| author | wenzelm | 
| Fri, 23 Aug 2013 12:40:55 +0200 | |
| changeset 53164 | beb4ee344c22 | 
| parent 52435 | 6646bb548c6b | 
| child 54147 | 97a8ff4e4ac9 | 
| permissions | -rw-r--r-- | 
| 35050 
9f841f20dca6
renamed OrderedGroup to Groups; split theory Ring_and_Field into Rings Fields
 haftmann parents: 
35043diff
changeset | 1 | (* Title: HOL/Rings.thy | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30961diff
changeset | 2 | Author: Gertrud Bauer | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30961diff
changeset | 3 | Author: Steven Obua | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30961diff
changeset | 4 | Author: Tobias Nipkow | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30961diff
changeset | 5 | Author: Lawrence C Paulson | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30961diff
changeset | 6 | Author: Markus Wenzel | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30961diff
changeset | 7 | Author: Jeremy Avigad | 
| 14265 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 8 | *) | 
| 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 9 | |
| 35050 
9f841f20dca6
renamed OrderedGroup to Groups; split theory Ring_and_Field into Rings Fields
 haftmann parents: 
35043diff
changeset | 10 | header {* Rings *}
 | 
| 14265 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 11 | |
| 35050 
9f841f20dca6
renamed OrderedGroup to Groups; split theory Ring_and_Field into Rings Fields
 haftmann parents: 
35043diff
changeset | 12 | theory Rings | 
| 
9f841f20dca6
renamed OrderedGroup to Groups; split theory Ring_and_Field into Rings Fields
 haftmann parents: 
35043diff
changeset | 13 | imports Groups | 
| 15131 | 14 | begin | 
| 14504 | 15 | |
| 22390 | 16 | class semiring = ab_semigroup_add + semigroup_mult + | 
| 49962 
a8cc904a6820
Renamed {left,right}_distrib to distrib_{right,left}.
 webertj parents: 
44921diff
changeset | 17 | assumes distrib_right[algebra_simps, field_simps]: "(a + b) * c = a * c + b * c" | 
| 
a8cc904a6820
Renamed {left,right}_distrib to distrib_{right,left}.
 webertj parents: 
44921diff
changeset | 18 | assumes distrib_left[algebra_simps, field_simps]: "a * (b + c) = a * b + a * c" | 
| 25152 | 19 | begin | 
| 20 | ||
| 21 | text{*For the @{text combine_numerals} simproc*}
 | |
| 22 | lemma combine_common_factor: | |
| 23 | "a * e + (b * e + c) = (a + b) * e + c" | |
| 49962 
a8cc904a6820
Renamed {left,right}_distrib to distrib_{right,left}.
 webertj parents: 
44921diff
changeset | 24 | by (simp add: distrib_right add_ac) | 
| 25152 | 25 | |
| 26 | end | |
| 14504 | 27 | |
| 22390 | 28 | class mult_zero = times + zero + | 
| 25062 | 29 | assumes mult_zero_left [simp]: "0 * a = 0" | 
| 30 | assumes mult_zero_right [simp]: "a * 0 = 0" | |
| 21199 
2d83f93c3580
* Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
 krauss parents: 
20633diff
changeset | 31 | |
| 22390 | 32 | class semiring_0 = semiring + comm_monoid_add + mult_zero | 
| 21199 
2d83f93c3580
* Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
 krauss parents: 
20633diff
changeset | 33 | |
| 29904 | 34 | class semiring_0_cancel = semiring + cancel_comm_monoid_add | 
| 25186 | 35 | begin | 
| 14504 | 36 | |
| 25186 | 37 | subclass semiring_0 | 
| 28823 | 38 | proof | 
| 21199 
2d83f93c3580
* Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
 krauss parents: 
20633diff
changeset | 39 | fix a :: 'a | 
| 49962 
a8cc904a6820
Renamed {left,right}_distrib to distrib_{right,left}.
