_rsplit_aux_len_le [rule_format] :
-  "\<forall>ws m. n \<noteq> 0 \<longrightarrow> ws = bin_rsplit_aux n nw w bs \<longrightarrow>
-    length ws \<le> m \<longleftrightarrow> nw + length bs * n \<le> m * n"
-  apply (induct n nw w bs rule: bin_rsplit_aux.induct)
-  apply (subst bin_rsplit_aux.simps)
-  apply (simp add: lrlem Let_def split: ls_splits)
-  done
-
-lemma bin_rsplit_len_le: 
-  "n \<noteq> 0 --> ws = bin_rsplit n (nw, w) --> (length ws <= m) = (nw <= m * n)"
-  unfolding bin_rsplit_def by (clarsimp simp add : bin_rsplit_aux_len_le)
- 
-lemma bin_rsplit_aux_len [rule_format] :
-  "n\<noteq>0 --> length (bin_rsplit_aux n nw w cs) = 
-    (nw + n - 1) div n + length cs"
-  apply (induct n nw w cs rule: bin_rsplit_aux.induct)
-  apply (subst bin_rsplit_aux.simps)
-  apply (clarsimp simp: Let_def split: ls_splits)
-  apply (erule thin_rl)
-  apply (case_tac m)
-  apply simp
-  apply (case_tac "m <= n")
-  apply auto
-  done
-
-lemma bin_rsplit_len: 
-  "n\<noteq>0 ==> length (bin_rsplit n (nw, w)) = (nw + n - 1) div n"
-  unfolding bin_rsplit_def by (clarsimp simp add : bin_rsplit_aux_len)
-
-lemma bin_rsplit_aux_len_indep:
-  "n \<noteq> 0 \<Longrightarrow> length bs = length cs \<Longrightarrow>
-    length (bin_rsplit_aux n nw v bs) =
-    length (bin_rsplit_aux n nw w cs)"
-proof (induct n nw w cs arbitrary: v bs rule: bin_rsplit_aux.induct)
-  case (1 n m w cs v bs) show ?case
-  proof (cases "m = 0")
-    case True then show ?thesis using `length bs = length cs` by simp
-  next
-    case False
-    from "1.hyps" `m \<noteq> 0` `n \<noteq> 0` have hyp: "\<And>v bs. length bs = Suc (length cs) \<Longrightarrow>
-      length (bin_rsplit_aux n (m - n) v bs) =
-      length (bin_rsplit_aux n (m - n) (fst (bin_split n w)) (snd (bin_split n w) # cs))"
-    by auto
-    show ?thesis using `length bs = length cs` `n \<noteq> 0`
-      by (auto simp add: bin_rsplit_aux_simp_alt Let_def bin_rsplit_len
-        split: ls_splits)
-  qed
-qed
-
-lemma bin_rsplit_len_indep: 
-  "n\<noteq>0 ==> length (bin_rsplit n (nw, v)) = length (bin_rsplit n (nw, w))"
-  apply (unfold bin_rsplit_def)
-  apply (simp (no_asm))
-  apply (erule bin_rsplit_aux_len_indep)
-  apply (rule refl)
-  done
-
-end
--- a/src/HOL/Word/BinGeneral.thy	Wed Jun 30 16:41:03 2010 +0200
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,938 +0,0 @@
-(* 
-  Author: Jeremy Dawson, NICTA
-
-  contains basic definition to do with integers
-  expressed using Pls, Min, BIT and important resulting theorems, 
-  in particular, bin_rec and related work
-*) 
-
-header {* Basic Definitions for Binary Integers *}
-
-theory BinGeneral
-imports Misc_Numeric Bit
-begin
-
-subsection {* Further properties of numerals *}
-
-definition Bit :: "int \<Rightarrow> bit \<Rightarrow> int" (infixl "BIT" 90) where
-  "k BIT b = bit_case 0 1 b + k + k"
-
-lemma BIT_B0_eq_Bit0 [simp]: "w BIT 0 = Int.Bit0 w"
-  unfolding Bit_def Bit0_def by simp
-
-lemma BIT_B1_eq_Bit1 [simp]: "w BIT 1 = Int.Bit1 w"
-  unfolding Bit_def Bit1_def by simp
-
-lemmas BIT_simps = BIT_B0_eq_Bit0 BIT_B1_eq_Bit1
-
-lemma Min_ne_Pls [iff]:  
-  "Int.Min ~= Int.Pls"
-  unfolding Min_def Pls_def by auto
-
-lemmas Pls_ne_Min [iff] = Min_ne_Pls [symmetric]
-
-lemmas PlsMin_defs [intro!] = 
-  Pls_def Min_def Pls_def [symmetric] Min_def [symmetric]
-
-lemmas PlsMin_simps [simp] = PlsMin_defs [THEN Eq_TrueI]
-
-lemma number_of_False_cong: 
-  "False \<Longrightarrow> number_of x = number_of y"
-  by (rule FalseE)
-
-(** ways in which type Bin resembles a datatype **)
-
-lemma BIT_eq: "u BIT b = v BIT c ==> u = v & b = c"
-  apply (unfold Bit_def)
-  apply (simp (no_asm_use) split: bit.split_asm)
-     apply simp_all
-   apply (drule_tac f=even in arg_cong, clarsimp)+
-  done
-     
-lemmas BIT_eqE [elim!] = BIT_eq [THEN conjE, standard]
-
-lemma BIT_eq_iff [simp]: 
-  "(u BIT b = v BIT c) = (u = v \<and> b = c)"
-  by (rule iffI) auto
-
-lemmas BIT_eqI [intro!] = conjI [THEN BIT_eq_iff [THEN iffD2]]
-
-lemma less_Bits: 
-  "(v BIT b < w BIT c) = (v < w | v <= w & b = (0::bit) & c = (1::bit))"
-  unfolding Bit_def by (auto split: bit.split)
-
-lemma le_Bits: 
-  "(v BIT b <= w BIT c) = (v < w | v <= w & (b ~= (1::bit) | c ~= (0::bit)))" 
-  unfolding Bit_def by (auto split: bit.split)
-
-lemma no_no [simp]: "number_of (number_of i) = i"
-  unfolding number_of_eq by simp
-
-lemma Bit_B0:
-  "k BIT (0::bit) = k + k"
-   by (unfold Bit_def) simp
-
-lemma Bit_B1:
-  "k BIT (1::bit) = k + k + 1"
-   by (unfold Bit_def) simp
-  
-lemma Bit_B0_2t: "k BIT (0::bit) = 2 * k"
-  by (rule trans, rule Bit_B0) simp
-
-lemma Bit_B1_2t: "k BIT (1::bit) = 2 * k + 1"
-  by (rule trans, rule Bit_B1) simp
-
-lemma B_mod_2': 
-  "X = 2 ==> (w BIT (1::bit)) mod X = 1 & (w BIT (0::bit)) mod X = 0"
-  apply (simp (no_asm) only: Bit_B0 Bit_B1)
-  apply (simp add: z1pmod2)
-  done
-
-lemma B1_mod_2 [simp]: "(Int.Bit1 w) mod 2 = 1"
-  unfolding numeral_simps number_of_is_id by (simp add: z1pmod2)
-
-lemma B0_mod_2 [simp]: "(Int.Bit0 w) mod 2 = 0"
-  unfolding numeral_simps number_of_is_id by simp
-
-lemma neB1E [elim!]:
-  assumes ne: "y \<noteq> (1::bit)"
-  assumes y: "y = (0::bit) \<Longrightarrow> P"
-  shows "P"
-  apply (rule y)
-  apply (cases y rule: bit.exhaust, simp)
-  apply (simp add: ne)
-  done
-
-lemma bin_ex_rl: "EX w b. w BIT b = bin"
-  apply (unfold Bit_def)
-  apply (cases "even bin")
-   apply (clarsimp simp: even_equiv_def)
-   apply (auto simp: odd_equiv_def split: bit.split)
-  done
-
-lemma bin_exhaust:
-  assumes Q: "\<And>x b. bin = x BIT b \<Longrightarrow> Q"
-  shows "Q"
-  apply (insert bin_ex_rl [of bin])  
-  apply (erule exE)+
-  apply (rule Q)
-  apply force
-  done
-
-
-subsection {* Destructors for binary integers *}
-
-definition bin_last :: "int \<Rightarrow> bit" where
-  "bin_last w = (if w mod 2 = 0 then (0::bit) else (1::bit))"
-
-definition bin_rest :: "int \<Rightarrow> int" where
-  "bin_rest w = w div 2"
-
-definition bin_rl :: "int \<Rightarrow> int \<times> bit" where 
-  "bin_rl w = (bin_rest w, bin_last w)"
-
-lemma bin_rl_char: "bin_rl w = (r, l) \<longleftrightarrow> r BIT l = w"
-  apply (cases l)
-  apply (auto simp add: bin_rl_def bin_last_def bin_rest_def)
-  unfolding Pls_def Min_def Bit0_def Bit1_def number_of_is_id
-  apply arith+
-  done
-
-primrec bin_nth where
-  Z: "bin_nth w 0 = (bin_last w = (1::bit))"
-  | Suc: "bin_nth w (Suc n) = bin_nth (bin_rest w) n"
-
-lemma bin_rl_simps [simp]:
-  "bin_rl Int.Pls = (Int.Pls, (0::bit))"
-  "bin_rl Int.Min = (Int.Min, (1::bit))"
-  "bin_rl (Int.Bit0 r) = (r, (0::bit))"
-  "bin_rl (Int.Bit1 r) = (r, (1::bit))"
-  "bin_rl (r BIT b) = (r, b)"
-  unfolding bin_rl_char by simp_all
-
-lemma bin_rl_simp [simp]:
-  "bin_rest w BIT bin_last w = w"
-  by (simp add: iffD1 [OF bin_rl_char bin_rl_def])
-
-lemma bin_abs_lem:
-  "bin = (w BIT b) ==> ~ bin = Int.Min --> ~ bin = Int.Pls -->
-    nat (abs w) < nat (abs bin)"
-  apply (clarsimp simp add: bin_rl_char)
-  apply (unfold Pls_def Min_def Bit_def)
-  apply (cases b)
-   apply (clarsimp, arith)
-  apply (clarsimp, arith)
-  done
-
-lemma bin_induct:
-  assumes PPls: "P Int.Pls"
-    and PMin: "P Int.Min"
-    and PBit: "!!bin bit. P bin ==> P (bin BIT bit)"
-  shows "P bin"
-  apply (rule_tac P=P and a=bin and f1="nat o abs" 
-                  in wf_measure [THEN wf_induct])
-  apply (simp add: measure_def inv_image_def)
-  apply (case_tac x rule: bin_exhaust)
-  apply (frule bin_abs_lem)
-  apply (auto simp add : PPls PMin PBit)
-  done
-
-lemma numeral_induct:
-  assumes Pls: "P Int.Pls"
-  assumes Min: "P Int.Min"
-  assumes Bit0: "\<And>w. \<lbrakk>P w; w \<noteq> Int.Pls\<rbrakk> \<Longrightarrow> P (Int.Bit0 w)"
-  assumes Bit1: "\<And>w. \<lbrakk>P w; w \<noteq> Int.Min\<rbrakk> \<Longrightarrow> P (Int.Bit1 w)"
-  shows "P x"
-  apply (induct x rule: bin_induct)
-    apply (rule Pls)
-   apply (rule Min)
-  apply (case_tac bit)
-   apply (case_tac "bin = Int.Pls")
-    apply simp
-   apply (simp add: Bit0)
-  apply (case_tac "bin = Int.Min")
-   apply simp
-  apply (simp add: Bit1)
-  done
-
-lemma bin_rest_simps [simp]: 
-  "bin_rest Int.Pls = Int.Pls"
-  "bin_rest Int.Min = Int.Min"
-  "bin_rest (Int.Bit0 w) = w"
-  "bin_rest (Int.Bit1 w) = w"
-  "bin_rest (w BIT b) = w"
-  using bin_rl_simps bin_rl_def by auto
-
-lemma bin_last_simps [simp]: 
-  "bin_last Int.Pls = (0::bit)"
-  "bin_last Int.Min = (1::bit)"
-  "bin_last (Int.Bit0 w) = (0::bit)"
-  "bin_last (Int.Bit1 w) = (1::bit)"
-  "bin_last (w BIT b) = b"
-  using bin_rl_simps bin_rl_def by auto
-
-lemma bin_r_l_extras [simp]:
-  "bin_last 0 = (0::bit)"
-  "bin_last (- 1) = (1::bit)"
-  "bin_last -1 = (1::bit)"
-  "bin_last 1 = (1::bit)"
-  "bin_rest 1 = 0"
-  "bin_rest 0 = 0"
-  "bin_rest (- 1) = - 1"
-  "bin_rest -1 = -1"
-  by (simp_all add: bin_last_def bin_rest_def)
-
-lemma bin_last_mod: 
-  "bin_last w = (if w mod 2 = 0 then (0::bit) else (1::bit))"
-  apply (case_tac w rule: bin_exhaust)
-  apply (case_tac b)
-   apply auto
-  done
-
-lemma bin_rest_div: 
-  "bin_rest w = w div 2"
-  apply (case_tac w rule: bin_exhaust)
-  apply (rule trans)
-   apply clarsimp
-   apply (rule refl)
-  apply (drule trans)
-   apply (rule Bit_def)
-  apply (simp add: z1pdiv2 split: bit.split)
-  done
-
-lemma Bit_div2 [simp]: "(w BIT b) div 2 = w"
-  unfolding bin_rest_div [symmetric] by auto
-
-lemma Bit0_div2 [simp]: "(Int.Bit0 w) div 2 = w"
-  using Bit_div2 [where b="(0::bit)"] by simp
-
-lemma Bit1_div2 [simp]: "(Int.Bit1 w) div 2 = w"
-  using Bit_div2 [where b="(1::bit)"] by simp
-
-lemma bin_nth_lem [rule_format]:
-  "ALL y. bin_nth x = bin_nth y --> x = y"
-  apply (induct x rule: bin_induct)
-    apply safe
-    apply (erule rev_mp)
-    apply (induct_tac y rule: bin_induct)
-      apply (safe del: subset_antisym)
-      apply (drule_tac x=0 in fun_cong, force)
-     apply (erule notE, rule ext, 
-            drule_tac x="Suc x" in fun_cong, force)
-    apply (drule_tac x=0 in fun_cong, force)
-   apply (erule rev_mp)
-   apply (induct_tac y rule: bin_induct)
-     apply (safe del: subset_antisym)
-     apply (drule_tac x=0 in fun_cong, force)
-    apply (erule notE, rule ext, 
-           drule_tac x="Suc x" in fun_cong, force)
-   apply (drule_tac x=0 in fun_cong, force)
-  apply (case_tac y rule: bin_exhaust)
-  apply clarify
-  apply (erule allE)
-  apply (erule impE)
-   prefer 2
-   apply (erule BIT_eqI)
-   apply (drule_tac x=0 in fun_cong, force)
-  apply (rule ext)
-  apply (drule_tac x="Suc ?x" in fun_cong, force)
-  done
-
-lemma bin_nth_eq_iff: "(bin_nth x = bin_nth y) = (x = y)"
-  by (auto elim: bin_nth_lem)
-
-lemmas bin_eqI = ext [THEN bin_nth_eq_iff [THEN iffD1], standard]
-
-lemma bin_nth_Pls [simp]: "~ bin_nth Int.Pls n"
-  by (induct n) auto
-
-lemma bin_nth_Min [simp]: "bin_nth Int.Min n"
-  by (induct n) auto
-
-lemma bin_nth_0_BIT: "bin_nth (w BIT b) 0 = (b = (1::bit))"
-  by auto
-
-lemma bin_nth_Suc_BIT: "bin_nth (w BIT b) (Suc n) = bin_nth w n"
-  by auto
-
-lemma bin_nth_minus [simp]: "0 < n ==> bin_nth (w BIT b) n = bin_nth w (n - 1)"
-  by (cases n) auto
-
-lemma bin_nth_minus_Bit0 [simp]:
-  "0 < n ==> bin_nth (Int.Bit0 w) n = bin_nth w (n - 1)"
-  using bin_nth_minus [where b="(0::bit)"] by simp
-
-lemma bin_nth_minus_Bit1 [simp]:
-  "0 < n ==> bin_nth (Int.Bit1 w) n = bin_nth w (n - 1)"
-  using bin_nth_minus [where b="(1::bit)"] by simp
-
-lemmas bin_nth_0 = bin_nth.simps(1)
-lemmas bin_nth_Suc = bin_nth.simps(2)
-
-lemmas bin_nth_simps = 
-  bin_nth_0 bin_nth_Suc bin_nth_Pls bin_nth_Min bin_nth_minus
-  bin_nth_minus_Bit0 bin_nth_minus_Bit1
-
-
-subsection {* Recursion combinator for binary integers *}
-
-lemma brlem: "(bin = Int.Min) = (- bin + Int.pred 0 = 0)"
-  unfolding Min_def pred_def by arith
-
-function
-  bin_rec :: "'a \<Rightarrow> 'a \<Rightarrow> (int \<Rightarrow> bit \<Rightarrow> 'a \<Rightarrow> 'a) \<Rightarrow> int \<Rightarrow> 'a"  
-where 
-  "bin_rec f1 f2 f3 bin = (if bin = Int.Pls then f1 
-    else if bin = Int.Min then f2
-    else case bin_rl bin of (w, b) => f3 w b (bin_rec f1 f2 f3 w))"
-  by pat_completeness auto
-
-termination 
-  apply (relation "measure (nat o abs o snd o snd o snd)")
-  apply (auto simp add: bin_rl_def bin_last_def bin_rest_def)
-  unfolding Pls_def Min_def Bit0_def Bit1_def number_of_is_id
-  apply auto
-  done
-
-declare bin_rec.simps [simp del]
-
-lemma bin_rec_PM:
-  "f = bin_rec f1 f2 f3 ==> f Int.Pls = f1 & f Int.Min = f2"
-  by (auto simp add: bin_rec.simps)
-
-lemma bin_rec_Pls: "bin_rec f1 f2 f3 Int.Pls = f1"
-  by (simp add: bin_rec.simps)
-
-lemma bin_rec_Min: "bin_rec f1 f2 f3 Int.Min = f2"
-  by (simp add: bin_rec.simps)
-
-lemma bin_rec_Bit0:
-  "f3 Int.Pls (0::bit) f1 = f1 \<Longrightarrow>
-    bin_rec f1 f2 f3 (Int.Bit0 w) = f3 w (0::bit) (bin_rec f1 f2 f3 w)"
-  by (simp add: bin_rec_Pls bin_rec.simps [of _ _ _ "Int.Bit0 w"])
-
-lemma bin_rec_Bit1:
-  "f3 Int.Min (1::bit) f2 = f2 \<Longrightarrow>
-    bin_rec f1 f2 f3 (Int.Bit1 w) = f3 w (1::bit) (bin_rec f1 f2 f3 w)"
-  by (simp add: bin_rec_Min bin_rec.simps [of _ _ _ "Int.Bit1 w"])
-  
-lemma bin_rec_Bit:
-  "f = bin_rec f1 f2 f3  ==> f3 Int.Pls (0::bit) f1 = f1 ==> 
-    f3 Int.Min (1::bit) f2 = f2 ==> f (w BIT b) = f3 w b (f w)"
-  by (cases b, simp add: bin_rec_Bit0, simp add: bin_rec_Bit1)
-
-lemmas bin_rec_simps = refl [THEN bin_rec_Bit] bin_rec_Pls bin_rec_Min
-  bin_rec_Bit0 bin_rec_Bit1
-
-
-subsection {* Truncating binary integers *}
-
-definition
-  bin_sign_def [code del] : "bin_sign = bin_rec Int.Pls Int.Min (%w b s. s)"
-
-lemma bin_sign_simps [simp]:
-  "bin_sign Int.Pls = Int.Pls"
-  "bin_sign Int.Min = Int.Min"
-  "bin_sign (Int.Bit0 w) = bin_sign w"
-  "bin_sign (Int.Bit1 w) = bin_sign w"
-  "bin_sign (w BIT b) = bin_sign w"
-  unfolding bin_sign_def by (auto simp: bin_rec_simps)
-
-declare bin_sign_simps(1-4) [code]
-
-lemma bin_sign_rest [simp]: 
-  "bin_sign (bin_rest w) = (bin_sign w)"
-  by (cases w rule: bin_exhaust) auto
-
-consts
-  bintrunc :: "nat => int => int"
-primrec 
-  Z : "bintrunc 0 bin = Int.Pls"
-  Suc : "bintrunc (Suc n) bin = bintrunc n (bin_rest bin) BIT (bin_last bin)"
-
-consts
-  sbintrunc :: "nat => int => int" 
-primrec 
-  Z : "sbintrunc 0 bin = 
-    (case bin_last bin of (1::bit) => Int.Min | (0::bit) => Int.Pls)"
-  Suc : "sbintrunc (Suc n) bin = sbintrunc n (bin_rest bin) BIT (bin_last bin)"
-
-lemma sign_bintr:
-  "!!w. bin_sign (bintrunc n w) = Int.Pls"
-  by (induct n) auto
-
-lemma bintrunc_mod2p:
-  "!!w. bintrunc n w = (w mod 2 ^ n :: int)"
-  apply (induct n, clarsimp)
-  apply (simp add: bin_last_mod bin_rest_div Bit_def zmod_zmult2_eq
-              cong: number_of_False_cong)
-  done
-
-lemma sbintrunc_mod2p:
-  "!!w. sbintrunc n w = ((w + 2 ^ n) mod 2 ^ (Suc n) - 2 ^ n :: int)"
-  apply (induct n)
-   apply clarsimp
-   apply (subst mod_add_left_eq)
-   apply (simp add: bin_last_mod)
-   apply (simp add: number_of_eq)
-  apply clarsimp
-  apply (simp add: bin_last_mod bin_rest_div Bit_def 
-              cong: number_of_False_cong)
-  apply (clarsimp simp: mod_mult_mult1 [symmetric] 
-         zmod_zdiv_equality [THEN diff_eq_eq [THEN iffD2 [THEN sym]]])
-  apply (rule trans [symmetric, OF _ emep1])
-     apply auto
-  apply (auto simp: even_def)
-  done
-
-subsection "Simplifications for (s)bintrunc"
-
-lemma bit_bool:
-  "(b = (b' = (1::bit))) = (b' = (if b then (1::bit) else (0::bit)))"
-  by (cases b') auto
-
-lemmas bit_bool1 [simp] = refl [THEN bit_bool [THEN iffD1], symmetric]
-
-lemma bin_sign_lem:
-  "!!bin. (bin_sign (sbintrunc n bin) = Int.Min) = bin_nth bin n"
-  apply (induct n)
-   apply (case_tac bin rule: bin_exhaust, case_tac b, auto)+
-  done
-
-lemma nth_bintr:
-  "!!w m. bin_nth (bintrunc m w) n = (n < m & bin_nth w n)"
-  apply (induct n)
-   apply (case_tac m, auto)[1]
-  apply (case_tac m, auto)[1]
-  done
-
-lemma nth_sbintr:
-  "!!w m. bin_nth (sbintrunc m w) n = 
-          (if n < m then bin_nth w n else bin_nth w m)"
-  apply (induct n)
-   apply (case_tac m, simp_all split: bit.splits)[1]
-  apply (case_tac m, simp_all split: bit.splits)[1]
-  done
-
-lemma bin_nth_Bit:
-  "bin_nth (w BIT b) n = (n = 0 & b = (1::bit) | (EX m. n = Suc m & bin_nth w m))"
-  by (cases n) auto
-
-lemma bin_nth_Bit0:
-  "bin_nth (Int.Bit0 w) n = (EX m. n = Suc m & bin_nth w m)"
-  using bin_nth_Bit [where b="(0::bit)"] by simp
-
-lemma bin_nth_Bit1:
-  "bin_nth (Int.Bit1 w) n = (n = 0 | (EX m. n = Suc m & bin_nth w m))"
-  using bin_nth_Bit [where b="(1::bit)"] by simp
-
-lemma bintrunc_bintrunc_l:
-  "n <= m ==> (bintrunc m (bintrunc n w) = bintrunc n w)"
-  by (rule bin_eqI) (auto simp add : nth_bintr)
-
-lemma sbintrunc_sbintrunc_l:
-  "n <= m ==> (sbintrunc m (sbintrunc n w) = sbintrunc n w)"
-  by (rule bin_eqI) (auto simp: nth_sbintr)
-
-lemma bintrunc_bintrunc_ge:
