src/HOL/Word/BinOperations.thy
changeset 37658 df789294c77a
parent 37657 17e1085d07b2
child 37659 14cabf5fa710
--- a/src/HOL/Word/BinOperations.thy	Wed Jun 30 16:41:03 2010 +0200
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,638 +0,0 @@
-(* 
-  Author: Jeremy Dawson and Gerwin Klein, NICTA
-
-  definition and basic theorems for bit-wise logical operations 
-  for integers expressed using Pls, Min, BIT,
-  and converting them to and from lists of bools
-*) 
-
-header {* Bitwise Operations on Binary Integers *}
-
-theory BinOperations
-imports Bit_Operations BinGeneral
-begin
-
-subsection {* Logical operations *}
-
-text "bit-wise logical operations on the int type"
-
-instantiation int :: bit
-begin
-
-definition
-  int_not_def [code del]: "bitNOT = bin_rec Int.Min Int.Pls 
-    (\<lambda>w b s. s BIT (NOT b))"
-
-definition
-  int_and_def [code del]: "bitAND = bin_rec (\<lambda>x. Int.Pls) (\<lambda>y. y) 
-    (\<lambda>w b s y. s (bin_rest y) BIT (b AND bin_last y))"
-
-definition
-  int_or_def [code del]: "bitOR = bin_rec (\<lambda>x. x) (\<lambda>y. Int.Min) 
-    (\<lambda>w b s y. s (bin_rest y) BIT (b OR bin_last y))"
-
-definition
-  int_xor_def [code del]: "bitXOR = bin_rec (\<lambda>x. x) bitNOT 
-    (\<lambda>w b s y. s (bin_rest y) BIT (b XOR bin_last y))"
-
-instance ..
-
-end
-
-lemma int_not_simps [simp]:
-  "NOT Int.Pls = Int.Min"
-  "NOT Int.Min = Int.Pls"
-  "NOT (Int.Bit0 w) = Int.Bit1 (NOT w)"
-  "NOT (Int.Bit1 w) = Int.Bit0 (NOT w)"
-  "NOT (w BIT b) = (NOT w) BIT (NOT b)"
-  unfolding int_not_def by (simp_all add: bin_rec_simps)
-
-declare int_not_simps(1-4) [code]
-
-lemma int_xor_Pls [simp, code]: 
-  "Int.Pls XOR x = x"
-  unfolding int_xor_def by (simp add: bin_rec_PM)
-
-lemma int_xor_Min [simp, code]: 
-  "Int.Min XOR x = NOT x"
-  unfolding int_xor_def by (simp add: bin_rec_PM)
-
-lemma int_xor_Bits [simp]: 
-  "(x BIT b) XOR (y BIT c) = (x XOR y) BIT (b XOR c)"
-  apply (unfold int_xor_def)
-  apply (rule bin_rec_simps (1) [THEN fun_cong, THEN trans])
-    apply (rule ext, simp)
-   prefer 2
-   apply simp
-  apply (rule ext)
-  apply (simp add: int_not_simps [symmetric])
-  done
-
-lemma int_xor_Bits2 [simp, code]: 
-  "(Int.Bit0 x) XOR (Int.Bit0 y) = Int.Bit0 (x XOR y)"
-  "(Int.Bit0 x) XOR (Int.Bit1 y) = Int.Bit1 (x XOR y)"
-  "(Int.Bit1 x) XOR (Int.Bit0 y) = Int.Bit1 (x XOR y)"
-  "(Int.Bit1 x) XOR (Int.Bit1 y) = Int.Bit0 (x XOR y)"
-  unfolding BIT_simps [symmetric] int_xor_Bits by simp_all
-
-lemma int_xor_x_simps':
-  "w XOR (Int.Pls BIT 0) = w"
-  "w XOR (Int.Min BIT 1) = NOT w"
-  apply (induct w rule: bin_induct)
-       apply simp_all[4]
-   apply (unfold int_xor_Bits)
-   apply clarsimp+
-  done
-
-lemma int_xor_extra_simps [simp, code]:
-  "w XOR Int.Pls = w"
-  "w XOR Int.Min = NOT w"
-  using int_xor_x_simps' by simp_all
-
-lemma int_or_Pls [simp, code]: 
-  "Int.Pls OR x = x"
