| author | wenzelm | 
| Wed, 10 Jun 2015 21:49:02 +0200 | |
| changeset 60422 | be7565a1115b | 
| parent 60357 | bc0827281dc1 | 
| child 60512 | e0169291b31c | 
| permissions | -rw-r--r-- | 
| 32479 | 1 | (* Authors: Christophe Tabacznyj, Lawrence C. Paulson, Amine Chaieb, | 
| 31798 | 2 | Thomas M. Rasmussen, Jeremy Avigad, Tobias Nipkow | 
| 31706 | 3 | |
| 4 | ||
| 32479 | 5 | This file deals with the functions gcd and lcm. Definitions and | 
| 6 | lemmas are proved uniformly for the natural numbers and integers. | |
| 31706 | 7 | |
| 8 | This file combines and revises a number of prior developments. | |
| 9 | ||
| 10 | The original theories "GCD" and "Primes" were by Christophe Tabacznyj | |
| 58623 | 11 | and Lawrence C. Paulson, based on @{cite davenport92}. They introduced
 | 
| 31706 | 12 | gcd, lcm, and prime for the natural numbers. | 
| 13 | ||
| 14 | The original theory "IntPrimes" was by Thomas M. Rasmussen, and | |
| 15 | extended gcd, lcm, primes to the integers. Amine Chaieb provided | |
| 16 | another extension of the notions to the integers, and added a number | |
| 17 | of results to "Primes" and "GCD". IntPrimes also defined and developed | |
| 18 | the congruence relations on the integers. The notion was extended to | |
| 34915 | 19 | the natural numbers by Chaieb. | 
| 31706 | 20 | |
| 32036 
8a9228872fbd
Moved factorial lemmas from Binomial.thy to Fact.thy and merged.
 avigad parents: 
31952diff
changeset | 21 | Jeremy Avigad combined all of these, made everything uniform for the | 
| 
8a9228872fbd
Moved factorial lemmas from Binomial.thy to Fact.thy and merged.
 avigad parents: 
31952diff
changeset | 22 | natural numbers and the integers, and added a number of new theorems. | 
| 
8a9228872fbd
Moved factorial lemmas from Binomial.thy to Fact.thy and merged.
 avigad parents: 
31952diff
changeset | 23 | |
| 31798 | 24 | Tobias Nipkow cleaned up a lot. | 
| 21256 | 25 | *) | 
| 26 | ||
| 31706 | 27 | |
| 58889 | 28 | section {* Greatest common divisor and least common multiple *}
 | 
| 21256 | 29 | |
| 30 | theory GCD | |
| 59667 
651ea265d568
Removal of the file HOL/Number_Theory/Binomial!! And class field_char_0 now declared in Int.thy
 paulson <lp15@cam.ac.uk> parents: 
59545diff
changeset | 31 | imports Main | 
| 31706 | 32 | begin | 
| 33 | ||
| 34 | declare One_nat_def [simp del] | |
| 35 | ||
| 34030 
829eb528b226
resorted code equations from "old" number theory version
 haftmann parents: 
33946diff
changeset | 36 | subsection {* GCD and LCM definitions *}
 | 
| 31706 | 37 | |
| 31992 | 38 | class gcd = zero + one + dvd + | 
| 41550 | 39 | fixes gcd :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" | 
| 40 | and lcm :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" | |
| 21256 | 41 | begin | 
| 42 | ||
| 31706 | 43 | abbreviation | 
| 44 | coprime :: "'a \<Rightarrow> 'a \<Rightarrow> bool" | |
| 45 | where | |
| 46 | "coprime x y == (gcd x y = 1)" | |
| 47 | ||
| 48 | end | |
| 49 | ||
| 59008 | 50 | class semiring_gcd = comm_semiring_1 + gcd + | 
| 51 | assumes gcd_dvd1 [iff]: "gcd a b dvd a" | |
| 59977 | 52 | and gcd_dvd2 [iff]: "gcd a b dvd b" | 
| 53 | and gcd_greatest: "c dvd a \<Longrightarrow> c dvd b \<Longrightarrow> c dvd gcd a b" | |
| 59008 | 54 | |
| 55 | class ring_gcd = comm_ring_1 + semiring_gcd | |
| 56 | ||
| 31706 | 57 | instantiation nat :: gcd | 
| 58 | begin | |
| 21256 | 59 | |
| 31706 | 60 | fun | 
| 61 | gcd_nat :: "nat \<Rightarrow> nat \<Rightarrow> nat" | |
| 62 | where | |
| 63 | "gcd_nat x y = | |
| 64 | (if y = 0 then x else gcd y (x mod y))" | |
| 65 | ||
| 66 | definition | |
| 67 | lcm_nat :: "nat \<Rightarrow> nat \<Rightarrow> nat" | |
| 68 | where | |
| 69 | "lcm_nat x y = x * y div (gcd x y)" | |
| 70 | ||
| 71 | instance proof qed | |
| 72 | ||
| 73 | end | |
| 74 | ||
| 75 | instantiation int :: gcd | |
| 76 | begin | |
| 21256 | 77 | |
| 31706 | 78 | definition | 
| 79 | gcd_int :: "int \<Rightarrow> int \<Rightarrow> int" | |
| 80 | where | |
| 81 | "gcd_int x y = int (gcd (nat (abs x)) (nat (abs y)))" | |
| 23687 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 82 | |
| 31706 | 83 | definition | 
| 84 | lcm_int :: "int \<Rightarrow> int \<Rightarrow> int" | |
| 85 | where | |
| 86 | "lcm_int x y = int (lcm (nat (abs x)) (nat (abs y)))" | |
| 23687 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 87 | |
| 31706 | 88 | instance proof qed | 
| 89 | ||
| 90 | end | |
| 23687 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 91 | |
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 92 | |
| 34030 
829eb528b226
resorted code equations from "old" number theory version
 haftmann parents: 
33946diff
changeset | 93 | subsection {* Transfer setup *}
 | 
| 31706 | 94 | |
| 95 | lemma transfer_nat_int_gcd: | |
| 96 | "(x::int) >= 0 \<Longrightarrow> y >= 0 \<Longrightarrow> gcd (nat x) (nat y) = nat (gcd x y)" | |
| 97 | "(x::int) >= 0 \<Longrightarrow> y >= 0 \<Longrightarrow> lcm (nat x) (nat y) = nat (lcm x y)" | |
| 32479 | 98 | unfolding gcd_int_def lcm_int_def | 
| 31706 | 99 | by auto | 
| 23687 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 100 | |
| 31706 | 101 | lemma transfer_nat_int_gcd_closures: | 
| 102 | "x >= (0::int) \<Longrightarrow> y >= 0 \<Longrightarrow> gcd x y >= 0" | |
| 103 | "x >= (0::int) \<Longrightarrow> y >= 0 \<Longrightarrow> lcm x y >= 0" | |
| 104 | by (auto simp add: gcd_int_def lcm_int_def) | |
| 105 | ||
| 35644 | 106 | declare transfer_morphism_nat_int[transfer add return: | 
| 31706 | 107 | transfer_nat_int_gcd transfer_nat_int_gcd_closures] | 
| 108 | ||
| 109 | lemma transfer_int_nat_gcd: | |
| 110 | "gcd (int x) (int y) = int (gcd x y)" | |
| 111 | "lcm (int x) (int y) = int (lcm x y)" | |
| 32479 | 112 | by (unfold gcd_int_def lcm_int_def, auto) | 
| 31706 | 113 | |
| 114 | lemma transfer_int_nat_gcd_closures: | |
| 115 | "is_nat x \<Longrightarrow> is_nat y \<Longrightarrow> gcd x y >= 0" | |
| 116 | "is_nat x \<Longrightarrow> is_nat y \<Longrightarrow> lcm x y >= 0" | |
| 117 | by (auto simp add: gcd_int_def lcm_int_def) | |
| 118 | ||
| 35644 | 119 | declare transfer_morphism_int_nat[transfer add return: | 
| 31706 | 120 | transfer_int_nat_gcd transfer_int_nat_gcd_closures] | 
| 121 | ||
| 122 | ||
| 34030 
829eb528b226
resorted code equations from "old" number theory version
 haftmann parents: 
33946diff
changeset | 123 | subsection {* GCD properties *}
 | 
| 31706 | 124 | |
| 125 | (* was gcd_induct *) | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 126 | lemma gcd_nat_induct: | 
| 23687 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 127 | fixes m n :: nat | 
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 128 | assumes "\<And>m. P m 0" | 
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 129 | and "\<And>m n. 0 < n \<Longrightarrow> P n (m mod n) \<Longrightarrow> P m n" | 
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 130 | shows "P m n" | 
| 31706 | 131 | apply (rule gcd_nat.induct) | 
| 132 | apply (case_tac "y = 0") | |
| 133 | using assms apply simp_all | |
| 134 | done | |
| 135 | ||
| 136 | (* specific to int *) | |
| 137 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 138 | lemma gcd_neg1_int [simp]: "gcd (-x::int) y = gcd x y" | 
| 31706 | 139 | by (simp add: gcd_int_def) | 
| 140 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 141 | lemma gcd_neg2_int [simp]: "gcd (x::int) (-y) = gcd x y" | 
| 31706 | 142 | by (simp add: gcd_int_def) | 
| 143 | ||
| 54489 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54437diff
changeset | 144 | lemma gcd_neg_numeral_1_int [simp]: | 
| 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54437diff
changeset | 145 | "gcd (- numeral n :: int) x = gcd (numeral n) x" | 
| 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54437diff
changeset | 146 | by (fact gcd_neg1_int) | 
| 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54437diff
changeset | 147 | |
| 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54437diff
changeset | 148 | lemma gcd_neg_numeral_2_int [simp]: | 
| 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54437diff
changeset | 149 | "gcd x (- numeral n :: int) = gcd x (numeral n)" | 
| 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54437diff
changeset | 150 | by (fact gcd_neg2_int) | 
| 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54437diff
changeset | 151 | |
| 31813 | 152 | lemma abs_gcd_int[simp]: "abs(gcd (x::int) y) = gcd x y" | 
| 153 | by(simp add: gcd_int_def) | |
| 154 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 155 | lemma gcd_abs_int: "gcd (x::int) y = gcd (abs x) (abs y)" | 
| 31813 | 156 | by (simp add: gcd_int_def) | 
| 157 | ||
| 158 | lemma gcd_abs1_int[simp]: "gcd (abs x) (y::int) = gcd x y" | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 159 | by (metis abs_idempotent gcd_abs_int) | 
| 31813 | 160 | |
| 161 | lemma gcd_abs2_int[simp]: "gcd x (abs y::int) = gcd x y" | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 162 | by (metis abs_idempotent gcd_abs_int) | 
| 31706 | 163 | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 164 | lemma gcd_cases_int: | 
| 31706 | 165 | fixes x :: int and y | 
| 166 | assumes "x >= 0 \<Longrightarrow> y >= 0 \<Longrightarrow> P (gcd x y)" | |
| 167 | and "x >= 0 \<Longrightarrow> y <= 0 \<Longrightarrow> P (gcd x (-y))" | |
| 168 | and "x <= 0 \<Longrightarrow> y >= 0 \<Longrightarrow> P (gcd (-x) y)" | |
| 169 | and "x <= 0 \<Longrightarrow> y <= 0 \<Longrightarrow> P (gcd (-x) (-y))" | |
| 170 | shows "P (gcd x y)" | |
| 35216 | 171 | by (insert assms, auto, arith) | 
| 21256 | 172 | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 173 | lemma gcd_ge_0_int [simp]: "gcd (x::int) y >= 0" | 
| 31706 | 174 | by (simp add: gcd_int_def) | 
| 175 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 176 | lemma lcm_neg1_int: "lcm (-x::int) y = lcm x y" | 
| 31706 | 177 | by (simp add: lcm_int_def) | 
| 178 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 179 | lemma lcm_neg2_int: "lcm (x::int) (-y) = lcm x y" | 
| 31706 | 180 | by (simp add: lcm_int_def) | 
| 181 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 182 | lemma lcm_abs_int: "lcm (x::int) y = lcm (abs x) (abs y)" | 
| 31706 | 183 | by (simp add: lcm_int_def) | 
| 21256 | 184 | |
| 31814 | 185 | lemma abs_lcm_int [simp]: "abs (lcm i j::int) = lcm i j" | 
| 186 | by(simp add:lcm_int_def) | |
| 187 | ||
| 188 | lemma lcm_abs1_int[simp]: "lcm (abs x) (y::int) = lcm x y" | |
| 189 | by (metis abs_idempotent lcm_int_def) | |
| 190 | ||
| 191 | lemma lcm_abs2_int[simp]: "lcm x (abs y::int) = lcm x y" | |
| 192 | by (metis abs_idempotent lcm_int_def) | |
| 193 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 194 | lemma lcm_cases_int: | 
| 31706 | 195 | fixes x :: int and y | 
| 196 | assumes "x >= 0 \<Longrightarrow> y >= 0 \<Longrightarrow> P (lcm x y)" | |
| 197 | and "x >= 0 \<Longrightarrow> y <= 0 \<Longrightarrow> P (lcm x (-y))" | |
| 198 | and "x <= 0 \<Longrightarrow> y >= 0 \<Longrightarrow> P (lcm (-x) y)" | |
| 199 | and "x <= 0 \<Longrightarrow> y <= 0 \<Longrightarrow> P (lcm (-x) (-y))" | |
| 200 | shows "P (lcm x y)" | |
| 41550 | 201 | using assms by (auto simp add: lcm_neg1_int lcm_neg2_int) arith | 
| 31706 | 202 | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 203 | lemma lcm_ge_0_int [simp]: "lcm (x::int) y >= 0" | 
| 31706 | 204 | by (simp add: lcm_int_def) | 
| 205 | ||
| 206 | (* was gcd_0, etc. *) | |
| 54867 
c21a2465cac1
prefer ephemeral interpretation over interpretation in proof contexts;
 haftmann parents: 
54489diff
changeset | 207 | lemma gcd_0_nat: "gcd (x::nat) 0 = x" | 
| 23687 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 208 | by simp | 
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 209 | |
| 31706 | 210 | (* was igcd_0, etc. *) | 
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 211 | lemma gcd_0_int [simp]: "gcd (x::int) 0 = abs x" | 
| 31706 | 212 | by (unfold gcd_int_def, auto) | 
| 213 | ||
| 54867 
c21a2465cac1
prefer ephemeral interpretation over interpretation in proof contexts;
 haftmann parents: 
54489diff
changeset | 214 | lemma gcd_0_left_nat: "gcd 0 (x::nat) = x" | 
| 23687 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 215 | by simp | 
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 216 | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 217 | lemma gcd_0_left_int [simp]: "gcd 0 (x::int) = abs x" | 
| 31706 | 218 | by (unfold gcd_int_def, auto) | 
| 219 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 220 | lemma gcd_red_nat: "gcd (x::nat) y = gcd y (x mod y)" | 
| 31706 | 221 | by (case_tac "y = 0", auto) | 
| 222 | ||
| 223 | (* weaker, but useful for the simplifier *) | |
| 224 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 225 | lemma gcd_non_0_nat: "y ~= (0::nat) \<Longrightarrow> gcd (x::nat) y = gcd y (x mod y)" | 
| 31706 | 226 | by simp | 
| 227 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 228 | lemma gcd_1_nat [simp]: "gcd (m::nat) 1 = 1" | 
| 21263 | 229 | by simp | 
| 21256 | 230 | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 231 | lemma gcd_Suc_0 [simp]: "gcd (m::nat) (Suc 0) = Suc 0" | 
| 31706 | 232 | by (simp add: One_nat_def) | 
| 233 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 234 | lemma gcd_1_int [simp]: "gcd (m::int) 1 = 1" | 
| 31706 | 235 | by (simp add: gcd_int_def) | 
| 30082 
43c5b7bfc791
make more proofs work whether or not One_nat_def is a simp rule
 huffman parents: 
30042diff
changeset | 236 | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 237 | lemma gcd_idem_nat: "gcd (x::nat) x = x" | 
| 31798 | 238 | by simp | 
| 31706 | 239 | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 240 | lemma gcd_idem_int: "gcd (x::int) x = abs x" | 
| 31813 | 241 | by (auto simp add: gcd_int_def) | 
| 31706 | 242 | |
| 243 | declare gcd_nat.simps [simp del] | |
| 21256 | 244 | |
| 245 | text {*
 | |
| 27556 | 246 |   \medskip @{term "gcd m n"} divides @{text m} and @{text n}.  The
 | 
| 21256 | 247 | conjunctions don't seem provable separately. | 
| 248 | *} | |
| 249 | ||
| 59008 | 250 | instance nat :: semiring_gcd | 
| 251 | proof | |
| 252 | fix m n :: nat | |
| 253 | show "gcd m n dvd m" and "gcd m n dvd n" | |
| 254 | proof (induct m n rule: gcd_nat_induct) | |
| 255 | fix m n :: nat | |
| 256 | assume "gcd n (m mod n) dvd m mod n" and "gcd n (m mod n) dvd n" | |
| 257 | then have "gcd n (m mod n) dvd m" | |
| 258 | by (rule dvd_mod_imp_dvd) | |
| 259 | moreover assume "0 < n" | |
| 260 | ultimately show "gcd m n dvd m" | |
| 261 | by (simp add: gcd_non_0_nat) | |
| 262 | qed (simp_all add: gcd_0_nat gcd_non_0_nat) | |
| 263 | next | |
| 264 | fix m n k :: nat | |
| 265 | assume "k dvd m" and "k dvd n" | |
| 266 | then show "k dvd gcd m n" | |
| 267 | by (induct m n rule: gcd_nat_induct) (simp_all add: gcd_non_0_nat dvd_mod gcd_0_nat) | |
| 268 | qed | |
| 59667 
651ea265d568
Removal of the file HOL/Number_Theory/Binomial!! And class field_char_0 now declared in Int.thy
 paulson <lp15@cam.ac.uk> parents: 
59545diff
changeset | 269 | |
| 59008 | 270 | instance int :: ring_gcd | 
| 271 | by intro_classes (simp_all add: dvd_int_unfold_dvd_nat gcd_int_def gcd_greatest) | |
| 59667 
651ea265d568
Removal of the file HOL/Number_Theory/Binomial!! And class field_char_0 now declared in Int.thy
 paulson <lp15@cam.ac.uk> parents: 
59545diff
changeset | 272 | |
| 31730 | 273 | lemma dvd_gcd_D1_nat: "k dvd gcd m n \<Longrightarrow> (k::nat) dvd m" | 
| 59008 | 274 | by (metis gcd_dvd1 dvd_trans) | 
| 31730 | 275 | |
| 276 | lemma dvd_gcd_D2_nat: "k dvd gcd m n \<Longrightarrow> (k::nat) dvd n" | |
| 59008 | 277 | by (metis gcd_dvd2 dvd_trans) | 
| 31730 | 278 | |
| 279 | lemma dvd_gcd_D1_int: "i dvd gcd m n \<Longrightarrow> (i::int) dvd m" | |
| 59008 | 280 | by (metis gcd_dvd1 dvd_trans) | 
| 31730 | 281 | |
| 282 | lemma dvd_gcd_D2_int: "i dvd gcd m n \<Longrightarrow> (i::int) dvd n" | |
| 59008 | 283 | by (metis gcd_dvd2 dvd_trans) | 
| 31730 | 284 | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 285 | lemma gcd_le1_nat [simp]: "a \<noteq> 0 \<Longrightarrow> gcd (a::nat) b \<le> a" | 
| 31706 | 286 | by (rule dvd_imp_le, auto) | 
