| author | haftmann | 
| Wed, 22 Oct 2008 14:15:45 +0200 | |
| changeset 28663 | bd8438543bf2 | 
| parent 27668 | 6eb20b2cecf8 | 
| permissions | -rw-r--r-- | 
| 21263 | 1  | 
(* Title: HOL/Library/Parity.thy  | 
| 21256 | 2  | 
ID: $Id$  | 
| 25600 | 3  | 
Author: Jeremy Avigad, Jacques D. Fleuriot  | 
| 21256 | 4  | 
*)  | 
5  | 
||
6  | 
header {* Even and Odd for int and nat *}
 | 
|
7  | 
||
8  | 
theory Parity  | 
|
| 27487 | 9  | 
imports Plain "~~/src/HOL/Presburger"  | 
| 21256 | 10  | 
begin  | 
11  | 
||
| 22473 | 12  | 
class even_odd = type +  | 
| 22390 | 13  | 
fixes even :: "'a \<Rightarrow> bool"  | 
| 21256 | 14  | 
|
15  | 
abbreviation  | 
|
| 22390 | 16  | 
odd :: "'a\<Colon>even_odd \<Rightarrow> bool" where  | 
17  | 
"odd x \<equiv> \<not> even x"  | 
|
18  | 
||
| 26259 | 19  | 
instantiation nat and int :: even_odd  | 
| 
25571
 
c9e39eafc7a0
instantiation target rather than legacy instance
 
haftmann 
parents: 
25502 
diff
changeset
 | 
20  | 
begin  | 
| 
 
c9e39eafc7a0
instantiation target rather than legacy instance
 
haftmann 
parents: 
25502 
diff
changeset
 | 
21  | 
|
| 
 
c9e39eafc7a0
instantiation target rather than legacy instance
 
haftmann 
parents: 
25502 
diff
changeset
 | 
22  | 
definition  | 
| 
 
c9e39eafc7a0
instantiation target rather than legacy instance
 
haftmann 
parents: 
25502 
diff
changeset
 | 
23  | 
even_def [presburger]: "even x \<longleftrightarrow> (x\<Colon>int) mod 2 = 0"  | 
| 22390 | 24  | 
|
| 
25571
 
c9e39eafc7a0
instantiation target rather than legacy instance
 
haftmann 
parents: 
25502 
diff
changeset
 | 
25  | 
definition  | 
| 
 
c9e39eafc7a0
instantiation target rather than legacy instance
 
haftmann 
parents: 
25502 
diff
changeset
 | 
26  | 
even_nat_def [presburger]: "even x \<longleftrightarrow> even (int x)"  | 
| 
 