 webertj parents: 
44921diff
changeset | 40 | have "0 * a + 0 * a = 0 * a + 0" by (simp add: distrib_right [symmetric]) | 
| 29667 | 41 | thus "0 * a = 0" by (simp only: add_left_cancel) | 
| 25152 | 42 | next | 
| 43 | fix a :: 'a | |
| 49962 
a8cc904a6820
Renamed {left,right}_distrib to distrib_{right,left}.
 webertj parents: 
44921diff
changeset | 44 | have "a * 0 + a * 0 = a * 0 + 0" by (simp add: distrib_left [symmetric]) | 
| 29667 | 45 | thus "a * 0 = 0" by (simp only: add_left_cancel) | 
| 21199 
2d83f93c3580
* Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
 krauss parents: 
20633diff
changeset | 46 | qed | 
| 14940 | 47 | |
| 25186 | 48 | end | 
| 25152 | 49 | |
| 22390 | 50 | class comm_semiring = ab_semigroup_add + ab_semigroup_mult + | 
| 25062 | 51 | assumes distrib: "(a + b) * c = a * c + b * c" | 
| 25152 | 52 | begin | 
| 14504 | 53 | |
| 25152 | 54 | subclass semiring | 
| 28823 | 55 | proof | 
| 14738 | 56 | fix a b c :: 'a | 
| 57 | show "(a + b) * c = a * c + b * c" by (simp add: distrib) | |
| 58 | have "a * (b + c) = (b + c) * a" by (simp add: mult_ac) | |
| 59 | also have "... = b * a + c * a" by (simp only: distrib) | |
| 60 | also have "... = a * b + a * c" by (simp add: mult_ac) | |
| 61 | finally show "a * (b + c) = a * b + a * c" by blast | |
| 14504 | 62 | qed | 
| 63 | ||
| 25152 | 64 | end | 
| 14504 | 65 | |
| 25152 | 66 | class comm_semiring_0 = comm_semiring + comm_monoid_add + mult_zero | 
| 67 | begin | |
| 68 | ||
| 27516 | 69 | subclass semiring_0 .. | 
| 25152 | 70 | |
| 71 | end | |
| 14504 | 72 | |
| 29904 | 73 | class comm_semiring_0_cancel = comm_semiring + cancel_comm_monoid_add | 
| 25186 | 74 | begin | 
| 14940 | 75 | |
| 27516 | 76 | subclass semiring_0_cancel .. | 
| 14940 | 77 | |
| 28141 
193c3ea0f63b
instances comm_semiring_0_cancel < comm_semiring_0, comm_ring < comm_semiring_0_cancel
 huffman parents: 
27651diff
changeset | 78 | subclass comm_semiring_0 .. | 
| 
193c3ea0f63b
instances comm_semiring_0_cancel < comm_semiring_0, comm_ring < comm_semiring_0_cancel
 huffman parents: 
27651diff
changeset | 79 | |
| 25186 | 80 | end | 
| 21199 
2d83f93c3580
* Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
 krauss parents: 
20633diff
changeset | 81 | |
| 22390 | 82 | class zero_neq_one = zero + one + | 
| 25062 | 83 | assumes zero_neq_one [simp]: "0 \<noteq> 1" | 
| 26193 | 84 | begin | 
| 85 | ||
| 86 | lemma one_neq_zero [simp]: "1 \<noteq> 0" | |
| 29667 | 87 | by (rule not_sym) (rule zero_neq_one) | 
| 26193 | 88 | |
| 89 | end | |
| 14265 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 90 | |
| 22390 | 91 | class semiring_1 = zero_neq_one + semiring_0 + monoid_mult | 
| 14504 | 92 | |
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 93 | text {* Abstract divisibility *}
 | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 94 | |
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 95 | class dvd = times | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 96 | begin | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 97 | |
| 50420 | 98 | definition dvd :: "'a \<Rightarrow> 'a \<Rightarrow> bool" (infix "dvd" 50) where | 
| 37767 | 99 | "b dvd a \<longleftrightarrow> (\<exists>k. a = b * k)" | 
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 100 | |
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 101 | lemma dvdI [intro?]: "a = b * k \<Longrightarrow> b dvd a" | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 102 | unfolding dvd_def .. | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 103 | |
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 104 | lemma dvdE [elim?]: "b dvd a \<Longrightarrow> (\<And>k. a = b * k \<Longrightarrow> P) \<Longrightarrow> P" | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 105 | unfolding dvd_def by blast | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 106 | |
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 107 | end | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 108 | |
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 109 | class comm_semiring_1 = zero_neq_one + comm_semiring_0 + comm_monoid_mult + dvd | 
| 22390 | 110 | (*previously almost_semiring*) | 
| 25152 | 111 | begin | 
| 14738 | 112 | |
| 27516 | 113 | subclass semiring_1 .. | 
| 25152 | 114 | |
| 29925 | 115 | lemma dvd_refl[simp]: "a dvd a" | 
| 28559 | 116 | proof | 
| 117 | show "a = a * 1" by simp | |
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 118 | qed | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 119 | |