| 287 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 288 | lemma gcd_le2_nat [simp]: "b \<noteq> 0 \<Longrightarrow> gcd (a::nat) b \<le> b" | 
| 31706 | 289 | by (rule dvd_imp_le, auto) | 
| 290 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 291 | lemma gcd_le1_int [simp]: "a > 0 \<Longrightarrow> gcd (a::int) b \<le> a" | 
| 31706 | 292 | by (rule zdvd_imp_le, auto) | 
| 21256 | 293 | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 294 | lemma gcd_le2_int [simp]: "b > 0 \<Longrightarrow> gcd (a::int) b \<le> b" | 
| 31706 | 295 | by (rule zdvd_imp_le, auto) | 
| 296 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 297 | lemma gcd_greatest_iff_nat [iff]: "(k dvd gcd (m::nat) n) = | 
| 31706 | 298 | (k dvd m & k dvd n)" | 
| 59008 | 299 | by (blast intro!: gcd_greatest intro: dvd_trans) | 
| 31706 | 300 | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 301 | lemma gcd_greatest_iff_int: "((k::int) dvd gcd m n) = (k dvd m & k dvd n)" | 
| 59008 | 302 | by (blast intro!: gcd_greatest intro: dvd_trans) | 
| 21256 | 303 | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 304 | lemma gcd_zero_nat [simp]: "(gcd (m::nat) n = 0) = (m = 0 & n = 0)" | 
| 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 305 | by (simp only: dvd_0_left_iff [symmetric] gcd_greatest_iff_nat) | 
| 21256 | 306 | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 307 | lemma gcd_zero_int [simp]: "(gcd (m::int) n = 0) = (m = 0 & n = 0)" | 
| 31706 | 308 | by (auto simp add: gcd_int_def) | 
| 21256 | 309 | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 310 | lemma gcd_pos_nat [simp]: "(gcd (m::nat) n > 0) = (m ~= 0 | n ~= 0)" | 
| 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 311 | by (insert gcd_zero_nat [of m n], arith) | 
| 21256 | 312 | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 313 | lemma gcd_pos_int [simp]: "(gcd (m::int) n > 0) = (m ~= 0 | n ~= 0)" | 
| 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 314 | by (insert gcd_zero_int [of m n], insert gcd_ge_0_int [of m n], arith) | 
| 31706 | 315 | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 316 | lemma gcd_unique_nat: "(d::nat) dvd a \<and> d dvd b \<and> | 
| 31706 | 317 | (\<forall>e. e dvd a \<and> e dvd b \<longrightarrow> e dvd d) \<longleftrightarrow> d = gcd a b" | 
| 318 | apply auto | |
| 33657 | 319 | apply (rule dvd_antisym) | 
| 59008 | 320 | apply (erule (1) gcd_greatest) | 
| 31706 | 321 | apply auto | 
| 322 | done | |
| 21256 | 323 | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 324 | lemma gcd_unique_int: "d >= 0 & (d::int) dvd a \<and> d dvd b \<and> | 
| 31706 | 325 | (\<forall>e. e dvd a \<and> e dvd b \<longrightarrow> e dvd d) \<longleftrightarrow> d = gcd a b" | 
| 33657 | 326 | apply (case_tac "d = 0") | 
| 327 | apply simp | |
| 328 | apply (rule iffI) | |
| 329 | apply (rule zdvd_antisym_nonneg) | |
| 59008 | 330 | apply (auto intro: gcd_greatest) | 
| 31706 | 331 | done | 
| 30082 
43c5b7bfc791
make more proofs work whether or not One_nat_def is a simp rule
 huffman parents: 
30042diff
changeset | 332 | |
| 54867 
c21a2465cac1
prefer ephemeral interpretation over interpretation in proof contexts;
 haftmann parents: 
54489diff
changeset | 333 | interpretation gcd_nat: abel_semigroup "gcd :: nat \<Rightarrow> nat \<Rightarrow> nat" | 
| 
c21a2465cac1
prefer ephemeral interpretation over interpretation in proof contexts;
 haftmann parents: 
54489diff
changeset | 334 | + gcd_nat: semilattice_neutr_order "gcd :: nat \<Rightarrow> nat \<Rightarrow> nat" 0 "op dvd" "(\<lambda>m n. m dvd n \<and> \<not> n dvd m)" | 
| 
c21a2465cac1
prefer ephemeral interpretation over interpretation in proof contexts;
 haftmann parents: 
54489diff
changeset | 335 | apply default | 
| 
c21a2465cac1
prefer ephemeral interpretation over interpretation in proof contexts;
 haftmann parents: 
54489diff
changeset | 336 | apply (auto intro: dvd_antisym dvd_trans)[4] | 
| 59545 
12a6088ed195
explicit equivalence for strict order on lattices
 haftmann parents: 
59497diff
changeset | 337 | apply (metis dvd.dual_order.refl gcd_unique_nat)+ | 
| 54867 
c21a2465cac1
prefer ephemeral interpretation over interpretation in proof contexts;
 haftmann parents: 
54489diff
changeset | 338 | done | 
| 
c21a2465cac1
prefer ephemeral interpretation over interpretation in proof contexts;
 haftmann parents: 
54489diff
changeset | 339 | |
| 
c21a2465cac1
prefer ephemeral interpretation over interpretation in proof contexts;
 haftmann parents: 
54489diff
changeset | 340 | interpretation gcd_int: abel_semigroup "gcd :: int \<Rightarrow> int \<Rightarrow> int" | 
| 
c21a2465cac1
prefer ephemeral interpretation over interpretation in proof contexts;
 haftmann parents: 
54489diff
changeset | 341 | proof | 
| 
c21a2465cac1
prefer ephemeral interpretation over interpretation in proof contexts;
 haftmann parents: 
54489diff
changeset | 342 | qed (simp_all add: gcd_int_def gcd_nat.assoc gcd_nat.commute gcd_nat.left_commute) | 
| 
c21a2465cac1
prefer ephemeral interpretation over interpretation in proof contexts;
 haftmann parents: 
54489diff
changeset | 343 | |
| 
c21a2465cac1
prefer ephemeral interpretation over interpretation in proof contexts;
 haftmann parents: 
54489diff
changeset | 344 | lemmas gcd_assoc_nat = gcd_nat.assoc | 
| 
c21a2465cac1
prefer ephemeral interpretation over interpretation in proof contexts;
 haftmann parents: 
54489diff
changeset | 345 | lemmas gcd_commute_nat = gcd_nat.commute | 
| 
c21a2465cac1
prefer ephemeral interpretation over interpretation in proof contexts;
 haftmann parents: 
54489diff
changeset | 346 | lemmas gcd_left_commute_nat = gcd_nat.left_commute | 
| 
c21a2465cac1
prefer ephemeral interpretation over interpretation in proof contexts;
 haftmann parents: 
54489diff
changeset | 347 | lemmas gcd_assoc_int = gcd_int.assoc | 
| 
c21a2465cac1
prefer ephemeral interpretation over interpretation in proof contexts;
 haftmann parents: 
54489diff
changeset | 348 | lemmas gcd_commute_int = gcd_int.commute | 
| 
c21a2465cac1
prefer ephemeral interpretation over interpretation in proof contexts;
 haftmann parents: 
54489diff
changeset | 349 | lemmas gcd_left_commute_int = gcd_int.left_commute | 
| 
c21a2465cac1
prefer ephemeral interpretation over interpretation in proof contexts;
 haftmann parents: 
54489diff
changeset | 350 | |
| 
c21a2465cac1
prefer ephemeral interpretation over interpretation in proof contexts;
 haftmann parents: 
54489diff
changeset | 351 | lemmas gcd_ac_nat = gcd_assoc_nat gcd_commute_nat gcd_left_commute_nat | 
| 
c21a2465cac1
prefer ephemeral interpretation over interpretation in proof contexts;
 haftmann parents: 
54489diff
changeset | 352 | |
| 
c21a2465cac1
prefer ephemeral interpretation over interpretation in proof contexts;
 haftmann parents: 
54489diff
changeset | 353 | lemmas gcd_ac_int = gcd_assoc_int gcd_commute_int gcd_left_commute_int | 
| 
c21a2465cac1
prefer ephemeral interpretation over interpretation in proof contexts;
 haftmann parents: 
54489diff
changeset | 354 | |
| 31798 | 355 | lemma gcd_proj1_if_dvd_nat [simp]: "(x::nat) dvd y \<Longrightarrow> gcd x y = x" | 
| 54867 
c21a2465cac1
prefer ephemeral interpretation over interpretation in proof contexts;
 haftmann parents: 
54489diff
changeset | 356 | by (fact gcd_nat.absorb1) | 
| 31798 | 357 | |
| 358 | lemma gcd_proj2_if_dvd_nat [simp]: "(y::nat) dvd x \<Longrightarrow> gcd x y = y" | |
| 54867 
c21a2465cac1
prefer ephemeral interpretation over interpretation in proof contexts;
 haftmann parents: 
54489diff
changeset | 359 | by (fact gcd_nat.absorb2) | 
| 31798 | 360 | |
| 54867 
c21a2465cac1
prefer ephemeral interpretation over interpretation in proof contexts;
 haftmann parents: 
54489diff
changeset | 361 | lemma gcd_proj1_if_dvd_int [simp]: "x dvd y \<Longrightarrow> gcd (x::int) y = abs x" | 
| 
c21a2465cac1
prefer ephemeral interpretation over interpretation in proof contexts;
 haftmann parents: 
54489diff
changeset | 362 | by (metis abs_dvd_iff gcd_0_left_int gcd_abs_int gcd_unique_int) | 
| 31798 | 363 | |
| 54867 
c21a2465cac1
prefer ephemeral interpretation over interpretation in proof contexts;
 haftmann parents: 
54489diff
changeset | 364 | lemma gcd_proj2_if_dvd_int [simp]: "y dvd x \<Longrightarrow> gcd (x::int) y = abs y" | 
| 
c21a2465cac1
prefer ephemeral interpretation over interpretation in proof contexts;
 haftmann parents: 
54489diff
changeset | 365 | by (metis gcd_proj1_if_dvd_int gcd_commute_int) | 
| 31798 | 366 | |
| 21256 | 367 | text {*
 | 
| 368 | \medskip Multiplication laws | |
| 369 | *} | |
| 370 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 371 | lemma gcd_mult_distrib_nat: "(k::nat) * gcd m n = gcd (k * m) (k * n)" | 
| 58623 | 372 |     -- {* @{cite \<open>page 27\<close> davenport92} *}
 | 
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 373 | apply (induct m n rule: gcd_nat_induct) | 
| 31706 | 374 | apply simp | 
| 21256 | 375 | apply (case_tac "k = 0") | 
| 45270 
d5b5c9259afd
fix bug in cancel_factor simprocs so they will work on goals like 'x * y < x * z' where the common term is already on the left
 huffman parents: 
45264diff
changeset | 376 | apply (simp_all add: gcd_non_0_nat) | 
| 31706 | 377 | done | 
| 21256 | 378 | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 379 | lemma gcd_mult_distrib_int: "abs (k::int) * gcd m n = gcd (k * m) (k * n)" | 
| 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 380 | apply (subst (1 2) gcd_abs_int) | 
| 31813 | 381 | apply (subst (1 2) abs_mult) | 
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 382 | apply (rule gcd_mult_distrib_nat [transferred]) | 
| 31706 | 383 | apply auto | 
| 384 | done | |
| 21256 | 385 | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 386 | lemma coprime_dvd_mult_nat: "coprime (k::nat) n \<Longrightarrow> k dvd m * n \<Longrightarrow> k dvd m" | 
| 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 387 | apply (insert gcd_mult_distrib_nat [of m k n]) | 
| 21256 | 388 | apply simp | 
| 389 | apply (erule_tac t = m in ssubst) | |
| 390 | apply simp | |
| 391 | done | |
| 392 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 393 | lemma coprime_dvd_mult_int: | 
| 31813 | 394 | "coprime (k::int) n \<Longrightarrow> k dvd m * n \<Longrightarrow> k dvd m" | 
| 395 | apply (subst abs_dvd_iff [symmetric]) | |
| 396 | apply (subst dvd_abs_iff [symmetric]) | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 397 | apply (subst (asm) gcd_abs_int) | 
| 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 398 | apply (rule coprime_dvd_mult_nat [transferred]) | 
| 31813 | 399 | prefer 4 apply assumption | 
| 400 | apply auto | |
| 401 | apply (subst abs_mult [symmetric], auto) | |
| 31706 | 402 | done | 
| 403 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 404 | lemma coprime_dvd_mult_iff_nat: "coprime (k::nat) n \<Longrightarrow> | 
| 31706 | 405 | (k dvd m * n) = (k dvd m)" | 
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 406 | by (auto intro: coprime_dvd_mult_nat) | 
| 31706 | 407 | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 408 | lemma coprime_dvd_mult_iff_int: "coprime (k::int) n \<Longrightarrow> | 
| 31706 | 409 | (k dvd m * n) = (k dvd m)" | 
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 410 | by (auto intro: coprime_dvd_mult_int) | 
| 31706 | 411 | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 412 | lemma gcd_mult_cancel_nat: "coprime k n \<Longrightarrow> gcd ((k::nat) * m) n = gcd m n" | 
| 33657 | 413 | apply (rule dvd_antisym) | 
| 59008 | 414 | apply (rule gcd_greatest) | 
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 415 | apply (rule_tac n = k in coprime_dvd_mult_nat) | 
| 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 416 | apply (simp add: gcd_assoc_nat) | 
| 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 417 | apply (simp add: gcd_commute_nat) | 
| 57512 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
56218diff
changeset | 418 | apply (simp_all add: mult.commute) | 
| 31706 | 419 | done | 
| 21256 | 420 | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 421 | lemma gcd_mult_cancel_int: | 
| 31813 | 422 | "coprime (k::int) n \<Longrightarrow> gcd (k * m) n = gcd m n" | 
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 423 | apply (subst (1 2) gcd_abs_int) | 
| 31813 | 424 | apply (subst abs_mult) | 
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 425 | apply (rule gcd_mult_cancel_nat [transferred], auto) | 
| 31706 | 426 | done | 
| 21256 | 427 | |
| 35368 | 428 | lemma coprime_crossproduct_nat: | 
| 429 | fixes a b c d :: nat | |
| 430 | assumes "coprime a d" and "coprime b c" | |
| 431 | shows "a * c = b * d \<longleftrightarrow> a = b \<and> c = d" (is "?lhs \<longleftrightarrow> ?rhs") | |
| 432 | proof | |
| 433 | assume ?rhs then show ?lhs by simp | |
| 434 | next | |
| 435 | assume ?lhs | |
| 436 | from `?lhs` have "a dvd b * d" by (auto intro: dvdI dest: sym) | |
| 437 | with `coprime a d` have "a dvd b" by (simp add: coprime_dvd_mult_iff_nat) | |
| 438 | from `?lhs` have "b dvd a * c" by (auto intro: dvdI dest: sym) | |
| 439 | with `coprime b c` have "b dvd a" by (simp add: coprime_dvd_mult_iff_nat) | |
| 57512 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
56218diff
changeset | 440 | from `?lhs` have "c dvd d * b" by (auto intro: dvdI dest: sym simp add: mult.commute) | 
| 35368 | 441 | with `coprime b c` have "c dvd d" by (simp add: coprime_dvd_mult_iff_nat gcd_commute_nat) | 
| 57512 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
56218diff
changeset | 442 | from `?lhs` have "d dvd c * a" by (auto intro: dvdI dest: sym simp add: mult.commute) | 
| 35368 | 443 | with `coprime a d` have "d dvd c" by (simp add: coprime_dvd_mult_iff_nat gcd_commute_nat) | 
| 444 | from `a dvd b` `b dvd a` have "a = b" by (rule Nat.dvd.antisym) | |
| 445 | moreover from `c dvd d` `d dvd c` have "c = d" by (rule Nat.dvd.antisym) | |
| 446 | ultimately show ?rhs .. | |
| 447 | qed | |
| 448 | ||
| 449 | lemma coprime_crossproduct_int: | |
| 450 | fixes a b c d :: int | |
| 451 | assumes "coprime a d" and "coprime b c" | |
| 452 | shows "\<bar>a\<bar> * \<bar>c\<bar> = \<bar>b\<bar> * \<bar>d\<bar> \<longleftrightarrow> \<bar>a\<bar> = \<bar>b\<bar> \<and> \<bar>c\<bar> = \<bar>d\<bar>" | |
| 453 | using assms by (intro coprime_crossproduct_nat [transferred]) auto | |
| 454 | ||
| 21256 | 455 | text {* \medskip Addition laws *}
 | 
| 456 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 457 | lemma gcd_add1_nat [simp]: "gcd ((m::nat) + n) n = gcd m n" | 
| 31706 | 458 | apply (case_tac "n = 0") | 
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 459 | apply (simp_all add: gcd_non_0_nat) | 
| 31706 | 460 | done | 
| 461 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 462 | lemma gcd_add2_nat [simp]: "gcd (m::nat) (m + n) = gcd m n" | 
| 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 463 | apply (subst (1 2) gcd_commute_nat) | 
| 57512 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
56218diff
changeset | 464 | apply (subst add.commute) | 
| 31706 | 465 | apply simp | 
| 466 | done | |
| 467 | ||
| 468 | (* to do: add the other variations? *) | |
| 469 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 470 | lemma gcd_diff1_nat: "(m::nat) >= n \<Longrightarrow> gcd (m - n) n = gcd m n" | 
| 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 471 | by (subst gcd_add1_nat [symmetric], auto) | 
| 31706 | 472 | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 473 | lemma gcd_diff2_nat: "(n::nat) >= m \<Longrightarrow> gcd (n - m) n = gcd m n" | 
| 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 474 | apply (subst gcd_commute_nat) | 
| 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 475 | apply (subst gcd_diff1_nat [symmetric]) | 
| 31706 | 476 | apply auto | 
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 477 | apply (subst gcd_commute_nat) | 
| 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 478 | apply (subst gcd_diff1_nat) | 
| 31706 | 479 | apply assumption | 
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 480 | apply (rule gcd_commute_nat) | 
| 31706 | 481 | done | 