-  "n <= m ==> (bintrunc n (bintrunc m w) = bintrunc n w)"
-  by (rule bin_eqI) (auto simp: nth_bintr)
-
-lemma bintrunc_bintrunc_min [simp]:
-  "bintrunc m (bintrunc n w) = bintrunc (min m n) w"
-  apply (rule bin_eqI)
-  apply (auto simp: nth_bintr)
-  done
-
-lemma sbintrunc_sbintrunc_min [simp]:
-  "sbintrunc m (sbintrunc n w) = sbintrunc (min m n) w"
-  apply (rule bin_eqI)
-  apply (auto simp: nth_sbintr min_max.inf_absorb1 min_max.inf_absorb2)
-  done
-
-lemmas bintrunc_Pls = 
-  bintrunc.Suc [where bin="Int.Pls", simplified bin_last_simps bin_rest_simps, standard]
-
-lemmas bintrunc_Min [simp] = 
-  bintrunc.Suc [where bin="Int.Min", simplified bin_last_simps bin_rest_simps, standard]
-
-lemmas bintrunc_BIT  [simp] = 
-  bintrunc.Suc [where bin="w BIT b", simplified bin_last_simps bin_rest_simps, standard]
-
-lemma bintrunc_Bit0 [simp]:
-  "bintrunc (Suc n) (Int.Bit0 w) = Int.Bit0 (bintrunc n w)"
-  using bintrunc_BIT [where b="(0::bit)"] by simp
-
-lemma bintrunc_Bit1 [simp]:
-  "bintrunc (Suc n) (Int.Bit1 w) = Int.Bit1 (bintrunc n w)"
-  using bintrunc_BIT [where b="(1::bit)"] by simp
-
-lemmas bintrunc_Sucs = bintrunc_Pls bintrunc_Min bintrunc_BIT
-  bintrunc_Bit0 bintrunc_Bit1
-
-lemmas sbintrunc_Suc_Pls = 
-  sbintrunc.Suc [where bin="Int.Pls", simplified bin_last_simps bin_rest_simps, standard]
-
-lemmas sbintrunc_Suc_Min = 
-  sbintrunc.Suc [where bin="Int.Min", simplified bin_last_simps bin_rest_simps, standard]
-
-lemmas sbintrunc_Suc_BIT [simp] = 
-  sbintrunc.Suc [where bin="w BIT b", simplified bin_last_simps bin_rest_simps, standard]
-
-lemma sbintrunc_Suc_Bit0 [simp]:
-  "sbintrunc (Suc n) (Int.Bit0 w) = Int.Bit0 (sbintrunc n w)"
-  using sbintrunc_Suc_BIT [where b="(0::bit)"] by simp
-
-lemma sbintrunc_Suc_Bit1 [simp]:
-  "sbintrunc (Suc n) (Int.Bit1 w) = Int.Bit1 (sbintrunc n w)"
-  using sbintrunc_Suc_BIT [where b="(1::bit)"] by simp
-
-lemmas sbintrunc_Sucs = sbintrunc_Suc_Pls sbintrunc_Suc_Min sbintrunc_Suc_BIT
-  sbintrunc_Suc_Bit0 sbintrunc_Suc_Bit1
-
-lemmas sbintrunc_Pls = 
-  sbintrunc.Z [where bin="Int.Pls", 
-               simplified bin_last_simps bin_rest_simps bit.simps, standard]
-
-lemmas sbintrunc_Min = 
-  sbintrunc.Z [where bin="Int.Min", 
-               simplified bin_last_simps bin_rest_simps bit.simps, standard]
-
-lemmas sbintrunc_0_BIT_B0 [simp] = 
-  sbintrunc.Z [where bin="w BIT (0::bit)", 
-               simplified bin_last_simps bin_rest_simps bit.simps, standard]
-
-lemmas sbintrunc_0_BIT_B1 [simp] = 
-  sbintrunc.Z [where bin="w BIT (1::bit)", 
-               simplified bin_last_simps bin_rest_simps bit.simps, standard]
-
-lemma sbintrunc_0_Bit0 [simp]: "sbintrunc 0 (Int.Bit0 w) = Int.Pls"
-  using sbintrunc_0_BIT_B0 by simp
-
-lemma sbintrunc_0_Bit1 [simp]: "sbintrunc 0 (Int.Bit1 w) = Int.Min"
-  using sbintrunc_0_BIT_B1 by simp
-
-lemmas sbintrunc_0_simps =
-  sbintrunc_Pls sbintrunc_Min sbintrunc_0_BIT_B0 sbintrunc_0_BIT_B1
-  sbintrunc_0_Bit0 sbintrunc_0_Bit1
-
-lemmas bintrunc_simps = bintrunc.Z bintrunc_Sucs
-lemmas sbintrunc_simps = sbintrunc_0_simps sbintrunc_Sucs
-
-lemma bintrunc_minus:
-  "0 < n ==> bintrunc (Suc (n - 1)) w = bintrunc n w"
-  by auto
-
-lemma sbintrunc_minus:
-  "0 < n ==> sbintrunc (Suc (n - 1)) w = sbintrunc n w"
-  by auto
-
-lemmas bintrunc_minus_simps = 
-  bintrunc_Sucs [THEN [2] bintrunc_minus [symmetric, THEN trans], standard]
-lemmas sbintrunc_minus_simps = 
-  sbintrunc_Sucs [THEN [2] sbintrunc_minus [symmetric, THEN trans], standard]
-
-lemma bintrunc_n_Pls [simp]:
-  "bintrunc n Int.Pls = Int.Pls"
-  by (induct n) auto
-
-lemma sbintrunc_n_PM [simp]:
-  "sbintrunc n Int.Pls = Int.Pls"
-  "sbintrunc n Int.Min = Int.Min"
-  by (induct n) auto
-
-lemmas thobini1 = arg_cong [where f = "%w. w BIT b", standard]
-
-lemmas bintrunc_BIT_I = trans [OF bintrunc_BIT thobini1]
-lemmas bintrunc_Min_I = trans [OF bintrunc_Min thobini1]
-
-lemmas bmsts = bintrunc_minus_simps(1-3) [THEN thobini1 [THEN [2] trans], standard]
-lemmas bintrunc_Pls_minus_I = bmsts(1)
-lemmas bintrunc_Min_minus_I = bmsts(2)
-lemmas bintrunc_BIT_minus_I = bmsts(3)
-
-lemma bintrunc_0_Min: "bintrunc 0 Int.Min = Int.Pls"
-  by auto
-lemma bintrunc_0_BIT: "bintrunc 0 (w BIT b) = Int.Pls"
-  by auto
-
-lemma bintrunc_Suc_lem:
-  "bintrunc (Suc n) x = y ==> m = Suc n ==> bintrunc m x = y"
-  by auto
-
-lemmas bintrunc_Suc_Ialts = 
-  bintrunc_Min_I [THEN bintrunc_Suc_lem, standard]
-  bintrunc_BIT_I [THEN bintrunc_Suc_lem, standard]
-
-lemmas sbintrunc_BIT_I = trans [OF sbintrunc_Suc_BIT thobini1]
-
-lemmas sbintrunc_Suc_Is = 
-  sbintrunc_Sucs(1-3) [THEN thobini1 [THEN [2] trans], standard]
-
-lemmas sbintrunc_Suc_minus_Is = 
-  sbintrunc_minus_simps(1-3) [THEN thobini1 [THEN [2] trans], standard]
-
-lemma sbintrunc_Suc_lem:
-  "sbintrunc (Suc n) x = y ==> m = Suc n ==> sbintrunc m x = y"
-  by auto
-
-lemmas sbintrunc_Suc_Ialts = 
-  sbintrunc_Suc_Is [THEN sbintrunc_Suc_lem, standard]
-
-lemma sbintrunc_bintrunc_lt:
-  "m > n ==> sbintrunc n (bintrunc m w) = sbintrunc n w"
-  by (rule bin_eqI) (auto simp: nth_sbintr nth_bintr)
-
-lemma bintrunc_sbintrunc_le:
-  "m <= Suc n ==> bintrunc m (sbintrunc n w) = bintrunc m w"
-  apply (rule bin_eqI)
-  apply (auto simp: nth_sbintr nth_bintr)
-   apply (subgoal_tac "x=n", safe, arith+)[1]
-  apply (subgoal_tac "x=n", safe, arith+)[1]
-  done
-
-lemmas bintrunc_sbintrunc [simp] = order_refl [THEN bintrunc_sbintrunc_le]
-lemmas sbintrunc_bintrunc [simp] = lessI [THEN sbintrunc_bintrunc_lt]
-lemmas bintrunc_bintrunc [simp] = order_refl [THEN bintrunc_bintrunc_l]
-lemmas sbintrunc_sbintrunc [simp] = order_refl [THEN sbintrunc_sbintrunc_l] 
-
-lemma bintrunc_sbintrunc' [simp]:
-  "0 < n \<Longrightarrow> bintrunc n (sbintrunc (n - 1) w) = bintrunc n w"
-  by (cases n) (auto simp del: bintrunc.Suc)
-
-lemma sbintrunc_bintrunc' [simp]:
-  "0 < n \<Longrightarrow> sbintrunc (n - 1) (bintrunc n w) = sbintrunc (n - 1) w"
-  by (cases n) (auto simp del: bintrunc.Suc)
-
-lemma bin_sbin_eq_iff: 
-  "bintrunc (Suc n) x = bintrunc (Suc n) y <-> 
-   sbintrunc n x = sbintrunc n y"
-  apply (rule iffI)
-   apply (rule box_equals [OF _ sbintrunc_bintrunc sbintrunc_bintrunc])
-   apply simp
-  apply (rule box_equals [OF _ bintrunc_sbintrunc bintrunc_sbintrunc])
-  apply simp
-  done
-
-lemma bin_sbin_eq_iff':
-  "0 < n \<Longrightarrow> bintrunc n x = bintrunc n y <-> 
-            sbintrunc (n - 1) x = sbintrunc (n - 1) y"
-  by (cases n) (simp_all add: bin_sbin_eq_iff del: bintrunc.Suc)
-
-lemmas bintrunc_sbintruncS0 [simp] = bintrunc_sbintrunc' [unfolded One_nat_def]
-lemmas sbintrunc_bintruncS0 [simp] = sbintrunc_bintrunc' [unfolded One_nat_def]
-
-lemmas bintrunc_bintrunc_l' = le_add1 [THEN bintrunc_bintrunc_l]
-lemmas sbintrunc_sbintrunc_l' = le_add1 [THEN sbintrunc_sbintrunc_l]
-
-(* although bintrunc_minus_simps, if added to default simpset,
-  tends to get applied where it's not wanted in developing the theories,
-  we get a version for when the word length is given literally *)
-
-lemmas nat_non0_gr = 
-  trans [OF iszero_def [THEN Not_eq_iff [THEN iffD2]] refl, standard]
-
-lemmas bintrunc_pred_simps [simp] = 
-  bintrunc_minus_simps [of "number_of bin", simplified nobm1, standard]
-
-lemmas sbintrunc_pred_simps [simp] = 
-  sbintrunc_minus_simps [of "number_of bin", simplified nobm1, standard]
-
-lemma no_bintr_alt:
-  "number_of (bintrunc n w) = w mod 2 ^ n"
-  by (simp add: number_of_eq bintrunc_mod2p)
-
-lemma no_bintr_alt1: "bintrunc n = (%w. w mod 2 ^ n :: int)"
-  by (rule ext) (rule bintrunc_mod2p)
-
-lemma range_bintrunc: "range (bintrunc n) = {i. 0 <= i & i < 2 ^ n}"
-  apply (unfold no_bintr_alt1)
-  apply (auto simp add: image_iff)
-  apply (rule exI)
-  apply (auto intro: int_mod_lem [THEN iffD1, symmetric])
-  done
-
-lemma no_bintr: 
-  "number_of (bintrunc n w) = (number_of w mod 2 ^ n :: int)"
-  by (simp add : bintrunc_mod2p number_of_eq)
-
-lemma no_sbintr_alt2: 
-  "sbintrunc n = (%w. (w + 2 ^ n) mod 2 ^ Suc n - 2 ^ n :: int)"
-  by (rule ext) (simp add : sbintrunc_mod2p)
-
-lemma no_sbintr: 
-  "number_of (sbintrunc n w) = 
-   ((number_of w + 2 ^ n) mod 2 ^ Suc n - 2 ^ n :: int)"
-  by (simp add : no_sbintr_alt2 number_of_eq)
-
-lemma range_sbintrunc: 
-  "range (sbintrunc n) = {i. - (2 ^ n) <= i & i < 2 ^ n}"
-  apply (unfold no_sbintr_alt2)
-  apply (auto simp add: image_iff eq_diff_eq)
-  apply (rule exI)
-  apply (auto intro: int_mod_lem [THEN iffD1, symmetric])
-  done
-
-lemma sb_inc_lem:
-  "(a::int) + 2^k < 0 \<Longrightarrow> a + 2^k + 2^(Suc k) <= (a + 2^k) mod 2^(Suc k)"
-  apply (erule int_mod_ge' [where n = "2 ^ (Suc k)" and b = "a + 2 ^ k", simplified zless2p])
-  apply (rule TrueI)
-  done
-
-lemma sb_inc_lem':
-  "(a::int) < - (2^k) \<Longrightarrow> a + 2^k + 2^(Suc k) <= (a + 2^k) mod 2^(Suc k)"
-  by (rule sb_inc_lem) simp
-
-lemma sbintrunc_inc:
-  "x < - (2^n) ==> x + 2^(Suc n) <= sbintrunc n x"
-  unfolding no_sbintr_alt2 by (drule sb_inc_lem') simp
-
-lemma sb_dec_lem:
-  "(0::int) <= - (2^k) + a ==> (a + 2^k) mod (2 * 2 ^ k) <= - (2 ^ k) + a"
-  by (rule int_mod_le' [where n = "2 ^ (Suc k)" and b = "a + 2 ^ k",
-    simplified zless2p, OF _ TrueI, simplified])
-
-lemma sb_dec_lem':
-  "(2::int) ^ k <= a ==> (a + 2 ^ k) mod (2 * 2 ^ k) <= - (2 ^ k) + a"
-  by (rule iffD1 [OF diff_le_eq', THEN sb_dec_lem, simplified])
-
-lemma sbintrunc_dec:
-  "x >= (2 ^ n) ==> x - 2 ^ (Suc n) >= sbintrunc n x"
-  unfolding no_sbintr_alt2 by (drule sb_dec_lem') simp
-
-lemmas zmod_uminus' = zmod_uminus [where b="c", standard]
-lemmas zpower_zmod' = zpower_zmod [where m="c" and y="k", standard]
-
-lemmas brdmod1s' [symmetric] = 
-  mod_add_left_eq mod_add_right_eq 
-  zmod_zsub_left_eq zmod_zsub_right_eq 
-  zmod_zmult1_eq zmod_zmult1_eq_rev 
-
-lemmas brdmods' [symmetric] = 
-  zpower_zmod' [symmetric]
-  trans [OF mod_add_left_eq mod_add_right_eq] 
-  trans [OF zmod_zsub_left_eq zmod_zsub_right_eq] 
-  trans [OF zmod_zmult1_eq zmod_zmult1_eq_rev] 
-  zmod_uminus' [symmetric]
-  mod_add_left_eq [where b = "1::int"]
-  zmod_zsub_left_eq [where b = "1"]
-
-lemmas bintr_arith1s =
-  brdmod1s' [where c="2^n::int", folded pred_def succ_def bintrunc_mod2p, standard]
-lemmas bintr_ariths =
-  brdmods' [where c="2^n::int", folded pred_def succ_def bintrunc_mod2p, standard]
-
-lemmas m2pths = pos_mod_sign pos_mod_bound [OF zless2p, standard] 
-
-lemma bintr_ge0: "(0 :: int) <= number_of (bintrunc n w)"
-  by (simp add : no_bintr m2pths)
-
-lemma bintr_lt2p: "number_of (bintrunc n w) < (2 ^ n :: int)"
-  by (simp add : no_bintr m2pths)
-
-lemma bintr_Min: 
-  "number_of (bintrunc n Int.Min) = (2 ^ n :: int) - 1"
-  by (simp add : no_bintr m1mod2k)
-
-lemma sbintr_ge: "(- (2 ^ n) :: int) <= number_of (sbintrunc n w)"
-  by (simp add : no_sbintr m2pths)
-
-lemma sbintr_lt: "number_of (sbintrunc n w) < (2 ^ n :: int)"
-  by (simp add : no_sbintr m2pths)
-
-lemma bintrunc_Suc:
-  "bintrunc (Suc n) bin = bintrunc n (bin_rest bin) BIT bin_last bin"
-  by (case_tac bin rule: bin_exhaust) auto
-
-lemma sign_Pls_ge_0: 
-  "(bin_sign bin = Int.Pls) = (number_of bin >= (0 :: int))"
-  by (induct bin rule: numeral_induct) auto
-
-lemma sign_Min_lt_0: 
-  "(bin_sign bin = Int.Min) = (number_of bin < (0 :: int))"
-  by (induct bin rule: numeral_induct) auto
-
-lemmas sign_Min_neg = trans [OF sign_Min_lt_0 neg_def [symmetric]] 
-
-lemma bin_rest_trunc:
-  "!!bin. (bin_rest (bintrunc n bin)) = bintrunc (n - 1) (bin_rest bin)"
-  by (induct n) auto
-
-lemma bin_rest_power_trunc [rule_format] :
-  "(bin_rest ^^ k) (bintrunc n bin) = 
-    bintrunc (n - k) ((bin_rest ^^ k) bin)"
-  by (induct k) (auto simp: bin_rest_trunc)
-
-lemma bin_rest_trunc_i:
-  "bintrunc n (bin_rest bin) = bin_rest (bintrunc (Suc n) bin)"
-  by auto
-
-lemma bin_rest_strunc:
-  "!!bin. bin_rest (sbintrunc (Suc n) bin) = sbintrunc n (bin_rest bin)"
-  by (induct n) auto
-
-lemma bintrunc_rest [simp]: 
-  "!!bin. bintrunc n (bin_rest (bintrunc n bin)) = bin_rest (bintrunc n bin)"
-  apply (induct n, simp)
-  apply (case_tac bin rule: bin_exhaust)
-  apply (auto simp: bintrunc_bintrunc_l)
-  done
-
-lemma sbintrunc_rest [simp]:
-  "!!bin. sbintrunc n (bin_rest (sbintrunc n bin)) = bin_rest (sbintrunc n bin)"
-  apply (induct n, simp)
-  apply (case_tac bin rule: bin_exhaust)
-  apply (auto simp: bintrunc_bintrunc_l split: bit.splits)
-  done
-
-lemma bintrunc_rest':
-  "bintrunc n o bin_rest o bintrunc n = bin_rest o bintrunc n"
-  by (rule ext) auto
-
-lemma sbintrunc_rest' :
-  "sbintrunc n o bin_rest o sbintrunc n = bin_rest o sbintrunc n"
-  by (rule ext) auto
-
-lemma rco_lem:
-  "f o g o f = g o f ==> f o (g o f) ^^ n = g ^^ n o f"
-  apply (rule ext)
-  apply (induct_tac n)
-   apply (simp_all (no_asm))
-  apply (drule fun_cong)
-  apply (unfold o_def)
-  apply (erule trans)
-  apply simp
-  done
-
-lemma rco_alt: "(f o g) ^^ n o f = f o (g o f) ^^ n"
-  apply (rule ext)
-  apply (induct n)
-   apply (simp_all add: o_def)
-  done
-
-lemmas rco_bintr = bintrunc_rest' 
-  [THEN rco_lem [THEN fun_cong], unfolded o_def]
-lemmas rco_sbintr = sbintrunc_rest' 
-  [THEN rco_lem [THEN fun_cong], unfolded o_def]
-
-subsection {* Splitting and concatenation *}
-
-primrec bin_split :: "nat \<Rightarrow> int \<Rightarrow> int \<times> int" where
-  Z: "bin_split 0 w = (w, Int.Pls)"
-  | Suc: "bin_split (Suc n) w = (let (w1, w2) = bin_split n (bin_rest w)
-        in (w1, w2 BIT bin_last w))"
-
-primrec bin_cat :: "int \<Rightarrow> nat \<Rightarrow> int \<Rightarrow> int" where
-  Z: "bin_cat w 0 v = w"
-  | Suc: "bin_cat w (Suc n) v = bin_cat w n (bin_rest v) BIT bin_last v"
-
-subsection {* Miscellaneous lemmas *}
-
-lemma funpow_minus_simp:
-  "0 < n \<Longrightarrow> f ^^ n = f \<circ> f ^^ (n - 1)"
-  by (cases n) simp_all
-
-lemmas funpow_pred_simp [simp] =
-  funpow_minus_simp [of "number_of bin", simplified nobm1, standard]
-
-lemmas replicate_minus_simp = 
-  trans [OF gen_minus [where f = "%n. replicate n x"] replicate.replicate_Suc,
-         standard]
-
-lemmas replicate_pred_simp [simp] =
-  replicate_minus_simp [of "number_of bin", simplified nobm1, standard]
-
-lemmas power_Suc_no [simp] = power_Suc [of "number_of a", standard]
-
-lemmas power_minus_simp = 
-  trans [OF gen_minus [where f = "power f"] power_Suc, standard]
-
-lemmas power_pred_simp = 
-  power_minus_simp [of "number_of bin", simplified nobm1, standard]
-lemmas power_pred_simp_no [simp] = power_pred_simp [where f= "number_of f", standard]
-
-lemma list_exhaust_size_gt0:
-  assumes y: "\<And>a list. y = a # list \<Longrightarrow> P"
-  shows "0 < length y \<Longrightarrow> P"
-  apply (cases y, simp)
-  apply (rule y)
-  apply fastsimp
-  done
-
-lemma list_exhaust_size_eq0:
-  assumes y: "y = [] \<Longrightarrow> P"
-  shows "length y = 0 \<Longrightarrow> P"
-  apply (cases y)
-   apply (rule y, simp)
-  apply simp
-  done
-
-lemma size_Cons_lem_eq:
-  "y = xa # list ==> size y = Suc k ==> size list = k"
-  by auto
-
-lemma size_Cons_lem_eq_bin:
-  "y = xa # list ==> size y = number_of (Int.succ k) ==> 
-    size list = number_of k"
-  by (auto simp: pred_def succ_def split add : split_if_asm)
-
-lemmas ls_splits = 
-  prod.split split_split prod.split_asm split_split_asm split_if_asm
-
-lemma not_B1_is_B0: "y \<noteq> (1::bit) \<Longrightarrow> y = (0::bit)"
-  by (cases y) auto
-
-lemma B1_ass_B0: 
-  assumes y: "y = (0::bit) \<Longrightarrow> y = (1::bit)"
-  shows "y = (1::bit)"
-  apply (rule classical)
-  apply (drule not_B1_is_B0)
-  apply (erule y)
-  done
-
--- "simplifications for specific word lengths"
-lemmas n2s_ths [THEN eq_reflection] = add_2_eq_Suc add_2_eq_Suc'
-
-lemmas s2n_ths = n2s_ths [symmetric]
-
-end
--- a/src/HOL/Word/BinOperations.thy	Wed Jun 30 16:41:03 2010 +0200
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,638 +0,0 @@
-(* 
-  Author: Jeremy Dawson and Gerwin Klein, NICTA
-
-  definition and basic theorems for bit-wise logical operations 
-  for integers expressed using Pls, Min, BIT,
-  and converting them to and from lists of bools
-*) 
-
-header {* Bitwise Operations on Binary Integers *}
-
-theory BinOperations
-imports Bit_Operations BinGeneral
-begin
-
-subsection {* Logical operations *}
-
-text "bit-wise logical operations on the int type"
-
-instantiation int :: bit
-begin
-
-definition
-  int_not_def [code del]: "bitNOT = bin_rec Int.Min Int.Pls 
-    (\<lambda>w b s. s BIT (NOT b))"
-
-definition
-  int_and_def [code del]: "bitAND = bin_rec (\<lambda>x. Int.Pls) (\<lambda>y. y) 
-    (\<lambda>w b s y. s (bin_rest y) BIT (b AND bin_last y))"
-
-definition
-  int_or_def [code del]: "bitOR = bin_rec (\<lambda>x. x) (\<lambda>y. Int.Min) 
-    (\<lambda>w b s y. s (bin_rest y) BIT (b OR bin_last y))"
-
-definition
-  int_xor_def [code del]: "bitXOR = bin_rec (\<lambda>x. x) bitNOT 
-    (\<lambda>w b s y. s (bin_rest y) BIT (b XOR bin_last y))"
-
-instance ..