c9e39eafc7a0
instantiation target rather than legacy instance
 
haftmann 
parents: 
25502 
diff
changeset
 | 
27  | 
|
| 
 
c9e39eafc7a0
instantiation target rather than legacy instance
 
haftmann 
parents: 
25502 
diff
changeset
 | 
28  | 
instance ..  | 
| 
 
c9e39eafc7a0
instantiation target rather than legacy instance
 
haftmann 
parents: 
25502 
diff
changeset
 | 
29  | 
|
| 
 
c9e39eafc7a0
instantiation target rather than legacy instance
 
haftmann 
parents: 
25502 
diff
changeset
 | 
30  | 
end  | 
| 21256 | 31  | 
|
32  | 
||
33  | 
subsection {* Even and odd are mutually exclusive *}
 | 
|
34  | 
||
| 21263 | 35  | 
lemma int_pos_lt_two_imp_zero_or_one:  | 
| 21256 | 36  | 
"0 <= x ==> (x::int) < 2 ==> x = 0 | x = 1"  | 
| 23522 | 37  | 
by presburger  | 
| 21256 | 38  | 
|
| 23522 | 39  | 
lemma neq_one_mod_two [simp, presburger]:  | 
40  | 
"((x::int) mod 2 ~= 0) = (x mod 2 = 1)" by presburger  | 
|
| 21256 | 41  | 
|
| 25600 | 42  | 
|
| 21256 | 43  | 
subsection {* Behavior under integer arithmetic operations *}
 | 
| 27668 | 44  | 
declare dvd_def[algebra]  | 
45  | 
lemma nat_even_iff_2_dvd[algebra]: "even (x::nat) \<longleftrightarrow> 2 dvd x"  | 
|
46  | 
by (presburger add: even_nat_def even_def)  | 
|
47  | 
lemma int_even_iff_2_dvd[algebra]: "even (x::int) \<longleftrightarrow> 2 dvd x"  | 
|
48  | 
by presburger  | 
|
| 21256 | 49  | 
|
50  | 
lemma even_times_anything: "even (x::int) ==> even (x * y)"  | 
|
| 27668 | 51  | 
by algebra  | 
| 21256 | 52  | 
|
| 27668 | 53  | 
lemma anything_times_even: "even (y::int) ==> even (x * y)" by algebra  | 
| 21256 | 54  | 
|
| 27668 | 55  | 
lemma odd_times_odd: "odd (x::int) ==> odd y ==> odd (x * y)"  | 
| 21256 | 56  | 
by (simp add: even_def zmod_zmult1_eq)  | 
57  | 
||
| 23522 | 58  | 
lemma even_product[presburger]: "even((x::int) * y) = (even x | even y)"  | 
| 21263 | 59  | 
apply (auto simp add: even_times_anything anything_times_even)  | 
| 21256 | 60  | 
apply (rule ccontr)  | 
61  | 
apply (auto simp add: odd_times_odd)  | 
|
62  | 
done  | 
|
63  | 
||
64  | 
lemma even_plus_even: "even (x::int) ==> even y ==> even (x + y)"  | 
|
| 23522 | 65  | 
by presburger  | 
| 21256 | 66  | 
|
67  | 
lemma even_plus_odd: "even (x::int) ==> odd y ==> odd (x + y)"  | 
|
| 23522 | 68  | 
by presburger  | 
| 21256 | 69  | 
|
70  | 
lemma odd_plus_even: "odd (x::int) ==> even y ==> odd (x + y)"  | 
|
| 23522 | 71  | 
by presburger  | 
| 21256 | 72  | 
|
| 23522 | 73  | 
lemma odd_plus_odd: "odd (x::int) ==> odd y ==> even (x + y)" by presburger  | 
| 21256 | 74  | 
|
| 23522 | 75  | 
lemma even_sum[presburger]: "even ((x::int) + y) = ((even x & even y) | (odd x & odd y))"  | 
76  | 
by presburger  | 
|
| 21256 | 77  | 
|
| 27668 | 78  | 
lemma even_neg[presburger, algebra]: "even (-(x::int)) = even x" by presburger  | 
| 21256 | 79  | 
|
| 21263 | 80  | 
lemma even_difference:  | 
| 23522 | 81  | 
"even ((x::int) - y) = ((even x & even y) | (odd x & odd y))" by presburger  | 
| 21256 | 82  | 
|
| 21263 | 83  | 
lemma even_pow_gt_zero:  | 
84  | 
"even (x::int) ==> 0 < n ==> even (x^n)"  | 
|
85  | 
by (induct n) (auto simp add: even_product)  | 
|
| 21256 | 86  | 
|
| 27668 | 87  | 
lemma odd_pow_iff[presburger, algebra]:  | 
88  | 
"odd ((x::int) ^ n) \<longleftrightarrow> (n = 0 \<or> odd x)"  | 
|
| 23522 | 89  | 
apply (induct n, simp_all)  | 
90  | 
apply presburger  | 
|
91  | 
apply (case_tac n, auto)  | 
|
92  | 
apply (simp_all add: even_product)  | 
|
| 21256 | 93  | 
done  | 
94  | 
||
| 23522 | 95  | 
lemma odd_pow: "odd x ==> odd((x::int)^n)" by (simp add: odd_pow_iff)  | 
96  | 
||
97  | 
lemma even_power[presburger]: "even ((x::int)^n) = (even x & 0 < n)"  | 
|
| 21263 | 98  | 
apply (auto simp add: even_pow_gt_zero)  | 
| 21256 | 99  | 
apply (erule contrapos_pp, erule odd_pow)  | 
100  | 
apply (erule contrapos_pp, simp add: even_def)  | 
|
101  | 
done  | 
|
102  | 
||
| 23522 | 103  | 
lemma even_zero[presburger]: "even (0::int)" by presburger  | 
| 21256 | 104  | 
|
| 23522 | 105  | 
lemma odd_one[presburger]: "odd (1::int)" by presburger  | 
| 21256 | 106  | 
|
| 21263 | 107  | 
lemmas even_odd_simps [simp] = even_def[of "number_of v",standard] even_zero  | 
| 21256 | 108  | 
odd_one even_product even_sum even_neg even_difference even_power  | 
109  | 
||
110  | 
||
111  | 
subsection {* Equivalent definitions *}
 | 
|
112  | 
||
| 23522 | 113  | 
lemma two_times_even_div_two: "even (x::int) ==> 2 * (x div 2) = x"  | 
114  | 
by presburger  | 
|
| 21256 | 115  | 
|
| 21263 | 116  | 
lemma two_times_odd_div_two_plus_one: "odd (x::int) ==>  | 
| 23522 | 117  | 
2 * (x div 2) + 1 = x" by presburger  | 
| 21256 | 118  | 
|
| 23522 | 119  | 
lemma even_equiv_def: "even (x::int) = (EX y. x = 2 * y)" by presburger  | 
| 21256 | 120  | 
|
| 23522 | 121  | 
lemma odd_equiv_def: "odd (x::int) = (EX y. x = 2 * y + 1)" by presburger  | 
| 21256 | 122  | 
|
123  | 
subsection {* even and odd for nats *}
 | 
|
124  | 
||
125  | 
lemma pos_int_even_equiv_nat_even: "0 \<le> x ==> even x = even (nat x)"  | 
|
126  | 
by (simp add: even_nat_def)  | 
|
127  | 
||
| 27668 | 128  | 
lemma even_nat_product[presburger, algebra]: "even((x::nat) * y) = (even x | even y)"  | 
| 
23431
 