| 482 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 483 | lemma gcd_non_0_int: "(y::int) > 0 \<Longrightarrow> gcd x y = gcd y (x mod y)" | 
| 31706 | 484 | apply (frule_tac b = y and a = x in pos_mod_sign) | 
| 485 | apply (simp del: pos_mod_sign add: gcd_int_def abs_if nat_mod_distrib) | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 486 | apply (auto simp add: gcd_non_0_nat nat_mod_distrib [symmetric] | 
| 31706 | 487 | zmod_zminus1_eq_if) | 
| 488 | apply (frule_tac a = x in pos_mod_bound) | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 489 | apply (subst (1 2) gcd_commute_nat) | 
| 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 490 | apply (simp del: pos_mod_bound add: nat_diff_distrib gcd_diff2_nat | 
| 31706 | 491 | nat_le_eq_zle) | 
| 492 | done | |
| 21256 | 493 | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 494 | lemma gcd_red_int: "gcd (x::int) y = gcd y (x mod y)" | 
| 31706 | 495 | apply (case_tac "y = 0") | 
| 496 | apply force | |
| 497 | apply (case_tac "y > 0") | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 498 | apply (subst gcd_non_0_int, auto) | 
| 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 499 | apply (insert gcd_non_0_int [of "-y" "-x"]) | 
| 35216 | 500 | apply auto | 
| 31706 | 501 | done | 
| 502 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 503 | lemma gcd_add1_int [simp]: "gcd ((m::int) + n) n = gcd m n" | 
| 57512 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
56218diff
changeset | 504 | by (metis gcd_red_int mod_add_self1 add.commute) | 
| 31706 | 505 | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 506 | lemma gcd_add2_int [simp]: "gcd m ((m::int) + n) = gcd m n" | 
| 57512 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
56218diff
changeset | 507 | by (metis gcd_add1_int gcd_commute_int add.commute) | 
| 21256 | 508 | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 509 | lemma gcd_add_mult_nat: "gcd (m::nat) (k * m + n) = gcd m n" | 
| 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 510 | by (metis mod_mult_self3 gcd_commute_nat gcd_red_nat) | 
| 21256 | 511 | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 512 | lemma gcd_add_mult_int: "gcd (m::int) (k * m + n) = gcd m n" | 
| 57512 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
56218diff
changeset | 513 | by (metis gcd_commute_int gcd_red_int mod_mult_self1 add.commute) | 
| 31798 | 514 | |
| 21256 | 515 | |
| 31706 | 516 | (* to do: differences, and all variations of addition rules | 
| 517 | as simplification rules for nat and int *) | |
| 518 | ||
| 31798 | 519 | (* FIXME remove iff *) | 
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 520 | lemma gcd_dvd_prod_nat [iff]: "gcd (m::nat) n dvd k * n" | 
| 23687 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 521 | using mult_dvd_mono [of 1] by auto | 
| 22027 
e4a08629c4bd
A few lemmas about relative primes when dividing trough gcd
 chaieb parents: 
21404diff
changeset | 522 | |
| 31706 | 523 | (* to do: add the three variations of these, and for ints? *) | 
| 524 | ||
| 31992 | 525 | lemma finite_divisors_nat[simp]: | 
| 526 |   assumes "(m::nat) ~= 0" shows "finite{d. d dvd m}"
 | |
| 31734 | 527 | proof- | 
| 528 |   have "finite{d. d <= m}" by(blast intro: bounded_nat_set_is_finite)
 | |
| 529 | from finite_subset[OF _ this] show ?thesis using assms | |
| 530 | by(bestsimp intro!:dvd_imp_le) | |
| 531 | qed | |
| 532 | ||
| 31995 | 533 | lemma finite_divisors_int[simp]: | 
| 31734 | 534 |   assumes "(i::int) ~= 0" shows "finite{d. d dvd i}"
 | 
| 535 | proof- | |
| 536 |   have "{d. abs d <= abs i} = {- abs i .. abs i}" by(auto simp:abs_if)
 | |
| 537 |   hence "finite{d. abs d <= abs i}" by simp
 | |
| 538 | from finite_subset[OF _ this] show ?thesis using assms | |
| 539 | by(bestsimp intro!:dvd_imp_le_int) | |
| 540 | qed | |
| 541 | ||
| 31995 | 542 | lemma Max_divisors_self_nat[simp]: "n\<noteq>0 \<Longrightarrow> Max{d::nat. d dvd n} = n"
 | 
| 543 | apply(rule antisym) | |
| 44890 
22f665a2e91c
new fastforce replacing fastsimp - less confusing name
 nipkow parents: 
44845diff
changeset | 544 | apply (fastforce intro: Max_le_iff[THEN iffD2] simp: dvd_imp_le) | 
| 31995 | 545 | apply simp | 
| 546 | done | |
| 547 | ||
| 548 | lemma Max_divisors_self_int[simp]: "n\<noteq>0 \<Longrightarrow> Max{d::int. d dvd n} = abs n"
 | |
| 549 | apply(rule antisym) | |
| 44278 
1220ecb81e8f
observe distinction between sets and predicates more properly
 haftmann parents: 
42871diff
changeset | 550 | apply(rule Max_le_iff [THEN iffD2]) | 
| 
1220ecb81e8f
observe distinction between sets and predicates more properly
 haftmann parents: 
42871diff
changeset | 551 | apply (auto intro: abs_le_D1 dvd_imp_le_int) | 
| 31995 | 552 | done | 
| 553 | ||
| 31734 | 554 | lemma gcd_is_Max_divisors_nat: | 
| 555 |   "m ~= 0 \<Longrightarrow> n ~= 0 \<Longrightarrow> gcd (m::nat) n = (Max {d. d dvd m & d dvd n})"
 | |
| 556 | apply(rule Max_eqI[THEN sym]) | |
| 31995 | 557 | apply (metis finite_Collect_conjI finite_divisors_nat) | 
| 31734 | 558 | apply simp | 
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 559 | apply(metis Suc_diff_1 Suc_neq_Zero dvd_imp_le gcd_greatest_iff_nat gcd_pos_nat) | 
| 31734 | 560 | apply simp | 
| 561 | done | |
| 562 | ||
| 563 | lemma gcd_is_Max_divisors_int: | |
| 564 |   "m ~= 0 ==> n ~= 0 ==> gcd (m::int) n = (Max {d. d dvd m & d dvd n})"
 | |
| 565 | apply(rule Max_eqI[THEN sym]) | |
| 31995 | 566 | apply (metis finite_Collect_conjI finite_divisors_int) | 
| 31734 | 567 | apply simp | 
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 568 | apply (metis gcd_greatest_iff_int gcd_pos_int zdvd_imp_le) | 
| 31734 | 569 | apply simp | 
| 570 | done | |
| 571 | ||
| 34030 
829eb528b226
resorted code equations from "old" number theory version
 haftmann parents: 
33946diff
changeset | 572 | lemma gcd_code_int [code]: | 
| 
829eb528b226
resorted code equations from "old" number theory version
 haftmann parents: 
33946diff
changeset | 573 | "gcd k l = \<bar>if l = (0::int) then k else gcd l (\<bar>k\<bar> mod \<bar>l\<bar>)\<bar>" | 
| 
829eb528b226
resorted code equations from "old" number theory version
 haftmann parents: 
33946diff
changeset | 574 | by (simp add: gcd_int_def nat_mod_distrib gcd_non_0_nat) | 
| 
829eb528b226
resorted code equations from "old" number theory version
 haftmann parents: 
33946diff
changeset | 575 | |
| 22027 
e4a08629c4bd
A few lemmas about relative primes when dividing trough gcd
 chaieb parents: 
21404diff
changeset | 576 | |
| 31706 | 577 | subsection {* Coprimality *}
 | 
| 578 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 579 | lemma div_gcd_coprime_nat: | 
| 31706 | 580 | assumes nz: "(a::nat) \<noteq> 0 \<or> b \<noteq> 0" | 
| 581 | shows "coprime (a div gcd a b) (b div gcd a b)" | |
| 22367 | 582 | proof - | 
| 27556 | 583 | let ?g = "gcd a b" | 
| 22027 
e4a08629c4bd
A few lemmas about relative primes when dividing trough gcd
 chaieb parents: 
21404diff
changeset | 584 | let ?a' = "a div ?g" | 
| 
e4a08629c4bd
A few lemmas about relative primes when dividing trough gcd
 chaieb parents: 
21404diff
changeset | 585 | let ?b' = "b div ?g" | 
| 27556 | 586 | let ?g' = "gcd ?a' ?b'" | 
| 22027 
e4a08629c4bd
A few lemmas about relative primes when dividing trough gcd
 chaieb parents: 
21404diff
changeset | 587 | have dvdg: "?g dvd a" "?g dvd b" by simp_all | 
| 
e4a08629c4bd
A few lemmas about relative primes when dividing trough gcd
 chaieb parents: 
21404diff
changeset | 588 | have dvdg': "?g' dvd ?a'" "?g' dvd ?b'" by simp_all | 
| 22367 | 589 | from dvdg dvdg' obtain ka kb ka' kb' where | 
| 590 | kab: "a = ?g * ka" "b = ?g * kb" "?a' = ?g' * ka'" "?b' = ?g' * kb'" | |
| 22027 
e4a08629c4bd
A few lemmas about relative primes when dividing trough gcd
 chaieb parents: 
21404diff
changeset | 591 | unfolding dvd_def by blast | 
| 58834 | 592 | from this [symmetric] have "?g * ?a' = (?g * ?g') * ka'" "?g * ?b' = (?g * ?g') * kb'" | 
| 593 | by (simp_all add: mult.assoc mult.left_commute [of "gcd a b"]) | |
| 22367 | 594 | then have dvdgg':"?g * ?g' dvd a" "?g* ?g' dvd b" | 
| 595 | by (auto simp add: dvd_mult_div_cancel [OF dvdg(1)] | |
| 596 | dvd_mult_div_cancel [OF dvdg(2)] dvd_def) | |
| 35216 | 597 | have "?g \<noteq> 0" using nz by simp | 
| 31706 | 598 | then have gp: "?g > 0" by arith | 
| 59008 | 599 | from gcd_greatest [OF dvdgg'] have "?g * ?g' dvd ?g" . | 
| 22367 | 600 | with dvd_mult_cancel1 [OF gp] show "?g' = 1" by simp | 
| 22027 
e4a08629c4bd
A few lemmas about relative primes when dividing trough gcd
 chaieb parents: 
21404diff
changeset | 601 | qed | 
| 
e4a08629c4bd
A few lemmas about relative primes when dividing trough gcd
 chaieb parents: 
21404diff
changeset | 602 | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 603 | lemma div_gcd_coprime_int: | 
| 31706 | 604 | assumes nz: "(a::int) \<noteq> 0 \<or> b \<noteq> 0" | 
| 605 | shows "coprime (a div gcd a b) (b div gcd a b)" | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 606 | apply (subst (1 2 3) gcd_abs_int) | 
| 31813 | 607 | apply (subst (1 2) abs_div) | 
| 608 | apply simp | |
| 609 | apply simp | |
| 610 | apply(subst (1 2) abs_gcd_int) | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 611 | apply (rule div_gcd_coprime_nat [transferred]) | 
| 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 612 | using nz apply (auto simp add: gcd_abs_int [symmetric]) | 
| 31706 | 613 | done | 
| 614 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 615 | lemma coprime_nat: "coprime (a::nat) b \<longleftrightarrow> (\<forall>d. d dvd a \<and> d dvd b \<longleftrightarrow> d = 1)" | 
| 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 616 | using gcd_unique_nat[of 1 a b, simplified] by auto | 
| 31706 | 617 | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 618 | lemma coprime_Suc_0_nat: | 
| 31706 | 619 | "coprime (a::nat) b \<longleftrightarrow> (\<forall>d. d dvd a \<and> d dvd b \<longleftrightarrow> d = Suc 0)" | 
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 620 | using coprime_nat by (simp add: One_nat_def) | 
| 31706 | 621 | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 622 | lemma coprime_int: "coprime (a::int) b \<longleftrightarrow> | 
| 31706 | 623 | (\<forall>d. d >= 0 \<and> d dvd a \<and> d dvd b \<longleftrightarrow> d = 1)" | 
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 624 | using gcd_unique_int [of 1 a b] | 
| 31706 | 625 | apply clarsimp | 
| 626 | apply (erule subst) | |
| 627 | apply (rule iffI) | |
| 628 | apply force | |
| 59807 | 629 | apply (drule_tac x = "abs e" for e in exI) | 
| 630 | apply (case_tac "e >= 0" for e :: int) | |
| 31706 | 631 | apply force | 
| 632 | apply force | |
| 59807 | 633 | done | 
| 31706 | 634 | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 635 | lemma gcd_coprime_nat: | 
| 31706 | 636 | assumes z: "gcd (a::nat) b \<noteq> 0" and a: "a = a' * gcd a b" and | 
| 637 | b: "b = b' * gcd a b" | |
| 638 | shows "coprime a' b'" | |
| 639 | ||
| 640 | apply (subgoal_tac "a' = a div gcd a b") | |
| 641 | apply (erule ssubst) | |
| 642 | apply (subgoal_tac "b' = b div gcd a b") | |
| 643 | apply (erule ssubst) | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 644 | apply (rule div_gcd_coprime_nat) | 
| 41550 | 645 | using z apply force | 
| 31706 | 646 | apply (subst (1) b) | 
| 647 | using z apply force | |
| 648 | apply (subst (1) a) | |
| 649 | using z apply force | |
| 41550 | 650 | done | 
| 31706 | 651 | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 652 | lemma gcd_coprime_int: | 
| 31706 | 653 | assumes z: "gcd (a::int) b \<noteq> 0" and a: "a = a' * gcd a b" and | 
| 654 | b: "b = b' * gcd a b" | |
| 655 | shows "coprime a' b'" | |
| 656 | ||
| 657 | apply (subgoal_tac "a' = a div gcd a b") | |
| 658 | apply (erule ssubst) | |
| 659 | apply (subgoal_tac "b' = b div gcd a b") | |
| 660 | apply (erule ssubst) | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 661 | apply (rule div_gcd_coprime_int) | 
| 41550 | 662 | using z apply force | 
| 31706 | 663 | apply (subst (1) b) | 
| 664 | using z apply force | |
| 665 | apply (subst (1) a) | |
| 666 | using z apply force | |
| 41550 | 667 | done | 
| 31706 | 668 | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 669 | lemma coprime_mult_nat: assumes da: "coprime (d::nat) a" and db: "coprime d b" | 
| 31706 | 670 | shows "coprime d (a * b)" | 
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 671 | apply (subst gcd_commute_nat) | 
| 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 672 | using da apply (subst gcd_mult_cancel_nat) | 
| 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 673 | apply (subst gcd_commute_nat, assumption) | 
| 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 674 | apply (subst gcd_commute_nat, rule db) | 
| 31706 | 675 | done | 
| 676 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 677 | lemma coprime_mult_int: assumes da: "coprime (d::int) a" and db: "coprime d b" | 
| 31706 | 678 | shows "coprime d (a * b)" | 
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 679 | apply (subst gcd_commute_int) | 
| 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 680 | using da apply (subst gcd_mult_cancel_int) | 
| 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 681 | apply (subst gcd_commute_int, assumption) | 
| 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 682 | apply (subst gcd_commute_int, rule db) | 
| 31706 | 683 | done | 
| 684 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 685 | lemma coprime_lmult_nat: | 
| 31706 | 686 | assumes dab: "coprime (d::nat) (a * b)" shows "coprime d a" | 
| 687 | proof - | |
| 688 | have "gcd d a dvd gcd d (a * b)" | |
| 59008 | 689 | by (rule gcd_greatest, auto) | 
| 31706 | 690 | with dab show ?thesis | 
| 691 | by auto | |
| 692 | qed | |
| 693 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 694 | lemma coprime_lmult_int: | 
| 31798 | 695 | assumes "coprime (d::int) (a * b)" shows "coprime d a" | 
| 31706 | 696 | proof - | 
| 697 | have "gcd d a dvd gcd d (a * b)" | |
| 59008 | 698 | by (rule gcd_greatest, auto) | 
| 31798 | 699 | with assms show ?thesis | 
| 31706 | 700 | by auto | 
| 701 | qed | |
| 702 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 703 | lemma coprime_rmult_nat: | 
| 31798 | 704 | assumes "coprime (d::nat) (a * b)" shows "coprime d b" | 
| 31706 | 705 | proof - | 
| 706 | have "gcd d b dvd gcd d (a * b)" | |
| 59008 | 707 | by (rule gcd_greatest, auto intro: dvd_mult) | 
| 31798 | 708 | with assms show ?thesis | 
| 31706 | 709 | by auto | 
| 710 | qed | |
| 711 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 712 | lemma coprime_rmult_int: | 
| 31706 | 713 | assumes dab: "coprime (d::int) (a * b)" shows "coprime d b" | 
| 714 | proof - | |
| 715 | have "gcd d b dvd gcd d (a * b)" | |
| 59008 | 716 | by (rule gcd_greatest, auto intro: dvd_mult) | 
| 31706 | 717 | with dab show ?thesis | 
| 718 | by auto | |
| 719 | qed | |
| 720 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 721 | lemma coprime_mul_eq_nat: "coprime (d::nat) (a * b) \<longleftrightarrow> | 
| 31706 | 722 | coprime d a \<and> coprime d b" | 
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 723 | using coprime_rmult_nat[of d a b] coprime_lmult_nat[of d a b] | 
| 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 724 | coprime_mult_nat[of d a b] | 
| 31706 | 725 | by blast | 
| 726 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 727 | lemma coprime_mul_eq_int: "coprime (d::int) (a * b) \<longleftrightarrow> | 
| 31706 | 728 | coprime d a \<and> coprime d b" | 
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 729 | using coprime_rmult_int[of d a b] coprime_lmult_int[of d a b] | 
| 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 730 | coprime_mult_int[of d a b] | 
| 31706 | 731 | by blast | 
| 732 | ||
| 52397 | 733 | lemma coprime_power_int: | 
| 734 | assumes "0 < n" shows "coprime (a :: int) (b ^ n) \<longleftrightarrow> coprime a b" | |
| 735 | using assms | |
| 736 | proof (induct n) | |
| 737 | case (Suc n) then show ?case | |
| 738 | by (cases n) (simp_all add: coprime_mul_eq_int) | |
| 739 | qed simp | |