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 120 | lemma dvd_trans: | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 121 | assumes "a dvd b" and "b dvd c" | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 122 | shows "a dvd c" | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 123 | proof - | 
| 28559 | 124 | from assms obtain v where "b = a * v" by (auto elim!: dvdE) | 
| 125 | moreover from assms obtain w where "c = b * w" by (auto elim!: dvdE) | |
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 126 | ultimately have "c = a * (v * w)" by (simp add: mult_assoc) | 
| 28559 | 127 | then show ?thesis .. | 
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 128 | qed | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 129 | |
| 35828 
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
 blanchet parents: 
35631diff
changeset | 130 | lemma dvd_0_left_iff [no_atp, simp]: "0 dvd a \<longleftrightarrow> a = 0" | 
| 29667 | 131 | by (auto intro: dvd_refl elim!: dvdE) | 
| 28559 | 132 | |
| 133 | lemma dvd_0_right [iff]: "a dvd 0" | |
| 134 | proof | |
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 135 | show "0 = a * 0" by simp | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 136 | qed | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 137 | |
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 138 | lemma one_dvd [simp]: "1 dvd a" | 
| 29667 | 139 | by (auto intro!: dvdI) | 
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 140 | |
| 30042 | 141 | lemma dvd_mult[simp]: "a dvd c \<Longrightarrow> a dvd (b * c)" | 
| 29667 | 142 | by (auto intro!: mult_left_commute dvdI elim!: dvdE) | 
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 143 | |
| 30042 | 144 | lemma dvd_mult2[simp]: "a dvd b \<Longrightarrow> a dvd (b * c)" | 
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 145 | apply (subst mult_commute) | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 146 | apply (erule dvd_mult) | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 147 | done | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 148 | |
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 149 | lemma dvd_triv_right [simp]: "a dvd b * a" | 
| 29667 | 150 | by (rule dvd_mult) (rule dvd_refl) | 
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 151 | |
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 152 | lemma dvd_triv_left [simp]: "a dvd a * b" | 
| 29667 | 153 | by (rule dvd_mult2) (rule dvd_refl) | 
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 154 | |
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 155 | lemma mult_dvd_mono: | 
| 30042 | 156 | assumes "a dvd b" | 
| 157 | and "c dvd d" | |
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 158 | shows "a * c dvd b * d" | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 159 | proof - | 
| 30042 | 160 | from `a dvd b` obtain b' where "b = a * b'" .. | 
| 161 | moreover from `c dvd d` obtain d' where "d = c * d'" .. | |
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 162 | ultimately have "b * d = (a * c) * (b' * d')" by (simp add: mult_ac) | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 163 | then show ?thesis .. | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 164 | qed | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 165 | |
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 166 | lemma dvd_mult_left: "a * b dvd c \<Longrightarrow> a dvd c" | 
| 29667 | 167 | by (simp add: dvd_def mult_assoc, blast) | 
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 168 | |
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 169 | lemma dvd_mult_right: "a * b dvd c \<Longrightarrow> b dvd c" | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 170 | unfolding mult_ac [of a] by (rule dvd_mult_left) | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 171 | |
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 172 | lemma dvd_0_left: "0 dvd a \<Longrightarrow> a = 0" | 
| 29667 | 173 | by simp | 
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 174 | |
| 29925 | 175 | lemma dvd_add[simp]: | 
| 176 | assumes "a dvd b" and "a dvd c" shows "a dvd (b + c)" | |
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 177 | proof - | 
| 29925 | 178 | from `a dvd b` obtain b' where "b = a * b'" .. | 
| 179 | moreover from `a dvd c` obtain c' where "c = a * c'" .. | |
| 49962 
a8cc904a6820
Renamed {left,right}_distrib to distrib_{right,left}.