25ca91279a9b
change simp rules for of_nat to work like int did previously (reorient of_nat_Suc, remove of_nat_mult [simp]); preserve original variable names in legacy int theorems
 
huffman 
parents: 
23309 
diff
changeset
 | 
129  | 
by (simp add: even_nat_def int_mult)  | 
| 21256 | 130  | 
|
| 27668 | 131  | 
lemma even_nat_sum[presburger, algebra]: "even ((x::nat) + y) =  | 
| 23522 | 132  | 
((even x & even y) | (odd x & odd y))" by presburger  | 
| 21256 | 133  | 
|
| 27668 | 134  | 
lemma even_nat_difference[presburger, algebra]:  | 
| 21256 | 135  | 
"even ((x::nat) - y) = (x < y | (even x & even y) | (odd x & odd y))"  | 
| 23522 | 136  | 
by presburger  | 
| 21256 | 137  | 
|
| 27668 | 138  | 
lemma even_nat_Suc[presburger, algebra]: "even (Suc x) = odd x" by presburger  | 
| 21256 | 139  | 
|
| 27668 | 140  | 
lemma even_nat_power[presburger, algebra]: "even ((x::nat)^y) = (even x & 0 < y)"  | 
| 
23431
 
25ca91279a9b
change simp rules for of_nat to work like int did previously (reorient of_nat_Suc, remove of_nat_mult [simp]); preserve original variable names in legacy int theorems
 