| 740 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 741 | lemma gcd_coprime_exists_nat: | 
| 31706 | 742 | assumes nz: "gcd (a::nat) b \<noteq> 0" | 
| 743 | shows "\<exists>a' b'. a = a' * gcd a b \<and> b = b' * gcd a b \<and> coprime a' b'" | |
| 744 | apply (rule_tac x = "a div gcd a b" in exI) | |
| 745 | apply (rule_tac x = "b div gcd a b" in exI) | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 746 | using nz apply (auto simp add: div_gcd_coprime_nat dvd_div_mult) | 
| 31706 | 747 | done | 
| 748 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 749 | lemma gcd_coprime_exists_int: | 
| 31706 | 750 | assumes nz: "gcd (a::int) b \<noteq> 0" | 
| 751 | shows "\<exists>a' b'. a = a' * gcd a b \<and> b = b' * gcd a b \<and> coprime a' b'" | |
| 752 | apply (rule_tac x = "a div gcd a b" in exI) | |
| 753 | apply (rule_tac x = "b div gcd a b" in exI) | |
| 59008 | 754 | using nz apply (auto simp add: div_gcd_coprime_int) | 
| 31706 | 755 | done | 
| 756 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 757 | lemma coprime_exp_nat: "coprime (d::nat) a \<Longrightarrow> coprime d (a^n)" | 
| 60162 | 758 | by (induct n, simp_all add: power_Suc coprime_mult_nat) | 
| 31706 | 759 | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 760 | lemma coprime_exp_int: "coprime (d::int) a \<Longrightarrow> coprime d (a^n)" | 
| 60162 | 761 | by (induct n, simp_all add: power_Suc coprime_mult_int) | 
| 31706 | 762 | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 763 | lemma coprime_exp2_nat [intro]: "coprime (a::nat) b \<Longrightarrow> coprime (a^n) (b^m)" | 
| 60162 | 764 | by (simp add: coprime_exp_nat gcd_nat.commute) | 
| 31706 | 765 | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 766 | lemma coprime_exp2_int [intro]: "coprime (a::int) b \<Longrightarrow> coprime (a^n) (b^m)" | 
| 60162 | 767 | by (simp add: coprime_exp_int gcd_int.commute) | 
| 31706 | 768 | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 769 | lemma gcd_exp_nat: "gcd ((a::nat)^n) (b^n) = (gcd a b)^n" | 
| 31706 | 770 | proof (cases) | 
| 771 | assume "a = 0 & b = 0" | |
| 772 | thus ?thesis by simp | |
| 773 | next assume "~(a = 0 & b = 0)" | |
| 774 | hence "coprime ((a div gcd a b)^n) ((b div gcd a b)^n)" | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 775 | by (auto simp:div_gcd_coprime_nat) | 
| 31706 | 776 | hence "gcd ((a div gcd a b)^n * (gcd a b)^n) | 
| 777 | ((b div gcd a b)^n * (gcd a b)^n) = (gcd a b)^n" | |
| 60162 | 778 | by (metis gcd_mult_distrib_nat mult.commute mult.right_neutral) | 
| 31706 | 779 | also have "(a div gcd a b)^n * (gcd a b)^n = a^n" | 
| 60162 | 780 | by (metis dvd_div_mult_self gcd_unique_nat power_mult_distrib) | 
| 31706 | 781 | also have "(b div gcd a b)^n * (gcd a b)^n = b^n" | 
| 60162 | 782 | by (metis dvd_div_mult_self gcd_unique_nat power_mult_distrib) | 
| 31706 | 783 | finally show ?thesis . | 
| 784 | qed | |
| 785 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 786 | lemma gcd_exp_int: "gcd ((a::int)^n) (b^n) = (gcd a b)^n" | 
| 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 787 | apply (subst (1 2) gcd_abs_int) | 
| 31706 | 788 | apply (subst (1 2) power_abs) | 
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 789 | apply (rule gcd_exp_nat [where n = n, transferred]) | 
| 31706 | 790 | apply auto | 
| 791 | done | |
| 792 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 793 | lemma division_decomp_nat: assumes dc: "(a::nat) dvd b * c" | 
| 31706 | 794 | shows "\<exists>b' c'. a = b' * c' \<and> b' dvd b \<and> c' dvd c" | 
| 795 | proof- | |
| 796 | let ?g = "gcd a b" | |
| 797 |   {assume "?g = 0" with dc have ?thesis by auto}
 | |
| 798 | moreover | |
| 799 |   {assume z: "?g \<noteq> 0"
 | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 800 | from gcd_coprime_exists_nat[OF z] | 
| 31706 | 801 | obtain a' b' where ab': "a = a' * ?g" "b = b' * ?g" "coprime a' b'" | 
| 802 | by blast | |
| 803 | have thb: "?g dvd b" by auto | |
| 804 | from ab'(1) have "a' dvd a" unfolding dvd_def by blast | |
| 805 | with dc have th0: "a' dvd b*c" using dvd_trans[of a' a "b*c"] by simp | |
| 806 | from dc ab'(1,2) have "a'*?g dvd (b'*?g) *c" by auto | |
| 57512 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
56218diff
changeset | 807 | hence "?g*a' dvd ?g * (b' * c)" by (simp add: mult.assoc) | 
| 31706 | 808 | with z have th_1: "a' dvd b' * c" by auto | 
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 809 | from coprime_dvd_mult_nat[OF ab'(3)] th_1 | 
| 57512 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
56218diff
changeset | 810 | have thc: "a' dvd c" by (subst (asm) mult.commute, blast) | 
| 31706 | 811 | from ab' have "a = ?g*a'" by algebra | 
| 812 | with thb thc have ?thesis by blast } | |
| 813 | ultimately show ?thesis by blast | |
| 814 | qed | |
| 815 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 816 | lemma division_decomp_int: assumes dc: "(a::int) dvd b * c" | 
| 31706 | 817 | shows "\<exists>b' c'. a = b' * c' \<and> b' dvd b \<and> c' dvd c" | 
| 818 | proof- | |
| 819 | let ?g = "gcd a b" | |
| 820 |   {assume "?g = 0" with dc have ?thesis by auto}
 | |
| 821 | moreover | |
| 822 |   {assume z: "?g \<noteq> 0"
 | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 823 | from gcd_coprime_exists_int[OF z] | 
| 31706 | 824 | obtain a' b' where ab': "a = a' * ?g" "b = b' * ?g" "coprime a' b'" | 
| 825 | by blast | |
| 826 | have thb: "?g dvd b" by auto | |
| 827 | from ab'(1) have "a' dvd a" unfolding dvd_def by blast | |
| 828 | with dc have th0: "a' dvd b*c" | |
| 829 | using dvd_trans[of a' a "b*c"] by simp | |
| 830 | from dc ab'(1,2) have "a'*?g dvd (b'*?g) *c" by auto | |
| 57512 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
56218diff
changeset | 831 | hence "?g*a' dvd ?g * (b' * c)" by (simp add: mult.assoc) | 
| 31706 | 832 | with z have th_1: "a' dvd b' * c" by auto | 
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 833 | from coprime_dvd_mult_int[OF ab'(3)] th_1 | 
| 57512 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
56218diff
changeset | 834 | have thc: "a' dvd c" by (subst (asm) mult.commute, blast) | 
| 31706 | 835 | from ab' have "a = ?g*a'" by algebra | 
| 836 | with thb thc have ?thesis by blast } | |
| 837 | ultimately show ?thesis by blast | |
| 27669 
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
 chaieb parents: 
27651diff
changeset | 838 | qed | 
| 
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
 chaieb parents: 
27651diff
changeset | 839 | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 840 | lemma pow_divides_pow_nat: | 
| 31706 | 841 | assumes ab: "(a::nat) ^ n dvd b ^n" and n:"n \<noteq> 0" | 
| 842 | shows "a dvd b" | |
| 843 | proof- | |
| 844 | let ?g = "gcd a b" | |
| 845 | from n obtain m where m: "n = Suc m" by (cases n, simp_all) | |
| 846 |   {assume "?g = 0" with ab n have ?thesis by auto }
 | |
| 847 | moreover | |
| 848 |   {assume z: "?g \<noteq> 0"
 | |
| 35216 | 849 | hence zn: "?g ^ n \<noteq> 0" using n by simp | 
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 850 | from gcd_coprime_exists_nat[OF z] | 
| 31706 | 851 | obtain a' b' where ab': "a = a' * ?g" "b = b' * ?g" "coprime a' b'" | 
| 852 | by blast | |
| 853 | from ab have "(a' * ?g) ^ n dvd (b' * ?g)^n" | |
| 854 | by (simp add: ab'(1,2)[symmetric]) | |
| 855 | hence "?g^n*a'^n dvd ?g^n *b'^n" | |
| 57512 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
56218diff
changeset | 856 | by (simp only: power_mult_distrib mult.commute) | 
| 58787 | 857 | then have th0: "a'^n dvd b'^n" | 
| 858 | using zn by auto | |
| 31706 | 859 | have "a' dvd a'^n" by (simp add: m) | 
| 860 | with th0 have "a' dvd b'^n" using dvd_trans[of a' "a'^n" "b'^n"] by simp | |
| 57512 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
56218diff
changeset | 861 | hence th1: "a' dvd b'^m * b'" by (simp add: m mult.commute) | 
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 862 | from coprime_dvd_mult_nat[OF coprime_exp_nat [OF ab'(3), of m]] th1 | 
| 57512 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
56218diff
changeset | 863 | have "a' dvd b'" by (subst (asm) mult.commute, blast) | 
| 31706 | 864 | hence "a'*?g dvd b'*?g" by simp | 
| 865 | with ab'(1,2) have ?thesis by simp } | |
| 866 | ultimately show ?thesis by blast | |
| 867 | qed | |
| 868 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 869 | lemma pow_divides_pow_int: | 
| 31706 | 870 | assumes ab: "(a::int) ^ n dvd b ^n" and n:"n \<noteq> 0" | 
| 871 | shows "a dvd b" | |
| 27669 
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
 chaieb parents: 
27651diff
changeset | 872 | proof- | 
| 31706 | 873 | let ?g = "gcd a b" | 
| 874 | from n obtain m where m: "n = Suc m" by (cases n, simp_all) | |
| 875 |   {assume "?g = 0" with ab n have ?thesis by auto }
 | |
| 876 | moreover | |
| 877 |   {assume z: "?g \<noteq> 0"
 | |
| 35216 | 878 | hence zn: "?g ^ n \<noteq> 0" using n by simp | 
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 879 | from gcd_coprime_exists_int[OF z] | 
| 31706 | 880 | obtain a' b' where ab': "a = a' * ?g" "b = b' * ?g" "coprime a' b'" | 
| 881 | by blast | |
| 882 | from ab have "(a' * ?g) ^ n dvd (b' * ?g)^n" | |
| 883 | by (simp add: ab'(1,2)[symmetric]) | |
| 884 | hence "?g^n*a'^n dvd ?g^n *b'^n" | |
| 57512 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
56218diff
changeset | 885 | by (simp only: power_mult_distrib mult.commute) | 
| 31706 | 886 | with zn z n have th0:"a'^n dvd b'^n" by auto | 
| 887 | have "a' dvd a'^n" by (simp add: m) | |
| 888 | with th0 have "a' dvd b'^n" | |
| 889 | using dvd_trans[of a' "a'^n" "b'^n"] by simp | |
| 60162 | 890 | hence th1: "a' dvd b'^m * b'" by (simp add: m mult.commute power_Suc) | 
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 891 | from coprime_dvd_mult_int[OF coprime_exp_int [OF ab'(3), of m]] th1 | 
| 57512 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
56218diff
changeset | 892 | have "a' dvd b'" by (subst (asm) mult.commute, blast) | 
| 31706 | 893 | hence "a'*?g dvd b'*?g" by simp | 
| 894 | with ab'(1,2) have ?thesis by simp } | |
| 895 | ultimately show ?thesis by blast | |
| 896 | qed | |
| 897 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 898 | lemma pow_divides_eq_nat [simp]: "n ~= 0 \<Longrightarrow> ((a::nat)^n dvd b^n) = (a dvd b)" | 
| 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 899 | by (auto intro: pow_divides_pow_nat dvd_power_same) | 
| 31706 | 900 | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 901 | lemma pow_divides_eq_int [simp]: "n ~= 0 \<Longrightarrow> ((a::int)^n dvd b^n) = (a dvd b)" | 
| 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 902 | by (auto intro: pow_divides_pow_int dvd_power_same) | 
| 31706 | 903 | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 904 | lemma divides_mult_nat: | 
| 31706 | 905 | assumes mr: "(m::nat) dvd r" and nr: "n dvd r" and mn:"coprime m n" | 
| 906 | shows "m * n dvd r" | |
| 907 | proof- | |
| 908 | from mr nr obtain m' n' where m': "r = m*m'" and n': "r = n*n'" | |
| 909 | unfolding dvd_def by blast | |
| 57512 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
56218diff
changeset | 910 | from mr n' have "m dvd n'*n" by (simp add: mult.commute) | 
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 911 | hence "m dvd n'" using coprime_dvd_mult_iff_nat[OF mn] by simp | 
| 31706 | 912 | then obtain k where k: "n' = m*k" unfolding dvd_def by blast | 
| 913 | from n' k show ?thesis unfolding dvd_def by auto | |
| 914 | qed | |
| 915 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 916 | lemma divides_mult_int: | 
| 31706 | 917 | assumes mr: "(m::int) dvd r" and nr: "n dvd r" and mn:"coprime m n" | 
| 918 | shows "m * n dvd r" | |
| 919 | proof- | |
| 920 | from mr nr obtain m' n' where m': "r = m*m'" and n': "r = n*n'" | |
| 921 | unfolding dvd_def by blast | |
| 57512 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
56218diff
changeset | 922 | from mr n' have "m dvd n'*n" by (simp add: mult.commute) | 
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 923 | hence "m dvd n'" using coprime_dvd_mult_iff_int[OF mn] by simp | 
| 31706 | 924 | then obtain k where k: "n' = m*k" unfolding dvd_def by blast | 
| 925 | from n' k show ?thesis unfolding dvd_def by auto | |
| 27669 
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
 chaieb parents: 
27651diff
changeset | 926 | qed | 
| 
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
 chaieb parents: 
27651diff
changeset | 927 | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 928 | lemma coprime_plus_one_nat [simp]: "coprime ((n::nat) + 1) n" | 
| 60162 | 929 | by (simp add: gcd_nat.commute) | 
| 31706 | 930 | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 931 | lemma coprime_Suc_nat [simp]: "coprime (Suc n) n" | 
| 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 932 | using coprime_plus_one_nat by (simp add: One_nat_def) | 
| 31706 | 933 | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 934 | lemma coprime_plus_one_int [simp]: "coprime ((n::int) + 1) n" | 
| 60162 | 935 | by (simp add: gcd_int.commute) | 
| 31706 | 936 | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 937 | lemma coprime_minus_one_nat: "(n::nat) \<noteq> 0 \<Longrightarrow> coprime (n - 1) n" | 
| 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 938 | using coprime_plus_one_nat [of "n - 1"] | 
| 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 939 | gcd_commute_nat [of "n - 1" n] by auto | 
| 31706 | 940 | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 941 | lemma coprime_minus_one_int: "coprime ((n::int) - 1) n" | 
| 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 942 | using coprime_plus_one_int [of "n - 1"] | 
| 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 943 | gcd_commute_int [of "n - 1" n] by auto | 
| 31706 | 944 | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 945 | lemma setprod_coprime_nat [rule_format]: | 
| 31706 | 946 | "(ALL i: A. coprime (f i) (x::nat)) --> coprime (PROD i:A. f i) x" | 
| 947 | apply (case_tac "finite A") | |
| 948 | apply (induct set: finite) | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 949 | apply (auto simp add: gcd_mult_cancel_nat) | 
| 31706 | 950 | done | 
| 951 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 952 | lemma setprod_coprime_int [rule_format]: | 
| 31706 | 953 | "(ALL i: A. coprime (f i) (x::int)) --> coprime (PROD i:A. f i) x" | 
| 954 | apply (case_tac "finite A") | |
| 955 | apply (induct set: finite) | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 956 | apply (auto simp add: gcd_mult_cancel_int) | 
| 31706 | 957 | done | 
| 958 | ||
| 60162 | 959 | lemma coprime_common_divisor_nat: | 
| 960 | "coprime (a::nat) b \<Longrightarrow> x dvd a \<Longrightarrow> x dvd b \<Longrightarrow> x = 1" | |
| 961 | by (metis gcd_greatest_iff_nat nat_dvd_1_iff_1) | |
| 31706 | 962 | |
| 60162 | 963 | lemma coprime_common_divisor_int: | 
| 964 | "coprime (a::int) b \<Longrightarrow> x dvd a \<Longrightarrow> x dvd b \<Longrightarrow> abs x = 1" | |
| 965 | using gcd_greatest by fastforce | |
| 31706 | 966 | |
| 60162 | 967 | lemma coprime_divisors_nat: | 
| 968 | "(d::int) dvd a \<Longrightarrow> e dvd b \<Longrightarrow> coprime a b \<Longrightarrow> coprime d e" | |
| 969 | by (meson coprime_int dvd_trans gcd_dvd1 gcd_dvd2 gcd_ge_0_int) | |
| 31706 | 970 | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 971 | lemma invertible_coprime_nat: "(x::nat) * y mod m = 1 \<Longrightarrow> coprime x m" | 
| 60162 | 972 | by (metis coprime_lmult_nat gcd_1_nat gcd_commute_nat gcd_red_nat) | 
| 31706 | 973 | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 974 | lemma invertible_coprime_int: "(x::int) * y mod m = 1 \<Longrightarrow> coprime x m" | 
| 60162 | 975 | by (metis coprime_lmult_int gcd_1_int gcd_commute_int gcd_red_int) | 
| 31706 | 976 | |
| 977 | ||
| 978 | subsection {* Bezout's theorem *}
 | |
| 979 | ||
| 980 | (* Function bezw returns a pair of witnesses to Bezout's theorem -- | |
| 981 | see the theorems that follow the definition. *) | |
| 982 | fun | |
| 983 | bezw :: "nat \<Rightarrow> nat \<Rightarrow> int * int" | |
| 984 | where | |
| 985 | "bezw x y = | |