-  by (unfold int_or_def) (simp add: bin_rec_PM)
-  
-lemma int_or_Min [simp, code]:
-  "Int.Min OR x = Int.Min"
-  by (unfold int_or_def) (simp add: bin_rec_PM)
-
-lemma int_or_Bits [simp]: 
-  "(x BIT b) OR (y BIT c) = (x OR y) BIT (b OR c)"
-  unfolding int_or_def by (simp add: bin_rec_simps)
-
-lemma int_or_Bits2 [simp, code]: 
-  "(Int.Bit0 x) OR (Int.Bit0 y) = Int.Bit0 (x OR y)"
-  "(Int.Bit0 x) OR (Int.Bit1 y) = Int.Bit1 (x OR y)"
-  "(Int.Bit1 x) OR (Int.Bit0 y) = Int.Bit1 (x OR y)"
-  "(Int.Bit1 x) OR (Int.Bit1 y) = Int.Bit1 (x OR y)"
-  unfolding BIT_simps [symmetric] int_or_Bits by simp_all
-
-lemma int_or_x_simps': 
-  "w OR (Int.Pls BIT 0) = w"
-  "w OR (Int.Min BIT 1) = Int.Min"
-  apply (induct w rule: bin_induct)
-       apply simp_all[4]
-   apply (unfold int_or_Bits)
-   apply clarsimp+
-  done
-
-lemma int_or_extra_simps [simp, code]:
-  "w OR Int.Pls = w"
-  "w OR Int.Min = Int.Min"
-  using int_or_x_simps' by simp_all
-
-lemma int_and_Pls [simp, code]:
-  "Int.Pls AND x = Int.Pls"
-  unfolding int_and_def by (simp add: bin_rec_PM)
-
-lemma int_and_Min [simp, code]:
-  "Int.Min AND x = x"
-  unfolding int_and_def by (simp add: bin_rec_PM)
-
-lemma int_and_Bits [simp]: 
-  "(x BIT b) AND (y BIT c) = (x AND y) BIT (b AND c)" 
-  unfolding int_and_def by (simp add: bin_rec_simps)
-
-lemma int_and_Bits2 [simp, code]: 
-  "(Int.Bit0 x) AND (Int.Bit0 y) = Int.Bit0 (x AND y)"
-  "(Int.Bit0 x) AND (Int.Bit1 y) = Int.Bit0 (x AND y)"
-  "(Int.Bit1 x) AND (Int.Bit0 y) = Int.Bit0 (x AND y)"
-  "(Int.Bit1 x) AND (Int.Bit1 y) = Int.Bit1 (x AND y)"
-  unfolding BIT_simps [symmetric] int_and_Bits by simp_all
-
-lemma int_and_x_simps': 
-  "w AND (Int.Pls BIT 0) = Int.Pls"
-  "w AND (Int.Min BIT 1) = w"
-  apply (induct w rule: bin_induct)
-       apply simp_all[4]
-   apply (unfold int_and_Bits)
-   apply clarsimp+
-  done
-
-lemma int_and_extra_simps [simp, code]:
-  "w AND Int.Pls = Int.Pls"
-  "w AND Int.Min = w"
-  using int_and_x_simps' by simp_all
-
-(* commutativity of the above *)
-lemma bin_ops_comm:
-  shows
-  int_and_comm: "!!y::int. x AND y = y AND x" and
-  int_or_comm:  "!!y::int. x OR y = y OR x" and
-  int_xor_comm: "!!y::int. x XOR y = y XOR x"
-  apply (induct x rule: bin_induct)
-          apply simp_all[6]
-    apply (case_tac y rule: bin_exhaust, simp add: bit_ops_comm)+
-  done
-
-lemma bin_ops_same [simp]:
-  "(x::int) AND x = x" 
-  "(x::int) OR x = x" 
-  "(x::int) XOR x = Int.Pls"
-  by (induct x rule: bin_induct) auto
-
-lemma int_not_not [simp]: "NOT (NOT (x::int)) = x"
-  by (induct x rule: bin_induct) auto
-
-lemmas bin_log_esimps = 
-  int_and_extra_simps  int_or_extra_simps  int_xor_extra_simps
-  int_and_Pls int_and_Min  int_or_Pls int_or_Min  int_xor_Pls int_xor_Min
-
-(* basic properties of logical (bit-wise) operations *)
-
-lemma bbw_ao_absorb: 
-  "!!y::int. x AND (y OR x) = x & x OR (y AND x) = x"
-  apply (induct x rule: bin_induct)