huffman 
parents: 
23309 
diff
changeset
 | 
141  | 
by (simp add: even_nat_def int_power)  | 
| 21256 | 142  | 
|
| 23522 | 143  | 
lemma even_nat_zero[presburger]: "even (0::nat)" by presburger  | 
| 21256 | 144  | 
|
| 21263 | 145  | 
lemmas even_odd_nat_simps [simp] = even_nat_def[of "number_of v",standard]  | 
| 21256 | 146  | 
even_nat_zero even_nat_Suc even_nat_product even_nat_sum even_nat_power  | 
147  | 
||
148  | 
||
149  | 
subsection {* Equivalent definitions *}
 | 
|
150  | 
||
| 21263 | 151  | 
lemma nat_lt_two_imp_zero_or_one: "(x::nat) < Suc (Suc 0) ==>  | 
| 23522 | 152  | 
x = 0 | x = Suc 0" by presburger  | 
| 21256 | 153  | 
|
154  | 
lemma even_nat_mod_two_eq_zero: "even (x::nat) ==> x mod (Suc (Suc 0)) = 0"  | 
|
| 23522 | 155  | 
by presburger  | 
| 21256 | 156  | 
|
157  | 
lemma odd_nat_mod_two_eq_one: "odd (x::nat) ==> x mod (Suc (Suc 0)) = Suc 0"  | 
|
| 23522 | 158  | 
by presburger  | 
| 21256 | 159  | 
|
| 21263 | 160  | 
lemma even_nat_equiv_def: "even (x::nat) = (x mod Suc (Suc 0) = 0)"  | 
| 23522 | 161  | 
by presburger  | 
| 21256 | 162  | 
|
163  | 
lemma odd_nat_equiv_def: "odd (x::nat) = (x mod Suc (Suc 0) = Suc 0)"  | 
|
| 23522 | 164  | 
by presburger  | 
| 21256 | 165  | 
|
| 21263 | 166  | 
lemma even_nat_div_two_times_two: "even (x::nat) ==>  | 
| 23522 | 167  | 
Suc (Suc 0) * (x div Suc (Suc 0)) = x" by presburger  | 
| 21256 | 168  | 
|
| 21263 | 169  | 
lemma odd_nat_div_two_times_two_plus_one: "odd (x::nat) ==>  | 
| 23522 | 170  | 
Suc( Suc (Suc 0) * (x div Suc (Suc 0))) = x" by presburger  | 
| 21256 | 171  | 
|
172  | 
lemma even_nat_equiv_def2: "even (x::nat) = (EX y. x = Suc (Suc 0) * y)"  | 
|
| 23522 | 173  | 
by presburger  | 
| 21256 | 174  | 
|
175  | 
lemma odd_nat_equiv_def2: "odd (x::nat) = (EX y. x = Suc(Suc (Suc 0) * y))"  | 
|
| 23522 | 176  | 
by presburger  | 
| 21256 | 177  | 
|
| 25600 | 178  | 
|
| 21256 | 179  | 
subsection {* Parity and powers *}
 | 
180  | 
||
| 21263 | 181  | 
lemma minus_one_even_odd_power:  | 
182  | 
     "(even x --> (- 1::'a::{comm_ring_1,recpower})^x = 1) &
 | 
|
| 21256 | 183  | 
(odd x --> (- 1::'a)^x = - 1)"  | 
184  | 
apply (induct x)  | 
|
185  | 
apply (rule conjI)  | 
|
186  | 
apply simp  | 
|
187  | 
apply (insert even_nat_zero, blast)  | 
|
188  | 
apply (simp add: power_Suc)  | 
|
| 21263 | 189  | 
done  | 
| 21256 | 190  | 
|
191  | 
lemma minus_one_even_power [simp]:  | 
|
| 21263 | 192  | 
    "even x ==> (- 1::'a::{comm_ring_1,recpower})^x = 1"
 | 
193  | 
using minus_one_even_odd_power by blast  | 
|
| 21256 | 194  | 
|
195  | 
lemma minus_one_odd_power [simp]:  | 
|
| 21263 | 196  | 
    "odd x ==> (- 1::'a::{comm_ring_1,recpower})^x = - 1"
 | 
197  | 
using minus_one_even_odd_power by blast  | 