-
-end
-
-lemma int_not_simps [simp]:
-  "NOT Int.Pls = Int.Min"
-  "NOT Int.Min = Int.Pls"
-  "NOT (Int.Bit0 w) = Int.Bit1 (NOT w)"
-  "NOT (Int.Bit1 w) = Int.Bit0 (NOT w)"
-  "NOT (w BIT b) = (NOT w) BIT (NOT b)"
-  unfolding int_not_def by (simp_all add: bin_rec_simps)
-
-declare int_not_simps(1-4) [code]
-
-lemma int_xor_Pls [simp, code]: 
-  "Int.Pls XOR x = x"
-  unfolding int_xor_def by (simp add: bin_rec_PM)
-
-lemma int_xor_Min [simp, code]: 
-  "Int.Min XOR x = NOT x"
-  unfolding int_xor_def by (simp add: bin_rec_PM)
-
-lemma int_xor_Bits [simp]: 
-  "(x BIT b) XOR (y BIT c) = (x XOR y) BIT (b XOR c)"
-  apply (unfold int_xor_def)
-  apply (rule bin_rec_simps (1) [THEN fun_cong, THEN trans])
-    apply (rule ext, simp)
-   prefer 2
-   apply simp
-  apply (rule ext)
-  apply (simp add: int_not_simps [symmetric])
-  done
-
-lemma int_xor_Bits2 [simp, code]: 
-  "(Int.Bit0 x) XOR (Int.Bit0 y) = Int.Bit0 (x XOR y)"
-  "(Int.Bit0 x) XOR (Int.Bit1 y) = Int.Bit1 (x XOR y)"
-  "(Int.Bit1 x) XOR (Int.Bit0 y) = Int.Bit1 (x XOR y)"
-  "(Int.Bit1 x) XOR (Int.Bit1 y) = Int.Bit0 (x XOR y)"
-  unfolding BIT_simps [symmetric] int_xor_Bits by simp_all
-
-lemma int_xor_x_simps':
-  "w XOR (Int.Pls BIT 0) = w"
-  "w XOR (Int.Min BIT 1) = NOT w"
-  apply (induct w rule: bin_induct)
-       apply simp_all[4]
-   apply (unfold int_xor_Bits)
-   apply clarsimp+
-  done
-
-lemma int_xor_extra_simps [simp, code]:
-  "w XOR Int.Pls = w"
-  "w XOR Int.Min = NOT w"
-  using int_xor_x_simps' by simp_all
-
-lemma int_or_Pls [simp, code]: 
-  "Int.Pls OR x = x"
-  by (unfold int_or_def) (simp add: bin_rec_PM)
-  
-lemma int_or_Min [simp, code]:
-  "Int.Min OR x = Int.Min"
-  by (unfold int_or_def) (simp add: bin_rec_PM)
-
-lemma int_or_Bits [simp]: 
-  "(x BIT b) OR (y BIT c) = (x OR y) BIT (b OR c)"
-  unfolding int_or_def by (simp add: bin_rec_simps)
-
-lemma int_or_Bits2 [simp, code]: 
-  "(Int.Bit0 x) OR (Int.Bit0 y) = Int.Bit0 (x OR y)"
-  "(Int.Bit0 x) OR (Int.Bit1 y) = Int.Bit1 (x OR y)"
-  "(Int.Bit1 x) OR (Int.Bit0 y) = Int.Bit1 (x OR y)"
-  "(Int.Bit1 x) OR (Int.Bit1 y) = Int.Bit1 (x OR y)"
-  unfolding BIT_simps [symmetric] int_or_Bits by simp_all
-
-lemma int_or_x_simps': 
-  "w OR (Int.Pls BIT 0) = w"
-  "w OR (Int.Min BIT 1) = Int.Min"
-  apply (induct w rule: bin_induct)
-       apply simp_all[4]
-   apply (unfold int_or_Bits)
-   apply clarsimp+
-  done
-
-lemma int_or_extra_simps [simp, code]:
-  "w OR Int.Pls = w"
-  "w OR Int.Min = Int.Min"
-  using int_or_x_simps' by simp_all
-
-lemma int_and_Pls [simp, code]:
-  "Int.Pls AND x = Int.Pls"
-  unfolding int_and_def by (simp add: bin_rec_PM)
-
-lemma int_and_Min [simp, code]:
-  "Int.Min AND x = x"
-  unfolding int_and_def by (simp add: bin_rec_PM)
-
-lemma int_and_Bits [simp]: 
-  "(x BIT b) AND (y BIT c) = (x AND y) BIT (b AND c)" 
-  unfolding int_and_def by (simp add: bin_rec_simps)
-
-lemma int_and_Bits2 [simp, code]: 
-  "(Int.Bit0 x) AND (Int.Bit0 y) = Int.Bit0 (x AND y)"
-  "(Int.Bit0 x) AND (Int.Bit1 y) = Int.Bit0 (x AND y)"
-  "(Int.Bit1 x) AND (Int.Bit0 y) = Int.Bit0 (x AND y)"
-  "(Int.Bit1 x) AND (Int.Bit1 y) = Int.Bit1 (x AND y)"
-  unfolding BIT_simps [symmetric] int_and_Bits by simp_all
-
-lemma int_and_x_simps': 
-  "w AND (Int.Pls BIT 0) = Int.Pls"
-  "w AND (Int.Min BIT 1) = w"
-  apply (induct w rule: bin_induct)
-       apply simp_all[4]
-   apply (unfold int_and_Bits)
-   apply clarsimp+
-  done
-
-lemma int_and_extra_simps [simp, code]:
-  "w AND Int.Pls = Int.Pls"
-  "w AND Int.Min = w"
-  using int_and_x_simps' by simp_all
-
-(* commutativity of the above *)
-lemma bin_ops_comm:
-  shows
-  int_and_comm: "!!y::int. x AND y = y AND x" and
-  int_or_comm:  "!!y::int. x OR y = y OR x" and
-  int_xor_comm: "!!y::int. x XOR y = y XOR x"
-  apply (induct x rule: bin_induct)
-          apply simp_all[6]
-    apply (case_tac y rule: bin_exhaust, simp add: bit_ops_comm)+
-  done
-
-lemma bin_ops_same [simp]:
-  "(x::int) AND x = x" 
-  "(x::int) OR x = x" 
-  "(x::int) XOR x = Int.Pls"
-  by (induct x rule: bin_induct) auto
-
-lemma int_not_not [simp]: "NOT (NOT (x::int)) = x"
-  by (induct x rule: bin_induct) auto
-
-lemmas bin_log_esimps = 
-  int_and_extra_simps  int_or_extra_simps  int_xor_extra_simps
-  int_and_Pls int_and_Min  int_or_Pls int_or_Min  int_xor_Pls int_xor_Min
-
-(* basic properties of logical (bit-wise) operations *)
-
-lemma bbw_ao_absorb: 
-  "!!y::int. x AND (y OR x) = x & x OR (y AND x) = x"
-  apply (induct x rule: bin_induct)
-    apply auto 
-   apply (case_tac [!] y rule: bin_exhaust)
-   apply auto
-   apply (case_tac [!] bit)
-     apply auto
-  done
-
-lemma bbw_ao_absorbs_other:
-  "x AND (x OR y) = x \<and> (y AND x) OR x = (x::int)"
-  "(y OR x) AND x = x \<and> x OR (x AND y) = (x::int)"
-  "(x OR y) AND x = x \<and> (x AND y) OR x = (x::int)"
-  apply (auto simp: bbw_ao_absorb int_or_comm)  
-      apply (subst int_or_comm)
-    apply (simp add: bbw_ao_absorb)
-   apply (subst int_and_comm)
-   apply (subst int_or_comm)
-   apply (simp add: bbw_ao_absorb)
-  apply (subst int_and_comm)
-  apply (simp add: bbw_ao_absorb)
-  done
-
-lemmas bbw_ao_absorbs [simp] = bbw_ao_absorb bbw_ao_absorbs_other
-
-lemma int_xor_not:
-  "!!y::int. (NOT x) XOR y = NOT (x XOR y) & 
-        x XOR (NOT y) = NOT (x XOR y)"
-  apply (induct x rule: bin_induct)
-    apply auto
-   apply (case_tac y rule: bin_exhaust, auto, 
-          case_tac b, auto)+
-  done
-
-lemma bbw_assocs': 
-  "!!y z::int. (x AND y) AND z = x AND (y AND z) & 
-          (x OR y) OR z = x OR (y OR z) & 
-          (x XOR y) XOR z = x XOR (y XOR z)"
-  apply (induct x rule: bin_induct)
-    apply (auto simp: int_xor_not)
-    apply (case_tac [!] y rule: bin_exhaust)
-    apply (case_tac [!] z rule: bin_exhaust)
-    apply (case_tac [!] bit)
-       apply (case_tac [!] b)
-             apply (auto simp del: BIT_simps)
-  done
-
-lemma int_and_assoc:
-  "(x AND y) AND (z::int) = x AND (y AND z)"
-  by (simp add: bbw_assocs')
-
-lemma int_or_assoc:
-  "(x OR y) OR (z::int) = x OR (y OR z)"
-  by (simp add: bbw_assocs')
-
-lemma int_xor_assoc:
-  "(x XOR y) XOR (z::int) = x XOR (y XOR z)"
-  by (simp add: bbw_assocs')
-
-lemmas bbw_assocs = int_and_assoc int_or_assoc int_xor_assoc
-
-lemma bbw_lcs [simp]: 
-  "(y::int) AND (x AND z) = x AND (y AND z)"
-  "(y::int) OR (x OR z) = x OR (y OR z)"
-  "(y::int) XOR (x XOR z) = x XOR (y XOR z)" 
-  apply (auto simp: bbw_assocs [symmetric])
-  apply (auto simp: bin_ops_comm)
-  done
-
-lemma bbw_not_dist: 
-  "!!y::int. NOT (x OR y) = (NOT x) AND (NOT y)" 
-  "!!y::int. NOT (x AND y) = (NOT x) OR (NOT y)"
-  apply (induct x rule: bin_induct)
-       apply auto
-   apply (case_tac [!] y rule: bin_exhaust)
-   apply (case_tac [!] bit, auto simp del: BIT_simps)
-  done
-
-lemma bbw_oa_dist: 
-  "!!y z::int. (x AND y) OR z = 
-          (x OR z) AND (y OR z)"
-  apply (induct x rule: bin_induct)
-    apply auto
-  apply (case_tac y rule: bin_exhaust)
-  apply (case_tac z rule: bin_exhaust)
-  apply (case_tac ba, auto simp del: BIT_simps)
-  done
-
-lemma bbw_ao_dist: 
-  "!!y z::int. (x OR y) AND z = 
-          (x AND z) OR (y AND z)"
-   apply (induct x rule: bin_induct)
-    apply auto
-  apply (case_tac y rule: bin_exhaust)
-  apply (case_tac z rule: bin_exhaust)
-  apply (case_tac ba, auto simp del: BIT_simps)
-  done
-
-(*
-Why were these declared simp???
-declare bin_ops_comm [simp] bbw_assocs [simp] 
-*)
-
-lemma plus_and_or [rule_format]:
-  "ALL y::int. (x AND y) + (x OR y) = x + y"
-  apply (induct x rule: bin_induct)
-    apply clarsimp
-   apply clarsimp
-  apply clarsimp
-  apply (case_tac y rule: bin_exhaust)
-  apply clarsimp
-  apply (unfold Bit_def)
-  apply clarsimp
-  apply (erule_tac x = "x" in allE)
-  apply (simp split: bit.split)
-  done
-
-lemma le_int_or:
-  "!!x.  bin_sign y = Int.Pls ==> x <= x OR y"
-  apply (induct y rule: bin_induct)
-    apply clarsimp
-   apply clarsimp
-  apply (case_tac x rule: bin_exhaust)
-  apply (case_tac b)
-   apply (case_tac [!] bit)
-     apply (auto simp: less_eq_int_code)
-  done
-
-lemmas int_and_le =
-  xtr3 [OF bbw_ao_absorbs (2) [THEN conjunct2, symmetric] le_int_or] ;
-
-lemma bin_nth_ops:
-  "!!x y. bin_nth (x AND y) n = (bin_nth x n & bin_nth y n)" 
-  "!!x y. bin_nth (x OR y) n = (bin_nth x n | bin_nth y n)"
-  "!!x y. bin_nth (x XOR y) n = (bin_nth x n ~= bin_nth y n)" 
-  "!!x. bin_nth (NOT x) n = (~ bin_nth x n)"
-  apply (induct n)
-         apply safe
-                         apply (case_tac [!] x rule: bin_exhaust)
-                         apply (simp_all del: BIT_simps)
-                      apply (case_tac [!] y rule: bin_exhaust)
-                      apply (simp_all del: BIT_simps)
-        apply (auto dest: not_B1_is_B0 intro: B1_ass_B0)
-  done
-
-(* interaction between bit-wise and arithmetic *)
-(* good example of bin_induction *)
-lemma bin_add_not: "x + NOT x = Int.Min"
-  apply (induct x rule: bin_induct)
-    apply clarsimp
-   apply clarsimp
-  apply (case_tac bit, auto)
-  done
-
-(* truncating results of bit-wise operations *)
-lemma bin_trunc_ao: 
-  "!!x y. (bintrunc n x) AND (bintrunc n y) = bintrunc n (x AND y)" 
-  "!!x y. (bintrunc n x) OR (bintrunc n y) = bintrunc n (x OR y)"
-  apply (induct n)
-      apply auto
-      apply (case_tac [!] x rule: bin_exhaust)
-      apply (case_tac [!] y rule: bin_exhaust)
-      apply auto
-  done
-
-lemma bin_trunc_xor: 
-  "!!x y. bintrunc n (bintrunc n x XOR bintrunc n y) = 
-          bintrunc n (x XOR y)"
-  apply (induct n)
-   apply auto
-   apply (case_tac [!] x rule: bin_exhaust)
-   apply (case_tac [!] y rule: bin_exhaust)
-   apply auto
-  done
-
-lemma bin_trunc_not: 
-  "!!x. bintrunc n (NOT (bintrunc n x)) = bintrunc n (NOT x)"
-  apply (induct n)
-   apply auto
-   apply (case_tac [!] x rule: bin_exhaust)
-   apply auto
-  done
-
-(* want theorems of the form of bin_trunc_xor *)
-lemma bintr_bintr_i:
-  "x = bintrunc n y ==> bintrunc n x = bintrunc n y"
-  by auto
-
-lemmas bin_trunc_and = bin_trunc_ao(1) [THEN bintr_bintr_i]
-lemmas bin_trunc_or = bin_trunc_ao(2) [THEN bintr_bintr_i]
-
-subsection {* Setting and clearing bits *}
-
-primrec
-  bin_sc :: "nat => bit => int => int"
-where
-  Z: "bin_sc 0 b w = bin_rest w BIT b"
-  | Suc: "bin_sc (Suc n) b w = bin_sc n b (bin_rest w) BIT bin_last w"
-
-(** nth bit, set/clear **)
-
-lemma bin_nth_sc [simp]: 
-  "!!w. bin_nth (bin_sc n b w) n = (b = 1)"
-  by (induct n)  auto
-
-lemma bin_sc_sc_same [simp]: 
-  "!!w. bin_sc n c (bin_sc n b w) = bin_sc n c w"
-  by (induct n) auto
-
-lemma bin_sc_sc_diff:
-  "!!w m. m ~= n ==> 
-    bin_sc m c (bin_sc n b w) = bin_sc n b (bin_sc m c w)"
-  apply (induct n)
-   apply (case_tac [!] m)
-     apply auto
-  done
-
-lemma bin_nth_sc_gen: 
-  "!!w m. bin_nth (bin_sc n b w) m = (if m = n then b = 1 else bin_nth w m)"
-  by (induct n) (case_tac [!] m, auto)
-  
-lemma bin_sc_nth [simp]:
-  "!!w. (bin_sc n (If (bin_nth w n) 1 0) w) = w"
-  by (induct n) auto
-
-lemma bin_sign_sc [simp]:
-  "!!w. bin_sign (bin_sc n b w) = bin_sign w"
-  by (induct n) auto
-  
-lemma bin_sc_bintr [simp]: 
-  "!!w m. bintrunc m (bin_sc n x (bintrunc m (w))) = bintrunc m (bin_sc n x w)"
-  apply (induct n)
-   apply (case_tac [!] w rule: bin_exhaust)
-   apply (case_tac [!] m, auto)
-  done
-
-lemma bin_clr_le:
-  "!!w. bin_sc n 0 w <= w"
-  apply (induct n) 
-   apply (case_tac [!] w rule: bin_exhaust)
-   apply (auto simp del: BIT_simps)
-   apply (unfold Bit_def)
-   apply (simp_all split: bit.split)
-  done
-
-lemma bin_set_ge:
-  "!!w. bin_sc n 1 w >= w"
-  apply (induct n) 
-   apply (case_tac [!] w rule: bin_exhaust)
-   apply (auto simp del: BIT_simps)
-   apply (unfold Bit_def)
-   apply (simp_all split: bit.split)
-  done
-
-lemma bintr_bin_clr_le:
-  "!!w m. bintrunc n (bin_sc m 0 w) <= bintrunc n w"
-  apply (induct n)
-   apply simp
-  apply (case_tac w rule: bin_exhaust)
-  apply (case_tac m)
-   apply (auto simp del: BIT_simps)
-   apply (unfold Bit_def)
-   apply (simp_all split: bit.split)
-  done
-
-lemma bintr_bin_set_ge:
-  "!!w m. bintrunc n (bin_sc m 1 w) >= bintrunc n w"
-  apply (induct n)
-   apply simp
-  apply (case_tac w rule: bin_exhaust)
-  apply (case_tac m)
-   apply (auto simp del: BIT_simps)
-   apply (unfold Bit_def)
-   apply (simp_all split: bit.split)
-  done
-
-lemma bin_sc_FP [simp]: "bin_sc n 0 Int.Pls = Int.Pls"
-  by (induct n) auto
-
-lemma bin_sc_TM [simp]: "bin_sc n 1 Int.Min = Int.Min"
-  by (induct n) auto
-  
-lemmas bin_sc_simps = bin_sc.Z bin_sc.Suc bin_sc_TM bin_sc_FP
-
-lemma bin_sc_minus:
-  "0 < n ==> bin_sc (Suc (n - 1)) b w = bin_sc n b w"
-  by auto
-
-lemmas bin_sc_Suc_minus = 
-  trans [OF bin_sc_minus [symmetric] bin_sc.Suc, standard]
-
-lemmas bin_sc_Suc_pred [simp] = 
-  bin_sc_Suc_minus [of "number_of bin", simplified nobm1, standard]
-
-
-subsection {* Splitting and concatenation *}
-
-definition bin_rcat :: "nat \<Rightarrow> int list \<Rightarrow> int" where
-  "bin_rcat n = foldl (%u v. bin_cat u n v) Int.Pls"
-
-fun bin_rsplit_aux :: "nat \<Rightarrow> nat \<Rightarrow> int \<Rightarrow> int list \<Rightarrow> int list" where
-  "bin_rsplit_aux n m c bs =
-    (if m = 0 | n = 0 then bs else
-      let (a, b) = bin_split n c 
-      in bin_rsplit_aux n (m - n) a (b # bs))"
-
-definition bin_rsplit :: "nat \<Rightarrow> nat \<times> int \<Rightarrow> int list" where
-  "bin_rsplit n w = bin_rsplit_aux n (fst w) (snd w) []"
-
-fun bin_rsplitl_aux :: "nat \<Rightarrow> nat \<Rightarrow> int \<Rightarrow> int list \<Rightarrow> int list" where
-  "bin_rsplitl_aux n m c bs =
-    (if m = 0 | n = 0 then bs else
-      let (a, b) = bin_split (min m n) c 
-      in bin_rsplitl_aux n (m - n) a (b # bs))"
-
-definition bin_rsplitl :: "nat \<Rightarrow> nat \<times> int \<Rightarrow> int list" where
-  "bin_rsplitl n w = bin_rsplitl_aux n (fst w) (snd w) []"
-
-declare bin_rsplit_aux.simps [simp del]
-declare bin_rsplitl_aux.simps [simp del]
-
-lemma bin_sign_cat: 
-  "!!y. bin_sign (bin_cat x n y) = bin_sign x"
-  by (induct n) auto
-
-lemma bin_cat_Suc_Bit:
-  "bin_cat w (Suc n) (v BIT b) = bin_cat w n v BIT b"
-  by auto
-
-lemma bin_nth_cat: 
-  "!!n y. bin_nth (bin_cat x k y) n = 
-    (if n < k then bin_nth y n else bin_nth x (n - k))"
-  apply (induct k)
-   apply clarsimp
-  apply (case_tac n, auto)
-  done
-
-lemma bin_nth_split:
-  "!!b c. bin_split n c = (a, b) ==> 
-    (ALL k. bin_nth a k = bin_nth c (n + k)) & 
-    (ALL k. bin_nth b k = (k < n & bin_nth c k))"
-  apply (induct n)
-   apply clarsimp
-  apply (clarsimp simp: Let_def split: ls_splits)
-  apply (case_tac k)
-  apply auto
-  done
-
-lemma bin_cat_assoc: 
-  "!!z. bin_cat (bin_cat x m y) n z = bin_cat x (m + n) (bin_cat y n z)" 
-  by (induct n) auto
-
-lemma bin_cat_assoc_sym: "!!z m. 
-  bin_cat x m (bin_cat y n z) = bin_cat (bin_cat x (m - n) y) (min m n) z"
-  apply (induct n, clarsimp)
-  apply (case_tac m, auto)
-  done
-
-lemma bin_cat_Pls [simp]: 
-  "!!w. bin_cat Int.Pls n w = bintrunc n w"
-  by (induct n) auto
-
-lemma bintr_cat1: 
-  "!!b. bintrunc (k + n) (bin_cat a n b) = bin_cat (bintrunc k a) n b"
-  by (induct n) auto
-    
-lemma bintr_cat: "bintrunc m (bin_cat a n b) = 
-    bin_cat (bintrunc (m - n) a) n (bintrunc (min m n) b)"
-  by (rule bin_eqI) (auto simp: bin_nth_cat nth_bintr)
-    
-lemma bintr_cat_same [simp]: 
-  "bintrunc n (bin_cat a n b) = bintrunc n b"
-  by (auto simp add : bintr_cat)
-
-lemma cat_bintr [simp]: 
-  "!!b. bin_cat a n (bintrunc n b) = bin_cat a n b"
-  by (induct n) auto
-
-lemma split_bintrunc: 
-  "!!b c. bin_split n c = (a, b) ==> b = bintrunc n c"
-  by (induct n) (auto simp: Let_def split: ls_splits)
-
-lemma bin_cat_split:
-  "!!v w. bin_split n w = (u, v) ==> w = bin_cat u n v"
-  by (induct n) (auto simp: Let_def split: ls_splits)
-
-lemma bin_split_cat:
-  "!!w. bin_split n (bin_cat v n w) = (v, bintrunc n w)"
-  by (induct n) auto
-
-lemma bin_split_Pls [simp]:
-  "bin_split n Int.Pls = (Int.Pls, Int.Pls)"
-  by (induct n) (auto simp: Let_def split: ls_splits)
-
-lemma bin_split_Min [simp]:
-  "bin_split n Int.Min = (Int.Min, bintrunc n Int.Min)"
-  by (induct n) (auto simp: Let_def split: ls_splits)
-
-lemma bin_split_trunc:
-  "!!m b c. bin_split (min m n) c = (a, b) ==> 
-    bin_split n (bintrunc m c) = (bintrunc (m - n) a, b)"
-  apply (induct n, clarsimp)
-  apply (simp add: bin_rest_trunc Let_def split: ls_splits)
-  apply (case_tac m)
-   apply (auto simp: Let_def split: ls_splits)
-  done
-
-lemma bin_split_trunc1:
-  "!!m b c. bin_split n c = (a, b) ==> 
-    bin_split n (bintrunc m c) = (bintrunc (m - n) a, bintrunc m b)"
-  apply (induct n, clarsimp)
-  apply (simp add: bin_rest_trunc Let_def split: ls_splits)
-  apply (case_tac m)
-   apply (auto simp: Let_def split: ls_splits)
-  done
-
-lemma bin_cat_num:
-  "!!b. bin_cat a n b = a * 2 ^ n + bintrunc n b"
-  apply (induct n, clarsimp)
-  apply (simp add: Bit_def cong: number_of_False_cong)
-  done
-
-lemma bin_split_num:
-  "!!b. bin_split n b = (b div 2 ^ n, b mod 2 ^ n)"
-  apply (induct n, clarsimp)
-  apply (simp add: bin_rest_div zdiv_zmult2_eq)
-  apply (case_tac b rule: bin_exhaust)
-  apply simp
-  apply (simp add: Bit_def mod_mult_mult1 p1mod22k
-              split: bit.split 
-              cong: number_of_False_cong)
-  done 
-
-subsection {* Miscellaneous lemmas *}
-
-lemma nth_2p_bin: 
-  "!!m. bin_nth (2 ^ n) m = (m = n)"
-  apply (induct n)
-   apply clarsimp
-   apply safe
-     apply (case_tac m) 
-      apply (auto simp: trans [OF numeral_1_eq_1 [symmetric] number_of_eq])
-   apply (case_tac m) 
-    apply (auto simp: Bit_B0_2t [symmetric])
-  done
-
-(* for use when simplifying with bin_nth_Bit *)
-
-lemma ex_eq_or:
-  "(EX m. n = Suc m & (m = k | P m)) = (n = Suc k | (EX m. n = Suc m & P m))"
-  by auto
-
-end
-
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Word/Bit_Int.thy	Wed Jun 30 16:45:47 2010 +0200
@@ -0,0 +1,638 @@
+(* 
+  Author: Jeremy Dawson and Gerwin Klein, NICTA
+
+  definition and basic theorems for bit-wise logical operations 
+  for integers expressed using Pls, Min, BIT,
+  and converting them to and from lists of bools
+*) 
+
+header {* Bitwise Operations on Binary Integers *}
+
+theory Bit_Int
+imports Bit_Representation Bit_Operations
+begin
+
+subsection {* Logical operations *}
+
+text "bit-wise logical operations on the int type"
+
+instantiation int :: bit
+begin
+
+definition
+  int_not_def [code del]: "bitNOT = bin_rec Int.Min Int.Pls 
+    (\<lambda>w b s. s BIT (NOT b))"
+
+definition
+  int_and_def [code del]: "bitAND = bin_rec (\<lambda>x. Int.Pls) (\<lambda>y. y) 
+    (\<lambda>w b s y. s (bin_rest y) BIT (b AND bin_last y))"
+
+definition
+  int_or_def [code del]: "bitOR = bin_rec (\<lambda>x. x) (\<lambda>y. Int.Min) 
+    (\<lambda>w b s y. s (bin_rest y) BIT (b OR bin_last y))"
+
+definition
+  int_xor_def [code del]: "bitXOR = bin_rec (\<lambda>x. x) bitNOT 
+    (\<lambda>w b s y. s (bin_rest y) BIT (b XOR bin_last y))"
+
+instance ..