| 986 | (if y = 0 then (1, 0) else | |
| 987 | (snd (bezw y (x mod y)), | |
| 988 | fst (bezw y (x mod y)) - snd (bezw y (x mod y)) * int(x div y)))" | |
| 989 | ||
| 990 | lemma bezw_0 [simp]: "bezw x 0 = (1, 0)" by simp | |
| 991 | ||
| 992 | lemma bezw_non_0: "y > 0 \<Longrightarrow> bezw x y = (snd (bezw y (x mod y)), | |
| 993 | fst (bezw y (x mod y)) - snd (bezw y (x mod y)) * int(x div y))" | |
| 994 | by simp | |
| 995 | ||
| 996 | declare bezw.simps [simp del] | |
| 997 | ||
| 998 | lemma bezw_aux [rule_format]: | |
| 999 | "fst (bezw x y) * int x + snd (bezw x y) * int y = int (gcd x y)" | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 1000 | proof (induct x y rule: gcd_nat_induct) | 
| 31706 | 1001 | fix m :: nat | 
| 1002 | show "fst (bezw m 0) * int m + snd (bezw m 0) * int 0 = int (gcd m 0)" | |
| 1003 | by auto | |
| 1004 | next fix m :: nat and n | |
| 1005 | assume ngt0: "n > 0" and | |
| 1006 | ih: "fst (bezw n (m mod n)) * int n + | |
| 1007 | snd (bezw n (m mod n)) * int (m mod n) = | |
| 1008 | int (gcd n (m mod n))" | |
| 1009 | thus "fst (bezw m n) * int m + snd (bezw m n) * int n = int (gcd m n)" | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 1010 | apply (simp add: bezw_non_0 gcd_non_0_nat) | 
| 31706 | 1011 | apply (erule subst) | 
| 36350 | 1012 | apply (simp add: field_simps) | 
| 31706 | 1013 | apply (subst mod_div_equality [of m n, symmetric]) | 
| 1014 | (* applying simp here undoes the last substitution! | |
| 1015 | what is procedure cancel_div_mod? *) | |
| 58776 
95e58e04e534
use NO_MATCH-simproc for distribution rules in field_simps, otherwise field_simps on '(a / (c + d)) * (e + f)' can be non-terminating
 hoelzl parents: 
58770diff
changeset | 1016 | apply (simp only: NO_MATCH_def field_simps of_nat_add of_nat_mult) | 
| 31706 | 1017 | done | 
| 1018 | qed | |
| 1019 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 1020 | lemma bezout_int: | 
| 31706 | 1021 | fixes x y | 
| 1022 | shows "EX u v. u * (x::int) + v * y = gcd x y" | |
| 1023 | proof - | |
| 1024 | have bezout_aux: "!!x y. x \<ge> (0::int) \<Longrightarrow> y \<ge> 0 \<Longrightarrow> | |
| 1025 | EX u v. u * x + v * y = gcd x y" | |
| 1026 | apply (rule_tac x = "fst (bezw (nat x) (nat y))" in exI) | |
| 1027 | apply (rule_tac x = "snd (bezw (nat x) (nat y))" in exI) | |
| 1028 | apply (unfold gcd_int_def) | |
| 1029 | apply simp | |
| 1030 | apply (subst bezw_aux [symmetric]) | |
| 1031 | apply auto | |
| 1032 | done | |
| 1033 | have "(x \<ge> 0 \<and> y \<ge> 0) | (x \<ge> 0 \<and> y \<le> 0) | (x \<le> 0 \<and> y \<ge> 0) | | |
| 1034 | (x \<le> 0 \<and> y \<le> 0)" | |
| 1035 | by auto | |
| 1036 | moreover have "x \<ge> 0 \<Longrightarrow> y \<ge> 0 \<Longrightarrow> ?thesis" | |
| 1037 | by (erule (1) bezout_aux) | |
| 1038 | moreover have "x >= 0 \<Longrightarrow> y <= 0 \<Longrightarrow> ?thesis" | |
| 1039 | apply (insert bezout_aux [of x "-y"]) | |
| 1040 | apply auto | |
| 1041 | apply (rule_tac x = u in exI) | |
| 1042 | apply (rule_tac x = "-v" in exI) | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 1043 | apply (subst gcd_neg2_int [symmetric]) | 
| 31706 | 1044 | apply auto | 
| 1045 | done | |
| 1046 | moreover have "x <= 0 \<Longrightarrow> y >= 0 \<Longrightarrow> ?thesis" | |
| 1047 | apply (insert bezout_aux [of "-x" y]) | |
| 1048 | apply auto | |
| 1049 | apply (rule_tac x = "-u" in exI) | |
| 1050 | apply (rule_tac x = v in exI) | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 1051 | apply (subst gcd_neg1_int [symmetric]) | 
| 31706 | 1052 | apply auto | 
| 1053 | done | |
| 1054 | moreover have "x <= 0 \<Longrightarrow> y <= 0 \<Longrightarrow> ?thesis" | |
| 1055 | apply (insert bezout_aux [of "-x" "-y"]) | |
| 1056 | apply auto | |
| 1057 | apply (rule_tac x = "-u" in exI) | |
| 1058 | apply (rule_tac x = "-v" in exI) | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 1059 | apply (subst gcd_neg1_int [symmetric]) | 
| 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 1060 | apply (subst gcd_neg2_int [symmetric]) | 
| 31706 | 1061 | apply auto | 
| 1062 | done | |
| 1063 | ultimately show ?thesis by blast | |
| 1064 | qed | |
| 1065 | ||
| 1066 | text {* versions of Bezout for nat, by Amine Chaieb *}
 | |
| 1067 | ||
| 1068 | lemma ind_euclid: | |
| 1069 | assumes c: " \<forall>a b. P (a::nat) b \<longleftrightarrow> P b a" and z: "\<forall>a. P a 0" | |
| 1070 | and add: "\<forall>a b. P a b \<longrightarrow> P a (a + b)" | |
| 27669 
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
 chaieb parents: 
27651diff
changeset | 1071 | shows "P a b" | 
| 34915 | 1072 | proof(induct "a + b" arbitrary: a b rule: less_induct) | 
| 1073 | case less | |
| 27669 
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
 chaieb parents: 
27651diff
changeset | 1074 | have "a = b \<or> a < b \<or> b < a" by arith | 
| 
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
 chaieb parents: 
27651diff
changeset | 1075 |   moreover {assume eq: "a= b"
 | 
| 31706 | 1076 | from add[rule_format, OF z[rule_format, of a]] have "P a b" using eq | 
| 1077 | by simp} | |
| 27669 
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
 chaieb parents: 
27651diff
changeset | 1078 | moreover | 
| 
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
 chaieb parents: 
27651diff
changeset | 1079 |   {assume lt: "a < b"
 | 
| 34915 | 1080 | hence "a + b - a < a + b \<or> a = 0" by arith | 
| 27669 
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
 chaieb parents: 
27651diff
changeset | 1081 | moreover | 
| 
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
 chaieb parents: 
27651diff
changeset | 1082 |     {assume "a =0" with z c have "P a b" by blast }
 | 
| 
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
 chaieb parents: 
27651diff
changeset | 1083 | moreover | 
| 34915 | 1084 |     {assume "a + b - a < a + b"
 | 
| 1085 | also have th0: "a + b - a = a + (b - a)" using lt by arith | |
| 1086 | finally have "a + (b - a) < a + b" . | |
| 1087 | then have "P a (a + (b - a))" by (rule add[rule_format, OF less]) | |
| 1088 | then have "P a b" by (simp add: th0[symmetric])} | |
| 27669 
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
 chaieb parents: 
27651diff
changeset | 1089 | ultimately have "P a b" by blast} | 
| 
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
 chaieb parents: 
27651diff
changeset | 1090 | moreover | 
| 
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
 chaieb parents: 
27651diff
changeset | 1091 |   {assume lt: "a > b"
 | 
| 34915 | 1092 | hence "b + a - b < a + b \<or> b = 0" by arith | 
| 27669 
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
 chaieb parents: 
27651diff
changeset | 1093 | moreover | 
| 
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
 chaieb parents: 
27651diff
changeset | 1094 |     {assume "b =0" with z c have "P a b" by blast }
 | 
| 
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
 chaieb parents: 
27651diff
changeset | 1095 | moreover | 
| 34915 | 1096 |     {assume "b + a - b < a + b"
 | 
| 1097 | also have th0: "b + a - b = b + (a - b)" using lt by arith | |
| 1098 | finally have "b + (a - b) < a + b" . | |
| 1099 | then have "P b (b + (a - b))" by (rule add[rule_format, OF less]) | |
| 1100 | then have "P b a" by (simp add: th0[symmetric]) | |
| 27669 
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
 chaieb parents: 
27651diff
changeset | 1101 | hence "P a b" using c by blast } | 
| 
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
 chaieb parents: 
27651diff
changeset | 1102 | ultimately have "P a b" by blast} | 
| 
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
 chaieb parents: 
27651diff
changeset | 1103 | ultimately show "P a b" by blast | 
| 
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
 chaieb parents: 
27651diff
changeset | 1104 | qed | 
| 
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
 chaieb parents: 
27651diff
changeset | 1105 | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 1106 | lemma bezout_lemma_nat: | 
| 31706 | 1107 | assumes ex: "\<exists>(d::nat) x y. d dvd a \<and> d dvd b \<and> | 
| 1108 | (a * x = b * y + d \<or> b * x = a * y + d)" | |
| 1109 | shows "\<exists>d x y. d dvd a \<and> d dvd a + b \<and> | |
| 1110 | (a * x = (a + b) * y + d \<or> (a + b) * x = a * y + d)" | |
| 1111 | using ex | |
| 1112 | apply clarsimp | |
| 35216 | 1113 | apply (rule_tac x="d" in exI, simp) | 
| 31706 | 1114 | apply (case_tac "a * x = b * y + d" , simp_all) | 
| 1115 | apply (rule_tac x="x + y" in exI) | |
| 1116 | apply (rule_tac x="y" in exI) | |
| 1117 | apply algebra | |
| 1118 | apply (rule_tac x="x" in exI) | |
| 1119 | apply (rule_tac x="x + y" in exI) | |
| 1120 | apply algebra | |
| 27669 
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
 chaieb parents: 
27651diff
changeset | 1121 | done | 
| 
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
 chaieb parents: 
27651diff
changeset | 1122 | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 1123 | lemma bezout_add_nat: "\<exists>(d::nat) x y. d dvd a \<and> d dvd b \<and> | 
| 31706 | 1124 | (a * x = b * y + d \<or> b * x = a * y + d)" | 
| 1125 | apply(induct a b rule: ind_euclid) | |
| 1126 | apply blast | |
| 1127 | apply clarify | |
| 35216 | 1128 | apply (rule_tac x="a" in exI, simp) | 
| 31706 | 1129 | apply clarsimp | 
| 1130 | apply (rule_tac x="d" in exI) | |
| 35216 | 1131 | apply (case_tac "a * x = b * y + d", simp_all) | 
| 31706 | 1132 | apply (rule_tac x="x+y" in exI) | 
| 1133 | apply (rule_tac x="y" in exI) | |
| 1134 | apply algebra | |
| 1135 | apply (rule_tac x="x" in exI) | |
| 1136 | apply (rule_tac x="x+y" in exI) | |
| 1137 | apply algebra | |
| 27669 
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
 chaieb parents: 
27651diff
changeset | 1138 | done | 
| 
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
 chaieb parents: 
27651diff
changeset | 1139 | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 1140 | lemma bezout1_nat: "\<exists>(d::nat) x y. d dvd a \<and> d dvd b \<and> | 
| 31706 | 1141 | (a * x - b * y = d \<or> b * x - a * y = d)" | 
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 1142 | using bezout_add_nat[of a b] | 
| 31706 | 1143 | apply clarsimp | 
| 1144 | apply (rule_tac x="d" in exI, simp) | |
| 1145 | apply (rule_tac x="x" in exI) | |
| 1146 | apply (rule_tac x="y" in exI) | |
| 1147 | apply auto | |
| 27669 
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
 chaieb parents: 
27651diff
changeset | 1148 | done | 
| 
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
 chaieb parents: 
27651diff
changeset | 1149 | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 1150 | lemma bezout_add_strong_nat: assumes nz: "a \<noteq> (0::nat)" | 
| 27669 
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
 chaieb parents: 
27651diff
changeset | 1151 | shows "\<exists>d x y. d dvd a \<and> d dvd b \<and> a * x = b * y + d" | 
| 
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
 chaieb parents: 
27651diff
changeset | 1152 | proof- | 
| 31706 | 1153 | from nz have ap: "a > 0" by simp | 
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 1154 | from bezout_add_nat[of a b] | 
| 31706 | 1155 | have "(\<exists>d x y. d dvd a \<and> d dvd b \<and> a * x = b * y + d) \<or> | 
| 1156 | (\<exists>d x y. d dvd a \<and> d dvd b \<and> b * x = a * y + d)" by blast | |
| 27669 
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
 chaieb parents: 
27651diff
changeset | 1157 | moreover | 
| 31706 | 1158 |     {fix d x y assume H: "d dvd a" "d dvd b" "a * x = b * y + d"
 | 
| 1159 | from H have ?thesis by blast } | |
| 27669 
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
 chaieb parents: 
27651diff
changeset | 1160 | moreover | 
| 
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
 chaieb parents: 
27651diff
changeset | 1161 |  {fix d x y assume H: "d dvd a" "d dvd b" "b * x = a * y + d"
 | 
| 
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
 chaieb parents: 
27651diff
changeset | 1162 |    {assume b0: "b = 0" with H  have ?thesis by simp}
 | 
| 31706 | 1163 | moreover | 
| 27669 
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
 chaieb parents: 
27651diff
changeset | 1164 |    {assume b: "b \<noteq> 0" hence bp: "b > 0" by simp
 | 
| 31706 | 1165 | from b dvd_imp_le [OF H(2)] have "d < b \<or> d = b" | 
| 1166 | by auto | |
| 27669 
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
 chaieb parents: 
27651diff
changeset | 1167 | moreover | 
| 
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
 chaieb parents: 
27651diff
changeset | 1168 |      {assume db: "d=b"
 | 
| 41550 | 1169 | with nz H have ?thesis apply simp | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32879diff
changeset | 1170 | apply (rule exI[where x = b], simp) | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32879diff
changeset | 1171 | apply (rule exI[where x = b]) | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32879diff
changeset | 1172 | by (rule exI[where x = "a - 1"], simp add: diff_mult_distrib2)} | 
| 27669 
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
 chaieb parents: 
27651diff
changeset | 1173 | moreover | 
| 31706 | 1174 |     {assume db: "d < b"
 | 
| 41550 | 1175 |         {assume "x=0" hence ?thesis using nz H by simp }
 | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32879diff
changeset | 1176 | moreover | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32879diff
changeset | 1177 |         {assume x0: "x \<noteq> 0" hence xp: "x > 0" by simp
 | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32879diff
changeset | 1178 | from db have "d \<le> b - 1" by simp | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32879diff
changeset | 1179 | hence "d*b \<le> b*(b - 1)" by simp | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32879diff
changeset | 1180 | with xp mult_mono[of "1" "x" "d*b" "b*(b - 1)"] | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32879diff
changeset | 1181 | have dble: "d*b \<le> x*b*(b - 1)" using bp by simp | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32879diff
changeset | 1182 | from H (3) have "d + (b - 1) * (b*x) = d + (b - 1) * (a*y + d)" | 
| 31706 | 1183 | by simp | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32879diff
changeset | 1184 | hence "d + (b - 1) * a * y + (b - 1) * d = d + (b - 1) * b * x" | 
| 57512 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
56218diff
changeset | 1185 | by (simp only: mult.assoc distrib_left) | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32879diff
changeset | 1186 | hence "a * ((b - 1) * y) + d * (b - 1 + 1) = d + x*b*(b - 1)" | 
| 31706 | 1187 | by algebra | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32879diff
changeset | 1188 | hence "a * ((b - 1) * y) = d + x*b*(b - 1) - d*b" using bp by simp | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32879diff
changeset | 1189 | hence "a * ((b - 1) * y) = d + (x*b*(b - 1) - d*b)" | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32879diff
changeset | 1190 | by (simp only: diff_add_assoc[OF dble, of d, symmetric]) | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32879diff
changeset | 1191 | hence "a * ((b - 1) * y) = b*(x*(b - 1) - d) + d" | 
| 59008 | 1192 | by (simp only: diff_mult_distrib2 ac_simps) | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32879diff
changeset | 1193 | hence ?thesis using H(1,2) | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32879diff
changeset | 1194 | apply - | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32879diff
changeset | 1195 | apply (rule exI[where x=d], simp) | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32879diff
changeset | 1196 | apply (rule exI[where x="(b - 1) * y"]) | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32879diff
changeset | 1197 | by (rule exI[where x="x*(b - 1) - d"], simp)} | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32879diff
changeset | 1198 | ultimately have ?thesis by blast} | 
| 27669 
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
 chaieb parents: 
27651diff
changeset | 1199 | ultimately have ?thesis by blast} | 
| 
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
 chaieb parents: 
27651diff