-    apply auto 
-   apply (case_tac [!] y rule: bin_exhaust)
-   apply auto
-   apply (case_tac [!] bit)
-     apply auto
-  done
-
-lemma bbw_ao_absorbs_other:
-  "x AND (x OR y) = x \<and> (y AND x) OR x = (x::int)"
-  "(y OR x) AND x = x \<and> x OR (x AND y) = (x::int)"
-  "(x OR y) AND x = x \<and> (x AND y) OR x = (x::int)"
-  apply (auto simp: bbw_ao_absorb int_or_comm)  
-      apply (subst int_or_comm)
-    apply (simp add: bbw_ao_absorb)
-   apply (subst int_and_comm)
-   apply (subst int_or_comm)
-   apply (simp add: bbw_ao_absorb)
-  apply (subst int_and_comm)
-  apply (simp add: bbw_ao_absorb)
-  done
-
-lemmas bbw_ao_absorbs [simp] = bbw_ao_absorb bbw_ao_absorbs_other
-
-lemma int_xor_not:
-  "!!y::int. (NOT x) XOR y = NOT (x XOR y) & 
-        x XOR (NOT y) = NOT (x XOR y)"
-  apply (induct x rule: bin_induct)
-    apply auto
-   apply (case_tac y rule: bin_exhaust, auto, 
-          case_tac b, auto)+
-  done
-
-lemma bbw_assocs': 
-  "!!y z::int. (x AND y) AND z = x AND (y AND z) & 
-          (x OR y) OR z = x OR (y OR z) & 
-          (x XOR y) XOR z = x XOR (y XOR z)"
-  apply (induct x rule: bin_induct)
-    apply (auto simp: int_xor_not)
-    apply (case_tac [!] y rule: bin_exhaust)
-    apply (case_tac [!] z rule: bin_exhaust)
-    apply (case_tac [!] bit)
-       apply (case_tac [!] b)
-             apply (auto simp del: BIT_simps)
-  done
-
-lemma int_and_assoc:
-  "(x AND y) AND (z::int) = x AND (y AND z)"
-  by (simp add: bbw_assocs')
-
-lemma int_or_assoc:
-  "(x OR y) OR (z::int) = x OR (y OR z)"
-  by (simp add: bbw_assocs')
-
-lemma int_xor_assoc:
-  "(x XOR y) XOR (z::int) = x XOR (y XOR z)"
-  by (simp add: bbw_assocs')
-
-lemmas bbw_assocs = int_and_assoc int_or_assoc int_xor_assoc
-
-lemma bbw_lcs [simp]: 
-  "(y::int) AND (x AND z) = x AND (y AND z)"
-  "(y::int) OR (x OR z) = x OR (y OR z)"
-  "(y::int) XOR (x XOR z) = x XOR (y XOR z)" 
-  apply (auto simp: bbw_assocs [symmetric])
-  apply (auto simp: bin_ops_comm)
-  done
-
-lemma bbw_not_dist: 
-  "!!y::int. NOT (x OR y) = (NOT x) AND (NOT y)" 
-  "!!y::int. NOT (x AND y) = (NOT x) OR (NOT y)"
-  apply (induct x rule: bin_induct)
-       apply auto
-   apply (case_tac [!] y rule: bin_exhaust)
-   apply (case_tac [!] bit, auto simp del: BIT_simps)
-  done
-
-lemma bbw_oa_dist: 
-  "!!y z::int. (x AND y) OR z = 
-          (x OR z) AND (y OR z)"
-  apply (induct x rule: bin_induct)
-    apply auto
-  apply (case_tac y rule: bin_exhaust)
-  apply (case_tac z rule: bin_exhaust)
-  apply (case_tac ba, auto simp del: BIT_simps)
-  done
-
-lemma bbw_ao_dist: 
-  "!!y z::int. (x OR y) AND z = 
-          (x AND z) OR (y AND z)"
-   apply (induct x rule: bin_induct)
-    apply auto
-  apply (case_tac y rule: bin_exhaust)
-  apply (case_tac z rule: bin_exhaust)
-  apply (case_tac ba, auto simp del: BIT_simps)
-  done
-
-(*
-Why were these declared simp???