+
+end
+
+lemma int_not_simps [simp]:
+  "NOT Int.Pls = Int.Min"
+  "NOT Int.Min = Int.Pls"
+  "NOT (Int.Bit0 w) = Int.Bit1 (NOT w)"
+  "NOT (Int.Bit1 w) = Int.Bit0 (NOT w)"
+  "NOT (w BIT b) = (NOT w) BIT (NOT b)"
+  unfolding int_not_def by (simp_all add: bin_rec_simps)
+
+declare int_not_simps(1-4) [code]
+
+lemma int_xor_Pls [simp, code]: 
+  "Int.Pls XOR x = x"
+  unfolding int_xor_def by (simp add: bin_rec_PM)
+
+lemma int_xor_Min [simp, code]: 
+  "Int.Min XOR x = NOT x"
+  unfolding int_xor_def by (simp add: bin_rec_PM)
+
+lemma int_xor_Bits [simp]: 
+  "(x BIT b) XOR (y BIT c) = (x XOR y) BIT (b XOR c)"
+  apply (unfold int_xor_def)
+  apply (rule bin_rec_simps (1) [THEN fun_cong, THEN trans])
+    apply (rule ext, simp)
+   prefer 2
+   apply simp
+  apply (rule ext)
+  apply (simp add: int_not_simps [symmetric])
+  done
+
+lemma int_xor_Bits2 [simp, code]: 
+  "(Int.Bit0 x) XOR (Int.Bit0 y) = Int.Bit0 (x XOR y)"
+  "(Int.Bit0 x) XOR (Int.Bit1 y) = Int.Bit1 (x XOR y)"
+  "(Int.Bit1 x) XOR (Int.Bit0 y) = Int.Bit1 (x XOR y)"
+  "(Int.Bit1 x) XOR (Int.Bit1 y) = Int.Bit0 (x XOR y)"
+  unfolding BIT_simps [symmetric] int_xor_Bits by simp_all
+
+lemma int_xor_x_simps':
+  "w XOR (Int.Pls BIT 0) = w"
+  "w XOR (Int.Min BIT 1) = NOT w"
+  apply (induct w rule: bin_induct)
+       apply simp_all[4]
+   apply (unfold int_xor_Bits)
+   apply clarsimp+
+  done
+
+lemma int_xor_extra_simps [simp, code]:
+  "w XOR Int.Pls = w"
+  "w XOR Int.Min = NOT w"
+  using int_xor_x_simps' by simp_all
+
+lemma int_or_Pls [simp, code]: 
+  "Int.Pls OR x = x"
+  by (unfold int_or_def) (simp add: bin_rec_PM)
+  
+lemma int_or_Min [simp, code]:
+  "Int.Min OR x = Int.Min"
+  by (unfold int_or_def) (simp add: bin_rec_PM)
+
+lemma int_or_Bits [simp]: 
+  "(x BIT b) OR (y BIT c) = (x OR y) BIT (b OR c)"
+  unfolding int_or_def by (simp add: bin_rec_simps)
+
+lemma int_or_Bits2 [simp, code]: 
+  "(Int.Bit0 x) OR (Int.Bit0 y) = Int.Bit0 (x OR y)"
+  "(Int.Bit0 x) OR (Int.Bit1 y) = Int.Bit1 (x OR y)"
+  "(Int.Bit1 x) OR (Int.Bit0 y) = Int.Bit1 (x OR y)"
+  "(Int.Bit1 x) OR (Int.Bit1 y) = Int.Bit1 (x OR y)"
+  unfolding BIT_simps [symmetric] int_or_Bits by simp_all
+
+lemma int_or_x_simps': 
+  "w OR (Int.Pls BIT 0) = w"
+  "w OR (Int.Min BIT 1) = Int.Min"
+  apply (induct w rule: bin_induct)
+       apply simp_all[4]
+   apply (unfold int_or_Bits)
+   apply clarsimp+
+  done
+
+lemma int_or_extra_simps [simp, code]:
+  "w OR Int.Pls = w"
+  "w OR Int.Min = Int.Min"
+  using int_or_x_simps' by simp_all
+
+lemma int_and_Pls [simp, code]:
+  "Int.Pls AND x = Int.Pls"
+  unfolding int_and_def by (simp add: bin_rec_PM)
+
+lemma int_and_Min [simp, code]:
+  "Int.Min AND x = x"
+  unfolding int_and_def by (simp add: bin_rec_PM)
+
+lemma int_and_Bits [simp]: 
+  "(x BIT b) AND (y BIT c) = (x AND y) BIT (b AND c)" 
+  unfolding int_and_def by (simp add: bin_rec_simps)
+
+lemma int_and_Bits2 [simp, code]: 
+  "(Int.Bit0 x) AND (Int.Bit0 y) = Int.Bit0 (x AND y)"
+  "(Int.Bit0 x) AND (Int.Bit1 y) = Int.Bit0 (x AND y)"
+  "(Int.Bit1 x) AND (Int.Bit0 y) = Int.Bit0 (x AND y)"
+  "(Int.Bit1 x) AND (Int.Bit1 y) = Int.Bit1 (x AND y)"
+  unfolding BIT_simps [symmetric] int_and_Bits by simp_all
+
+lemma int_and_x_simps': 
+  "w AND (Int.Pls BIT 0) = Int.Pls"
+  "w AND (Int.Min BIT 1) = w"
+  apply (induct w rule: bin_induct)
+       apply simp_all[4]
+   apply (unfold int_and_Bits)
+   apply clarsimp+
+  done
+
+lemma int_and_extra_simps [simp, code]:
+  "w AND Int.Pls = Int.Pls"
+  "w AND Int.Min = w"
+  using int_and_x_simps' by simp_all
+
+(* commutativity of the above *)
+lemma bin_ops_comm:
+  shows
+  int_and_comm: "!!y::int. x AND y = y AND x" and
+  int_or_comm:  "!!y::int. x OR y = y OR x" and
+  int_xor_comm: "!!y::int. x XOR y = y XOR x"
+  apply (induct x rule: bin_induct)
+          apply simp_all[6]
+    apply (case_tac y rule: bin_exhaust, simp add: bit_ops_comm)+
+  done
+
+lemma bin_ops_same [simp]:
+  "(x::int) AND x = x" 
+  "(x::int) OR x = x" 
+  "(x::int) XOR x = Int.Pls"
+  by (induct x rule: bin_induct) auto
+
+lemma int_not_not [simp]: "NOT (NOT (x::int)) = x"
+  by (induct x rule: bin_induct) auto
+
+lemmas bin_log_esimps = 
+  int_and_extra_simps  int_or_extra_simps  int_xor_extra_simps
+  int_and_Pls int_and_Min  int_or_Pls int_or_Min  int_xor_Pls int_xor_Min
+
+(* basic properties of logical (bit-wise) operations *)
+
+lemma bbw_ao_absorb: 
+  "!!y::int. x AND (y OR x) = x & x OR (y AND x) = x"
+  apply (induct x rule: bin_induct)
+    apply auto 
+   apply (case_tac [!] y rule: bin_exhaust)
+   apply auto
+   apply (case_tac [!] bit)
+     apply auto
+  done
+
+lemma bbw_ao_absorbs_other:
+  "x AND (x OR y) = x \<and> (y AND x) OR x = (x::int)"
+  "(y OR x) AND x = x \<and> x OR (x AND y) = (x::int)"
+  "(x OR y) AND x = x \<and> (x AND y) OR x = (x::int)"
+  apply (auto simp: bbw_ao_absorb int_or_comm)  
+      apply (subst int_or_comm)
+    apply (simp add: bbw_ao_absorb)
+   apply (subst int_and_comm)
+   apply (subst int_or_comm)
+   apply (simp add: bbw_ao_absorb)
+  apply (subst int_and_comm)
+  apply (simp add: bbw_ao_absorb)
+  done
+
+lemmas bbw_ao_absorbs [simp] = bbw_ao_absorb bbw_ao_absorbs_other
+
+lemma int_xor_not:
+  "!!y::int. (NOT x) XOR y = NOT (x XOR y) & 
+        x XOR (NOT y) = NOT (x XOR y)"
+  apply (induct x rule: bin_induct)
+    apply auto
+   apply (case_tac y rule: bin_exhaust, auto, 
+          case_tac b, auto)+
+  done
+
+lemma bbw_assocs': 
+  "!!y z::int. (x AND y) AND z = x AND (y AND z) & 
+          (x OR y) OR z = x OR (y OR z) & 
+          (x XOR y) XOR z = x XOR (y XOR z)"
+  apply (induct x rule: bin_induct)
+    apply (auto simp: int_xor_not)
+    apply (case_tac [!] y rule: bin_exhaust)
+    apply (case_tac [!] z rule: bin_exhaust)
+    apply (case_tac [!] bit)
+       apply (case_tac [!] b)
+             apply (auto simp del: BIT_simps)
+  done
+
+lemma int_and_assoc:
+  "(x AND y) AND (z::int) = x AND (y AND z)"
+  by (simp add: bbw_assocs')
+
+lemma int_or_assoc:
+  "(x OR y) OR (z::int) = x OR (y OR z)"
+  by (simp add: bbw_assocs')
+
+lemma int_xor_assoc:
+  "(x XOR y) XOR (z::int) = x XOR (y XOR z)"
+  by (simp add: bbw_assocs')
+
+lemmas bbw_assocs = int_and_assoc int_or_assoc int_xor_assoc
+
+lemma bbw_lcs [simp]: 
+  "(y::int) AND (x AND z) = x AND (y AND z)"
+  "(y::int) OR (x OR z) = x OR (y OR z)"
+  "(y::int) XOR (x XOR z) = x XOR (y XOR z)" 
+  apply (auto simp: bbw_assocs [symmetric])
+  apply (auto simp: bin_ops_comm)
+  done
+
+lemma bbw_not_dist: 
+  "!!y::int. NOT (x OR y) = (NOT x) AND (NOT y)" 
+  "!!y::int. NOT (x AND y) = (NOT x) OR (NOT y)"
+  apply (induct x rule: bin_induct)
+       apply auto
+   apply (case_tac [!] y rule: bin_exhaust)
+   apply (case_tac [!] bit, auto simp del: BIT_simps)
+  done
+
+lemma bbw_oa_dist: 
+  "!!y z::int. (x AND y) OR z = 
+          (x OR z) AND (y OR z)"
+  apply (induct x rule: bin_induct)
+    apply auto
+  apply (case_tac y rule: bin_exhaust)
+  apply (case_tac z rule: bin_exhaust)
+  apply (case_tac ba, auto simp del: BIT_simps)
+  done
+
+lemma bbw_ao_dist: 
+  "!!y z::int. (x OR y) AND z = 
+          (x AND z) OR (y AND z)"
+   apply (induct x rule: bin_induct)
+    apply auto
+  apply (case_tac y rule: bin_exhaust)
+  apply (case_tac z rule: bin_exhaust)
+  apply (case_tac ba, auto simp del: BIT_simps)
+  done
+
+(*
+Why were these declared simp???
+declare bin_ops_comm [simp] bbw_assocs [simp] 
+*)
+
+lemma plus_and_or [rule_format]:
+  "ALL y::int. (x AND y) + (x OR y) = x + y"
+  apply (induct x rule: bin_induct)
+    apply clarsimp
+   apply clarsimp
+  apply clarsimp
+  apply (case_tac y rule: bin_exhaust)
+  apply clarsimp
+  apply (unfold Bit_def)
+  apply clarsimp
+  apply (erule_tac x = "x" in allE)
+  apply (simp split: bit.split)
+  done
+
+lemma le_int_or:
+  "!!x.  bin_sign y = Int.Pls ==> x <= x OR y"
+  apply (induct y rule: bin_induct)
+    apply clarsimp
+   apply clarsimp
+  apply (case_tac x rule: bin_exhaust)
+  apply (case_tac b)
+   apply (case_tac [!] bit)
+     apply (auto simp: less_eq_int_code)
+  done
+
+lemmas int_and_le =
+  xtr3 [OF bbw_ao_absorbs (2) [THEN conjunct2, symmetric] le_int_or] ;
+
+lemma bin_nth_ops:
+  "!!x y. bin_nth (x AND y) n = (bin_nth x n & bin_nth y n)" 
+  "!!x y. bin_nth (x OR y) n = (bin_nth x n | bin_nth y n)"
+  "!!x y. bin_nth (x XOR y) n = (bin_nth x n ~= bin_nth y n)" 
+  "!!x. bin_nth (NOT x) n = (~ bin_nth x n)"
+  apply (induct n)
+         apply safe
+                         apply (case_tac [!] x rule: bin_exhaust)
+                         apply (simp_all del: BIT_simps)
+                      apply (case_tac [!] y rule: bin_exhaust)
+                      apply (simp_all del: BIT_simps)
+        apply (auto dest: not_B1_is_B0 intro: B1_ass_B0)
+  done
+
+(* interaction between bit-wise and arithmetic *)
+(* good example of bin_induction *)
+lemma bin_add_not: "x + NOT x = Int.Min"
+  apply (induct x rule: bin_induct)
+    apply clarsimp
+   apply clarsimp
+  apply (case_tac bit, auto)
+  done
+
+(* truncating results of bit-wise operations *)
+lemma bin_trunc_ao: 
+  "!!x y. (bintrunc n x) AND (bintrunc n y) = bintrunc n (x AND y)" 
+  "!!x y. (bintrunc n x) OR (bintrunc n y) = bintrunc n (x OR y)"
+  apply (induct n)
+      apply auto
+      apply (case_tac [!] x rule: bin_exhaust)
+      apply (case_tac [!] y rule: bin_exhaust)
+      apply auto
+  done
+
+lemma bin_trunc_xor: 
+  "!!x y. bintrunc n (bintrunc n x XOR bintrunc n y) = 
+          bintrunc n (x XOR y)"
+  apply (induct n)
+   apply auto
+   apply (case_tac [!] x rule: bin_exhaust)
+   apply (case_tac [!] y rule: bin_exhaust)
+   apply auto
+  done
+
+lemma bin_trunc_not: 
+  "!!x. bintrunc n (NOT (bintrunc n x)) = bintrunc n (NOT x)"
+  apply (induct n)
+   apply auto
+   apply (case_tac [!] x rule: bin_exhaust)
+   apply auto
+  done
+
+(* want theorems of the form of bin_trunc_xor *)
+lemma bintr_bintr_i:
+  "x = bintrunc n y ==> bintrunc n x = bintrunc n y"
+  by auto
+
+lemmas bin_trunc_and = bin_trunc_ao(1) [THEN bintr_bintr_i]
+lemmas bin_trunc_or = bin_trunc_ao(2) [THEN bintr_bintr_i]
+
+subsection {* Setting and clearing bits *}
+
+primrec
+  bin_sc :: "nat => bit => int => int"
+where
+  Z: "bin_sc 0 b w = bin_rest w BIT b"
+  | Suc: "bin_sc (Suc n) b w = bin_sc n b (bin_rest w) BIT bin_last w"
+
+(** nth bit, set/clear **)
+
+lemma bin_nth_sc [simp]: 
+  "!!w. bin_nth (bin_sc n b w) n = (b = 1)"
+  by (induct n)  auto
+
+lemma bin_sc_sc_same [simp]: 
+  "!!w. bin_sc n c (bin_sc n b w) = bin_sc n c w"
+  by (induct n) auto
+
+lemma bin_sc_sc_diff:
+  "!!w m. m ~= n ==> 
+    bin_sc m c (bin_sc n b w) = bin_sc n b (bin_sc m c w)"
+  apply (induct n)
+   apply (case_tac [!] m)
+     apply auto
+  done
+
+lemma bin_nth_sc_gen: 
+  "!!w m. bin_nth (bin_sc n b w) m = (if m = n then b = 1 else bin_nth w m)"
+  by (induct n) (case_tac [!] m, auto)
+  
+lemma bin_sc_nth [simp]:
+  "!!w. (bin_sc n (If (bin_nth w n) 1 0) w) = w"
+  by (induct n) auto
+
+lemma bin_sign_sc [simp]:
+  "!!w. bin_sign (bin_sc n b w) = bin_sign w"
+  by (induct n) auto
+  
+lemma bin_sc_bintr [simp]: 
+  "!!w m. bintrunc m (bin_sc n x (bintrunc m (w))) = bintrunc m (bin_sc n x w)"
+  apply (induct n)
+   apply (case_tac [!] w rule: bin_exhaust)
+   apply (case_tac [!] m, auto)
+  done
+
+lemma bin_clr_le:
+  "!!w. bin_sc n 0 w <= w"
+  apply (induct n) 
+   apply (case_tac [!] w rule: bin_exhaust)
+   apply (auto simp del: BIT_simps)
+   apply (unfold Bit_def)
+   apply (simp_all split: bit.split)
+  done
+
+lemma bin_set_ge:
+  "!!w. bin_sc n 1 w >= w"
+  apply (induct n) 
+   apply (case_tac [!] w rule: bin_exhaust)
+   apply (auto simp del: BIT_simps)
+   apply (unfold Bit_def)
+   apply (simp_all split: bit.split)
+  done
+
+lemma bintr_bin_clr_le:
+  "!!w m. bintrunc n (bin_sc m 0 w) <= bintrunc n w"
+  apply (induct n)
+   apply simp
+  apply (case_tac w rule: bin_exhaust)
+  apply (case_tac m)
+   apply (auto simp del: BIT_simps)
+   apply (unfold Bit_def)
+   apply (simp_all split: bit.split)
+  done
+
+lemma bintr_bin_set_ge:
+  "!!w m. bintrunc n (bin_sc m 1 w) >= bintrunc n w"
+  apply (induct n)
+   apply simp
+  apply (case_tac w rule: bin_exhaust)
+  apply (case_tac m)
+   apply (auto simp del: BIT_simps)
+   apply (unfold Bit_def)
+   apply (simp_all split: bit.split)
+  done
+
+lemma bin_sc_FP [simp]: "bin_sc n 0 Int.Pls = Int.Pls"
+  by (induct n) auto
+
+lemma bin_sc_TM [simp]: "bin_sc n 1 Int.Min = Int.Min"
+  by (induct n) auto
+  
+lemmas bin_sc_simps = bin_sc.Z bin_sc.Suc bin_sc_TM bin_sc_FP
+
+lemma bin_sc_minus:
+  "0 < n ==> bin_sc (Suc (n - 1)) b w = bin_sc n b w"
+  by auto
+
+lemmas bin_sc_Suc_minus = 
+  trans [OF bin_sc_minus [symmetric] bin_sc.Suc, standard]
+
+lemmas bin_sc_Suc_pred [simp] = 
+  bin_sc_Suc_minus [of "number_of bin", simplified nobm1, standard]
+
+
+subsection {* Splitting and concatenation *}
+
+definition bin_rcat :: "nat \<Rightarrow> int list \<Rightarrow> int" where
+  "bin_rcat n = foldl (%u v. bin_cat u n v) Int.Pls"
+
+fun bin_rsplit_aux :: "nat \<Rightarrow> nat \<Rightarrow> int \<Rightarrow> int list \<Rightarrow> int list" where
+  "bin_rsplit_aux n m c bs =
+    (if m = 0 | n = 0 then bs else
+      let (a, b) = bin_split n c 
+      in bin_rsplit_aux n (m - n) a (b # bs))"
+
+definition bin_rsplit :: "nat \<Rightarrow> nat \<times> int \<Rightarrow> int list" where
+  "bin_rsplit n w = bin_rsplit_aux n (fst w) (snd w) []"
+
+fun bin_rsplitl_aux :: "nat \<Rightarrow> nat \<Rightarrow> int \<Rightarrow> int list \<Rightarrow> int list" where
+  "bin_rsplitl_aux n m c bs =
+    (if m = 0 | n = 0 then bs else
+      let (a, b) = bin_split (min m n) c 
+      in bin_rsplitl_aux n (m - n) a (b # bs))"
+
+definition bin_rsplitl :: "nat \<Rightarrow> nat \<times> int \<Rightarrow> int list" where
+  "bin_rsplitl n w = bin_rsplitl_aux n (fst w) (snd w) []"
+
+declare bin_rsplit_aux.simps [simp del]
+declare bin_rsplitl_aux.simps [simp del]
+
+lemma bin_sign_cat: 
+  "!!y. bin_sign (bin_cat x n y) = bin_sign x"
+  by (induct n) auto
+
+lemma bin_cat_Suc_Bit:
+  "bin_cat w (Suc n) (v BIT b) = bin_cat w n v BIT b"
+  by auto
+
+lemma bin_nth_cat: 
+  "!!n y. bin_nth (bin_cat x k y) n = 
+    (if n < k then bin_nth y n else bin_nth x (n - k))"
+  apply (induct k)
+   apply clarsimp
+  apply (case_tac n, auto)
+  done
+
+lemma bin_nth_split:
+  "!!b c. bin_split n c = (a, b) ==> 
+    (ALL k. bin_nth a k = bin_nth c (n + k)) & 
+    (ALL k. bin_nth b k = (k < n & bin_nth c k))"
+  apply (induct n)
+   apply clarsimp
+  apply (clarsimp simp: Let_def split: ls_splits)
+  apply (case_tac k)
+  apply auto
+  done
+
+lemma bin_cat_assoc: 
+  "!!z. bin_cat (bin_cat x m y) n z = bin_cat x (m + n) (bin_cat y n z)" 
+  by (induct n) auto
+
+lemma bin_cat_assoc_sym: "!!z m. 