changeset | 1200 | ultimately have ?thesis by blast} | 
| 
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
 chaieb parents: 
27651diff
changeset | 1201 | ultimately show ?thesis by blast | 
| 
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
 chaieb parents: 
27651diff
changeset | 1202 | qed | 
| 
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
 chaieb parents: 
27651diff
changeset | 1203 | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 1204 | lemma bezout_nat: assumes a: "(a::nat) \<noteq> 0" | 
| 27669 
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
 chaieb parents: 
27651diff
changeset | 1205 | shows "\<exists>x y. a * x = b * y + gcd a b" | 
| 
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
 chaieb parents: 
27651diff
changeset | 1206 | proof- | 
| 
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
 chaieb parents: 
27651diff
changeset | 1207 | let ?g = "gcd a b" | 
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 1208 | from bezout_add_strong_nat[OF a, of b] | 
| 27669 
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
 chaieb parents: 
27651diff
changeset | 1209 | obtain d x y where d: "d dvd a" "d dvd b" "a * x = b * y + d" by blast | 
| 
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
 chaieb parents: 
27651diff
changeset | 1210 | from d(1,2) have "d dvd ?g" by simp | 
| 
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
 chaieb parents: 
27651diff
changeset | 1211 | then obtain k where k: "?g = d*k" unfolding dvd_def by blast | 
| 31706 | 1212 | from d(3) have "a * x * k = (b * y + d) *k " by auto | 
| 27669 
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
 chaieb parents: 
27651diff
changeset | 1213 | hence "a * (x * k) = b * (y*k) + ?g" by (algebra add: k) | 
| 
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
 chaieb parents: 
27651diff
changeset | 1214 | thus ?thesis by blast | 
| 
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
 chaieb parents: 
27651diff
changeset | 1215 | qed | 
| 
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
 chaieb parents: 
27651diff
changeset | 1216 | |
| 31706 | 1217 | |
| 34030 
829eb528b226
resorted code equations from "old" number theory version
 haftmann parents: 
33946diff
changeset | 1218 | subsection {* LCM properties *}
 | 
| 31706 | 1219 | |
| 34030 
829eb528b226
resorted code equations from "old" number theory version
 haftmann parents: 
33946diff
changeset | 1220 | lemma lcm_altdef_int [code]: "lcm (a::int) b = (abs a) * (abs b) div gcd a b" | 
| 31706 | 1221 | by (simp add: lcm_int_def lcm_nat_def zdiv_int | 
| 44821 | 1222 | of_nat_mult gcd_int_def) | 
| 31706 | 1223 | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 1224 | lemma prod_gcd_lcm_nat: "(m::nat) * n = gcd m n * lcm m n" | 
| 31706 | 1225 | unfolding lcm_nat_def | 
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 1226 | by (simp add: dvd_mult_div_cancel [OF gcd_dvd_prod_nat]) | 
| 31706 | 1227 | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 1228 | lemma prod_gcd_lcm_int: "abs(m::int) * abs n = gcd m n * lcm m n" | 
| 31706 | 1229 | unfolding lcm_int_def gcd_int_def | 
| 1230 | apply (subst int_mult [symmetric]) | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 1231 | apply (subst prod_gcd_lcm_nat [symmetric]) | 
| 31706 | 1232 | apply (subst nat_abs_mult_distrib [symmetric]) | 
| 1233 | apply (simp, simp add: abs_mult) | |
| 1234 | done | |
| 1235 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 1236 | lemma lcm_0_nat [simp]: "lcm (m::nat) 0 = 0" | 
| 31706 | 1237 | unfolding lcm_nat_def by simp | 
| 1238 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 1239 | lemma lcm_0_int [simp]: "lcm (m::int) 0 = 0" | 
| 31706 | 1240 | unfolding lcm_int_def by simp | 
| 1241 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 1242 | lemma lcm_0_left_nat [simp]: "lcm (0::nat) n = 0" | 
| 31706 | 1243 | unfolding lcm_nat_def by simp | 
| 27669 
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
 chaieb parents: 
27651diff
changeset | 1244 | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 1245 | lemma lcm_0_left_int [simp]: "lcm (0::int) n = 0" | 
| 31706 | 1246 | unfolding lcm_int_def by simp | 
| 1247 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 1248 | lemma lcm_pos_nat: | 
| 31798 | 1249 | "(m::nat) > 0 \<Longrightarrow> n>0 \<Longrightarrow> lcm m n > 0" | 
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 1250 | by (metis gr0I mult_is_0 prod_gcd_lcm_nat) | 
| 27669 
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
 chaieb parents: 
27651diff
changeset | 1251 | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 1252 | lemma lcm_pos_int: | 
| 31798 | 1253 | "(m::int) ~= 0 \<Longrightarrow> n ~= 0 \<Longrightarrow> lcm m n > 0" | 
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 1254 | apply (subst lcm_abs_int) | 
| 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 1255 | apply (rule lcm_pos_nat [transferred]) | 
| 31798 | 1256 | apply auto | 
| 31706 | 1257 | done | 
| 23687 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 1258 | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 1259 | lemma dvd_pos_nat: | 
| 23687 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 1260 | fixes n m :: nat | 
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 1261 | assumes "n > 0" and "m dvd n" | 
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 1262 | shows "m > 0" | 
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 1263 | using assms by (cases m) auto | 
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 1264 | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 1265 | lemma lcm_least_nat: | 
| 31706 | 1266 | assumes "(m::nat) dvd k" and "n dvd k" | 
| 27556 | 1267 | shows "lcm m n dvd k" | 
| 23687 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 1268 | proof (cases k) | 
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 1269 | case 0 then show ?thesis by auto | 
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 1270 | next | 
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 1271 | case (Suc _) then have pos_k: "k > 0" by auto | 
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 1272 | from assms dvd_pos_nat [OF this] have pos_mn: "m > 0" "n > 0" by auto | 
| 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 1273 | with gcd_zero_nat [of m n] have pos_gcd: "gcd m n > 0" by simp | 
| 23687 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 1274 | from assms obtain p where k_m: "k = m * p" using dvd_def by blast | 
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 1275 | from assms obtain q where k_n: "k = n * q" using dvd_def by blast | 
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 1276 | from pos_k k_m have pos_p: "p > 0" by auto | 
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 1277 | from pos_k k_n have pos_q: "q > 0" by auto | 
| 27556 | 1278 | have "k * k * gcd q p = k * gcd (k * q) (k * p)" | 
| 57514 
bdc2c6b40bf2
prefer ac_simps collections over separate name bindings for add and mult
 haftmann parents: 
57512diff
changeset | 1279 | by (simp add: ac_simps gcd_mult_distrib_nat) | 
| 27556 | 1280 | also have "\<dots> = k * gcd (m * p * q) (n * q * p)" | 
| 23687 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 1281 | by (simp add: k_m [symmetric] k_n [symmetric]) | 
| 27556 | 1282 | also have "\<dots> = k * p * q * gcd m n" | 
| 57514 
bdc2c6b40bf2
prefer ac_simps collections over separate name bindings for add and mult
 haftmann parents: 
57512diff
changeset | 1283 | by (simp add: ac_simps gcd_mult_distrib_nat) | 
| 27556 | 1284 | finally have "(m * p) * (n * q) * gcd q p = k * p * q * gcd m n" | 
| 23687 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 1285 | by (simp only: k_m [symmetric] k_n [symmetric]) | 
| 27556 | 1286 | then have "p * q * m * n * gcd q p = p * q * k * gcd m n" | 
| 57514 
bdc2c6b40bf2
prefer ac_simps collections over separate name bindings for add and mult
 haftmann parents: 
57512diff
changeset | 1287 | by (simp add: ac_simps) | 
| 27556 | 1288 | with pos_p pos_q have "m * n * gcd q p = k * gcd m n" | 
| 23687 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 1289 | by simp | 
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 1290 | with prod_gcd_lcm_nat [of m n] | 
| 27556 | 1291 | have "lcm m n * gcd q p * gcd m n = k * gcd m n" | 
| 57514 
bdc2c6b40bf2
prefer ac_simps collections over separate name bindings for add and mult
 haftmann parents: 
57512diff
changeset | 1292 | by (simp add: ac_simps) | 
| 31706 | 1293 | with pos_gcd have "lcm m n * gcd q p = k" by auto | 
| 23687 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 1294 | then show ?thesis using dvd_def by auto | 
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 1295 | qed | 
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 1296 | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 1297 | lemma lcm_least_int: | 
| 31798 | 1298 | "(m::int) dvd k \<Longrightarrow> n dvd k \<Longrightarrow> lcm m n dvd k" | 
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 1299 | apply (subst lcm_abs_int) | 
| 31798 | 1300 | apply (rule dvd_trans) | 
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 1301 | apply (rule lcm_least_nat [transferred, of _ "abs k" _]) | 
| 31798 | 1302 | apply auto | 
| 31706 | 1303 | done | 
| 1304 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 1305 | lemma lcm_dvd1_nat: "(m::nat) dvd lcm m n" | 
| 23687 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 1306 | proof (cases m) | 
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 1307 | case 0 then show ?thesis by simp | 
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 1308 | next | 
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 1309 | case (Suc _) | 
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 1310 | then have mpos: "m > 0" by simp | 
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 1311 | show ?thesis | 
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 1312 | proof (cases n) | 
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 1313 | case 0 then show ?thesis by simp | 
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 1314 | next | 
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 1315 | case (Suc _) | 
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 1316 | then have npos: "n > 0" by simp | 
| 27556 | 1317 | have "gcd m n dvd n" by simp | 
| 1318 | then obtain k where "n = gcd m n * k" using dvd_def by auto | |
| 31706 | 1319 | then have "m * n div gcd m n = m * (gcd m n * k) div gcd m n" | 
| 57514 
bdc2c6b40bf2
prefer ac_simps collections over separate name bindings for add and mult
 haftmann parents: 
57512diff
changeset | 1320 | by (simp add: ac_simps) | 
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 1321 | also have "\<dots> = m * k" using mpos npos gcd_zero_nat by simp | 
| 31706 | 1322 | finally show ?thesis by (simp add: lcm_nat_def) | 
| 23687 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 1323 | qed | 
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 1324 | qed | 
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 1325 | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 1326 | lemma lcm_dvd1_int: "(m::int) dvd lcm m n" | 
| 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 1327 | apply (subst lcm_abs_int) | 
| 31706 | 1328 | apply (rule dvd_trans) | 
| 1329 | prefer 2 | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 1330 | apply (rule lcm_dvd1_nat [transferred]) | 
| 31706 | 1331 | apply auto | 
| 1332 | done | |
| 1333 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 1334 | lemma lcm_dvd2_nat: "(n::nat) dvd lcm m n" | 
| 35726 | 1335 | using lcm_dvd1_nat [of n m] by (simp only: lcm_nat_def mult.commute gcd_nat.commute) | 
| 31706 | 1336 | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 1337 | lemma lcm_dvd2_int: "(n::int) dvd lcm m n" | 
| 35726 | 1338 | using lcm_dvd1_int [of n m] by (simp only: lcm_int_def lcm_nat_def mult.commute gcd_nat.commute) | 
| 31706 | 1339 | |
| 31730 | 1340 | lemma dvd_lcm_I1_nat[simp]: "(k::nat) dvd m \<Longrightarrow> k dvd lcm m n" | 
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 1341 | by(metis lcm_dvd1_nat dvd_trans) | 
| 31729 | 1342 | |
| 31730 | 1343 | lemma dvd_lcm_I2_nat[simp]: "(k::nat) dvd n \<Longrightarrow> k dvd lcm m n" | 
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 1344 | by(metis lcm_dvd2_nat dvd_trans) | 
| 31729 | 1345 | |
| 31730 | 1346 | lemma dvd_lcm_I1_int[simp]: "(i::int) dvd m \<Longrightarrow> i dvd lcm m n" | 
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 1347 | by(metis lcm_dvd1_int dvd_trans) | 
| 31729 | 1348 | |
| 31730 | 1349 | lemma dvd_lcm_I2_int[simp]: "(i::int) dvd n \<Longrightarrow> i dvd lcm m n" | 
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 1350 | by(metis lcm_dvd2_int dvd_trans) | 
| 31729 | 1351 | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 1352 | lemma lcm_unique_nat: "(a::nat) dvd d \<and> b dvd d \<and> | 
| 31706 | 1353 | (\<forall>e. a dvd e \<and> b dvd e \<longrightarrow> d dvd e) \<longleftrightarrow> d = lcm a b" | 
| 33657 | 1354 | by (auto intro: dvd_antisym lcm_least_nat lcm_dvd1_nat lcm_dvd2_nat) | 
| 27568 
9949dc7a24de
Theorem names as in IntPrimes.thy, also several theorems moved from there
 chaieb parents: 
27556diff
changeset | 1355 | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 1356 | lemma lcm_unique_int: "d >= 0 \<and> (a::int) dvd d \<and> b dvd d \<and> | 
| 31706 | 1357 | (\<forall>e. a dvd e \<and> b dvd e \<longrightarrow> d dvd e) \<longleftrightarrow> d = lcm a b" | 
| 60357 | 1358 | using lcm_least_int zdvd_antisym_nonneg by auto | 
| 31706 | 1359 | |
| 37770 
cddb3106adb8
avoid explicit mandatory prefix markers when prefixes are mandatory implicitly
 haftmann parents: 
36350diff
changeset | 1360 | interpretation lcm_nat: abel_semigroup "lcm :: nat \<Rightarrow> nat \<Rightarrow> nat" | 
| 54867 
c21a2465cac1
prefer ephemeral interpretation over interpretation in proof contexts;
 haftmann parents: 
54489diff
changeset | 1361 | + lcm_nat: semilattice_neutr "lcm :: nat \<Rightarrow> nat \<Rightarrow> nat" 1 | 
| 34973 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
34915diff
changeset | 1362 | proof | 
| 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
34915diff
changeset | 1363 | fix n m p :: nat | 
| 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
34915diff
changeset | 1364 | show "lcm (lcm n m) p = lcm n (lcm m p)" | 
| 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
34915diff
changeset | 1365 | by (rule lcm_unique_nat [THEN iffD1]) (metis dvd.order_trans lcm_unique_nat) | 
| 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
34915diff
changeset | 1366 | show "lcm m n = lcm n m" | 
| 36350 | 1367 | by (simp add: lcm_nat_def gcd_commute_nat field_simps) | 
| 54867 
c21a2465cac1
prefer ephemeral interpretation over interpretation in proof contexts;
 haftmann parents: 
54489diff
changeset | 1368 | show "lcm m m = m" | 
| 
c21a2465cac1
prefer ephemeral interpretation over interpretation in proof contexts;
 haftmann parents: 
54489diff
changeset | 1369 | by (metis dvd.order_refl lcm_unique_nat) | 
| 
c21a2465cac1
prefer ephemeral interpretation over interpretation in proof contexts;
 haftmann parents: 
54489diff
changeset | 1370 | show "lcm m 1 = m" | 
| 
c21a2465cac1
prefer ephemeral interpretation over interpretation in proof contexts;
 haftmann parents: 
54489diff
changeset | 1371 | by (metis dvd.dual_order.refl lcm_unique_nat one_dvd) | 
| 34973 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
34915diff
changeset | 1372 | qed | 
| 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
34915diff
changeset | 1373 | |
| 37770 
cddb3106adb8
avoid explicit mandatory prefix markers when prefixes are mandatory implicitly
 haftmann parents: 
36350diff
changeset | 1374 | interpretation lcm_int: abel_semigroup "lcm :: int \<Rightarrow> int \<Rightarrow> int" | 
| 34973 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
34915diff
changeset | 1375 | proof | 
| 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
34915diff
changeset | 1376 | fix n m p :: int | 
| 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