|
| 21256 | 198  | 
|
199  | 
lemma neg_one_even_odd_power:  | 
|
| 21263 | 200  | 
     "(even x --> (-1::'a::{number_ring,recpower})^x = 1) &
 | 
| 21256 | 201  | 
(odd x --> (-1::'a)^x = -1)"  | 
202  | 
apply (induct x)  | 
|
203  | 
apply (simp, simp add: power_Suc)  | 
|
204  | 
done  | 
|
205  | 
||
206  | 
lemma neg_one_even_power [simp]:  | 
|
| 21263 | 207  | 
    "even x ==> (-1::'a::{number_ring,recpower})^x = 1"
 | 
208  | 
using neg_one_even_odd_power by blast  | 
|
| 21256 | 209  | 
|
210  | 
lemma neg_one_odd_power [simp]:  | 
|
| 21263 | 211  | 
    "odd x ==> (-1::'a::{number_ring,recpower})^x = -1"
 | 
212  | 
using neg_one_even_odd_power by blast  | 
|
| 21256 | 213  | 
|
214  | 
lemma neg_power_if:  | 
|
| 21263 | 215  | 
     "(-x::'a::{comm_ring_1,recpower}) ^ n =
 | 
| 21256 | 216  | 
(if even n then (x ^ n) else -(x ^ n))"  | 
| 21263 | 217  | 
apply (induct n)  | 
218  | 
apply (simp_all split: split_if_asm add: power_Suc)  | 
|
219  | 
done  | 
|
| 21256 | 220  | 
|
| 21263 | 221  | 
lemma zero_le_even_power: "even n ==>  | 
| 21256 | 222  | 
    0 <= (x::'a::{recpower,ordered_ring_strict}) ^ n"
 | 
223  | 
apply (simp add: even_nat_equiv_def2)  | 
|
224  | 
apply (erule exE)  | 
|
225  | 
apply (erule ssubst)  | 
|
226  | 
apply (subst power_add)  | 
|
227  | 
apply (rule zero_le_square)  | 
|
228  | 
done  | 
|
229  | 
||
| 21263 | 230  | 
lemma zero_le_odd_power: "odd n ==>  | 
| 21256 | 231  | 
    (0 <= (x::'a::{recpower,ordered_idom}) ^ n) = (0 <= x)"
 | 
232  | 
apply (simp add: odd_nat_equiv_def2)  | 
|
233  | 
apply (erule exE)  | 
|
234  | 
apply (erule ssubst)  | 
|
235  | 
apply (subst power_Suc)  | 
|
236  | 
apply (subst power_add)  | 
|
237  | 
apply (subst zero_le_mult_iff)  | 
|
238  | 
apply auto  | 
|
| 25162 | 239  | 
apply (subgoal_tac "x = 0 & y > 0")  | 
| 21256 | 240  | 
apply (erule conjE, assumption)  | 
| 21263 | 241  | 
apply (subst power_eq_0_iff [symmetric])  | 
| 21256 | 242  | 
apply (subgoal_tac "0 <= x^y * x^y")  | 
243  | 
apply simp  | 
|
244  | 
apply (rule zero_le_square)+  | 
|
| 21263 | 245  | 
done  | 
| 21256 | 246  | 
|
| 23522 | 247  | 
lemma zero_le_power_eq[presburger]: "(0 <= (x::'a::{recpower,ordered_idom}) ^ n) =
 | 
| 21256 | 248  | 
(even n | (odd n & 0 <= x))"  | 
249  | 
apply auto  | 
|
| 21263 | 250  | 
apply (subst zero_le_odd_power [symmetric])  | 
| 21256 | 251  | 
apply assumption+  | 
252  | 
apply (erule zero_le_even_power)  | 
|
| 21263 | 253  | 
done  | 
| 21256 | 254  | 
|
| 23522 | 255  | 
lemma zero_less_power_eq[presburger]: "(0 < (x::'a::{recpower,ordered_idom}) ^ n) =
 | 
| 21256 | 256  | 
(n = 0 | (even n & x ~= 0) | (odd n & 0 < x))"  | 
| 27668 | 257  | 
|
258  | 
unfolding order_less_le zero_le_power_eq by auto  | 