-declare bin_ops_comm [simp] bbw_assocs [simp] 
-*)
-
-lemma plus_and_or [rule_format]:
-  "ALL y::int. (x AND y) + (x OR y) = x + y"
-  apply (induct x rule: bin_induct)
-    apply clarsimp
-   apply clarsimp
-  apply clarsimp
-  apply (case_tac y rule: bin_exhaust)
-  apply clarsimp
-  apply (unfold Bit_def)
-  apply clarsimp
-  apply (erule_tac x = "x" in allE)
-  apply (simp split: bit.split)
-  done
-
-lemma le_int_or:
-  "!!x.  bin_sign y = Int.Pls ==> x <= x OR y"
-  apply (induct y rule: bin_induct)
-    apply clarsimp
-   apply clarsimp
-  apply (case_tac x rule: bin_exhaust)
-  apply (case_tac b)
-   apply (case_tac [!] bit)
-     apply (auto simp: less_eq_int_code)
-  done
-
-lemmas int_and_le =
-  xtr3 [OF bbw_ao_absorbs (2) [THEN conjunct2, symmetric] le_int_or] ;
-
-lemma bin_nth_ops:
-  "!!x y. bin_nth (x AND y) n = (bin_nth x n & bin_nth y n)" 
-  "!!x y. bin_nth (x OR y) n = (bin_nth x n | bin_nth y n)"
-  "!!x y. bin_nth (x XOR y) n = (bin_nth x n ~= bin_nth y n)" 
-  "!!x. bin_nth (NOT x) n = (~ bin_nth x n)"
-  apply (induct n)
-         apply safe
-                         apply (case_tac [!] x rule: bin_exhaust)
-                         apply (simp_all del: BIT_simps)
-                      apply (case_tac [!] y rule: bin_exhaust)
-                      apply (simp_all del: BIT_simps)
-        apply (auto dest: not_B1_is_B0 intro: B1_ass_B0)
-  done
-
-(* interaction between bit-wise and arithmetic *)
-(* good example of bin_induction *)
-lemma bin_add_not: "x + NOT x = Int.Min"
-  apply (induct x rule: bin_induct)
-    apply clarsimp
-   apply clarsimp
-  apply (case_tac bit, auto)
-  done
-
-(* truncating results of bit-wise operations *)
-lemma bin_trunc_ao: 
-  "!!x y. (bintrunc n x) AND (bintrunc n y) = bintrunc n (x AND y)" 
-  "!!x y. (bintrunc n x) OR (bintrunc n y) = bintrunc n (x OR y)"
-  apply (induct n)
-      apply auto
-      apply (case_tac [!] x rule: bin_exhaust)
-      apply (case_tac [!] y rule: bin_exhaust)
-      apply auto
-  done
-
-lemma bin_trunc_xor: 
-  "!!x y. bintrunc n (bintrunc n x XOR bintrunc n y) = 
-          bintrunc n (x XOR y)"
-  apply (induct n)
-   apply auto
-   apply (case_tac [!] x rule: bin_exhaust)
-   apply (case_tac [!] y rule: bin_exhaust)
-   apply auto
-  done
-
-lemma bin_trunc_not: 
-  "!!x. bintrunc n (NOT (bintrunc n x)) = bintrunc n (NOT x)"
-  apply (induct n)
-   apply auto
-   apply (case_tac [!] x rule: bin_exhaust)
-   apply auto
-  done
-