34915diff
changeset | 1377 | show "lcm (lcm n m) p = lcm n (lcm m p)" | 
| 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
34915diff
changeset | 1378 | by (rule lcm_unique_int [THEN iffD1]) (metis dvd_trans lcm_unique_int) | 
| 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
34915diff
changeset | 1379 | show "lcm m n = lcm n m" | 
| 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
34915diff
changeset | 1380 | by (simp add: lcm_int_def lcm_nat.commute) | 
| 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
34915diff
changeset | 1381 | qed | 
| 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
34915diff
changeset | 1382 | |
| 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
34915diff
changeset | 1383 | lemmas lcm_assoc_nat = lcm_nat.assoc | 
| 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
34915diff
changeset | 1384 | lemmas lcm_commute_nat = lcm_nat.commute | 
| 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
34915diff
changeset | 1385 | lemmas lcm_left_commute_nat = lcm_nat.left_commute | 
| 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
34915diff
changeset | 1386 | lemmas lcm_assoc_int = lcm_int.assoc | 
| 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
34915diff
changeset | 1387 | lemmas lcm_commute_int = lcm_int.commute | 
| 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
34915diff
changeset | 1388 | lemmas lcm_left_commute_int = lcm_int.left_commute | 
| 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
34915diff
changeset | 1389 | |
| 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
34915diff
changeset | 1390 | lemmas lcm_ac_nat = lcm_assoc_nat lcm_commute_nat lcm_left_commute_nat | 
| 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
34915diff
changeset | 1391 | lemmas lcm_ac_int = lcm_assoc_int lcm_commute_int lcm_left_commute_int | 
| 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
34915diff
changeset | 1392 | |
| 31798 | 1393 | lemma lcm_proj2_if_dvd_nat [simp]: "(x::nat) dvd y \<Longrightarrow> lcm x y = y" | 
| 31706 | 1394 | apply (rule sym) | 
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 1395 | apply (subst lcm_unique_nat [symmetric]) | 
| 31706 | 1396 | apply auto | 
| 1397 | done | |
| 1398 | ||
| 31798 | 1399 | lemma lcm_proj2_if_dvd_int [simp]: "(x::int) dvd y \<Longrightarrow> lcm x y = abs y" | 
| 31706 | 1400 | apply (rule sym) | 
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 1401 | apply (subst lcm_unique_int [symmetric]) | 
| 31706 | 1402 | apply auto | 
| 1403 | done | |
| 1404 | ||
| 31798 | 1405 | lemma lcm_proj1_if_dvd_nat [simp]: "(x::nat) dvd y \<Longrightarrow> lcm y x = y" | 
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 1406 | by (subst lcm_commute_nat, erule lcm_proj2_if_dvd_nat) | 
| 31706 | 1407 | |
| 31798 | 1408 | lemma lcm_proj1_if_dvd_int [simp]: "(x::int) dvd y \<Longrightarrow> lcm y x = abs y" | 
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 1409 | by (subst lcm_commute_int, erule lcm_proj2_if_dvd_int) | 
| 31706 | 1410 | |
| 31992 | 1411 | lemma lcm_proj1_iff_nat[simp]: "lcm m n = (m::nat) \<longleftrightarrow> n dvd m" | 
| 1412 | by (metis lcm_proj1_if_dvd_nat lcm_unique_nat) | |
| 1413 | ||
| 1414 | lemma lcm_proj2_iff_nat[simp]: "lcm m n = (n::nat) \<longleftrightarrow> m dvd n" | |
| 1415 | by (metis lcm_proj2_if_dvd_nat lcm_unique_nat) | |
| 1416 | ||
| 1417 | lemma lcm_proj1_iff_int[simp]: "lcm m n = abs(m::int) \<longleftrightarrow> n dvd m" | |
| 1418 | by (metis dvd_abs_iff lcm_proj1_if_dvd_int lcm_unique_int) | |
| 1419 | ||
| 1420 | lemma lcm_proj2_iff_int[simp]: "lcm m n = abs(n::int) \<longleftrightarrow> m dvd n" | |
| 1421 | by (metis dvd_abs_iff lcm_proj2_if_dvd_int lcm_unique_int) | |
| 27568 
9949dc7a24de
Theorem names as in IntPrimes.thy, also several theorems moved from there
 chaieb parents: 
27556diff
changeset | 1422 | |
| 42871 
1c0b99f950d9
names of fold_set locales resemble name of characteristic property more closely
 haftmann parents: 
41792diff
changeset | 1423 | lemma comp_fun_idem_gcd_nat: "comp_fun_idem (gcd :: nat\<Rightarrow>nat\<Rightarrow>nat)" | 
| 31992 | 1424 | proof qed (auto simp add: gcd_ac_nat) | 
| 1425 | ||
| 42871 
1c0b99f950d9
names of fold_set locales resemble name of characteristic property more closely
 haftmann parents: 
41792diff
changeset | 1426 | lemma comp_fun_idem_gcd_int: "comp_fun_idem (gcd :: int\<Rightarrow>int\<Rightarrow>int)" | 
| 31992 | 1427 | proof qed (auto simp add: gcd_ac_int) | 
| 1428 | ||
| 42871 
1c0b99f950d9
names of fold_set locales resemble name of characteristic property more closely
 haftmann parents: 
41792diff
changeset | 1429 | lemma comp_fun_idem_lcm_nat: "comp_fun_idem (lcm :: nat\<Rightarrow>nat\<Rightarrow>nat)" | 
| 31992 | 1430 | proof qed (auto simp add: lcm_ac_nat) | 
| 1431 | ||
| 42871 
1c0b99f950d9
names of fold_set locales resemble name of characteristic property more closely
 haftmann parents: 
41792diff
changeset | 1432 | lemma comp_fun_idem_lcm_int: "comp_fun_idem (lcm :: int\<Rightarrow>int\<Rightarrow>int)" | 
| 31992 | 1433 | proof qed (auto simp add: lcm_ac_int) | 
| 1434 | ||
| 23687 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 1435 | |
| 31995 | 1436 | (* FIXME introduce selimattice_bot/top and derive the following lemmas in there: *) | 
| 1437 | ||
| 1438 | lemma lcm_0_iff_nat[simp]: "lcm (m::nat) n = 0 \<longleftrightarrow> m=0 \<or> n=0" | |
| 1439 | by (metis lcm_0_left_nat lcm_0_nat mult_is_0 prod_gcd_lcm_nat) | |
| 1440 | ||
| 1441 | lemma lcm_0_iff_int[simp]: "lcm (m::int) n = 0 \<longleftrightarrow> m=0 \<or> n=0" | |
| 44766 | 1442 | by (metis lcm_0_int lcm_0_left_int lcm_pos_int less_le) | 
| 31995 | 1443 | |
| 1444 | lemma lcm_1_iff_nat[simp]: "lcm (m::nat) n = 1 \<longleftrightarrow> m=1 \<and> n=1" | |
| 1445 | by (metis gcd_1_nat lcm_unique_nat nat_mult_1 prod_gcd_lcm_nat) | |
| 1446 | ||
| 1447 | lemma lcm_1_iff_int[simp]: "lcm (m::int) n = 1 \<longleftrightarrow> (m=1 \<or> m = -1) \<and> (n=1 \<or> n = -1)" | |
| 31996 
1d93369079c4
Tuned proof of lcm_1_iff_int, because metis produced enormous proof term.
 berghofe parents: 
31995diff
changeset | 1448 | by (auto simp add: abs_mult_self trans [OF lcm_unique_int eq_commute, symmetric] zmult_eq_1_iff) | 
| 31995 | 1449 | |
| 34030 
829eb528b226
resorted code equations from "old" number theory version
 haftmann parents: 
33946diff
changeset | 1450 | |
| 45264 | 1451 | subsection {* The complete divisibility lattice *}
 | 
| 32112 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 nipkow parents: 
32111diff
changeset | 1452 | |
| 44845 | 1453 | interpretation gcd_semilattice_nat: semilattice_inf gcd "op dvd" "(%m n::nat. m dvd n & ~ n dvd m)" | 
| 32112 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 nipkow parents: 
32111diff
changeset | 1454 | proof | 
| 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 nipkow parents: 
32111diff
changeset | 1455 | case goal3 thus ?case by(metis gcd_unique_nat) | 
| 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 nipkow parents: 
32111diff
changeset | 1456 | qed auto | 
| 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 nipkow parents: 
32111diff
changeset | 1457 | |
| 44845 | 1458 | interpretation lcm_semilattice_nat: semilattice_sup lcm "op dvd" "(%m n::nat. m dvd n & ~ n dvd m)" | 
| 32112 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 nipkow parents: 
32111diff
changeset | 1459 | proof | 
| 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 nipkow parents: 
32111diff
changeset | 1460 | case goal3 thus ?case by(metis lcm_unique_nat) | 
| 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 nipkow parents: 
32111diff
changeset | 1461 | qed auto | 
| 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 nipkow parents: 
32111diff
changeset | 1462 | |
| 44845 | 1463 | interpretation gcd_lcm_lattice_nat: lattice gcd "op dvd" "(%m n::nat. m dvd n & ~ n dvd m)" lcm .. | 
| 32112 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 nipkow parents: 
32111diff
changeset | 1464 | |
| 45264 | 1465 | text{* Lifting gcd and lcm to sets (Gcd/Lcm).
 | 
| 1466 | Gcd is defined via Lcm to facilitate the proof that we have a complete lattice. | |
| 32112 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 nipkow parents: 
32111diff
changeset | 1467 | *} | 
| 45264 | 1468 | |
| 1469 | class Gcd = gcd + | |
| 1470 | fixes Gcd :: "'a set \<Rightarrow> 'a" | |
| 1471 | fixes Lcm :: "'a set \<Rightarrow> 'a" | |
| 1472 | ||
| 1473 | instantiation nat :: Gcd | |
| 32112 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 nipkow parents: 
32111diff
changeset | 1474 | begin | 
| 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 nipkow parents: 
32111diff
changeset | 1475 | |
| 45264 | 1476 | definition | 
| 51489 | 1477 | "Lcm (M::nat set) = (if finite M then semilattice_neutr_set.F lcm 1 M else 0)" | 
| 1478 | ||
| 54867 
c21a2465cac1
prefer ephemeral interpretation over interpretation in proof contexts;
 haftmann parents: 
54489diff
changeset | 1479 | interpretation semilattice_neutr_set lcm "1::nat" .. | 
| 
c21a2465cac1
prefer ephemeral interpretation over interpretation in proof contexts;
 haftmann parents: 
54489diff
changeset | 1480 | |
| 51489 | 1481 | lemma Lcm_nat_infinite: | 
| 1482 | "\<not> finite M \<Longrightarrow> Lcm M = (0::nat)" | |
| 1483 | by (simp add: Lcm_nat_def) | |
| 1484 | ||
| 1485 | lemma Lcm_nat_empty: | |
| 1486 |   "Lcm {} = (1::nat)"
 | |
| 54867 
c21a2465cac1
prefer ephemeral interpretation over interpretation in proof contexts;
 haftmann parents: 
54489diff
changeset | 1487 | by (simp add: Lcm_nat_def) | 
| 51489 | 1488 | |
| 1489 | lemma Lcm_nat_insert: | |
| 1490 | "Lcm (insert n M) = lcm (n::nat) (Lcm M)" | |
| 54867 
c21a2465cac1
prefer ephemeral interpretation over interpretation in proof contexts;
 haftmann parents: 
54489diff
changeset | 1491 | by (cases "finite M") (simp_all add: Lcm_nat_def Lcm_nat_infinite) | 
| 32112 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 nipkow parents: 
32111diff
changeset | 1492 | |
| 45264 | 1493 | definition | 
| 1494 |   "Gcd (M::nat set) = Lcm {d. \<forall>m\<in>M. d dvd m}"
 | |
| 32112 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 nipkow parents: 
32111diff
changeset | 1495 | |
| 45264 | 1496 | instance .. | 
| 51489 | 1497 | |
| 32112 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 nipkow parents: 
32111diff
changeset | 1498 | end | 
| 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 nipkow parents: 
32111diff
changeset | 1499 | |
| 45264 | 1500 | lemma dvd_Lcm_nat [simp]: | 
| 51489 | 1501 | fixes M :: "nat set" | 
| 1502 | assumes "m \<in> M" | |
| 1503 | shows "m dvd Lcm M" | |
| 1504 | proof (cases "finite M") | |
| 1505 | case False then show ?thesis by (simp add: Lcm_nat_infinite) | |
| 1506 | next | |
| 1507 | case True then show ?thesis using assms by (induct M) (auto simp add: Lcm_nat_insert) | |
| 1508 | qed | |
| 32112 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 nipkow parents: 
32111diff
changeset | 1509 | |
| 45264 | 1510 | lemma Lcm_dvd_nat [simp]: | 
| 51489 | 1511 | fixes M :: "nat set" | 
| 1512 | assumes "\<forall>m\<in>M. m dvd n" | |
| 1513 | shows "Lcm M dvd n" | |
| 45264 | 1514 | proof (cases "n = 0") | 
| 1515 | assume "n \<noteq> 0" | |
| 1516 |   hence "finite {d. d dvd n}" by (rule finite_divisors_nat)
 | |
| 1517 |   moreover have "M \<subseteq> {d. d dvd n}" using assms by fast
 | |
| 1518 | ultimately have "finite M" by (rule rev_finite_subset) | |
| 51489 | 1519 | then show ?thesis using assms by (induct M) (simp_all add: Lcm_nat_empty Lcm_nat_insert) | 
| 45264 | 1520 | qed simp | 
| 32112 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 nipkow parents: 
32111diff
changeset | 1521 | |
| 45264 | 1522 | interpretation gcd_lcm_complete_lattice_nat: | 
| 51547 
604d73671fa7
avoid odd foundational terms after interpretation;
 haftmann parents: 
51489diff
changeset | 1523 | complete_lattice Gcd Lcm gcd Rings.dvd "\<lambda>m n. m dvd n \<and> \<not> n dvd m" lcm 1 "0::nat" | 
| 
604d73671fa7
avoid odd foundational terms after interpretation;
 haftmann parents: 
51489diff
changeset | 1524 | where | 
| 56218 
1c3f1f2431f9
elongated INFI and SUPR, to reduced risk of confusing theorems names in the future while still being consistent with INTER and UNION
 haftmann parents: 
56166diff
changeset | 1525 | "Inf.INFIMUM Gcd A f = Gcd (f ` A :: nat set)" | 
| 
1c3f1f2431f9
elongated INFI and SUPR, to reduced risk of confusing theorems names in the future while still being consistent with INTER and UNION
 haftmann parents: 
56166diff
changeset | 1526 | and "Sup.SUPREMUM Lcm A f = Lcm (f ` A)" | 
| 51547 
604d73671fa7
avoid odd foundational terms after interpretation;
 haftmann parents: 
51489diff
changeset | 1527 | proof - | 
| 
604d73671fa7
avoid odd foundational terms after interpretation;
 haftmann parents: 
51489diff
changeset | 1528 | show "class.complete_lattice Gcd Lcm gcd Rings.dvd (\<lambda>m n. m dvd n \<and> \<not> n dvd m) lcm 1 (0::nat)" | 
| 
604d73671fa7
avoid odd foundational terms after interpretation;
 haftmann parents: 
51489diff
changeset | 1529 | proof | 
| 52729 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52397diff
changeset | 1530 | case goal1 thus ?case by (simp add: Gcd_nat_def) | 
| 51547 
604d73671fa7
avoid odd foundational terms after interpretation;
 haftmann parents: 
51489diff
changeset | 1531 | next | 
| 52729 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52397diff
changeset | 1532 | case goal2 thus ?case by (simp add: Gcd_nat_def) | 
| 51547 
604d73671fa7
avoid odd foundational terms after interpretation;
 haftmann parents: 
51489diff
changeset | 1533 | next | 
| 52729 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52397diff
changeset | 1534 | case goal5 show ?case by (simp add: Gcd_nat_def Lcm_nat_infinite) | 
| 51547 
604d73671fa7
avoid odd foundational terms after interpretation;
 haftmann parents: 
51489diff
changeset | 1535 | next | 
| 52729 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52397diff
changeset | 1536 | case goal6 show ?case by (simp add: Lcm_nat_empty) | 
| 51547 
604d73671fa7
avoid odd foundational terms after interpretation;
 haftmann parents: 
51489diff
changeset | 1537 | next | 
| 52729 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52397diff
changeset | 1538 | case goal3 thus ?case by simp | 
| 51547 
604d73671fa7
avoid odd foundational terms after interpretation;
 haftmann parents: 
51489diff
changeset | 1539 | next | 
| 52729 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52397diff
changeset | 1540 | case goal4 thus ?case by simp | 
| 51547 
604d73671fa7
avoid odd foundational terms after interpretation;
 haftmann parents: 
51489diff
changeset | 1541 | qed | 
| 
604d73671fa7
avoid odd foundational terms after interpretation;
 haftmann parents: 
51489diff
changeset | 1542 | then interpret gcd_lcm_complete_lattice_nat: | 
| 
604d73671fa7
avoid odd foundational terms after interpretation;
 haftmann parents: 
51489diff
changeset | 1543 | complete_lattice Gcd Lcm gcd Rings.dvd "\<lambda>m n. m dvd n \<and> \<not> n dvd m" lcm 1 "0::nat" . | 
| 56218 
1c3f1f2431f9
elongated INFI and SUPR, to reduced risk of confusing theorems names in the future while still being consistent with INTER and UNION
 haftmann parents: 
56166diff
changeset | 1544 | from gcd_lcm_complete_lattice_nat.INF_def show "Inf.INFIMUM Gcd A f = Gcd (f ` A)" . | 
| 
1c3f1f2431f9
elongated INFI and SUPR, to reduced risk of confusing theorems names in the future while still being consistent with INTER and UNION
 haftmann parents: 
56166diff
changeset | 1545 | from gcd_lcm_complete_lattice_nat.SUP_def show "Sup.SUPREMUM Lcm A f = Lcm (f ` A)" . | 
| 45264 | 1546 | qed | 
| 32112 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 nipkow parents: 
32111diff
changeset | 1547 | |
| 56166 | 1548 | declare gcd_lcm_complete_lattice_nat.Inf_image_eq [simp del] | 
| 1549 | declare gcd_lcm_complete_lattice_nat.Sup_image_eq [simp del] | |
| 1550 | ||
| 45264 | 1551 | lemma Lcm_empty_nat: "Lcm {} = (1::nat)"
 | 
| 54867 
c21a2465cac1
prefer ephemeral interpretation over interpretation in proof contexts;
 haftmann parents: 