 webertj parents: 
44921diff
changeset | 180 | ultimately have "b + c = a * (b' + c')" by (simp add: distrib_left) | 
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 181 | then show ?thesis .. | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 182 | qed | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 183 | |
| 25152 | 184 | end | 
| 14421 
ee97b6463cb4
new Ring_and_Field hierarchy, eliminating redundant axioms
 paulson parents: 
14398diff
changeset | 185 | |
| 22390 | 186 | class no_zero_divisors = zero + times + | 
| 25062 | 187 | assumes no_zero_divisors: "a \<noteq> 0 \<Longrightarrow> b \<noteq> 0 \<Longrightarrow> a * b \<noteq> 0" | 
| 36719 | 188 | begin | 
| 189 | ||
| 190 | lemma divisors_zero: | |
| 191 | assumes "a * b = 0" | |
| 192 | shows "a = 0 \<or> b = 0" | |
| 193 | proof (rule classical) | |
| 194 | assume "\<not> (a = 0 \<or> b = 0)" | |
| 195 | then have "a \<noteq> 0" and "b \<noteq> 0" by auto | |
| 196 | with no_zero_divisors have "a * b \<noteq> 0" by blast | |
| 197 | with assms show ?thesis by simp | |
| 198 | qed | |
| 199 | ||
| 200 | end | |
| 14504 | 201 | |
| 29904 | 202 | class semiring_1_cancel = semiring + cancel_comm_monoid_add | 
| 203 | + zero_neq_one + monoid_mult | |
| 25267 | 204 | begin | 
| 14940 | 205 | |
| 27516 | 206 | subclass semiring_0_cancel .. | 
| 25512 
4134f7c782e2
using intro_locales instead of unfold_locales if appropriate
 haftmann parents: 
25450diff
changeset | 207 | |
| 27516 | 208 | subclass semiring_1 .. | 
| 25267 | 209 | |
| 210 | end | |
| 21199 
2d83f93c3580
* Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
 krauss parents: 
20633diff
changeset | 211 | |
| 29904 | 212 | class comm_semiring_1_cancel = comm_semiring + cancel_comm_monoid_add | 
| 213 | + zero_neq_one + comm_monoid_mult | |
| 25267 | 214 | begin | 
| 14738 | 215 | |
| 27516 | 216 | subclass semiring_1_cancel .. | 
| 217 | subclass comm_semiring_0_cancel .. | |
| 218 | subclass comm_semiring_1 .. | |
| 25267 | 219 | |
| 220 | end | |
| 25152 | 221 | |
| 22390 | 222 | class ring = semiring + ab_group_add | 
| 25267 | 223 | begin | 
| 25152 | 224 | |
| 27516 | 225 | subclass semiring_0_cancel .. | 
| 25152 | 226 | |
| 227 | text {* Distribution rules *}
 | |
| 228 | ||
| 229 | lemma minus_mult_left: "- (a * b) = - a * b" | |
| 49962 
a8cc904a6820
Renamed {left,right}_distrib to distrib_{right,left}.
 webertj parents: 
44921diff
changeset | 230 | by (rule minus_unique) (simp add: distrib_right [symmetric]) | 
| 25152 | 231 | |
| 232 | lemma minus_mult_right: "- (a * b) = a * - b" | |
| 49962 
a8cc904a6820
Renamed {left,right}_distrib to distrib_{right,left}.