|
| 21256 | 259  | 
|
| 23522 | 260  | 
lemma power_less_zero_eq[presburger]: "((x::'a::{recpower,ordered_idom}) ^ n < 0) =
 | 
| 27668 | 261  | 
(odd n & x < 0)"  | 
| 21263 | 262  | 
apply (subst linorder_not_le [symmetric])+  | 
| 21256 | 263  | 
apply (subst zero_le_power_eq)  | 
264  | 
apply auto  | 
|
| 21263 | 265  | 
done  | 
| 21256 | 266  | 
|
| 23522 | 267  | 
lemma power_le_zero_eq[presburger]: "((x::'a::{recpower,ordered_idom}) ^ n <= 0) =
 | 
| 21256 | 268  | 
(n ~= 0 & ((odd n & x <= 0) | (even n & x = 0)))"  | 
| 21263 | 269  | 
apply (subst linorder_not_less [symmetric])+  | 
| 21256 | 270  | 
apply (subst zero_less_power_eq)  | 
271  | 
apply auto  | 
|
| 21263 | 272  | 
done  | 
| 21256 | 273  | 
|
| 21263 | 274  | 
lemma power_even_abs: "even n ==>  | 
| 21256 | 275  | 
    (abs (x::'a::{recpower,ordered_idom}))^n = x^n"
 | 
| 21263 | 276  | 
apply (subst power_abs [symmetric])  | 
| 21256 | 277  | 
apply (simp add: zero_le_even_power)  | 
| 21263 | 278  | 
done  | 
| 21256 | 279  | 
|
| 23522 | 280  | 
lemma zero_less_power_nat_eq[presburger]: "(0 < (x::nat) ^ n) = (n = 0 | 0 < x)"  | 
| 21263 | 281  | 
by (induct n) auto  | 
| 21256 | 282  | 
|
| 21263 | 283  | 
lemma power_minus_even [simp]: "even n ==>  | 
| 21256 | 284  | 
    (- x)^n = (x^n::'a::{recpower,comm_ring_1})"
 | 
285  | 
apply (subst power_minus)  | 
|
286  | 
apply simp  | 
|
| 21263 | 287  | 
done  | 
| 21256 | 288  | 
|
| 21263 | 289  | 
lemma power_minus_odd [simp]: "odd n ==>  | 
| 21256 | 290  | 
    (- x)^n = - (x^n::'a::{recpower,comm_ring_1})"
 | 
291  | 
apply (subst power_minus)  | 
|
292  | 
apply simp  | 
|
| 21263 | 293  | 
done  | 
| 21256 | 294  | 
|
| 21263 | 295  | 
|
| 25600 | 296  | 
subsection {* General Lemmas About Division *}
 | 
297  | 
||
298  | 
lemma Suc_times_mod_eq: "1<k ==> Suc (k * m) mod k = 1"  | 
|
299  | 
apply (induct "m")  | 
|
300  | 
apply (simp_all add: mod_Suc)  | 
|
301  | 
done  | 
|
302  | 
||
303  | 
declare Suc_times_mod_eq [of "number_of w", standard, simp]  | 
|
304  | 
||
305  | 
lemma [simp]: "n div k \<le> (Suc n) div k"  | 
|
306  | 
by (simp add: div_le_mono)  | 
|
307  | 
||
308  | 
lemma Suc_n_div_2_gt_zero [simp]: "(0::nat) < n ==> 0 < (n + 1) div 2"  | 
|
309  | 
by arith  | 
|
310  | 
||
311  | 
lemma div_2_gt_zero [simp]: "(1::nat) < n ==> 0 < n div 2"  | 
|
312  | 
by arith  | 
|
313  | 
||
| 27668 | 314  | 
(* Potential use of algebra : Equality modulo n*)  | 
| 25600 | 315  | 
lemma mod_mult_self3 [simp]: "(k*n + m) mod n = m mod (n::nat)"  | 
316  | 
by (simp add: mult_ac add_ac)  | 
|
317  | 
||
318  | 
lemma mod_mult_self4 [simp]: "Suc (k*n + m) mod n = Suc m mod n"  | 
|
319  | 
proof -  | 
|
320  | 
have "Suc (k * n + m) mod n = (k * n + Suc m) mod n" by simp  | 