+  bin_cat x m (bin_cat y n z) = bin_cat (bin_cat x (m - n) y) (min m n) z"
+  apply (induct n, clarsimp)
+  apply (case_tac m, auto)
+  done
+
+lemma bin_cat_Pls [simp]: 
+  "!!w. bin_cat Int.Pls n w = bintrunc n w"
+  by (induct n) auto
+
+lemma bintr_cat1: 
+  "!!b. bintrunc (k + n) (bin_cat a n b) = bin_cat (bintrunc k a) n b"
+  by (induct n) auto
+    
+lemma bintr_cat: "bintrunc m (bin_cat a n b) = 
+    bin_cat (bintrunc (m - n) a) n (bintrunc (min m n) b)"
+  by (rule bin_eqI) (auto simp: bin_nth_cat nth_bintr)
+    
+lemma bintr_cat_same [simp]: 
+  "bintrunc n (bin_cat a n b) = bintrunc n b"
+  by (auto simp add : bintr_cat)
+
+lemma cat_bintr [simp]: 
+  "!!b. bin_cat a n (bintrunc n b) = bin_cat a n b"
+  by (induct n) auto
+
+lemma split_bintrunc: 
+  "!!b c. bin_split n c = (a, b) ==> b = bintrunc n c"
+  by (induct n) (auto simp: Let_def split: ls_splits)
+
+lemma bin_cat_split:
+  "!!v w. bin_split n w = (u, v) ==> w = bin_cat u n v"
+  by (induct n) (auto simp: Let_def split: ls_splits)
+
+lemma bin_split_cat:
+  "!!w. bin_split n (bin_cat v n w) = (v, bintrunc n w)"
+  by (induct n) auto
+
+lemma bin_split_Pls [simp]:
+  "bin_split n Int.Pls = (Int.Pls, Int.Pls)"
+  by (induct n) (auto simp: Let_def split: ls_splits)
+
+lemma bin_split_Min [simp]:
+  "bin_split n Int.Min = (Int.Min, bintrunc n Int.Min)"
+  by (induct n) (auto simp: Let_def split: ls_splits)
+
+lemma bin_split_trunc:
+  "!!m b c. bin_split (min m n) c = (a, b) ==> 
+    bin_split n (bintrunc m c) = (bintrunc (m - n) a, b)"
+  apply (induct n, clarsimp)
+  apply (simp add: bin_rest_trunc Let_def split: ls_splits)
+  apply (case_tac m)
+   apply (auto simp: Let_def split: ls_splits)
+  done
+
+lemma bin_split_trunc1:
+  "!!m b c. bin_split n c = (a, b) ==> 
+    bin_split n (bintrunc m c) = (bintrunc (m - n) a, bintrunc m b)"
+  apply (induct n, clarsimp)
+  apply (simp add: bin_rest_trunc Let_def split: ls_splits)
+  apply (case_tac m)
+   apply (auto simp: Let_def split: ls_splits)
+  done
+
+lemma bin_cat_num:
+  "!!b. bin_cat a n b = a * 2 ^ n + bintrunc n b"
+  apply (induct n, clarsimp)
+  apply (simp add: Bit_def cong: number_of_False_cong)
+  done
+
+lemma bin_split_num:
+  "!!b. bin_split n b = (b div 2 ^ n, b mod 2 ^ n)"
+  apply (induct n, clarsimp)
+  apply (simp add: bin_rest_div zdiv_zmult2_eq)
+  apply (case_tac b rule: bin_exhaust)
+  apply simp
+  apply (simp add: Bit_def mod_mult_mult1 p1mod22k
+              split: bit.split 
+              cong: number_of_False_cong)
+  done 
+
+subsection {* Miscellaneous lemmas *}
+
+lemma nth_2p_bin: 
+  "!!m. bin_nth (2 ^ n) m = (m = n)"
+  apply (induct n)
+   apply clarsimp
+   apply safe
+     apply (case_tac m) 
+      apply (auto simp: trans [OF numeral_1_eq_1 [symmetric] number_of_eq])
+   apply (case_tac m) 
+    apply (auto simp: Bit_B0_2t [symmetric])
+  done
+
+(* for use when simplifying with bin_nth_Bit *)
+
+lemma ex_eq_or:
+  "(EX m. n = Suc m & (m = k | P m)) = (n = Suc k | (EX m. n = Suc m & P m))"
+  by auto
+
+end
+
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Word/Bit_Representation.thy	Wed Jun 30 16:45:47 2010 +0200
@@ -0,0 +1,938 @@
+(* 
+  Author: Jeremy Dawson, NICTA
+
+  contains basic definition to do with integers
+  expressed using Pls, Min, BIT and important resulting theorems, 
+  in particular, bin_rec and related work
+*) 
+
+header {* Basic Definitions for Binary Integers *}
+
+theory Bit_Representation
+imports Misc_Numeric Bit
+begin
+
+subsection {* Further properties of numerals *}
+
+definition Bit :: "int \<Rightarrow> bit \<Rightarrow> int" (infixl "BIT" 90) where
+  "k BIT b = bit_case 0 1 b + k + k"
+
+lemma BIT_B0_eq_Bit0 [simp]: "w BIT 0 = Int.Bit0 w"
+  unfolding Bit_def Bit0_def by simp
+
+lemma BIT_B1_eq_Bit1 [simp]: "w BIT 1 = Int.Bit1 w"
+  unfolding Bit_def Bit1_def by simp
+
+lemmas BIT_simps = BIT_B0_eq_Bit0 BIT_B1_eq_Bit1
+
+lemma Min_ne_Pls [iff]:  
+  "Int.Min ~= Int.Pls"
+  unfolding Min_def Pls_def by auto
+
+lemmas Pls_ne_Min [iff] = Min_ne_Pls [symmetric]
+
+lemmas PlsMin_defs [intro!] = 
+  Pls_def Min_def Pls_def [symmetric] Min_def [symmetric]
+
+lemmas PlsMin_simps [simp] = PlsMin_defs [THEN Eq_TrueI]
+
+lemma number_of_False_cong: 
+  "False \<Longrightarrow> number_of x = number_of y"
+  by (rule FalseE)
+
+(** ways in which type Bin resembles a datatype **)
+
+lemma BIT_eq: "u BIT b = v BIT c ==> u = v & b = c"
+  apply (unfold Bit_def)
+  apply (simp (no_asm_use) split: bit.split_asm)
+     apply simp_all
+   apply (drule_tac f=even in arg_cong, clarsimp)+
+  done
+     
+lemmas BIT_eqE [elim!] = BIT_eq [THEN conjE, standard]
+
+lemma BIT_eq_iff [simp]: 
+  "(u BIT b = v BIT c) = (u = v \<and> b = c)"
+  by (rule iffI) auto
+
+lemmas BIT_eqI [intro!] = conjI [THEN BIT_eq_iff [THEN iffD2]]
+
+lemma less_Bits: 
+  "(v BIT b < w BIT c) = (v < w | v <= w & b = (0::bit) & c = (1::bit))"
+  unfolding Bit_def by (auto split: bit.split)
+
+lemma le_Bits: 
+  "(v BIT b <= w BIT c) = (v < w | v <= w & (b ~= (1::bit) | c ~= (0::bit)))" 
+  unfolding Bit_def by (auto split: bit.split)
+
+lemma no_no [simp]: "number_of (number_of i) = i"
+  unfolding number_of_eq by simp
+
+lemma Bit_B0:
+  "k BIT (0::bit) = k + k"
+   by (unfold Bit_def) simp
+
+lemma Bit_B1:
+  "k BIT (1::bit) = k + k + 1"
+   by (unfold Bit_def) simp
+  
+lemma Bit_B0_2t: "k BIT (0::bit) = 2 * k"
+  by (rule trans, rule Bit_B0) simp
+
+lemma Bit_B1_2t: "k BIT (1::bit) = 2 * k + 1"
+  by (rule trans, rule Bit_B1) simp
+
+lemma B_mod_2': 
+  "X = 2 ==> (w BIT (1::bit)) mod X = 1 & (w BIT (0::bit)) mod X = 0"
+  apply (simp (no_asm) only: Bit_B0 Bit_B1)
+  apply (simp add: z1pmod2)
+  done
+
+lemma B1_mod_2 [simp]: "(Int.Bit1 w) mod 2 = 1"
+  unfolding numeral_simps number_of_is_id by (simp add: z1pmod2)
+
+lemma B0_mod_2 [simp]: "(Int.Bit0 w) mod 2 = 0"
+  unfolding numeral_simps number_of_is_id by simp
+
+lemma neB1E [elim!]:
+  assumes ne: "y \<noteq> (1::bit)"
+  assumes y: "y = (0::bit) \<Longrightarrow> P"
+  shows "P"
+  apply (rule y)
+  apply (cases y rule: bit.exhaust, simp)
+  apply (simp add: ne)
+  done
+
+lemma bin_ex_rl: "EX w b. w BIT b = bin"
+  apply (unfold Bit_def)
+  apply (cases "even bin")
+   apply (clarsimp simp: even_equiv_def)
+   apply (auto simp: odd_equiv_def split: bit.split)
+  done
+
+lemma bin_exhaust:
+  assumes Q: "\<And>x b. bin = x BIT b \<Longrightarrow> Q"
+  shows "Q"
+  apply (insert bin_ex_rl [of bin])  
+  apply (erule exE)+
+  apply (rule Q)
+  apply force
+  done
+
+
+subsection {* Destructors for binary integers *}
+
+definition bin_last :: "int \<Rightarrow> bit" where
+  "bin_last w = (if w mod 2 = 0 then (0::bit) else (1::bit))"
+
+definition bin_rest :: "int \<Rightarrow> int" where
+  "bin_rest w = w div 2"
+
+definition bin_rl :: "int \<Rightarrow> int \<times> bit" where 
+  "bin_rl w = (bin_rest w, bin_last w)"
+
+lemma bin_rl_char: "bin_rl w = (r, l) \<longleftrightarrow> r BIT l = w"
+  apply (cases l)
+  apply (auto simp add: bin_rl_def bin_last_def bin_rest_def)
+  unfolding Pls_def Min_def Bit0_def Bit1_def number_of_is_id
+  apply arith+
+  done
+
+primrec bin_nth where
+  Z: "bin_nth w 0 = (bin_last w = (1::bit))"
+  | Suc: "bin_nth w (Suc n) = bin_nth (bin_rest w) n"
+
+lemma bin_rl_simps [simp]:
+  "bin_rl Int.Pls = (Int.Pls, (0::bit))"
+  "bin_rl Int.Min = (Int.Min, (1::bit))"
+  "bin_rl (Int.Bit0 r) = (r, (0::bit))"
+  "bin_rl (Int.Bit1 r) = (r, (1::bit))"
+  "bin_rl (r BIT b) = (r, b)"
+  unfolding bin_rl_char by simp_all
+
+lemma bin_rl_simp [simp]:
+  "bin_rest w BIT bin_last w = w"
+  by (simp add: iffD1 [OF bin_rl_char bin_rl_def])
+
+lemma bin_abs_lem:
+  "bin = (w BIT b) ==> ~ bin = Int.Min --> ~ bin = Int.Pls -->
+    nat (abs w) < nat (abs bin)"
+  apply (clarsimp simp add: bin_rl_char)
+  apply (unfold Pls_def Min_def Bit_def)
+  apply (cases b)
+   apply (clarsimp, arith)
+  apply (clarsimp, arith)
+  done
+
+lemma bin_induct:
+  assumes PPls: "P Int.Pls"
+    and PMin: "P Int.Min"
+    and PBit: "!!bin bit. P bin ==> P (bin BIT bit)"
+  shows "P bin"
+  apply (rule_tac P=P and a=bin and f1="nat o abs" 
+                  in wf_measure [THEN wf_induct])
+  apply (simp add: measure_def inv_image_def)
+  apply (case_tac x rule: bin_exhaust)
+  apply (frule bin_abs_lem)
+  apply (auto simp add : PPls PMin PBit)
+  done
+
+lemma numeral_induct:
+  assumes Pls: "P Int.Pls"
+  assumes Min: "P Int.Min"
+  assumes Bit0: "\<And>w. \<lbrakk>P w; w \<noteq> Int.Pls\<rbrakk> \<Longrightarrow> P (Int.Bit0 w)"
+  assumes Bit1: "\<And>w. \<lbrakk>P w; w \<noteq> Int.Min\<rbrakk> \<Longrightarrow> P (Int.Bit1 w)"
+  shows "P x"
+  apply (induct x rule: bin_induct)
+    apply (rule Pls)
+   apply (rule Min)
+  apply (case_tac bit)
+   apply (case_tac "bin = Int.Pls")
+    apply simp
+   apply (simp add: Bit0)
+  apply (case_tac "bin = Int.Min")
+   apply simp
+  apply (simp add: Bit1)
+  done
+
+lemma bin_rest_simps [simp]: 
+  "bin_rest Int.Pls = Int.Pls"
+  "bin_rest Int.Min = Int.Min"
+  "bin_rest (Int.Bit0 w) = w"
+  "bin_rest (Int.Bit1 w) = w"
+  "bin_rest (w BIT b) = w"
+  using bin_rl_simps bin_rl_def by auto
+
+lemma bin_last_simps [simp]: 
+  "bin_last Int.Pls = (0::bit)"
+  "bin_last Int.Min = (1::bit)"
+  "bin_last (Int.Bit0 w) = (0::bit)"
+  "bin_last (Int.Bit1 w) = (1::bit)"
+  "bin_last (w BIT b) = b"
+  using bin_rl_simps bin_rl_def by auto
+
+lemma bin_r_l_extras [simp]:
+  "bin_last 0 = (0::bit)"
+  "bin_last (- 1) = (1::bit)"
+  "bin_last -1 = (1::bit)"
+  "bin_last 1 = (1::bit)"
+  "bin_rest 1 = 0"
+  "bin_rest 0 = 0"
+  "bin_rest (- 1) = - 1"
+  "bin_rest -1 = -1"
+  by (simp_all add: bin_last_def bin_rest_def)
+
+lemma bin_last_mod: 
+  "bin_last w = (if w mod 2 = 0 then (0::bit) else (1::bit))"
+  apply (case_tac w rule: bin_exhaust)
+  apply (case_tac b)
+   apply auto
+  done
+
+lemma bin_rest_div: 
+  "bin_rest w = w div 2"
+  apply (case_tac w rule: bin_exhaust)
+  apply (rule trans)
+   apply clarsimp
+   apply (rule refl)
+  apply (drule trans)
+   apply (rule Bit_def)
+  apply (simp add: z1pdiv2 split: bit.split)
+  done
+
+lemma Bit_div2 [simp]: "(w BIT b) div 2 = w"
+  unfolding bin_rest_div [symmetric] by auto
+
+lemma Bit0_div2 [simp]: "(Int.Bit0 w) div 2 = w"
+  using Bit_div2 [where b="(0::bit)"] by simp
+
+lemma Bit1_div2 [simp]: "(Int.Bit1 w) div 2 = w"
+  using Bit_div2 [where b="(1::bit)"] by simp
+
+lemma bin_nth_lem [rule_format]:
+  "ALL y. bin_nth x = bin_nth y --> x = y"
+  apply (induct x rule: bin_induct)
+    apply safe
+    apply (erule rev_mp)
+    apply (induct_tac y rule: bin_induct)
+      apply (safe del: subset_antisym)
+      apply (drule_tac x=0 in fun_cong, force)
+     apply (erule notE, rule ext, 
+            drule_tac x="Suc x" in fun_cong, force)
+    apply (drule_tac x=0 in fun_cong, force)
+   apply (erule rev_mp)
+   apply (induct_tac y rule: bin_induct)
+     apply (safe del: subset_antisym)
+     apply (drule_tac x=0 in fun_cong, force)
+    apply (erule notE, rule ext, 
+           drule_tac x="Suc x" in fun_cong, force)
+   apply (drule_tac x=0 in fun_cong, force)
+  apply (case_tac y rule: bin_exhaust)
+  apply clarify
+  apply (erule allE)
+  apply (erule impE)
+   prefer 2
+   apply (erule BIT_eqI)
+   apply (drule_tac x=0 in fun_cong, force)
+  apply (rule ext)
+  apply (drule_tac x="Suc ?x" in fun_cong, force)
+  done
+
+lemma bin_nth_eq_iff: "(bin_nth x = bin_nth y) = (x = y)"
+  by (auto elim: bin_nth_lem)
+
+lemmas bin_eqI = ext [THEN bin_nth_eq_iff [THEN iffD1], standard]
+
+lemma bin_nth_Pls [simp]: "~ bin_nth Int.Pls n"
+  by (induct n) auto
+
+lemma bin_nth_Min [simp]: "bin_nth Int.Min n"
+  by (induct n) auto
+
+lemma bin_nth_0_BIT: "bin_nth (w BIT b) 0 = (b = (1::bit))"
+  by auto
+
+lemma bin_nth_Suc_BIT: "bin_nth (w BIT b) (Suc n) = bin_nth w n"
+  by auto
+
+lemma bin_nth_minus [simp]: "0 < n ==> bin_nth (w BIT b) n = bin_nth w (n - 1)"
+  by (cases n) auto
+
+lemma bin_nth_minus_Bit0 [simp]:
+  "0 < n ==> bin_nth (Int.Bit0 w) n = bin_nth w (n - 1)"
+  using bin_nth_minus [where b="(0::bit)"] by simp
+
+lemma bin_nth_minus_Bit1 [simp]:
+  "0 < n ==> bin_nth (Int.Bit1 w) n = bin_nth w (n - 1)"
+  using bin_nth_minus [where b="(1::bit)"] by simp
+
+lemmas bin_nth_0 = bin_nth.simps(1)
+lemmas bin_nth_Suc = bin_nth.simps(2)
+
+lemmas bin_nth_simps = 
+  bin_nth_0 bin_nth_Suc bin_nth_Pls bin_nth_Min bin_nth_minus
+  bin_nth_minus_Bit0 bin_nth_minus_Bit1
+
+
+subsection {* Recursion combinator for binary integers *}
+
+lemma brlem: "(bin = Int.Min) = (- bin + Int.pred 0 = 0)"
+  unfolding Min_def pred_def by arith
+
+function
+  bin_rec :: "'a \<Rightarrow> 'a \<Rightarrow> (int \<Rightarrow> bit \<Rightarrow> 'a \<Rightarrow> 'a) \<Rightarrow> int \<Rightarrow> 'a"  
+where 
+  "bin_rec f1 f2 f3 bin = (if bin = Int.Pls then f1 
+    else if bin = Int.Min then f2
+    else case bin_rl bin of (w, b) => f3 w b (bin_rec f1 f2 f3 w))"
+  by pat_completeness auto
+
+termination 
+  apply (relation "measure (nat o abs o snd o snd o snd)")
+  apply (auto simp add: bin_rl_def bin_last_def bin_rest_def)
+  unfolding Pls_def Min_def Bit0_def Bit1_def number_of_is_id
+  apply auto
+  done
+
+declare bin_rec.simps [simp del]
+
+lemma bin_rec_PM:
+  "f = bin_rec f1 f2 f3 ==> f Int.Pls = f1 & f Int.Min = f2"
+  by (auto simp add: bin_rec.simps)
+
+lemma bin_rec_Pls: "bin_rec f1 f2 f3 Int.Pls = f1"
+  by (simp add: bin_rec.simps)
+
+lemma bin_rec_Min: "bin_rec f1 f2 f3 Int.Min = f2"
+  by (simp add: bin_rec.simps)
+
+lemma bin_rec_Bit0:
+  "f3 Int.Pls (0::bit) f1 = f1 \<Longrightarrow>
+    bin_rec f1 f2 f3 (Int.Bit0 w) = f3 w (0::bit) (bin_rec f1 f2 f3 w)"
+  by (simp add: bin_rec_Pls bin_rec.simps [of _ _ _ "Int.Bit0 w"])
+
+lemma bin_rec_Bit1:
+  "f3 Int.Min (1::bit) f2 = f2 \<Longrightarrow>
+    bin_rec f1 f2 f3 (Int.Bit1 w) = f3 w (1::bit) (bin_rec f1 f2 f3 w)"
+  by (simp add: bin_rec_Min bin_rec.simps [of _ _ _ "Int.Bit1 w"])
+  
+lemma bin_rec_Bit:
+  "f = bin_rec f1 f2 f3  ==> f3 Int.Pls (0::bit) f1 = f1 ==> 
+    f3 Int.Min (1::bit) f2 = f2 ==> f (w BIT b) = f3 w b (f w)"
+  by (cases b, simp add: bin_rec_Bit0, simp add: bin_rec_Bit1)
+
+lemmas bin_rec_simps = refl [THEN bin_rec_Bit] bin_rec_Pls bin_rec_Min
+  bin_rec_Bit0 bin_rec_Bit1
+
+
+subsection {* Truncating binary integers *}
+
+definition
+  bin_sign_def [code del] : "bin_sign = bin_rec Int.Pls Int.Min (%w b s. s)"
+
+lemma bin_sign_simps [simp]:
+  "bin_sign Int.Pls = Int.Pls"
+  "bin_sign Int.Min = Int.Min"
+  "bin_sign (Int.Bit0 w) = bin_sign w"
+  "bin_sign (Int.Bit1 w) = bin_sign w"
+  "bin_sign (w BIT b) = bin_sign w"
+  unfolding bin_sign_def by (auto simp: bin_rec_simps)
+
+declare bin_sign_simps(1-4) [code]
+
+lemma bin_sign_rest [simp]: 
+  "bin_sign (bin_rest w) = (bin_sign w)"
+  by (cases w rule: bin_exhaust) auto
+
+consts
+  bintrunc :: "nat => int => int"
+primrec 
+  Z : "bintrunc 0 bin = Int.Pls"
+  Suc : "bintrunc (Suc n) bin = bintrunc n (bin_rest bin) BIT (bin_last bin)"
+
+consts
+  sbintrunc :: "nat => int => int" 
+primrec 
+  Z : "sbintrunc 0 bin = 
+    (case bin_last bin of (1::bit) => Int.Min | (0::bit) => Int.Pls)"
+  Suc : "sbintrunc (Suc n) bin = sbintrunc n (bin_rest bin) BIT (bin_last bin)"
+
+lemma sign_bintr:
+  "!!w. bin_sign (bintrunc n w) = Int.Pls"
+  by (induct n) auto
+
+lemma bintrunc_mod2p:
+  "!!w. bintrunc n w = (w mod 2 ^ n :: int)"
+  apply (induct n, clarsimp)
+  apply (simp add: bin_last_mod bin_rest_div Bit_def zmod_zmult2_eq
+              cong: number_of_False_cong)
+  done
+
+lemma sbintrunc_mod2p:
+  "!!w. sbintrunc n w = ((w + 2 ^ n) mod 2 ^ (Suc n) - 2 ^ n :: int)"
+  apply (induct n)
+   apply clarsimp
+   apply (subst mod_add_left_eq)
+   apply (simp add: bin_last_mod)
+   apply (simp add: number_of_eq)
+  apply clarsimp
+  apply (simp add: bin_last_mod bin_rest_div Bit_def 
+              cong: number_of_False_cong)
+  apply (clarsimp simp: mod_mult_mult1 [symmetric] 
+         zmod_zdiv_equality [THEN diff_eq_eq [THEN iffD2 [THEN sym]]])
+  apply (rule trans [symmetric, OF _ emep1])
+     apply auto
+  apply (auto simp: even_def)
+  done
+
+subsection "Simplifications for (s)bintrunc"
+
+lemma bit_bool:
+  "(b = (b' = (1::bit))) = (b' = (if b then (1::bit) else (0::bit)))"
+  by (cases b') auto
+
+lemmas bit_bool1 [simp] = refl [THEN bit_bool [THEN iffD1], symmetric]
+
+lemma bin_sign_lem:
+  "!!bin. (bin_sign (sbintrunc n bin) = Int.Min) = bin_nth bin n"
+  apply (induct n)
+   apply (case_tac bin rule: bin_exhaust, case_tac b, auto)+
+  done
+
+lemma nth_bintr:
+  "!!w m. bin_nth (bintrunc m w) n = (n < m & bin_nth w n)"
+  apply (induct n)
+   apply (case_tac m, auto)[1]
+  apply (case_tac m, auto)[1]
+  done
+
+lemma nth_sbintr:
+  "!!w m. bin_nth (sbintrunc m w) n = 
+          (if n < m then bin_nth w n else bin_nth w m)"
+  apply (induct n)