 webertj parents: 
44921diff
changeset | 233 | by (rule minus_unique) (simp add: distrib_left [symmetric]) | 
| 25152 | 234 | |
| 29407 
5ef7e97fd9e4
move lemmas mult_minus{left,right} inside class ring
 huffman parents: 
29406diff
changeset | 235 | text{*Extract signs from products*}
 | 
| 35828 
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
 blanchet parents: 
35631diff
changeset | 236 | lemmas mult_minus_left [simp, no_atp] = minus_mult_left [symmetric] | 
| 
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
 blanchet parents: 
35631diff
changeset | 237 | lemmas mult_minus_right [simp,no_atp] = minus_mult_right [symmetric] | 
| 29407 
5ef7e97fd9e4
move lemmas mult_minus{left,right} inside class ring
 huffman parents: 
29406diff
changeset | 238 | |
| 25152 | 239 | lemma minus_mult_minus [simp]: "- a * - b = a * b" | 
| 29667 | 240 | by simp | 
| 25152 | 241 | |
| 242 | lemma minus_mult_commute: "- a * b = a * - b" | |
| 29667 | 243 | by simp | 
| 244 | ||
| 36348 
89c54f51f55a
dropped group_simps, ring_simps, field_eq_simps; classes division_ring_inverse_zero, field_inverse_zero, linordered_field_inverse_zero
 haftmann parents: 
36304diff
changeset | 245 | lemma right_diff_distrib[algebra_simps, field_simps]: "a * (b - c) = a * b - a * c" | 
| 49962 
a8cc904a6820
Renamed {left,right}_distrib to distrib_{right,left}.
 webertj parents: 
44921diff
changeset | 246 | by (simp add: distrib_left diff_minus) | 
| 29667 | 247 | |
| 36348 
89c54f51f55a
dropped group_simps, ring_simps, field_eq_simps; classes division_ring_inverse_zero, field_inverse_zero, linordered_field_inverse_zero
 haftmann parents: 
36304diff
changeset | 248 | lemma left_diff_distrib[algebra_simps, field_simps]: "(a - b) * c = a * c - b * c" | 
| 49962 
a8cc904a6820
Renamed {left,right}_distrib to distrib_{right,left}.
 webertj parents: 
44921diff
changeset | 249 | by (simp add: distrib_right diff_minus) | 
| 25152 | 250 | |
| 35828 
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
 blanchet parents: 
35631diff
changeset | 251 | lemmas ring_distribs[no_atp] = | 
| 49962 
a8cc904a6820
Renamed {left,right}_distrib to distrib_{right,left}.
 webertj parents: 
44921diff
changeset | 252 | distrib_left distrib_right left_diff_distrib right_diff_distrib | 
| 25152 | 253 | |
| 25230 | 254 | lemma eq_add_iff1: | 
| 255 | "a * e + c = b * e + d \<longleftrightarrow> (a - b) * e + c = d" | |
| 29667 | 256 | by (simp add: algebra_simps) | 
| 25230 | 257 | |
| 258 | lemma eq_add_iff2: | |
| 259 | "a * e + c = b * e + d \<longleftrightarrow> c = (b - a) * e + d" | |
| 29667 | 260 | by (simp add: algebra_simps) | 
| 25230 | 261 | |
| 25152 | 262 | end | 
| 263 | ||
| 35828 
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
 blanchet parents: 
35631diff
changeset | 264 | lemmas ring_distribs[no_atp] = | 
| 49962 
a8cc904a6820
Renamed {left,right}_distrib to distrib_{right,left}.