54489diff
changeset | 1552 | by (fact Lcm_nat_empty) | 
| 45264 | 1553 | |
| 1554 | lemma Gcd_empty_nat: "Gcd {} = (0::nat)"
 | |
| 1555 | by (fact gcd_lcm_complete_lattice_nat.Inf_empty) (* already simp *) | |
| 32112 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 nipkow parents: 
32111diff
changeset | 1556 | |
| 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 nipkow parents: 
32111diff
changeset | 1557 | lemma Lcm_insert_nat [simp]: | 
| 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 nipkow parents: 
32111diff
changeset | 1558 | shows "Lcm (insert (n::nat) N) = lcm n (Lcm N)" | 
| 45264 | 1559 | by (fact gcd_lcm_complete_lattice_nat.Sup_insert) | 
| 32112 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 nipkow parents: 
32111diff
changeset | 1560 | |
| 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 nipkow parents: 
32111diff
changeset | 1561 | lemma Gcd_insert_nat [simp]: | 
| 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 nipkow parents: 
32111diff
changeset | 1562 | shows "Gcd (insert (n::nat) N) = gcd n (Gcd N)" | 
| 45264 | 1563 | by (fact gcd_lcm_complete_lattice_nat.Inf_insert) | 
| 32112 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 nipkow parents: 
32111diff
changeset | 1564 | |
| 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 nipkow parents: 
32111diff
changeset | 1565 | lemma Lcm0_iff[simp]: "finite (M::nat set) \<Longrightarrow> M \<noteq> {} \<Longrightarrow> Lcm M = 0 \<longleftrightarrow> 0 : M"
 | 
| 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 nipkow parents: 
32111diff
changeset | 1566 | by(induct rule:finite_ne_induct) auto | 
| 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 nipkow parents: 
32111diff
changeset | 1567 | |
| 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 nipkow parents: 
32111diff
changeset | 1568 | lemma Lcm_eq_0[simp]: "finite (M::nat set) \<Longrightarrow> 0 : M \<Longrightarrow> Lcm M = 0" | 
| 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 nipkow parents: 
32111diff
changeset | 1569 | by (metis Lcm0_iff empty_iff) | 
| 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 nipkow parents: 
32111diff
changeset | 1570 | |
| 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 nipkow parents: 
32111diff
changeset | 1571 | lemma Gcd_dvd_nat [simp]: | 
| 45264 | 1572 | fixes M :: "nat set" | 
| 1573 | assumes "m \<in> M" shows "Gcd M dvd m" | |
| 1574 | using assms by (fact gcd_lcm_complete_lattice_nat.Inf_lower) | |
| 32112 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 nipkow parents: 
32111diff
changeset | 1575 | |
| 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 nipkow parents: 
32111diff
changeset | 1576 | lemma dvd_Gcd_nat[simp]: | 
| 45264 | 1577 | fixes M :: "nat set" | 
| 1578 | assumes "\<forall>m\<in>M. n dvd m" shows "n dvd Gcd M" | |
| 1579 | using assms by (simp only: gcd_lcm_complete_lattice_nat.Inf_greatest) | |
| 32112 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 nipkow parents: 
32111diff
changeset | 1580 | |
| 45264 | 1581 | text{* Alternative characterizations of Gcd: *}
 | 
| 32112 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 nipkow parents: 
32111diff
changeset | 1582 | |
| 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 nipkow parents: 
32111diff
changeset | 1583 | lemma Gcd_eq_Max: "finite(M::nat set) \<Longrightarrow> M \<noteq> {} \<Longrightarrow> 0 \<notin> M \<Longrightarrow> Gcd M = Max(\<Inter>m\<in>M. {d. d dvd m})"
 | 
| 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 nipkow parents: 
32111diff
changeset | 1584 | apply(rule antisym) | 
| 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 nipkow parents: 
32111diff
changeset | 1585 | apply(rule Max_ge) | 
| 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 nipkow parents: 
32111diff
changeset | 1586 | apply (metis all_not_in_conv finite_divisors_nat finite_INT) | 
| 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 nipkow parents: 
32111diff
changeset | 1587 | apply simp | 
| 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 nipkow parents: 
32111diff
changeset | 1588 | apply (rule Max_le_iff[THEN iffD2]) | 
| 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 nipkow parents: 
32111diff
changeset | 1589 | apply (metis all_not_in_conv finite_divisors_nat finite_INT) | 
| 44890 
22f665a2e91c
new fastforce replacing fastsimp - less confusing name
 nipkow parents: 
44845diff
changeset | 1590 | apply fastforce | 
| 32112 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 nipkow parents: 
32111diff
changeset | 1591 | apply clarsimp | 
| 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 nipkow parents: 
32111diff
changeset | 1592 | apply (metis Gcd_dvd_nat Max_in dvd_0_left dvd_Gcd_nat dvd_imp_le linorder_antisym_conv3 not_less0) | 
| 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 nipkow parents: 
32111diff
changeset | 1593 | done | 
| 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 nipkow parents: 
32111diff
changeset | 1594 | |
| 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 nipkow parents: 
32111diff
changeset | 1595 | lemma Gcd_remove0_nat: "finite M \<Longrightarrow> Gcd M = Gcd (M - {0::nat})"
 | 
| 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 nipkow parents: 
32111diff
changeset | 1596 | apply(induct pred:finite) | 
| 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 nipkow parents: 
32111diff
changeset | 1597 | apply simp | 
| 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 nipkow parents: 
32111diff
changeset | 1598 | apply(case_tac "x=0") | 
| 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 nipkow parents: 
32111diff
changeset | 1599 | apply simp | 
| 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 nipkow parents: 
32111diff
changeset | 1600 | apply(subgoal_tac "insert x F - {0} = insert x (F - {0})")
 | 
| 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 nipkow parents: 
32111diff
changeset | 1601 | apply simp | 
| 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 nipkow parents: 
32111diff
changeset | 1602 | apply blast | 
| 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 nipkow parents: 
32111diff
changeset | 1603 | done | 
| 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 nipkow parents: 
32111diff
changeset | 1604 | |
| 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 nipkow parents: 
32111diff
changeset | 1605 | lemma Lcm_in_lcm_closed_set_nat: | 
| 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 nipkow parents: 
32111diff
changeset | 1606 |   "finite M \<Longrightarrow> M \<noteq> {} \<Longrightarrow> ALL m n :: nat. m:M \<longrightarrow> n:M \<longrightarrow> lcm m n : M \<Longrightarrow> Lcm M : M"
 | 
| 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 nipkow parents: 
32111diff
changeset | 1607 | apply(induct rule:finite_linorder_min_induct) | 
| 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 nipkow parents: 
32111diff
changeset | 1608 | apply simp | 
| 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 nipkow parents: 
32111diff
changeset | 1609 | apply simp | 
| 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 nipkow parents: 
32111diff
changeset | 1610 | apply(subgoal_tac "ALL m n :: nat. m:A \<longrightarrow> n:A \<longrightarrow> lcm m n : A") | 
| 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 nipkow parents: 
32111diff
changeset | 1611 | apply simp | 
| 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 nipkow parents: 
32111diff
changeset | 1612 |  apply(case_tac "A={}")
 | 
| 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 nipkow parents: 
32111diff
changeset | 1613 | apply simp | 
| 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 nipkow parents: 
32111diff
changeset | 1614 | apply simp | 
| 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 nipkow parents: 
32111diff
changeset | 1615 | apply (metis lcm_pos_nat lcm_unique_nat linorder_neq_iff nat_dvd_not_less not_less0) | 
| 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 nipkow parents: 
32111diff
changeset | 1616 | done | 
| 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 nipkow parents: 
32111diff
changeset | 1617 | |
| 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 nipkow parents: 
32111diff
changeset | 1618 | lemma Lcm_eq_Max_nat: | 
| 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 nipkow parents: 
32111diff
changeset | 1619 |   "finite M \<Longrightarrow> M \<noteq> {} \<Longrightarrow> 0 \<notin> M \<Longrightarrow> ALL m n :: nat. m:M \<longrightarrow> n:M \<longrightarrow> lcm m n : M \<Longrightarrow> Lcm M = Max M"
 | 
| 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 nipkow parents: 
32111diff
changeset | 1620 | apply(rule antisym) | 
| 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 nipkow parents: 
32111diff
changeset | 1621 | apply(rule Max_ge, assumption) | 
| 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 nipkow parents: 
32111diff
changeset | 1622 | apply(erule (2) Lcm_in_lcm_closed_set_nat) | 
| 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 nipkow parents: 
32111diff
changeset | 1623 | apply clarsimp | 
| 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 nipkow parents: 
32111diff
changeset | 1624 | apply (metis Lcm0_iff dvd_Lcm_nat dvd_imp_le neq0_conv) | 
| 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 nipkow parents: 
32111diff
changeset | 1625 | done | 
| 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 nipkow parents: 
32111diff
changeset | 1626 | |
| 54437 
0060957404c7
proper code equations for Gcd and Lcm on nat and int
 haftmann parents: 
54257diff
changeset | 1627 | lemma Lcm_set_nat [code, code_unfold]: | 
| 45992 | 1628 | "Lcm (set ns) = fold lcm ns (1::nat)" | 
| 45264 | 1629 | by (fact gcd_lcm_complete_lattice_nat.Sup_set_fold) | 
| 32112 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 nipkow parents: 
32111diff
changeset | 1630 | |
| 54437 
0060957404c7
proper code equations for Gcd and Lcm on nat and int
 haftmann parents: 
54257diff
changeset | 1631 | lemma Gcd_set_nat [code, code_unfold]: | 
| 45992 | 1632 | "Gcd (set ns) = fold gcd ns (0::nat)" | 
| 45264 | 1633 | by (fact gcd_lcm_complete_lattice_nat.Inf_set_fold) | 
| 34222 | 1634 | |
| 1635 | lemma mult_inj_if_coprime_nat: | |
| 1636 | "inj_on f A \<Longrightarrow> inj_on g B \<Longrightarrow> ALL a:A. ALL b:B. coprime (f a) (g b) | |
| 1637 | \<Longrightarrow> inj_on (%(a,b). f a * g b::nat) (A \<times> B)" | |
| 1638 | apply(auto simp add:inj_on_def) | |
| 35216 | 1639 | apply (metis coprime_dvd_mult_iff_nat dvd.neq_le_trans dvd_triv_left) | 
| 34223 | 1640 | apply (metis gcd_semilattice_nat.inf_commute coprime_dvd_mult_iff_nat | 
| 57512 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
56218diff
changeset | 1641 | dvd.neq_le_trans dvd_triv_right mult.commute) | 
| 34222 | 1642 | done | 
| 1643 | ||
| 1644 | text{* Nitpick: *}
 | |
| 1645 | ||
| 41792 
ff3cb0c418b7
renamed "nitpick\_def" to "nitpick_unfold" to reflect its new semantics
 blanchet parents: 
41550diff
changeset | 1646 | lemma gcd_eq_nitpick_gcd [nitpick_unfold]: "gcd x y = Nitpick.nat_gcd x y" | 
| 
ff3cb0c418b7
renamed "nitpick\_def" to "nitpick_unfold" to reflect its new semantics
 blanchet parents: 
41550diff
changeset | 1647 | by (induct x y rule: nat_gcd.induct) | 
| 
ff3cb0c418b7
renamed "nitpick\_def" to "nitpick_unfold" to reflect its new semantics
 blanchet parents: 
41550diff
changeset | 1648 | (simp add: gcd_nat.simps Nitpick.nat_gcd.simps) | 
| 33197 
de6285ebcc05
continuation of Nitpick's integration into Isabelle;
 blanchet parents: 
32960diff
changeset | 1649 | |
| 41792 
ff3cb0c418b7
renamed "nitpick\_def" to "nitpick_unfold" to reflect its new semantics
 blanchet parents: 
41550diff
changeset | 1650 | lemma lcm_eq_nitpick_lcm [nitpick_unfold]: "lcm x y = Nitpick.nat_lcm x y" | 
| 33197 
de6285ebcc05
continuation of Nitpick's integration into Isabelle;
 blanchet parents: 
32960diff
changeset | 1651 | by (simp only: lcm_nat_def Nitpick.nat_lcm_def gcd_eq_nitpick_gcd) | 
| 
de6285ebcc05
continuation of Nitpick's integration into Isabelle;
 blanchet parents: 
32960diff
changeset | 1652 | |
| 54867 
c21a2465cac1
prefer ephemeral interpretation over interpretation in proof contexts;
 haftmann parents: 
54489diff
changeset | 1653 | |
| 45264 | 1654 | subsubsection {* Setwise gcd and lcm for integers *}
 | 
| 1655 | ||
| 1656 | instantiation int :: Gcd | |
| 1657 | begin | |
| 1658 | ||
| 1659 | definition | |
| 1660 | "Lcm M = int (Lcm (nat ` abs ` M))" | |
| 1661 | ||
| 1662 | definition | |
| 1663 | "Gcd M = int (Gcd (nat ` abs ` M))" | |
| 1664 | ||
| 1665 | instance .. | |
| 21256 | 1666 | end | 
| 45264 | 1667 | |
| 1668 | lemma Lcm_empty_int [simp]: "Lcm {} = (1::int)"
 | |
| 1669 | by (simp add: Lcm_int_def) | |
| 1670 | ||
| 1671 | lemma Gcd_empty_int [simp]: "Gcd {} = (0::int)"
 | |
| 1672 | by (simp add: Gcd_int_def) | |
| 1673 | ||
| 1674 | lemma Lcm_insert_int [simp]: | |
| 1675 | shows "Lcm (insert (n::int) N) = lcm n (Lcm N)" | |
| 1676 | by (simp add: Lcm_int_def lcm_int_def) | |
| 1677 | ||
| 1678 | lemma Gcd_insert_int [simp]: | |
| 1679 | shows "Gcd (insert (n::int) N) = gcd n (Gcd N)" | |
| 1680 | by (simp add: Gcd_int_def gcd_int_def) | |
| 1681 | ||
| 1682 | lemma dvd_int_iff: "x dvd y \<longleftrightarrow> nat (abs x) dvd nat (abs y)" | |
| 1683 | by (simp add: zdvd_int) | |
| 1684 | ||
| 1685 | lemma dvd_Lcm_int [simp]: | |
| 1686 | fixes M :: "int set" assumes "m \<in> M" shows "m dvd Lcm M" | |
| 1687 | using assms by (simp add: Lcm_int_def dvd_int_iff) | |
| 1688 | ||
| 1689 | lemma Lcm_dvd_int [simp]: | |
| 1690 | fixes M :: "int set" | |
| 1691 | assumes "\<forall>m\<in>M. m dvd n" shows "Lcm M dvd n" | |
| 1692 | using assms by (simp add: Lcm_int_def dvd_int_iff) | |
| 1693 | ||
| 1694 | lemma Gcd_dvd_int [simp]: | |
| 1695 | fixes M :: "int set" | |
| 1696 | assumes "m \<in> M" shows "Gcd M dvd m" | |
| 1697 | using assms by (simp add: Gcd_int_def dvd_int_iff) | |
| 1698 | ||
| 1699 | lemma dvd_Gcd_int[simp]: | |
| 1700 | fixes M :: "int set" | |
| 1701 | assumes "\<forall>m\<in>M. n dvd m" shows "n dvd Gcd M" | |
| 1702 | using assms by (simp add: Gcd_int_def dvd_int_iff) | |
| 1703 | ||
| 54437 
0060957404c7
proper code equations for Gcd and Lcm on nat and int
 haftmann parents: 
54257diff
changeset | 1704 | lemma Lcm_set_int [code, code_unfold]: | 
| 51547 
604d73671fa7
avoid odd foundational terms after interpretation;
 haftmann parents: 
51489diff
changeset | 1705 | "Lcm (set xs) = fold lcm xs (1::int)" | 
| 56166 | 1706 | by (induct xs rule: rev_induct) (simp_all add: lcm_commute_int) | 
| 45264 | 1707 | |
| 54437 
0060957404c7
proper code equations for Gcd and Lcm on nat and int
 haftmann parents: 
54257diff
changeset | 1708 | lemma Gcd_set_int [code, code_unfold]: | 
| 51547 
604d73671fa7
avoid odd foundational terms after interpretation;
 haftmann parents: 
51489diff
changeset | 1709 | "Gcd (set xs) = fold gcd xs (0::int)" | 
| 56166 | 1710 | by (induct xs rule: rev_induct) (simp_all add: gcd_commute_int) | 
| 45264 | 1711 | |
| 59008 | 1712 | |
| 1713 | text \<open>Fact aliasses\<close> | |
| 59667 
651ea265d568
Removal of the file HOL/Number_Theory/Binomial!! And class field_char_0 now declared in Int.thy
 paulson <lp15@cam.ac.uk> parents: 
59545diff
changeset | 1714 | |
| 
651ea265d568
Removal of the file HOL/Number_Theory/Binomial!! And class field_char_0 now declared in Int.thy
 paulson <lp15@cam.ac.uk> parents: 
59545diff
changeset | 1715 | lemmas gcd_dvd1_nat = gcd_dvd1 [where ?'a = nat] | 
| 59008 | 1716 | and gcd_dvd2_nat = gcd_dvd2 [where ?'a = nat] | 
| 1717 | and gcd_greatest_nat = gcd_greatest [where ?'a = nat] | |
| 1718 | ||
| 59667 
651ea265d568
Removal of the file HOL/Number_Theory/Binomial!! And class field_char_0 now declared in Int.thy
 paulson <lp15@cam.ac.uk> parents: 
59545diff
changeset | 1719 | lemmas gcd_dvd1_int = gcd_dvd1 [where ?'a = int] | 
| 59008 | 1720 | and gcd_dvd2_int = gcd_dvd2 [where ?'a = int] | 
| 1721 | and gcd_greatest_int = gcd_greatest [where ?'a = int] | |
| 1722 | ||
| 45264 | 1723 | end | 
| 51547 
604d73671fa7
avoid odd foundational terms after interpretation;
 haftmann parents: 
51489diff
changeset | 1724 |