|
321  | 
also have "... = Suc m mod n" by (rule mod_mult_self3)  | 
|
322  | 
finally show ?thesis .  | 
|
323  | 
qed  | 
|
324  | 
||
325  | 
lemma mod_Suc_eq_Suc_mod: "Suc m mod n = Suc (m mod n) mod n"  | 
|
326  | 
apply (subst mod_Suc [of m])  | 
|
327  | 
apply (subst mod_Suc [of "m mod n"], simp)  | 
|
328  | 
done  | 
|
329  | 
||
330  | 
||
331  | 
subsection {* More Even/Odd Results *}
 | 
|
332  | 
||
| 27668 | 333  | 
lemma even_mult_two_ex: "even(n) = (\<exists>m::nat. n = 2*m)" by presburger  | 
334  | 
lemma odd_Suc_mult_two_ex: "odd(n) = (\<exists>m. n = Suc (2*m))" by presburger  | 
|
335  | 
lemma even_add [simp]: "even(m + n::nat) = (even m = even n)" by presburger  | 
|
| 25600 | 336  | 
|
| 27668 | 337  | 
lemma odd_add [simp]: "odd(m + n::nat) = (odd m \<noteq> odd n)" by presburger  | 
| 25600 | 338  | 
|
339  | 
lemma div_Suc: "Suc a div c = a div c + Suc 0 div c +  | 
|
340  | 
(a mod c + Suc 0 mod c) div c"  | 
|
341  | 
apply (subgoal_tac "Suc a = a + Suc 0")  | 
|
342  | 
apply (erule ssubst)  | 
|
343  | 
apply (rule div_add1_eq, simp)  | 
|
344  | 
done  | 
|
345  | 
||
| 27668 | 346  | 
lemma lemma_even_div2 [simp]: "even (n::nat) ==> (n + 1) div 2 = n div 2" by presburger  | 
| 25600 | 347  | 
|
348  | 
lemma lemma_not_even_div2 [simp]: "~even n ==> (n + 1) div 2 = Suc (n div 2)"  | 
|
| 27668 | 349  | 
by presburger  | 
| 25600 | 350  | 
|
| 27668 | 351  | 
lemma even_num_iff: "0 < n ==> even n = (~ even(n - 1 :: nat))" by presburger  | 
352  | 
lemma even_even_mod_4_iff: "even (n::nat) = even (n mod 4)" by presburger  | 
|
| 25600 | 353  | 
|
| 27668 | 354  | 
lemma lemma_odd_mod_4_div_2: "n mod 4 = (3::nat) ==> odd((n - 1) div 2)" by presburger  | 
| 25600 | 355  | 
|
356  | 
lemma lemma_even_mod_4_div_2: "n mod 4 = (1::nat) ==> even ((n - 1) div 2)"  | 
|
| 27668 | 357  | 
by presburger  | 
| 25600 | 358  | 
|
| 21263 | 359  | 
text {* Simplify, when the exponent is a numeral *}
 | 
| 21256 | 360  | 
|
361  | 
lemmas power_0_left_number_of = power_0_left [of "number_of w", standard]  | 
|
362  | 
declare power_0_left_number_of [simp]  | 
|
363  | 
||
| 21263 | 364  | 
lemmas zero_le_power_eq_number_of [simp] =  | 
| 21256 | 365  | 
zero_le_power_eq [of _ "number_of w", standard]  | 
366  | 
||
| 21263 | 367  | 
lemmas zero_less_power_eq_number_of [simp] =  | 
| 21256 | 368  | 
zero_less_power_eq [of _ "number_of w", standard]  | 
369  | 
||
| 21263 | 370  | 
lemmas power_le_zero_eq_number_of [simp] =  | 
| 21256 | 371  | 
power_le_zero_eq [of _ "number_of w", standard]  | 
372  | 
||
| 21263 | 373  | 
lemmas power_less_zero_eq_number_of [simp] =  | 
| 21256 | 374  | 
power_less_zero_eq [of _ "number_of w", standard]  | 
375  | 
||
| 21263 | 376  | 