+   apply (case_tac m, simp_all split: bit.splits)[1]
+  apply (case_tac m, simp_all split: bit.splits)[1]
+  done
+
+lemma bin_nth_Bit:
+  "bin_nth (w BIT b) n = (n = 0 & b = (1::bit) | (EX m. n = Suc m & bin_nth w m))"
+  by (cases n) auto
+
+lemma bin_nth_Bit0:
+  "bin_nth (Int.Bit0 w) n = (EX m. n = Suc m & bin_nth w m)"
+  using bin_nth_Bit [where b="(0::bit)"] by simp
+
+lemma bin_nth_Bit1:
+  "bin_nth (Int.Bit1 w) n = (n = 0 | (EX m. n = Suc m & bin_nth w m))"
+  using bin_nth_Bit [where b="(1::bit)"] by simp
+
+lemma bintrunc_bintrunc_l:
+  "n <= m ==> (bintrunc m (bintrunc n w) = bintrunc n w)"
+  by (rule bin_eqI) (auto simp add : nth_bintr)
+
+lemma sbintrunc_sbintrunc_l:
+  "n <= m ==> (sbintrunc m (sbintrunc n w) = sbintrunc n w)"
+  by (rule bin_eqI) (auto simp: nth_sbintr)
+
+lemma bintrunc_bintrunc_ge:
+  "n <= m ==> (bintrunc n (bintrunc m w) = bintrunc n w)"
+  by (rule bin_eqI) (auto simp: nth_bintr)
+
+lemma bintrunc_bintrunc_min [simp]:
+  "bintrunc m (bintrunc n w) = bintrunc (min m n) w"
+  apply (rule bin_eqI)
+  apply (auto simp: nth_bintr)
+  done
+
+lemma sbintrunc_sbintrunc_min [simp]:
+  "sbintrunc m (sbintrunc n w) = sbintrunc (min m n) w"
+  apply (rule bin_eqI)
+  apply (auto simp: nth_sbintr min_max.inf_absorb1 min_max.inf_absorb2)
+  done
+
+lemmas bintrunc_Pls = 
+  bintrunc.Suc [where bin="Int.Pls", simplified bin_last_simps bin_rest_simps, standard]
+
+lemmas bintrunc_Min [simp] = 
+  bintrunc.Suc [where bin="Int.Min", simplified bin_last_simps bin_rest_simps, standard]
+
+lemmas bintrunc_BIT  [simp] = 
+  bintrunc.Suc [where bin="w BIT b", simplified bin_last_simps bin_rest_simps, standard]
+
+lemma bintrunc_Bit0 [simp]:
+  "bintrunc (Suc n) (Int.Bit0 w) = Int.Bit0 (bintrunc n w)"
+  using bintrunc_BIT [where b="(0::bit)"] by simp
+
+lemma bintrunc_Bit1 [simp]:
+  "bintrunc (Suc n) (Int.Bit1 w) = Int.Bit1 (bintrunc n w)"
+  using bintrunc_BIT [where b="(1::bit)"] by simp
+
+lemmas bintrunc_Sucs = bintrunc_Pls bintrunc_Min bintrunc_BIT
+  bintrunc_Bit0 bintrunc_Bit1
+
+lemmas sbintrunc_Suc_Pls = 
+  sbintrunc.Suc [where bin="Int.Pls", simplified bin_last_simps bin_rest_simps, standard]
+
+lemmas sbintrunc_Suc_Min = 
+  sbintrunc.Suc [where bin="Int.Min", simplified bin_last_simps bin_rest_simps, standard]
+
+lemmas sbintrunc_Suc_BIT [simp] = 
+  sbintrunc.Suc [where bin="w BIT b", simplified bin_last_simps bin_rest_simps, standard]
+
+lemma sbintrunc_Suc_Bit0 [simp]:
+  "sbintrunc (Suc n) (Int.Bit0 w) = Int.Bit0 (sbintrunc n w)"
+  using sbintrunc_Suc_BIT [where b="(0::bit)"] by simp
+
+lemma sbintrunc_Suc_Bit1 [simp]:
+  "sbintrunc (Suc n) (Int.Bit1 w) = Int.Bit1 (sbintrunc n w)"
+  using sbintrunc_Suc_BIT [where b="(1::bit)"] by simp
+
+lemmas sbintrunc_Sucs = sbintrunc_Suc_Pls sbintrunc_Suc_Min sbintrunc_Suc_BIT
+  sbintrunc_Suc_Bit0 sbintrunc_Suc_Bit1
+
+lemmas sbintrunc_Pls = 
+  sbintrunc.Z [where bin="Int.Pls", 
+               simplified bin_last_simps bin_rest_simps bit.simps, standard]
+
+lemmas sbintrunc_Min = 
+  sbintrunc.Z [where bin="Int.Min", 
+               simplified bin_last_simps bin_rest_simps bit.simps, standard]
+
+lemmas sbintrunc_0_BIT_B0 [simp] = 
+  sbintrunc.Z [where bin="w BIT (0::bit)", 
+               simplified bin_last_simps bin_rest_simps bit.simps, standard]
+
+lemmas sbintrunc_0_BIT_B1 [simp] = 
+  sbintrunc.Z [where bin="w BIT (1::bit)", 
+               simplified bin_last_simps bin_rest_simps bit.simps, standard]
+
+lemma sbintrunc_0_Bit0 [simp]: "sbintrunc 0 (Int.Bit0 w) = Int.Pls"
+  using sbintrunc_0_BIT_B0 by simp
+
+lemma sbintrunc_0_Bit1 [simp]: "sbintrunc 0 (Int.Bit1 w) = Int.Min"
+  using sbintrunc_0_BIT_B1 by simp
+
+lemmas sbintrunc_0_simps =
+  sbintrunc_Pls sbintrunc_Min sbintrunc_0_BIT_B0 sbintrunc_0_BIT_B1
+  sbintrunc_0_Bit0 sbintrunc_0_Bit1
+
+lemmas bintrunc_simps = bintrunc.Z bintrunc_Sucs
+lemmas sbintrunc_simps = sbintrunc_0_simps sbintrunc_Sucs
+
+lemma bintrunc_minus:
+  "0 < n ==> bintrunc (Suc (n - 1)) w = bintrunc n w"
+  by auto
+
+lemma sbintrunc_minus:
+  "0 < n ==> sbintrunc (Suc (n - 1)) w = sbintrunc n w"
+  by auto
+
+lemmas bintrunc_minus_simps = 
+  bintrunc_Sucs [THEN [2] bintrunc_minus [symmetric, THEN trans], standard]
+lemmas sbintrunc_minus_simps = 
+  sbintrunc_Sucs [THEN [2] sbintrunc_minus [symmetric, THEN trans], standard]
+
+lemma bintrunc_n_Pls [simp]:
+  "bintrunc n Int.Pls = Int.Pls"
+  by (induct n) auto
+
+lemma sbintrunc_n_PM [simp]:
+  "sbintrunc n Int.Pls = Int.Pls"
+  "sbintrunc n Int.Min = Int.Min"
+  by (induct n) auto
+
+lemmas thobini1 = arg_cong [where f = "%w. w BIT b", standard]
+
+lemmas bintrunc_BIT_I = trans [OF bintrunc_BIT thobini1]
+lemmas bintrunc_Min_I = trans [OF bintrunc_Min thobini1]
+
+lemmas bmsts = bintrunc_minus_simps(1-3) [THEN thobini1 [THEN [2] trans], standard]
+lemmas bintrunc_Pls_minus_I = bmsts(1)
+lemmas bintrunc_Min_minus_I = bmsts(2)
+lemmas bintrunc_BIT_minus_I = bmsts(3)
+
+lemma bintrunc_0_Min: "bintrunc 0 Int.Min = Int.Pls"
+  by auto
+lemma bintrunc_0_BIT: "bintrunc 0 (w BIT b) = Int.Pls"
+  by auto
+
+lemma bintrunc_Suc_lem:
+  "bintrunc (Suc n) x = y ==> m = Suc n ==> bintrunc m x = y"
+  by auto
+
+lemmas bintrunc_Suc_Ialts = 
+  bintrunc_Min_I [THEN bintrunc_Suc_lem, standard]
+  bintrunc_BIT_I [THEN bintrunc_Suc_lem, standard]
+
+lemmas sbintrunc_BIT_I = trans [OF sbintrunc_Suc_BIT thobini1]
+
+lemmas sbintrunc_Suc_Is = 
+  sbintrunc_Sucs(1-3) [THEN thobini1 [THEN [2] trans], standard]
+
+lemmas sbintrunc_Suc_minus_Is = 
+  sbintrunc_minus_simps(1-3) [THEN thobini1 [THEN [2] trans], standard]
+
+lemma sbintrunc_Suc_lem:
+  "sbintrunc (Suc n) x = y ==> m = Suc n ==> sbintrunc m x = y"
+  by auto
+
+lemmas sbintrunc_Suc_Ialts = 
+  sbintrunc_Suc_Is [THEN sbintrunc_Suc_lem, standard]
+
+lemma sbintrunc_bintrunc_lt:
+  "m > n ==> sbintrunc n (bintrunc m w) = sbintrunc n w"
+  by (rule bin_eqI) (auto simp: nth_sbintr nth_bintr)
+
+lemma bintrunc_sbintrunc_le:
+  "m <= Suc n ==> bintrunc m (sbintrunc n w) = bintrunc m w"
+  apply (rule bin_eqI)
+  apply (auto simp: nth_sbintr nth_bintr)
+   apply (subgoal_tac "x=n", safe, arith+)[1]
+  apply (subgoal_tac "x=n", safe, arith+)[1]
+  done
+
+lemmas bintrunc_sbintrunc [simp] = order_refl [THEN bintrunc_sbintrunc_le]
+lemmas sbintrunc_bintrunc [simp] = lessI [THEN sbintrunc_bintrunc_lt]
+lemmas bintrunc_bintrunc [simp] = order_refl [THEN bintrunc_bintrunc_l]
+lemmas sbintrunc_sbintrunc [simp] = order_refl [THEN sbintrunc_sbintrunc_l] 
+
+lemma bintrunc_sbintrunc' [simp]:
+  "0 < n \<Longrightarrow> bintrunc n (sbintrunc (n - 1) w) = bintrunc n w"
+  by (cases n) (auto simp del: bintrunc.Suc)
+
+lemma sbintrunc_bintrunc' [simp]:
+  "0 < n \<Longrightarrow> sbintrunc (n - 1) (bintrunc n w) = sbintrunc (n - 1) w"
+  by (cases n) (auto simp del: bintrunc.Suc)
+
+lemma bin_sbin_eq_iff: 
+  "bintrunc (Suc n) x = bintrunc (Suc n) y <-> 
+   sbintrunc n x = sbintrunc n y"
+  apply (rule iffI)
+   apply (rule box_equals [OF _ sbintrunc_bintrunc sbintrunc_bintrunc])
+   apply simp
+  apply (rule box_equals [OF _ bintrunc_sbintrunc bintrunc_sbintrunc])
+  apply simp
+  done
+
+lemma bin_sbin_eq_iff':
+  "0 < n \<Longrightarrow> bintrunc n x = bintrunc n y <-> 
+            sbintrunc (n - 1) x = sbintrunc (n - 1) y"
+  by (cases n) (simp_all add: bin_sbin_eq_iff del: bintrunc.Suc)
+
+lemmas bintrunc_sbintruncS0 [simp] = bintrunc_sbintrunc' [unfolded One_nat_def]
+lemmas sbintrunc_bintruncS0 [simp] = sbintrunc_bintrunc' [unfolded One_nat_def]
+
+lemmas bintrunc_bintrunc_l' = le_add1 [THEN bintrunc_bintrunc_l]
+lemmas sbintrunc_sbintrunc_l' = le_add1 [THEN sbintrunc_sbintrunc_l]
+
+(* although bintrunc_minus_simps, if added to default simpset,
+  tends to get applied where it's not wanted in developing the theories,
+  we get a version for when the word length is given literally *)
+
+lemmas nat_non0_gr = 
+  trans [OF iszero_def [THEN Not_eq_iff [THEN iffD2]] refl, standard]
+
+lemmas bintrunc_pred_simps [simp] = 
+  bintrunc_minus_simps [of "number_of bin", simplified nobm1, standard]
+
+lemmas sbintrunc_pred_simps [simp] = 
+  sbintrunc_minus_simps [of "number_of bin", simplified nobm1, standard]
+
+lemma no_bintr_alt:
+  "number_of (bintrunc n w) = w mod 2 ^ n"
+  by (simp add: number_of_eq bintrunc_mod2p)
+
+lemma no_bintr_alt1: "bintrunc n = (%w. w mod 2 ^ n :: int)"
+  by (rule ext) (rule bintrunc_mod2p)
+
+lemma range_bintrunc: "range (bintrunc n) = {i. 0 <= i & i < 2 ^ n}"
+  apply (unfold no_bintr_alt1)
+  apply (auto simp add: image_iff)
+  apply (rule exI)
+  apply (auto intro: int_mod_lem [THEN iffD1, symmetric])
+  done
+
+lemma no_bintr: 
+  "number_of (bintrunc n w) = (number_of w mod 2 ^ n :: int)"
+  by (simp add : bintrunc_mod2p number_of_eq)
+
+lemma no_sbintr_alt2: 
+  "sbintrunc n = (%w. (w + 2 ^ n) mod 2 ^ Suc n - 2 ^ n :: int)"
+  by (rule ext) (simp add : sbintrunc_mod2p)
+
+lemma no_sbintr: 
+  "number_of (sbintrunc n w) = 
+   ((number_of w + 2 ^ n) mod 2 ^ Suc n - 2 ^ n :: int)"
+  by (simp add : no_sbintr_alt2 number_of_eq)
+
+lemma range_sbintrunc: 
+  "range (sbintrunc n) = {i. - (2 ^ n) <= i & i < 2 ^ n}"
+  apply (unfold no_sbintr_alt2)
+  apply (auto simp add: image_iff eq_diff_eq)
+  apply (rule exI)
+  apply (auto intro: int_mod_lem [THEN iffD1, symmetric])
+  done
+
+lemma sb_inc_lem:
+  "(a::int) + 2^k < 0 \<Longrightarrow> a + 2^k + 2^(Suc k) <= (a + 2^k) mod 2^(Suc k)"
+  apply (erule int_mod_ge' [where n = "2 ^ (Suc k)" and b = "a + 2 ^ k", simplified zless2p])
+  apply (rule TrueI)
+  done
+
+lemma sb_inc_lem':
+  "(a::int) < - (2^k) \<Longrightarrow> a + 2^k + 2^(Suc k) <= (a + 2^k) mod 2^(Suc k)"
+  by (rule sb_inc_lem) simp
+
+lemma sbintrunc_inc:
+  "x < - (2^n) ==> x + 2^(Suc n) <= sbintrunc n x"
+  unfolding no_sbintr_alt2 by (drule sb_inc_lem') simp
+
+lemma sb_dec_lem:
+  "(0::int) <= - (2^k) + a ==> (a + 2^k) mod (2 * 2 ^ k) <= - (2 ^ k) + a"
+  by (rule int_mod_le' [where n = "2 ^ (Suc k)" and b = "a + 2 ^ k",
+    simplified zless2p, OF _ TrueI, simplified])
+
+lemma sb_dec_lem':
+  "(2::int) ^ k <= a ==> (a + 2 ^ k) mod (2 * 2 ^ k) <= - (2 ^ k) + a"
+  by (rule iffD1 [OF diff_le_eq', THEN sb_dec_lem, simplified])
+
+lemma sbintrunc_dec:
+  "x >= (2 ^ n) ==> x - 2 ^ (Suc n) >= sbintrunc n x"
+  unfolding no_sbintr_alt2 by (drule sb_dec_lem') simp
+
+lemmas zmod_uminus' = zmod_uminus [where b="c", standard]
+lemmas zpower_zmod' = zpower_zmod [where m="c" and y="k", standard]
+
+lemmas brdmod1s' [symmetric] = 
+  mod_add_left_eq mod_add_right_eq 
+  zmod_zsub_left_eq zmod_zsub_right_eq 
+  zmod_zmult1_eq zmod_zmult1_eq_rev 
+
+lemmas brdmods' [symmetric] = 
+  zpower_zmod' [symmetric]
+  trans [OF mod_add_left_eq mod_add_right_eq] 
+  trans [OF zmod_zsub_left_eq zmod_zsub_right_eq] 
+  trans [OF zmod_zmult1_eq zmod_zmult1_eq_rev] 
+  zmod_uminus' [symmetric]
+  mod_add_left_eq [where b = "1::int"]
+  zmod_zsub_left_eq [where b = "1"]
+
+lemmas bintr_arith1s =
+  brdmod1s' [where c="2^n::int", folded pred_def succ_def bintrunc_mod2p, standard]
+lemmas bintr_ariths =
+  brdmods' [where c="2^n::int", folded pred_def succ_def bintrunc_mod2p, standard]
+
+lemmas m2pths = pos_mod_sign pos_mod_bound [OF zless2p, standard] 
+
+lemma bintr_ge0: "(0 :: int) <= number_of (bintrunc n w)"
+  by (simp add : no_bintr m2pths)
+
+lemma bintr_lt2p: "number_of (bintrunc n w) < (2 ^ n :: int)"
+  by (simp add : no_bintr m2pths)
+
+lemma bintr_Min: 
+  "number_of (bintrunc n Int.Min) = (2 ^ n :: int) - 1"
+  by (simp add : no_bintr m1mod2k)
+
+lemma sbintr_ge: "(- (2 ^ n) :: int) <= number_of (sbintrunc n w)"
+  by (simp add : no_sbintr m2pths)
+
+lemma sbintr_lt: "number_of (sbintrunc n w) < (2 ^ n :: int)"
+  by (simp add : no_sbintr m2pths)
+
+lemma bintrunc_Suc:
+  "bintrunc (Suc n) bin = bintrunc n (bin_rest bin) BIT bin_last bin"
+  by (case_tac bin rule: bin_exhaust) auto
+
+lemma sign_Pls_ge_0: 
+  "(bin_sign bin = Int.Pls) = (number_of bin >= (0 :: int))"
+  by (induct bin rule: numeral_induct) auto
+
+lemma sign_Min_lt_0: 
+  "(bin_sign bin = Int.Min) = (number_of bin < (0 :: int))"
+  by (induct bin rule: numeral_induct) auto
+
+lemmas sign_Min_neg = trans [OF sign_Min_lt_0 neg_def [symmetric]] 
+
+lemma bin_rest_trunc:
+  "!!bin. (bin_rest (bintrunc n bin)) = bintrunc (n - 1) (bin_rest bin)"
+  by (induct n) auto
+
+lemma bin_rest_power_trunc [rule_format] :
+  "(bin_rest ^^ k) (bintrunc n bin) = 
+    bintrunc (n - k) ((bin_rest ^^ k) bin)"
+  by (induct k) (auto simp: bin_rest_trunc)
+
+lemma bin_rest_trunc_i:
+  "bintrunc n (bin_rest bin) = bin_rest (bintrunc (Suc n) bin)"
+  by auto
+
+lemma bin_rest_strunc:
+  "!!bin. bin_rest (sbintrunc (Suc n) bin) = sbintrunc n (bin_rest bin)"
+  by (induct n) auto
+
+lemma bintrunc_rest [simp]: 
+  "!!bin. bintrunc n (bin_rest (bintrunc n bin)) = bin_rest (bintrunc n bin)"
+  apply (induct n, simp)
+  apply (case_tac bin rule: bin_exhaust)
+  apply (auto simp: bintrunc_bintrunc_l)
+  done
+
+lemma sbintrunc_rest [simp]:
+  "!!bin. sbintrunc n (bin_rest (sbintrunc n bin)) = bin_rest (sbintrunc n bin)"
+  apply (induct n, simp)
+  apply (case_tac bin rule: bin_exhaust)
+  apply (auto simp: bintrunc_bintrunc_l split: bit.splits)
+  done
+
+lemma bintrunc_rest':
+  "bintrunc n o bin_rest o bintrunc n = bin_rest o bintrunc n"
+  by (rule ext) auto
+
+lemma sbintrunc_rest' :
+  "sbintrunc n o bin_rest o sbintrunc n = bin_rest o sbintrunc n"
+  by (rule ext) auto
+
+lemma rco_lem:
+  "f o g o f = g o f ==> f o (g o f) ^^ n = g ^^ n o f"
+  apply (rule ext)
+  apply (induct_tac n)
+   apply (simp_all (no_asm))
+  apply (drule fun_cong)
+  apply (unfold o_def)
+  apply (erule trans)
+  apply simp
+  done
+
+lemma rco_alt: "(f o g) ^^ n o f = f o (g o f) ^^ n"
+  apply (rule ext)
+  apply (induct n)
+   apply (simp_all add: o_def)
+  done
+
+lemmas rco_bintr = bintrunc_rest' 
+  [THEN rco_lem [THEN fun_cong], unfolded o_def]
+lemmas rco_sbintr = sbintrunc_rest' 
+  [THEN rco_lem [THEN fun_cong], unfolded o_def]
+
+subsection {* Splitting and concatenation *}
+
+primrec bin_split :: "nat \<Rightarrow> int \<Rightarrow> int \<times> int" where
+  Z: "bin_split 0 w = (w, Int.Pls)"
+  | Suc: "bin_split (Suc n) w = (let (w1, w2) = bin_split n (bin_rest w)
+        in (w1, w2 BIT bin_last w))"
+
+primrec bin_cat :: "int \<Rightarrow> nat \<Rightarrow> int \<Rightarrow> int" where
+  Z: "bin_cat w 0 v = w"
+  | Suc: "bin_cat w (Suc n) v = bin_cat w n (bin_rest v) BIT bin_last v"
+
+subsection {* Miscellaneous lemmas *}
+
+lemma funpow_minus_simp:
+  "0 < n \<Longrightarrow> f ^^ n = f \<circ> f ^^ (n - 1)"
+  by (cases n) simp_all
+
+lemmas funpow_pred_simp [simp] =
+  funpow_minus_simp [of "number_of bin", simplified nobm1, standard]
+
+lemmas replicate_minus_simp = 
+  trans [OF gen_minus [where f = "%n. replicate n x"] replicate.replicate_Suc,
+         standard]
+
+lemmas replicate_pred_simp [simp] =
+  replicate_minus_simp [of "number_of bin", simplified nobm1, standard]
+
+lemmas power_Suc_no [simp] = power_Suc [of "number_of a", standard]
+
+lemmas power_minus_simp = 
+  trans [OF gen_minus [where f = "power f"] power_Suc, standard]
+
+lemmas power_pred_simp = 
+  power_minus_simp [of "number_of bin", simplified nobm1, standard]
+lemmas power_pred_simp_no [simp] = power_pred_simp [where f= "number_of f", standard]
+
+lemma list_exhaust_size_gt0:
+  assumes y: "\<And>a list. y = a # list \<Longrightarrow> P"
+  shows "0 < length y \<Longrightarrow> P"
+  apply (cases y, simp)
+  apply (rule y)
+  apply fastsimp
+  done
+
+lemma list_exhaust_size_eq0:
+  assumes y: "y = [] \<Longrightarrow> P"
+  shows "length y = 0 \<Longrightarrow> P"
+  apply (cases y)
+   apply (rule y, simp)
+  apply simp
+  done
+
+lemma size_Cons_lem_eq:
+  "y = xa # list ==> size y = Suc k ==> size list = k"
+  by auto
+
+lemma size_Cons_lem_eq_bin:
+  "y = xa # list ==> size y = number_of (Int.succ k) ==> 
+    size list = number_of k"
+  by (auto simp: pred_def succ_def split add : split_if_asm)
+
+lemmas ls_splits = 
+  prod.split split_split prod.split_asm split_split_asm split_if_asm
+
+lemma not_B1_is_B0: "y \<noteq> (1::bit) \<Longrightarrow> y = (0::bit)"
+  by (cases y) auto
+
+lemma B1_ass_B0: 
+  assumes y: "y = (0::bit) \<Longrightarrow> y = (1::bit)"
+  shows "y = (1::bit)"
+  apply (rule classical)
+  apply (drule not_B1_is_B0)
+  apply (erule y)
+  done
+
+-- "simplifications for specific word lengths"
+lemmas n2s_ths [THEN eq_reflection] = add_2_eq_Suc add_2_eq_Suc'
+
+lemmas s2n_ths = n2s_ths [symmetric]
+
+end
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Word/Bool_List_Representation.thy	Wed Jun 30 16:45:47 2010 +0200
@@ -0,0 +1,1174 @@
+(* 
+  Author: Jeremy Dawson, NICTA
+
+  contains theorems to do with integers, expressed using Pls, Min, BIT,
+  theorems linking them to lists of booleans, and repeated splitting 
+  and concatenation.