-(* want theorems of the form of bin_trunc_xor *)
-lemma bintr_bintr_i:
-  "x = bintrunc n y ==> bintrunc n x = bintrunc n y"
-  by auto
-
-lemmas bin_trunc_and = bin_trunc_ao(1) [THEN bintr_bintr_i]
-lemmas bin_trunc_or = bin_trunc_ao(2) [THEN bintr_bintr_i]
-
-subsection {* Setting and clearing bits *}
-
-primrec
-  bin_sc :: "nat => bit => int => int"
-where
-  Z: "bin_sc 0 b w = bin_rest w BIT b"
-  | Suc: "bin_sc (Suc n) b w = bin_sc n b (bin_rest w) BIT bin_last w"
-
-(** nth bit, set/clear **)
-
-lemma bin_nth_sc [simp]: 
-  "!!w. bin_nth (bin_sc n b w) n = (b = 1)"
-  by (induct n)  auto
-
-lemma bin_sc_sc_same [simp]: 
-  "!!w. bin_sc n c (bin_sc n b w) = bin_sc n c w"
-  by (induct n) auto
-
-lemma bin_sc_sc_diff:
-  "!!w m. m ~= n ==> 
-    bin_sc m c (bin_sc n b w) = bin_sc n b (bin_sc m c w)"
-  apply (induct n)
-   apply (case_tac [!] m)
-     apply auto
-  done
-
-lemma bin_nth_sc_gen: 
-  "!!w m. bin_nth (bin_sc n b w) m = (if m = n then b = 1 else bin_nth w m)"
-  by (induct n) (case_tac [!] m, auto)
-  
-lemma bin_sc_nth [simp]:
-  "!!w. (bin_sc n (If (bin_nth w n) 1 0) w) = w"
-  by (induct n) auto
-
-lemma bin_sign_sc [simp]:
-  "!!w. bin_sign (bin_sc n b w) = bin_sign w"
-  by (induct n) auto
-  
-lemma bin_sc_bintr [simp]: 
-  "!!w m. bintrunc m (bin_sc n x (bintrunc m (w))) = bintrunc m (bin_sc n x w)"
-  apply (induct n)
-   apply (case_tac [!] w rule: bin_exhaust)
-   apply (case_tac [!] m, auto)
-  done
-
-lemma bin_clr_le:
-  "!!w. bin_sc n 0 w <= w"
-  apply (induct n) 
-   apply (case_tac [!] w rule: bin_exhaust)
-   apply (auto simp del: BIT_simps)
-   apply (unfold Bit_def)
-   apply (simp_all split: bit.split)
-  done
-
-lemma bin_set_ge:
-  "!!w. bin_sc n 1 w >= w"
-  apply (induct n) 
-   apply (case_tac [!] w rule: bin_exhaust)
-   apply (auto simp del: BIT_simps)
-   apply (unfold Bit_def)
-   apply (simp_all split: bit.split)
-  done
-
-lemma bintr_bin_clr_le:
-  "!!w m. bintrunc n (bin_sc m 0 w) <= bintrunc n w"
-  apply (induct n)
-   apply simp
-  apply (case_tac w rule: bin_exhaust)
-  apply (case_tac m)
-   apply (auto simp del: BIT_simps)
-   apply (unfold Bit_def)
-   apply (simp_all split: bit.split)
-  done
-
-lemma bintr_bin_set_ge:
-  "!!w m. bintrunc n (bin_sc m 1 w) >= bintrunc n w"
-  apply (induct n)
-   apply simp
-  apply (case_tac w rule: bin_exhaust)
-  apply (case_tac m)
-   apply (auto simp del: BIT_simps)
-   apply (unfold Bit_def)
-   apply (simp_all split: bit.split)
-  done