lemmas zero_less_power_nat_eq_number_of [simp] =  | 
| 21256 | 377  | 
zero_less_power_nat_eq [of _ "number_of w", standard]  | 
378  | 
||
| 21263 | 379  | 
lemmas power_eq_0_iff_number_of [simp] = power_eq_0_iff [of _ "number_of w", standard]  | 
| 21256 | 380  | 
|
| 21263 | 381  | 
lemmas power_even_abs_number_of [simp] = power_even_abs [of "number_of w" _, standard]  | 
| 21256 | 382  | 
|
383  | 
||
384  | 
subsection {* An Equivalence for @{term [source] "0 \<le> a^n"} *}
 | 
|
385  | 
||
386  | 
lemma even_power_le_0_imp_0:  | 
|
| 21263 | 387  | 
    "a ^ (2*k) \<le> (0::'a::{ordered_idom,recpower}) ==> a=0"
 | 
388  | 
by (induct k) (auto simp add: zero_le_mult_iff mult_le_0_iff power_Suc)  | 
|
| 21256 | 389  | 
|
| 23522 | 390  | 
lemma zero_le_power_iff[presburger]:  | 
| 21263 | 391  | 
  "(0 \<le> a^n) = (0 \<le> (a::'a::{ordered_idom,recpower}) | even n)"
 | 
| 21256 | 392  | 
proof cases  | 
393  | 
assume even: "even n"  | 
|
394  | 
then obtain k where "n = 2*k"  | 
|
395  | 
by (auto simp add: even_nat_equiv_def2 numeral_2_eq_2)  | 
|
| 21263 | 396  | 
thus ?thesis by (simp add: zero_le_even_power even)  | 
| 21256 | 397  | 
next  | 
398  | 
assume odd: "odd n"  | 
|
399  | 
then obtain k where "n = Suc(2*k)"  | 
|
400  | 
by (auto simp add: odd_nat_equiv_def2 numeral_2_eq_2)  | 
|
401  | 
thus ?thesis  | 
|
| 21263 | 402  | 
by (auto simp add: power_Suc zero_le_mult_iff zero_le_even_power  | 
403  | 
dest!: even_power_le_0_imp_0)  | 
|
404  | 
qed  | 
|
405  | 
||
| 21256 | 406  | 
|
407  | 
subsection {* Miscellaneous *}
 | 
|
408  | 
||
| 27668 | 409  | 
lemma odd_pos: "odd (n::nat) \<Longrightarrow> 0 < n" by presburger  | 
| 25600 | 410  | 
|
| 23522 | 411  | 
lemma [presburger]:"(x + 1) div 2 = x div 2 \<longleftrightarrow> even (x::int)" by presburger  | 
412  | 
lemma [presburger]: "(x + 1) div 2 = x div 2 + 1 \<longleftrightarrow> odd (x::int)" by presburger  | 
|
413  | 
lemma even_plus_one_div_two: "even (x::int) ==> (x + 1) div 2 = x div 2" by presburger  | 
|
414  | 
lemma odd_plus_one_div_two: "odd (x::int) ==> (x + 1) div 2 = x div 2 + 1" by presburger  | 
|
| 21256 | 415  | 
|
| 23522 | 416  | 
lemma [presburger]: "(Suc x) div Suc (Suc 0) = x div Suc (Suc 0) \<longleftrightarrow> even x" by presburger  | 
417  | 
lemma [presburger]: "(Suc x) div Suc (Suc 0) = x div Suc (Suc 0) \<longleftrightarrow> even x" by presburger  | 
|
| 21263 | 418  | 
lemma even_nat_plus_one_div_two: "even (x::nat) ==>  | 
| 23522 | 419  | 
(Suc x) div Suc (Suc 0) = x div Suc (Suc 0)" by presburger  | 
| 21256 | 420  | 
|
| 21263 | 421  | 
lemma odd_nat_plus_one_div_two: "odd (x::nat) ==>  | 
| 23522 | 422  | 
(Suc x) div Suc (Suc 0) = Suc (x div Suc (Suc 0))" by presburger  | 
| 21256 | 423  | 
|
424  | 
end  |