+*) 
+
+header "Bool lists and integers"
+
+theory Bool_List_Representation
+imports Bit_Int
+begin
+
+subsection {* Operations on lists of booleans *}
+
+primrec bl_to_bin_aux :: "bool list \<Rightarrow> int \<Rightarrow> int" where
+  Nil: "bl_to_bin_aux [] w = w"
+  | Cons: "bl_to_bin_aux (b # bs) w = 
+      bl_to_bin_aux bs (w BIT (if b then 1 else 0))"
+
+definition bl_to_bin :: "bool list \<Rightarrow> int" where
+  bl_to_bin_def : "bl_to_bin bs = bl_to_bin_aux bs Int.Pls"
+
+primrec bin_to_bl_aux :: "nat \<Rightarrow> int \<Rightarrow> bool list \<Rightarrow> bool list" where
+  Z: "bin_to_bl_aux 0 w bl = bl"
+  | Suc: "bin_to_bl_aux (Suc n) w bl =
+      bin_to_bl_aux n (bin_rest w) ((bin_last w = 1) # bl)"
+
+definition bin_to_bl :: "nat \<Rightarrow> int \<Rightarrow> bool list" where
+  bin_to_bl_def : "bin_to_bl n w = bin_to_bl_aux n w []"
+
+primrec bl_of_nth :: "nat \<Rightarrow> (nat \<Rightarrow> bool) \<Rightarrow> bool list" where
+  Suc: "bl_of_nth (Suc n) f = f n # bl_of_nth n f"
+  | Z: "bl_of_nth 0 f = []"
+
+primrec takefill :: "'a \<Rightarrow> nat \<Rightarrow> 'a list \<Rightarrow> 'a list" where
+  Z: "takefill fill 0 xs = []"
+  | Suc: "takefill fill (Suc n) xs = (
+      case xs of [] => fill # takefill fill n xs
+        | y # ys => y # takefill fill n ys)"
+
+definition map2 :: "('a \<Rightarrow> 'b \<Rightarrow> 'c) \<Rightarrow> 'a list \<Rightarrow> 'b list \<Rightarrow> 'c list" where
+  "map2 f as bs = map (split f) (zip as bs)"
+
+lemma map2_Nil [simp]: "map2 f [] ys = []"
+  unfolding map2_def by auto
+
+lemma map2_Nil2 [simp]: "map2 f xs [] = []"
+  unfolding map2_def by auto
+
+lemma map2_Cons [simp]:
+  "map2 f (x # xs) (y # ys) = f x y # map2 f xs ys"
+  unfolding map2_def by auto
+
+
+subsection "Arithmetic in terms of bool lists"
+
+(* arithmetic operations in terms of the reversed bool list,
+  assuming input list(s) the same length, and don't extend them *)
+
+primrec rbl_succ :: "bool list => bool list" where
+  Nil: "rbl_succ Nil = Nil"
+  | Cons: "rbl_succ (x # xs) = (if x then False # rbl_succ xs else True # xs)"
+
+primrec rbl_pred :: "bool list => bool list" where
+  Nil: "rbl_pred Nil = Nil"
+  | Cons: "rbl_pred (x # xs) = (if x then False # xs else True # rbl_pred xs)"
+
+primrec rbl_add :: "bool list => bool list => bool list" where
+    (* result is length of first arg, second arg may be longer *)
+  Nil: "rbl_add Nil x = Nil"
+  | Cons: "rbl_add (y # ys) x = (let ws = rbl_add ys (tl x) in 
+    (y ~= hd x) # (if hd x & y then rbl_succ ws else ws))"
+
+primrec rbl_mult :: "bool list => bool list => bool list" where
+    (* result is length of first arg, second arg may be longer *)
+  Nil: "rbl_mult Nil x = Nil"
+  | Cons: "rbl_mult (y # ys) x = (let ws = False # rbl_mult ys x in 
+    if y then rbl_add ws x else ws)"
+
+lemma butlast_power:
+  "(butlast ^^ n) bl = take (length bl - n) bl"
+  by (induct n) (auto simp: butlast_take)
+
+lemma bin_to_bl_aux_Pls_minus_simp [simp]:
+  "0 < n ==> bin_to_bl_aux n Int.Pls bl = 
+    bin_to_bl_aux (n - 1) Int.Pls (False # bl)"
+  by (cases n) auto
+
+lemma bin_to_bl_aux_Min_minus_simp [simp]:
+  "0 < n ==> bin_to_bl_aux n Int.Min bl = 
+    bin_to_bl_aux (n - 1) Int.Min (True # bl)"
+  by (cases n) auto
+
+lemma bin_to_bl_aux_Bit_minus_simp [simp]:
+  "0 < n ==> bin_to_bl_aux n (w BIT b) bl = 
+    bin_to_bl_aux (n - 1) w ((b = 1) # bl)"
+  by (cases n) auto
+
+lemma bin_to_bl_aux_Bit0_minus_simp [simp]:
+  "0 < n ==> bin_to_bl_aux n (Int.Bit0 w) bl = 
+    bin_to_bl_aux (n - 1) w (False # bl)"
+  by (cases n) auto
+
+lemma bin_to_bl_aux_Bit1_minus_simp [simp]:
+  "0 < n ==> bin_to_bl_aux n (Int.Bit1 w) bl = 
+    bin_to_bl_aux (n - 1) w (True # bl)"
+  by (cases n) auto
+
+(** link between bin and bool list **)
+
+lemma bl_to_bin_aux_append: 
+  "bl_to_bin_aux (bs @ cs) w = bl_to_bin_aux cs (bl_to_bin_aux bs w)"
+  by (induct bs arbitrary: w) auto
+
+lemma bin_to_bl_aux_append: 
+  "bin_to_bl_aux n w bs @ cs = bin_to_bl_aux n w (bs @ cs)"
+  by (induct n arbitrary: w bs) auto
+
+lemma bl_to_bin_append: 
+  "bl_to_bin (bs @ cs) = bl_to_bin_aux cs (bl_to_bin bs)"
+  unfolding bl_to_bin_def by (rule bl_to_bin_aux_append)
+
+lemma bin_to_bl_aux_alt: 
+  "bin_to_bl_aux n w bs = bin_to_bl n w @ bs" 
+  unfolding bin_to_bl_def by (simp add : bin_to_bl_aux_append)
+
+lemma bin_to_bl_0: "bin_to_bl 0 bs = []"
+  unfolding bin_to_bl_def by auto
+
+lemma size_bin_to_bl_aux: 
+  "size (bin_to_bl_aux n w bs) = n + length bs"
+  by (induct n arbitrary: w bs) auto
+
+lemma size_bin_to_bl: "size (bin_to_bl n w) = n" 
+  unfolding bin_to_bl_def by (simp add : size_bin_to_bl_aux)
+
+lemma bin_bl_bin': 
+  "bl_to_bin (bin_to_bl_aux n w bs) = 
+    bl_to_bin_aux bs (bintrunc n w)"
+  by (induct n arbitrary: w bs) (auto simp add : bl_to_bin_def)
+
+lemma bin_bl_bin: "bl_to_bin (bin_to_bl n w) = bintrunc n w"
+  unfolding bin_to_bl_def bin_bl_bin' by auto
+
+lemma bl_bin_bl':
+  "bin_to_bl (n + length bs) (bl_to_bin_aux bs w) = 
+    bin_to_bl_aux n w bs"
+  apply (induct bs arbitrary: w n)
+   apply auto
+    apply (simp_all only : add_Suc [symmetric])
+    apply (auto simp add : bin_to_bl_def)
+  done
+
+lemma bl_bin_bl: "bin_to_bl (length bs) (bl_to_bin bs) = bs"
+  unfolding bl_to_bin_def
+  apply (rule box_equals)
+    apply (rule bl_bin_bl')
+   prefer 2
+   apply (rule bin_to_bl_aux.Z)
+  apply simp
+  done
+  
+declare 
+  bin_to_bl_0 [simp] 
+  size_bin_to_bl [simp] 
+  bin_bl_bin [simp] 
+  bl_bin_bl [simp]
+
+lemma bl_to_bin_inj:
+  "bl_to_bin bs = bl_to_bin cs ==> length bs = length cs ==> bs = cs"
+  apply (rule_tac box_equals)
+    defer
+    apply (rule bl_bin_bl)
+   apply (rule bl_bin_bl)
+  apply simp
+  done
+
+lemma bl_to_bin_False: "bl_to_bin (False # bl) = bl_to_bin bl"
+  unfolding bl_to_bin_def by auto
+  
+lemma bl_to_bin_Nil: "bl_to_bin [] = Int.Pls"
+  unfolding bl_to_bin_def by auto
+
+lemma bin_to_bl_Pls_aux: 
+  "bin_to_bl_aux n Int.Pls bl = replicate n False @ bl"
+  by (induct n arbitrary: bl) (auto simp: replicate_app_Cons_same)
+
+lemma bin_to_bl_Pls: "bin_to_bl n Int.Pls = replicate n False"
+  unfolding bin_to_bl_def by (simp add : bin_to_bl_Pls_aux)
+
+lemma bin_to_bl_Min_aux [rule_format] : 
+  "ALL bl. bin_to_bl_aux n Int.Min bl = replicate n True @ bl"
+  by (induct n) (auto simp: replicate_app_Cons_same)
+
+lemma bin_to_bl_Min: "bin_to_bl n Int.Min = replicate n True"
+  unfolding bin_to_bl_def by (simp add : bin_to_bl_Min_aux)
+
+lemma bl_to_bin_rep_F: 
+  "bl_to_bin (replicate n False @ bl) = bl_to_bin bl"
+  apply (simp add: bin_to_bl_Pls_aux [symmetric] bin_bl_bin')
+  apply (simp add: bl_to_bin_def)
+  done
+
+lemma bin_to_bl_trunc:
+  "n <= m ==> bin_to_bl n (bintrunc m w) = bin_to_bl n w"
+  by (auto intro: bl_to_bin_inj)
+
+declare 
+  bin_to_bl_trunc [simp] 
+  bl_to_bin_False [simp] 
+  bl_to_bin_Nil [simp]
+
+lemma bin_to_bl_aux_bintr [rule_format] :
+  "ALL m bin bl. bin_to_bl_aux n (bintrunc m bin) bl = 
+    replicate (n - m) False @ bin_to_bl_aux (min n m) bin bl"
+  apply (induct n)
+   apply clarsimp
+  apply clarsimp
+  apply (case_tac "m")
+   apply (clarsimp simp: bin_to_bl_Pls_aux) 
+   apply (erule thin_rl)
+   apply (induct_tac n)   
+    apply auto
+  done
+
+lemmas bin_to_bl_bintr = 
+  bin_to_bl_aux_bintr [where bl = "[]", folded bin_to_bl_def]
+
+lemma bl_to_bin_rep_False: "bl_to_bin (replicate n False) = Int.Pls"
+  by (induct n) auto
+
+lemma len_bin_to_bl_aux: 
+  "length (bin_to_bl_aux n w bs) = n + length bs"
+  by (induct n arbitrary: w bs) auto
+
+lemma len_bin_to_bl [simp]: "length (bin_to_bl n w) = n"
+  unfolding bin_to_bl_def len_bin_to_bl_aux by auto
+  
+lemma sign_bl_bin': 
+  "bin_sign (bl_to_bin_aux bs w) = bin_sign w"
+  by (induct bs arbitrary: w) auto
+  
+lemma sign_bl_bin: "bin_sign (bl_to_bin bs) = Int.Pls"
+  unfolding bl_to_bin_def by (simp add : sign_bl_bin')
+  
+lemma bl_sbin_sign_aux: 
+  "hd (bin_to_bl_aux (Suc n) w bs) = 
+    (bin_sign (sbintrunc n w) = Int.Min)"
+  apply (induct n arbitrary: w bs)
+   apply clarsimp
+   apply (cases w rule: bin_exhaust)
+   apply (simp split add : bit.split)
+  apply clarsimp
+  done
+    
+lemma bl_sbin_sign: 
+  "hd (bin_to_bl (Suc n) w) = (bin_sign (sbintrunc n w) = Int.Min)"
+  unfolding bin_to_bl_def by (rule bl_sbin_sign_aux)
+
+lemma bin_nth_of_bl_aux [rule_format]: 
+  "\<forall>w. bin_nth (bl_to_bin_aux bl w) n = 
+    (n < size bl & rev bl ! n | n >= length bl & bin_nth w (n - size bl))"
+  apply (induct_tac bl)
+   apply clarsimp
+  apply clarsimp
+  apply (cut_tac x=n and y="size list" in linorder_less_linear)
+  apply (erule disjE, simp add: nth_append)+
+  apply auto
+  done
+
+lemma bin_nth_of_bl: "bin_nth (bl_to_bin bl) n = (n < length bl & rev bl ! n)";
+  unfolding bl_to_bin_def by (simp add : bin_nth_of_bl_aux)
+
+lemma bin_nth_bl [rule_format] : "ALL m w. n < m --> 
+    bin_nth w n = nth (rev (bin_to_bl m w)) n"
+  apply (induct n)
+   apply clarsimp
+   apply (case_tac m, clarsimp)
+   apply (clarsimp simp: bin_to_bl_def)
+   apply (simp add: bin_to_bl_aux_alt)
+  apply clarsimp
+  apply (case_tac m, clarsimp)
+  apply (clarsimp simp: bin_to_bl_def)
+  apply (simp add: bin_to_bl_aux_alt)
+  done
+
+lemma nth_rev [rule_format] : 
+  "n < length xs --> rev xs ! n = xs ! (length xs - 1 - n)"
+  apply (induct_tac "xs")
+   apply simp
+  apply (clarsimp simp add : nth_append nth.simps split add : nat.split)
+  apply (rule_tac f = "%n. list ! n" in arg_cong) 
+  apply arith
+  done
+
+lemmas nth_rev_alt = nth_rev [where xs = "rev ys", simplified, standard]
+
+lemma nth_bin_to_bl_aux [rule_format] : 
+  "ALL w n bl. n < m + length bl --> (bin_to_bl_aux m w bl) ! n = 
+    (if n < m then bin_nth w (m - 1 - n) else bl ! (n - m))"
+  apply (induct m)
+   apply clarsimp
+  apply clarsimp
+  apply (case_tac w rule: bin_exhaust)
+  apply clarsimp
+  apply (case_tac "n - m")
+   apply arith
+  apply simp
+  apply (rule_tac f = "%n. bl ! n" in arg_cong) 
+  apply arith
+  done
+  
+lemma nth_bin_to_bl: "n < m ==> (bin_to_bl m w) ! n = bin_nth w (m - Suc n)"
+  unfolding bin_to_bl_def by (simp add : nth_bin_to_bl_aux)
+
+lemma bl_to_bin_lt2p_aux [rule_format]: 
+  "\<forall>w. bl_to_bin_aux bs w < (w + 1) * (2 ^ length bs)"
+  apply (induct bs)
+   apply clarsimp
+  apply clarsimp
+  apply safe
+  apply (erule allE, erule xtr8 [rotated],
+         simp add: numeral_simps algebra_simps cong add : number_of_False_cong)+
+  done
+
+lemma bl_to_bin_lt2p: "bl_to_bin bs < (2 ^ length bs)"
+  apply (unfold bl_to_bin_def)
+  apply (rule xtr1)
+   prefer 2
+   apply (rule bl_to_bin_lt2p_aux)
+  apply simp
+  done
+
+lemma bl_to_bin_ge2p_aux [rule_format] : 
+  "\<forall>w. bl_to_bin_aux bs w >= w * (2 ^ length bs)"
+  apply (induct bs)
+   apply clarsimp
+  apply clarsimp
+  apply safe
+   apply (erule allE, erule preorder_class.order_trans [rotated],
+          simp add: numeral_simps algebra_simps cong add : number_of_False_cong)+
+  done
+
+lemma bl_to_bin_ge0: "bl_to_bin bs >= 0"
+  apply (unfold bl_to_bin_def)
+  apply (rule xtr4)
+   apply (rule bl_to_bin_ge2p_aux)
+  apply simp
+  done
+
+lemma butlast_rest_bin: 
+  "butlast (bin_to_bl n w) = bin_to_bl (n - 1) (bin_rest w)"
+  apply (unfold bin_to_bl_def)
+  apply (cases w rule: bin_exhaust)
+  apply (cases n, clarsimp)
+  apply clarsimp
+  apply (auto simp add: bin_to_bl_aux_alt)
+  done
+
+lemmas butlast_bin_rest = butlast_rest_bin
+  [where w="bl_to_bin bl" and n="length bl", simplified, standard]
+
+lemma butlast_rest_bl2bin_aux:
+  "bl ~= [] \<Longrightarrow>
+    bl_to_bin_aux (butlast bl) w = bin_rest (bl_to_bin_aux bl w)"
+  by (induct bl arbitrary: w) auto
+  
+lemma butlast_rest_bl2bin: 
+  "bl_to_bin (butlast bl) = bin_rest (bl_to_bin bl)"
+  apply (unfold bl_to_bin_def)
+  apply (cases bl)
+   apply (auto simp add: butlast_rest_bl2bin_aux)
+  done
+
+lemma trunc_bl2bin_aux [rule_format]: 
+  "ALL w. bintrunc m (bl_to_bin_aux bl w) = 
+    bl_to_bin_aux (drop (length bl - m) bl) (bintrunc (m - length bl) w)"
+  apply (induct_tac bl)
+   apply clarsimp
+  apply clarsimp
+  apply safe
+   apply (case_tac "m - size list")
+    apply (simp add : diff_is_0_eq [THEN iffD1, THEN Suc_diff_le])
+   apply simp
+   apply (rule_tac f = "%nat. bl_to_bin_aux list (Int.Bit1 (bintrunc nat w))" 
+                   in arg_cong) 
+   apply simp
+  apply (case_tac "m - size list")
+   apply (simp add: diff_is_0_eq [THEN iffD1, THEN Suc_diff_le])
+  apply simp
+  apply (rule_tac f = "%nat. bl_to_bin_aux list (Int.Bit0 (bintrunc nat w))" 
+                  in arg_cong) 
+  apply simp
+  done
+
+lemma trunc_bl2bin: 
+  "bintrunc m (bl_to_bin bl) = bl_to_bin (drop (length bl - m) bl)"
+  unfolding bl_to_bin_def by (simp add : trunc_bl2bin_aux)
+  
+lemmas trunc_bl2bin_len [simp] =
+  trunc_bl2bin [of "length bl" bl, simplified, standard]  
+
+lemma bl2bin_drop: 
+  "bl_to_bin (drop k bl) = bintrunc (length bl - k) (bl_to_bin bl)"
+  apply (rule trans)
+   prefer 2
+   apply (rule trunc_bl2bin [symmetric])
+  apply (cases "k <= length bl")
+   apply auto
+  done
+
+lemma nth_rest_power_bin [rule_format] :
+  "ALL n. bin_nth ((bin_rest ^^ k) w) n = bin_nth w (n + k)"
+  apply (induct k, clarsimp)
+  apply clarsimp
+  apply (simp only: bin_nth.Suc [symmetric] add_Suc)
+  done
+
+lemma take_rest_power_bin:
+  "m <= n ==> take m (bin_to_bl n w) = bin_to_bl m ((bin_rest ^^ (n - m)) w)" 
+  apply (rule nth_equalityI)
+   apply simp
+  apply (clarsimp simp add: nth_bin_to_bl nth_rest_power_bin)
+  done
+
+lemma hd_butlast: "size xs > 1 ==> hd (butlast xs) = hd xs"
+  by (cases xs) auto
+
+lemma last_bin_last': 
+  "size xs > 0 \<Longrightarrow> last xs = (bin_last (bl_to_bin_aux xs w) = 1)" 
+  by (induct xs arbitrary: w) auto
+
+lemma last_bin_last: 
+  "size xs > 0 ==> last xs = (bin_last (bl_to_bin xs) = 1)" 
+  unfolding bl_to_bin_def by (erule last_bin_last')
+  
+lemma bin_last_last: 
+  "bin_last w = (if last (bin_to_bl (Suc n) w) then 1 else 0)" 
+  apply (unfold bin_to_bl_def)
+  apply simp
+  apply (auto simp add: bin_to_bl_aux_alt)
+  done
+
+(** links between bit-wise operations and operations on bool lists **)
+    
+lemma bl_xor_aux_bin [rule_format] : "ALL v w bs cs. 
+    map2 (%x y. x ~= y) (bin_to_bl_aux n v bs) (bin_to_bl_aux n w cs) = 
+    bin_to_bl_aux n (v XOR w) (map2 (%x y. x ~= y) bs cs)"
+  apply (induct_tac n)
+   apply safe
+   apply simp
+  apply (case_tac v rule: bin_exhaust)
+  apply (case_tac w rule: bin_exhaust)
+  apply clarsimp
+  apply (case_tac b)
+  apply (case_tac ba, safe, simp_all)+
+  done
+    
+lemma bl_or_aux_bin [rule_format] : "ALL v w bs cs. 
+    map2 (op | ) (bin_to_bl_aux n v bs) (bin_to_bl_aux n w cs) = 
+    bin_to_bl_aux n (v OR w) (map2 (op | ) bs cs)" 
+  apply (induct_tac n)
+   apply safe
+   apply simp
+  apply (case_tac v rule: bin_exhaust)
+  apply (case_tac w rule: bin_exhaust)
+  apply clarsimp
+  apply (case_tac b)
+  apply (case_tac ba, safe, simp_all)+
+  done
+    
+lemma bl_and_aux_bin [rule_format] : "ALL v w bs cs. 
+    map2 (op & ) (bin_to_bl_aux n v bs) (bin_to_bl_aux n w cs) = 
+    bin_to_bl_aux n (v AND w) (map2 (op & ) bs cs)" 
+  apply (induct_tac n)
+   apply safe
+   apply simp
+  apply (case_tac v rule: bin_exhaust)
+  apply (case_tac w rule: bin_exhaust)
+  apply clarsimp
+  apply (case_tac b)
+  apply (case_tac ba, safe, simp_all)+
+  done
+    
+lemma bl_not_aux_bin [rule_format] : 
+  "ALL w cs. map Not (bin_to_bl_aux n w cs) = 
+    bin_to_bl_aux n (NOT w) (map Not cs)"
+  apply (induct n)
+   apply clarsimp
+  apply clarsimp
+  apply (case_tac w rule: bin_exhaust)
+  apply (case_tac b)
+   apply auto
+  done
+
+lemmas bl_not_bin = bl_not_aux_bin
+  [where cs = "[]", unfolded bin_to_bl_def [symmetric] map.simps]
+
+lemmas bl_and_bin = bl_and_aux_bin [where bs="[]" and cs="[]", 
+                                    unfolded map2_Nil, folded bin_to_bl_def]
+
+lemmas bl_or_bin = bl_or_aux_bin [where bs="[]" and cs="[]", 
+                                  unfolded map2_Nil, folded bin_to_bl_def]
+
+lemmas bl_xor_bin = bl_xor_aux_bin [where bs="[]" and cs="[]", 
+                                    unfolded map2_Nil, folded bin_to_bl_def]
+
+lemma drop_bin2bl_aux [rule_format] : 
+  "ALL m bin bs. drop m (bin_to_bl_aux n bin bs) = 
+    bin_to_bl_aux (n - m) bin (drop (m - n) bs)"
+  apply (induct n, clarsimp)
+  apply clarsimp
+  apply (case_tac bin rule: bin_exhaust)
+  apply (case_tac "m <= n", simp)
+  apply (case_tac "m - n", simp)
+  apply simp
+  apply (rule_tac f = "%nat. drop nat bs" in arg_cong) 
+  apply simp
+  done
+
+lemma drop_bin2bl: "drop m (bin_to_bl n bin) = bin_to_bl (n - m) bin"
+  unfolding bin_to_bl_def by (simp add : drop_bin2bl_aux)
+
+lemma take_bin2bl_lem1 [rule_format] : 
+  "ALL w bs. take m (bin_to_bl_aux m w bs) = bin_to_bl m w"
+  apply (induct m, clarsimp)
+  apply clarsimp
+  apply (simp add: bin_to_bl_aux_alt)
+  apply (simp add: bin_to_bl_def)
+  apply (simp add: bin_to_bl_aux_alt)
+  done
+
+lemma take_bin2bl_lem [rule_format] : 
+  "ALL w bs. take m (bin_to_bl_aux (m + n) w bs) = 
+    take m (bin_to_bl (m + n) w)"
+  apply (induct n)
+   apply clarify
+   apply (simp_all (no_asm) add: bin_to_bl_def take_bin2bl_lem1)
+  apply simp
+  done
+
+lemma bin_split_take [rule_format] : 
+  "ALL b c. bin_split n c = (a, b) --> 
+    bin_to_bl m a = take m (bin_to_bl (m + n) c)"
+  apply (induct n)
+   apply clarsimp
+  apply (clarsimp simp: Let_def split: ls_splits)
+  apply (simp add: bin_to_bl_def)
+  apply (simp add: take_bin2bl_lem)
+  done
+
+lemma bin_split_take1: 
+  "k = m + n ==> bin_split n c = (a, b) ==> 
+    bin_to_bl m a = take m (bin_to_bl k c)"
+  by (auto elim: bin_split_take)
+  
+lemma nth_takefill [rule_format] : "ALL m l. m < n --> 
+    takefill fill n l ! m = (if m < length l then l ! m else fill)"
+  apply (induct n, clarsimp)
+  apply clarsimp
+  apply (case_tac m)
+   apply (simp split: list.split)
+  apply clarsimp
+  apply (erule allE)+
+  apply (erule (1) impE)
+  apply (simp split: list.split)
+  done
+
+lemma takefill_alt [rule_format] :
+  "ALL l. takefill fill n l = take n l @ replicate (n - length l) fill"
+  by (induct n) (auto split: list.split)
+
+lemma takefill_replicate [simp]:
+  "takefill fill n (replicate m fill) = replicate n fill"
+  by (simp add : takefill_alt replicate_add [symmetric])
+
+lemma takefill_le' [rule_format] :
+  "ALL l n. n = m + k --> takefill x m (takefill x n l) = takefill x m l"
+  by (induct m) (auto split: list.split)
+
+lemma length_takefill [simp]: "length (takefill fill n l) = n"
+  by (simp add : takefill_alt)
+
+lemma take_takefill':
+  "!!w n.  n = k + m ==> take k (takefill fill n w) = takefill fill k w"
+  by (induct k) (auto split add : list.split) 
+
+lemma drop_takefill:
+  "!!w. drop k (takefill fill (m + k) w) = takefill fill m (drop k w)"
+  by (induct k) (auto split add : list.split) 
+
+lemma takefill_le [simp]:
+  "m \<le> n \<Longrightarrow> takefill x m (takefill x n l) = takefill x m l"
+  by (auto simp: le_iff_add takefill_le')
+
+lemma take_takefill [simp]:
+  "m \<le> n \<Longrightarrow> take m (takefill fill n w) = takefill fill m w"
+  by (auto simp: le_iff_add take_takefill')
+ 
+lemma takefill_append:
+  "takefill fill (m + length xs) (xs @ w) = xs @ (takefill fill m w)"
+  by (induct xs) auto
+
+lemma takefill_same': 
+  "l = length xs ==> takefill fill l xs = xs"
+  by clarify (induct xs, auto)
+ 
+lemmas takefill_same [simp] = takefill_same' [OF refl]
+
+lemma takefill_bintrunc:
+  "takefill False n bl = rev (bin_to_bl n (bl_to_bin (rev bl)))"
+  apply (rule nth_equalityI)
+   apply simp
+  apply (clarsimp simp: nth_takefill nth_rev nth_bin_to_bl bin_nth_of_bl)
+  done
+
+lemma bl_bin_bl_rtf:
+  "bin_to_bl n (bl_to_bin bl) = rev (takefill False n (rev bl))"
+  by (simp add : takefill_bintrunc)
+  
+lemmas bl_bin_bl_rep_drop = 
+  bl_bin_bl_rtf [simplified takefill_alt,
+                 simplified, simplified rev_take, simplified]
+
+lemma tf_rev:
+  "n + k = m + length bl ==> takefill x m (rev (takefill y n bl)) = 
+    rev (takefill y m (rev (takefill x k (rev bl))))"
+  apply (rule nth_equalityI)
+   apply (auto simp add: nth_takefill nth_rev)
+  apply (rule_tac f = "%n. bl ! n" in arg_cong) 
+  apply arith 
+  done
+
+lemma takefill_minus:
+  "0 < n ==> takefill fill (Suc (n - 1)) w = takefill fill n w"
+  by auto
+
+lemmas takefill_Suc_cases = 
+  list.cases [THEN takefill.Suc [THEN trans], standard]
+
+lemmas takefill_Suc_Nil = takefill_Suc_cases (1)
+lemmas takefill_Suc_Cons = takefill_Suc_cases (2)
+
+lemmas takefill_minus_simps = takefill_Suc_cases [THEN [2] 
+  takefill_minus [symmetric, THEN trans], standard]
+
+lemmas takefill_pred_simps [simp] =
+  takefill_minus_simps [where n="number_of bin", simplified nobm1, standard]
+
+(* links with function bl_to_bin *)
+
+lemma bl_to_bin_aux_cat: 
+  "!!nv v. bl_to_bin_aux bs (bin_cat w nv v) = 
+    bin_cat w (nv + length bs) (bl_to_bin_aux bs v)"
+  apply (induct bs)
+   apply simp
+  apply (simp add: bin_cat_Suc_Bit [symmetric] del: bin_cat.simps)
+  done
+
+lemma bin_to_bl_aux_cat: 
+  "!!w bs. bin_to_bl_aux (nv + nw) (bin_cat v nw w) bs = 
+    bin_to_bl_aux nv v (bin_to_bl_aux nw w bs)"
+  by (induct nw) auto 
+
+lemmas bl_to_bin_aux_alt = 
+  bl_to_bin_aux_cat [where nv = "0" and v = "Int.Pls", 
+    simplified bl_to_bin_def [symmetric], simplified]
+
+lemmas bin_to_bl_cat =
+  bin_to_bl_aux_cat [where bs = "[]", folded bin_to_bl_def]
+
+lemmas bl_to_bin_aux_app_cat = 
+  trans [OF bl_to_bin_aux_append bl_to_bin_aux_alt]
+
+lemmas bin_to_bl_aux_cat_app =
+  trans [OF bin_to_bl_aux_cat bin_to_bl_aux_alt]
+
+lemmas bl_to_bin_app_cat = bl_to_bin_aux_app_cat
+  [where w = "Int.Pls", folded bl_to_bin_def]
+
+lemmas bin_to_bl_cat_app = bin_to_bl_aux_cat_app
+  [where bs = "[]", folded bin_to_bl_def]
+
+(* bl_to_bin_app_cat_alt and bl_to_bin_app_cat are easily interderivable *)
+lemma bl_to_bin_app_cat_alt: 
+  "bin_cat (bl_to_bin cs) n w = bl_to_bin (cs @ bin_to_bl n w)"
+  by (simp add : bl_to_bin_app_cat)
+
+lemma mask_lem: "(bl_to_bin (True # replicate n False)) = 
+    Int.succ (bl_to_bin (replicate n True))"
+  apply (unfold bl_to_bin_def)
+  apply (induct n)
+   apply simp
+  apply (simp only: Suc_eq_plus1 replicate_add
+                    append_Cons [symmetric] bl_to_bin_aux_append)
+  apply simp
+  done
+
+(* function bl_of_nth *)
+lemma length_bl_of_nth [simp]: "length (bl_of_nth n f) = n"
+  by (induct n)  auto
+
+lemma nth_bl_of_nth [simp]:
+  "m < n \<Longrightarrow> rev (bl_of_nth n f) ! m = f m"
+  apply (induct n)
+   apply simp
+  apply (clarsimp simp add : nth_append)
+  apply (rule_tac f = "f" in arg_cong) 
+  apply simp
+  done
+
+lemma bl_of_nth_inj: 
+  "(!!k. k < n ==> f k = g k) ==> bl_of_nth n f = bl_of_nth n g"
+  by (induct n)  auto
+
+lemma bl_of_nth_nth_le [rule_format] : "ALL xs. 