-
-lemma bin_sc_FP [simp]: "bin_sc n 0 Int.Pls = Int.Pls"
-  by (induct n) auto
-
-lemma bin_sc_TM [simp]: "bin_sc n 1 Int.Min = Int.Min"
-  by (induct n) auto
-  
-lemmas bin_sc_simps = bin_sc.Z bin_sc.Suc bin_sc_TM bin_sc_FP
-
-lemma bin_sc_minus:
-  "0 < n ==> bin_sc (Suc (n - 1)) b w = bin_sc n b w"
-  by auto
-
-lemmas bin_sc_Suc_minus = 
-  trans [OF bin_sc_minus [symmetric] bin_sc.Suc, standard]
-
-lemmas bin_sc_Suc_pred [simp] = 
-  bin_sc_Suc_minus [of "number_of bin", simplified nobm1, standard]
-
-
-subsection {* Splitting and concatenation *}
-
-definition bin_rcat :: "nat \<Rightarrow> int list \<Rightarrow> int" where
-  "bin_rcat n = foldl (%u v. bin_cat u n v) Int.Pls"
-
-fun bin_rsplit_aux :: "nat \<Rightarrow> nat \<Rightarrow> int \<Rightarrow> int list \<Rightarrow> int list" where
-  "bin_rsplit_aux n m c bs =
-    (if m = 0 | n = 0 then bs else
-      let (a, b) = bin_split n c 
-      in bin_rsplit_aux n (m - n) a (b # bs))"
-
-definition bin_rsplit :: "nat \<Rightarrow> nat \<times> int \<Rightarrow> int list" where
-  "bin_rsplit n w = bin_rsplit_aux n (fst w) (snd w) []"
-
-fun bin_rsplitl_aux :: "nat \<Rightarrow> nat \<Rightarrow> int \<Rightarrow> int list \<Rightarrow> int list" where
-  "bin_rsplitl_aux n m c bs =
-    (if m = 0 | n = 0 then bs else
-      let (a, b) = bin_split (min m n) c 
-      in bin_rsplitl_aux n (m - n) a (b # bs))"
-
-definition bin_rsplitl :: "nat \<Rightarrow> nat \<times> int \<Rightarrow> int list" where
-  "bin_rsplitl n w = bin_rsplitl_aux n (fst w) (snd w) []"
-
-declare bin_rsplit_aux.simps [simp del]
-declare bin_rsplitl_aux.simps [simp del]
-
-lemma bin_sign_cat: 
-  "!!y. bin_sign (bin_cat x n y) = bin_sign x"
-  by (induct n) auto
-
-lemma bin_cat_Suc_Bit:
-  "bin_cat w (Suc n) (v BIT b) = bin_cat w n v BIT b"
-  by auto
-
-lemma bin_nth_cat: 
-  "!!n y. bin_nth (bin_cat x k y) n = 
-    (if n < k then bin_nth y n else bin_nth x (n - k))"
-  apply (induct k)
-   apply clarsimp
-  apply (case_tac n, auto)
-  done
-
-lemma bin_nth_split:
-  "!!b c. bin_split n c = (a, b) ==> 
-    (ALL k. bin_nth a k = bin_nth c (n + k)) & 
-    (ALL k. bin_nth b k = (k < n & bin_nth c k))"
-  apply (induct n)
-   apply clarsimp
-  apply (clarsimp simp: Let_def split: ls_splits)
-  apply (case_tac k)
-  apply auto
-  done
-
-lemma bin_cat_assoc: 
-  "!!z. bin_cat (bin_cat x m y) n z = bin_cat x (m + n) (bin_cat y n z)" 
-  by (induct n) auto
-
-lemma bin_cat_assoc_sym: "!!z m. 
-  bin_cat x m (bin_cat y n z) = bin_cat (bin_cat x (m - n) y) (min m n) z"
-  apply (induct n, clarsimp)
-  apply (case_tac m, auto)
-  done
-
-lemma bin_cat_Pls [simp]: 
-  "!!w. bin_cat Int.Pls n w = bintrunc n w"
-  by (induct n) auto
-
-lemma bintr_cat1: 
-  "!!b. bintrunc (k + n) (bin_cat a n b) = bin_cat (bintrunc k a) n b"
-  by (induct n) auto
-    
-lemma bintr_cat: "bintrunc m (bin_cat a n b) = 
-    bin_cat (bintrunc (m - n) a) n (bintrunc (min m n) b)"
-  by (rule bin_eqI) (auto simp: bin_nth_cat nth_bintr)
-    
-lemma bintr_cat_same [simp]: 
-  "bintrunc n (bin_cat a n b) = bintrunc n b"
-  by (auto simp add : bintr_cat)
-
-lemma cat_bintr [simp]: 
-  "!!b. bin_cat a n (bintrunc n b) = bin_cat a n b"
-  by (induct n) auto
-
-lemma split_bintrunc: 
-  "!!b c. bin_split n c = (a, b) ==> b = bintrunc n c"
-  by (induct n) (auto simp: Let_def split: ls_splits)
-
-lemma bin_cat_split:
-  "!!v w. bin_split n w = (u, v) ==> w = bin_cat u n v"
-  by (induct n) (auto simp: Let_def split: ls_splits)
-
-lemma bin_split_cat:
-  "!!w. bin_split n (bin_cat v n w) = (v, bintrunc n w)"
-  by (induct n) auto
-
-lemma bin_split_Pls [simp]:
-  "bin_split n Int.Pls = (Int.Pls, Int.Pls)"
-  by (induct n) (auto simp: Let_def split: ls_splits)
-
-lemma bin_split_Min [simp]:
-  "bin_split n Int.Min = (Int.Min, bintrunc n Int.Min)"
-  by (induct n) (auto simp: Let_def split: ls_splits)
-
-lemma bin_split_trunc:
-  "!!m b c. bin_split (min m n) c = (a, b) ==> 
-    bin_split n (bintrunc m c) = (bintrunc (m - n) a, b)"
-  apply (induct n, clarsimp)
-  apply (simp add: bin_rest_trunc Let_def split: ls_splits)
-  apply (case_tac m)
-   apply (auto simp: Let_def split: ls_splits)
-  done
-
-lemma bin_split_trunc1:
-  "!!m b c. bin_split n c = (a, b) ==> 
-    bin_split n (bintrunc m c) = (bintrunc (m - n) a, bintrunc m b)"
-  apply (induct n, clarsimp)
-  apply (simp add: bin_rest_trunc Let_def split: ls_splits)
-  apply (case_tac m)
-   apply (auto simp: Let_def split: ls_splits)
-  done
-
-lemma bin_cat_num:
-  "!!b. bin_cat a n b = a * 2 ^ n + bintrunc n b"
-  apply (induct n, clarsimp)
-  apply (simp add: Bit_def cong: number_of_False_cong)
-  done
-
-lemma bin_split_num:
-  "!!b. bin_split n b = (b div 2 ^ n, b mod 2 ^ n)"
-  apply (induct n, clarsimp)
-  apply (simp add: bin_rest_div zdiv_zmult2_eq)
-  apply (case_tac b rule: bin_exhaust)
-  apply simp
-  apply (simp add: Bit_def mod_mult_mult1 p1mod22k
-              split: bit.split 
-              cong: number_of_False_cong)
-  done 
-
-subsection {* Miscellaneous lemmas *}
-
-lemma nth_2p_bin: 
-  "!!m. bin_nth (2 ^ n) m = (m = n)"
-  apply (induct n)
-   apply clarsimp
-   apply safe
-     apply (case_tac m) 
-      apply (auto simp: trans [OF numeral_1_eq_1 [symmetric] number_of_eq])
-   apply (case_tac m) 
-    apply (auto simp: Bit_B0_2t [symmetric])
-  done
-
-(* for use when simplifying with bin_nth_Bit *)
-
-lemma ex_eq_or:
-  "(EX m. n = Suc m & (m = k | P m)) = (n = Suc k | (EX m. n = Suc m & P m))"
-  by auto
-
-end
-