+    length xs >= n --> bl_of_nth n (nth (rev xs)) = drop (length xs - n) xs";
+  apply (induct n, clarsimp)
+  apply clarsimp
+  apply (rule trans [OF _ hd_Cons_tl])
+   apply (frule Suc_le_lessD)
+   apply (simp add: nth_rev trans [OF drop_Suc drop_tl, symmetric])
+   apply (subst hd_drop_conv_nth)
+     apply force
+    apply simp_all
+  apply (rule_tac f = "%n. drop n xs" in arg_cong) 
+  apply simp
+  done
+
+lemmas bl_of_nth_nth [simp] = order_refl [THEN bl_of_nth_nth_le, simplified]
+
+lemma size_rbl_pred: "length (rbl_pred bl) = length bl"
+  by (induct bl) auto
+
+lemma size_rbl_succ: "length (rbl_succ bl) = length bl"
+  by (induct bl) auto
+
+lemma size_rbl_add:
+  "!!cl. length (rbl_add bl cl) = length bl"
+  by (induct bl) (auto simp: Let_def size_rbl_succ)
+
+lemma size_rbl_mult: 
+  "!!cl. length (rbl_mult bl cl) = length bl"
+  by (induct bl) (auto simp add : Let_def size_rbl_add)
+
+lemmas rbl_sizes [simp] = 
+  size_rbl_pred size_rbl_succ size_rbl_add size_rbl_mult
+
+lemmas rbl_Nils =
+  rbl_pred.Nil rbl_succ.Nil rbl_add.Nil rbl_mult.Nil
+
+lemma rbl_pred: 
+  "!!bin. rbl_pred (rev (bin_to_bl n bin)) = rev (bin_to_bl n (Int.pred bin))"
+  apply (induct n, simp)
+  apply (unfold bin_to_bl_def)
+  apply clarsimp
+  apply (case_tac bin rule: bin_exhaust)
+  apply (case_tac b)
+   apply (clarsimp simp: bin_to_bl_aux_alt)+
+  done
+
+lemma rbl_succ: 
+  "!!bin. rbl_succ (rev (bin_to_bl n bin)) = rev (bin_to_bl n (Int.succ bin))"
+  apply (induct n, simp)
+  apply (unfold bin_to_bl_def)
+  apply clarsimp
+  apply (case_tac bin rule: bin_exhaust)
+  apply (case_tac b)
+   apply (clarsimp simp: bin_to_bl_aux_alt)+
+  done
+
+lemma rbl_add: 
+  "!!bina binb. rbl_add (rev (bin_to_bl n bina)) (rev (bin_to_bl n binb)) = 
+    rev (bin_to_bl n (bina + binb))"
+  apply (induct n, simp)
+  apply (unfold bin_to_bl_def)
+  apply clarsimp
+  apply (case_tac bina rule: bin_exhaust)
+  apply (case_tac binb rule: bin_exhaust)
+  apply (case_tac b)
+   apply (case_tac [!] "ba")
+     apply (auto simp: rbl_succ succ_def bin_to_bl_aux_alt Let_def add_ac)
+  done
+
+lemma rbl_add_app2: 
+  "!!blb. length blb >= length bla ==> 
+    rbl_add bla (blb @ blc) = rbl_add bla blb"
+  apply (induct bla, simp)
+  apply clarsimp
+  apply (case_tac blb, clarsimp)
+  apply (clarsimp simp: Let_def)
+  done
+
+lemma rbl_add_take2: 
+  "!!blb. length blb >= length bla ==> 
+    rbl_add bla (take (length bla) blb) = rbl_add bla blb"
+  apply (induct bla, simp)
+  apply clarsimp
+  apply (case_tac blb, clarsimp)
+  apply (clarsimp simp: Let_def)
+  done
+
+lemma rbl_add_long: 
+  "m >= n ==> rbl_add (rev (bin_to_bl n bina)) (rev (bin_to_bl m binb)) = 
+    rev (bin_to_bl n (bina + binb))"
+  apply (rule box_equals [OF _ rbl_add_take2 rbl_add])
+   apply (rule_tac f = "rbl_add (rev (bin_to_bl n bina))" in arg_cong) 
+   apply (rule rev_swap [THEN iffD1])
+   apply (simp add: rev_take drop_bin2bl)
+  apply simp
+  done
+
+lemma rbl_mult_app2:
+  "!!blb. length blb >= length bla ==> 
+    rbl_mult bla (blb @ blc) = rbl_mult bla blb"
+  apply (induct bla, simp)
+  apply clarsimp
+  apply (case_tac blb, clarsimp)
+  apply (clarsimp simp: Let_def rbl_add_app2)
+  done
+
+lemma rbl_mult_take2: 
+  "length blb >= length bla ==> 
+    rbl_mult bla (take (length bla) blb) = rbl_mult bla blb"
+  apply (rule trans)
+   apply (rule rbl_mult_app2 [symmetric])
+   apply simp
+  apply (rule_tac f = "rbl_mult bla" in arg_cong) 
+  apply (rule append_take_drop_id)
+  done
+    
+lemma rbl_mult_gt1: 
+  "m >= length bl ==> rbl_mult bl (rev (bin_to_bl m binb)) = 
+    rbl_mult bl (rev (bin_to_bl (length bl) binb))"
+  apply (rule trans)
+   apply (rule rbl_mult_take2 [symmetric])
+   apply simp_all
+  apply (rule_tac f = "rbl_mult bl" in arg_cong) 
+  apply (rule rev_swap [THEN iffD1])
+  apply (simp add: rev_take drop_bin2bl)
+  done
+    
+lemma rbl_mult_gt: 
+  "m > n ==> rbl_mult (rev (bin_to_bl n bina)) (rev (bin_to_bl m binb)) = 
+    rbl_mult (rev (bin_to_bl n bina)) (rev (bin_to_bl n binb))"
+  by (auto intro: trans [OF rbl_mult_gt1])
+  
+lemmas rbl_mult_Suc = lessI [THEN rbl_mult_gt]
+
+lemma rbbl_Cons: 
+  "b # rev (bin_to_bl n x) = rev (bin_to_bl (Suc n) (x BIT If b 1 0))"
+  apply (unfold bin_to_bl_def)
+  apply simp
+  apply (simp add: bin_to_bl_aux_alt)
+  done
+  
+lemma rbl_mult: "!!bina binb. 
+    rbl_mult (rev (bin_to_bl n bina)) (rev (bin_to_bl n binb)) = 
+    rev (bin_to_bl n (bina * binb))"
+  apply (induct n)
+   apply simp
+  apply (unfold bin_to_bl_def)
+  apply clarsimp
+  apply (case_tac bina rule: bin_exhaust)
+  apply (case_tac binb rule: bin_exhaust)
+  apply (case_tac b)
+   apply (case_tac [!] "ba")
+     apply (auto simp: bin_to_bl_aux_alt Let_def)
+     apply (auto simp: rbbl_Cons rbl_mult_Suc rbl_add)
+  done
+
+lemma rbl_add_split: 
+  "P (rbl_add (y # ys) (x # xs)) = 
+    (ALL ws. length ws = length ys --> ws = rbl_add ys xs --> 
+    (y --> ((x --> P (False # rbl_succ ws)) & (~ x -->  P (True # ws)))) &
+    (~ y --> P (x # ws)))"
+  apply (auto simp add: Let_def)
+   apply (case_tac [!] "y")
+     apply auto
+  done
+
+lemma rbl_mult_split: 
+  "P (rbl_mult (y # ys) xs) = 
+    (ALL ws. length ws = Suc (length ys) --> ws = False # rbl_mult ys xs --> 
+    (y --> P (rbl_add ws xs)) & (~ y -->  P ws))"
+  by (clarsimp simp add : Let_def)
+  
+lemma and_len: "xs = ys ==> xs = ys & length xs = length ys"
+  by auto
+
+lemma size_if: "size (if p then xs else ys) = (if p then size xs else size ys)"
+  by auto
+
+lemma tl_if: "tl (if p then xs else ys) = (if p then tl xs else tl ys)"
+  by auto
+
+lemma hd_if: "hd (if p then xs else ys) = (if p then hd xs else hd ys)"
+  by auto
+
+lemma if_Not_x: "(if p then ~ x else x) = (p = (~ x))"
+  by auto
+
+lemma if_x_Not: "(if p then x else ~ x) = (p = x)"
+  by auto
+
+lemma if_same_and: "(If p x y & If p u v) = (if p then x & u else y & v)"
+  by auto
+
+lemma if_same_eq: "(If p x y  = (If p u v)) = (if p then x = (u) else y = (v))"
+  by auto
+
+lemma if_same_eq_not:
+  "(If p x y  = (~ If p u v)) = (if p then x = (~u) else y = (~v))"
+  by auto
+
+(* note - if_Cons can cause blowup in the size, if p is complex,
+  so make a simproc *)
+lemma if_Cons: "(if p then x # xs else y # ys) = If p x y # If p xs ys"
+  by auto
+
+lemma if_single:
+  "(if xc then [xab] else [an]) = [if xc then xab else an]"
+  by auto
+
+lemma if_bool_simps:
+  "If p True y = (p | y) & If p False y = (~p & y) & 
+    If p y True = (p --> y) & If p y False = (p & y)"
+  by auto
+
+lemmas if_simps = if_x_Not if_Not_x if_cancel if_True if_False if_bool_simps
+
+lemmas seqr = eq_reflection [where x = "size w", standard]
+
+lemmas tl_Nil = tl.simps (1)
+lemmas tl_Cons = tl.simps (2)
+
+
+subsection "Repeated splitting or concatenation"
+
+lemma sclem:
+  "size (concat (map (bin_to_bl n) xs)) = length xs * n"
+  by (induct xs) auto
+
+lemma bin_cat_foldl_lem [rule_format] :
+  "ALL x. foldl (%u. bin_cat u n) x xs = 
+    bin_cat x (size xs * n) (foldl (%u. bin_cat u n) y xs)"
+  apply (induct xs)
+   apply simp
+  apply clarify
+  apply (simp (no_asm))
+  apply (frule asm_rl)
+  apply (drule spec)
+  apply (erule trans)
+  apply (drule_tac x = "bin_cat y n a" in spec)
+  apply (simp add : bin_cat_assoc_sym min_max.inf_absorb2)
+  done
+
+lemma bin_rcat_bl:
+  "(bin_rcat n wl) = bl_to_bin (concat (map (bin_to_bl n) wl))"
+  apply (unfold bin_rcat_def)
+  apply (rule sym)
+  apply (induct wl)
+   apply (auto simp add : bl_to_bin_append)
+  apply (simp add : bl_to_bin_aux_alt sclem)
+  apply (simp add : bin_cat_foldl_lem [symmetric])
+  done
+
+lemmas bin_rsplit_aux_simps = bin_rsplit_aux.simps bin_rsplitl_aux.simps
+lemmas rsplit_aux_simps = bin_rsplit_aux_simps
+
+lemmas th_if_simp1 = split_if [where P = "op = l",
+  THEN iffD1, THEN conjunct1, THEN mp, standard]
+lemmas th_if_simp2 = split_if [where P = "op = l",
+  THEN iffD1, THEN conjunct2, THEN mp, standard]
+
+lemmas rsplit_aux_simp1s = rsplit_aux_simps [THEN th_if_simp1]
+
+lemmas rsplit_aux_simp2ls = rsplit_aux_simps [THEN th_if_simp2]
+(* these safe to [simp add] as require calculating m - n *)
+lemmas bin_rsplit_aux_simp2s [simp] = rsplit_aux_simp2ls [unfolded Let_def]
+lemmas rbscl = bin_rsplit_aux_simp2s (2)
+
+lemmas rsplit_aux_0_simps [simp] = 
+  rsplit_aux_simp1s [OF disjI1] rsplit_aux_simp1s [OF disjI2]
+
+lemma bin_rsplit_aux_append:
+  "bin_rsplit_aux n m c (bs @ cs) = bin_rsplit_aux n m c bs @ cs"
+  apply (induct n m c bs rule: bin_rsplit_aux.induct)
+  apply (subst bin_rsplit_aux.simps)
+  apply (subst bin_rsplit_aux.simps)
+  apply (clarsimp split: ls_splits)
+  apply auto
+  done
+
+lemma bin_rsplitl_aux_append:
+  "bin_rsplitl_aux n m c (bs @ cs) = bin_rsplitl_aux n m c bs @ cs"
+  apply (induct n m c bs rule: bin_rsplitl_aux.induct)
+  apply (subst bin_rsplitl_aux.simps)
+  apply (subst bin_rsplitl_aux.simps)
+  apply (clarsimp split: ls_splits)
+  apply auto
+  done
+
+lemmas rsplit_aux_apps [where bs = "[]"] =
+  bin_rsplit_aux_append bin_rsplitl_aux_append
+
+lemmas rsplit_def_auxs = bin_rsplit_def bin_rsplitl_def
+
+lemmas rsplit_aux_alts = rsplit_aux_apps 
+  [unfolded append_Nil rsplit_def_auxs [symmetric]]
+
+lemma bin_split_minus: "0 < n ==> bin_split (Suc (n - 1)) w = bin_split n w"
+  by auto
+
+lemmas bin_split_minus_simp =
+  bin_split.Suc [THEN [2] bin_split_minus [symmetric, THEN trans], standard]
+
+lemma bin_split_pred_simp [simp]: 
+  "(0::nat) < number_of bin \<Longrightarrow>
+  bin_split (number_of bin) w =
+  (let (w1, w2) = bin_split (number_of (Int.pred bin)) (bin_rest w)
+   in (w1, w2 BIT bin_last w))" 
+  by (simp only: nobm1 bin_split_minus_simp)
+
+declare bin_split_pred_simp [simp]
+
+lemma bin_rsplit_aux_simp_alt:
+  "bin_rsplit_aux n m c bs =
+   (if m = 0 \<or> n = 0 
+   then bs
+   else let (a, b) = bin_split n c in bin_rsplit n (m - n, a) @ b # bs)"
+  unfolding bin_rsplit_aux.simps [of n m c bs]
+  apply simp
+  apply (subst rsplit_aux_alts)
+  apply (simp add: bin_rsplit_def)
+  done
+
+lemmas bin_rsplit_simp_alt = 
+  trans [OF bin_rsplit_def
+            bin_rsplit_aux_simp_alt, standard]
+
+lemmas bthrs = bin_rsplit_simp_alt [THEN [2] trans]
+
+lemma bin_rsplit_size_sign' [rule_format] : 
+  "n > 0 ==> (ALL nw w. rev sw = bin_rsplit n (nw, w) --> 
+    (ALL v: set sw. bintrunc n v = v))"
+  apply (induct sw)
+   apply clarsimp
+  apply clarsimp
+  apply (drule bthrs)
+  apply (simp (no_asm_use) add: Let_def split: ls_splits)
+  apply clarify
+  apply (erule impE, rule exI, erule exI)
+  apply (drule split_bintrunc)
+  apply simp
+  done
+
+lemmas bin_rsplit_size_sign = bin_rsplit_size_sign' [OF asm_rl 
+  rev_rev_ident [THEN trans] set_rev [THEN equalityD2 [THEN subsetD]],
+  standard]
+
+lemma bin_nth_rsplit [rule_format] :
+  "n > 0 ==> m < n ==> (ALL w k nw. rev sw = bin_rsplit n (nw, w) --> 
+       k < size sw --> bin_nth (sw ! k) m = bin_nth w (k * n + m))"
+  apply (induct sw)
+   apply clarsimp
+  apply clarsimp
+  apply (drule bthrs)
+  apply (simp (no_asm_use) add: Let_def split: ls_splits)
+  apply clarify
+  apply (erule allE, erule impE, erule exI)
+  apply (case_tac k)
+   apply clarsimp   
+   prefer 2
+   apply clarsimp
+   apply (erule allE)
+   apply (erule (1) impE)
+   apply (drule bin_nth_split, erule conjE, erule allE,
+          erule trans, simp add : add_ac)+
+  done
+
+lemma bin_rsplit_all:
+  "0 < nw ==> nw <= n ==> bin_rsplit n (nw, w) = [bintrunc n w]"
+  unfolding bin_rsplit_def
+  by (clarsimp dest!: split_bintrunc simp: rsplit_aux_simp2ls split: ls_splits)
+
+lemma bin_rsplit_l [rule_format] :
+  "ALL bin. bin_rsplitl n (m, bin) = bin_rsplit n (m, bintrunc m bin)"
+  apply (rule_tac a = "m" in wf_less_than [THEN wf_induct])
+  apply (simp (no_asm) add : bin_rsplitl_def bin_rsplit_def)
+  apply (rule allI)
+  apply (subst bin_rsplitl_aux.simps)
+  apply (subst bin_rsplit_aux.simps)
+  apply (clarsimp simp: Let_def split: ls_splits)
+  apply (drule bin_split_trunc)
+  apply (drule sym [THEN trans], assumption)
+  apply (subst rsplit_aux_alts(1))
+  apply (subst rsplit_aux_alts(2))
+  apply clarsimp
+  unfolding bin_rsplit_def bin_rsplitl_def
+  apply simp
+  done
+
+lemma bin_rsplit_rcat [rule_format] :
+  "n > 0 --> bin_rsplit n (n * size ws, bin_rcat n ws) = map (bintrunc n) ws"
+  apply (unfold bin_rsplit_def bin_rcat_def)
+  apply (rule_tac xs = "ws" in rev_induct)
+   apply clarsimp
+  apply clarsimp
+  apply (subst rsplit_aux_alts)
+  unfolding bin_split_cat
+  apply simp
+  done
+
+lemma bin_rsplit_aux_len_le [rule_format] :
+  "\<forall>ws m. n \<noteq> 0 \<longrightarrow> ws = bin_rsplit_aux n nw w bs \<longrightarrow>
+    length ws \<le> m \<longleftrightarrow> nw + length bs * n \<le> m * n"
+  apply (induct n nw w bs rule: bin_rsplit_aux.induct)
+  apply (subst bin_rsplit_aux.simps)
+  apply (simp add: lrlem Let_def split: ls_splits)
+  done
+
+lemma bin_rsplit_len_le: 
+  "n \<noteq> 0 --> ws = bin_rsplit n (nw, w) --> (length ws <= m) = (nw <= m * n)"
+  unfolding bin_rsplit_def by (clarsimp simp add : bin_rsplit_aux_len_le)
+ 
+lemma bin_rsplit_aux_len [rule_format] :
+  "n\<noteq>0 --> length (bin_rsplit_aux n nw w cs) = 
+    (nw + n - 1) div n + length cs"
+  apply (induct n nw w cs rule: bin_rsplit_aux.induct)
+  apply (subst bin_rsplit_aux.simps)
+  apply (clarsimp simp: Let_def split: ls_splits)
+  apply (erule thin_rl)
+  apply (case_tac m)
+  apply simp
+  apply (case_tac "m <= n")
+  apply auto
+  done
+
+lemma bin_rsplit_len: 
+  "n\<noteq>0 ==> length (bin_rsplit n (nw, w)) = (nw + n - 1) div n"
+  unfolding bin_rsplit_def by (clarsimp simp add : bin_rsplit_aux_len)
+
+lemma bin_rsplit_aux_len_indep:
+  "n \<noteq> 0 \<Longrightarrow> length bs = length cs \<Longrightarrow>
+    length (bin_rsplit_aux n nw v bs) =
+    length (bin_rsplit_aux n nw w cs)"
+proof (induct n nw w cs arbitrary: v bs rule: bin_rsplit_aux.induct)
+  case (1 n m w cs v bs) show ?case
+  proof (cases "m = 0")
+    case True then show ?thesis using `length bs = length cs` by simp
+  next
+    case False
+    from "1.hyps" `m \<noteq> 0` `n \<noteq> 0` have hyp: "\<And>v bs. length bs = Suc (length cs) \<Longrightarrow>
+      length (bin_rsplit_aux n (m - n) v bs) =
+      length (bin_rsplit_aux n (m - n) (fst (bin_split n w)) (snd (bin_split n w) # cs))"
+    by auto
+    show ?thesis using `length bs = length cs` `n \<noteq> 0`
+      by (auto simp add: bin_rsplit_aux_simp_alt Let_def bin_rsplit_len
+        split: ls_splits)
+  qed
+qed
+
+lemma bin_rsplit_len_indep: 
+  "n\<noteq>0 ==> length (bin_rsplit n (nw, v)) = length (bin_rsplit n (nw, w))"
+  apply (unfold bin_rsplit_def)
+  apply (simp (no_asm))
+  apply (erule bin_rsplit_aux_len_indep)
+  apply (rule refl)
+  done
+
+end
--- a/src/HOL/Word/WordDefinition.thy	Wed Jun 30 16:41:03 2010 +0200
+++ b/src/HOL/Word/WordDefinition.thy	Wed Jun 30 16:45:47 2010 +0200
@@ -8,7 +8,7 @@
 header {* Definition of Word Type *}
 
 theory WordDefinition
-imports Type_Length Misc_Typedef BinBoolList
+imports Type_Length Misc_Typedef Bool_List_Representation
 begin
 
 subsection {* Type definition *}