 webertj parents: 
44921diff
changeset | 265 | distrib_left distrib_right left_diff_distrib right_diff_distrib | 
| 25152 | 266 | |
| 22390 | 267 | class comm_ring = comm_semiring + ab_group_add | 
| 25267 | 268 | begin | 
| 14738 | 269 | |
| 27516 | 270 | subclass ring .. | 
| 28141 
193c3ea0f63b
instances comm_semiring_0_cancel < comm_semiring_0, comm_ring < comm_semiring_0_cancel
 huffman parents: 
27651diff
changeset | 271 | subclass comm_semiring_0_cancel .. | 
| 25267 | 272 | |
| 44350 
63cddfbc5a09
replace lemma realpow_two_diff with new lemma square_diff_square_factored
 huffman parents: 
44346diff
changeset | 273 | lemma square_diff_square_factored: | 
| 
63cddfbc5a09
replace lemma realpow_two_diff with new lemma square_diff_square_factored
 huffman parents: 
44346diff
changeset | 274 | "x * x - y * y = (x + y) * (x - y)" | 
| 
63cddfbc5a09
replace lemma realpow_two_diff with new lemma square_diff_square_factored
 huffman parents: 
44346diff
changeset | 275 | by (simp add: algebra_simps) | 
| 
63cddfbc5a09
replace lemma realpow_two_diff with new lemma square_diff_square_factored
 huffman parents: 
44346diff
changeset | 276 | |
| 25267 | 277 | end | 
| 14738 | 278 | |
| 22390 | 279 | class ring_1 = ring + zero_neq_one + monoid_mult | 
| 25267 | 280 | begin | 
| 14265 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 281 | |
| 27516 | 282 | subclass semiring_1_cancel .. | 
| 25267 | 283 | |
| 44346 
00dd3c4dabe0
rename real_squared_diff_one_factored to square_diff_one_factored and move to Rings.thy
 huffman parents: 
44064diff
changeset | 284 | lemma square_diff_one_factored: | 
| 
00dd3c4dabe0
rename real_squared_diff_one_factored to square_diff_one_factored and move to Rings.thy
 huffman parents: 
44064diff
changeset | 285 | "x * x - 1 = (x + 1) * (x - 1)" | 
| 
00dd3c4dabe0
rename real_squared_diff_one_factored to square_diff_one_factored and move to Rings.thy
 huffman parents: 
44064diff
changeset | 286 | by (simp add: algebra_simps) | 
| 
00dd3c4dabe0
rename real_squared_diff_one_factored to square_diff_one_factored and move to Rings.thy
 huffman parents: 
44064diff
changeset | 287 | |
| 25267 | 288 | end | 
| 25152 | 289 | |
| 22390 | 290 | class comm_ring_1 = comm_ring + zero_neq_one + comm_monoid_mult | 
| 291 | (*previously ring*) | |
| 25267 | 292 | begin | 
| 14738 | 293 | |
| 27516 | 294 | subclass ring_1 .. | 
| 295 | subclass comm_semiring_1_cancel .. | |
| 25267 | 296 | |
| 29465 
b2cfb5d0a59e
change dvd_minus_iff, minus_dvd_iff from [iff] to [simp] (due to problems with Library/Primes.thy)
 huffman parents: 
29461diff
changeset | 297 | lemma dvd_minus_iff [simp]: "x dvd - y \<longleftrightarrow> x dvd y" | 
| 29408 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 298 | proof | 
| 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 299 | assume "x dvd - y" | 
| 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 300 | then have "x dvd - 1 * - y" by (rule dvd_mult) | 
| 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 301 | then show "x dvd y" by simp | 
| 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 302 | next | 
| 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 303 | assume "x dvd y" | 
| 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 304 | then have "x dvd - 1 * y" by (rule dvd_mult) | 
| 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 305 | then show "x dvd - y" by simp | 
| 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 306 | qed | 
| 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 307 | |
| 29465 
b2cfb5d0a59e
change dvd_minus_iff, minus_dvd_iff from [iff] to [simp] (due to problems with Library/Primes.thy)
 huffman parents: 
29461diff
changeset | 308 | lemma minus_dvd_iff [simp]: "- x dvd y \<longleftrightarrow> x dvd y" | 
| 29408 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 309 | proof | 
| 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 310 | assume "- x dvd y" | 
| 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 311 | then obtain k where "y = - x * k" .. | 
| 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 312 | then have "y = x * - k" by simp | 
| 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 313 | then show "x dvd y" .. | 
| 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 314 | next | 
| 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 315 | assume "x dvd y" | 
| 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 316 | then obtain k where "y = x * k" .. | 
| 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 317 | then have "y = - x * - k" by simp | 
| 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 318 | then show "- x dvd y" .. | 
| 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 319 | qed | 
| 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 320 | |
| 30042 | 321 | lemma dvd_diff[simp]: "x dvd y \<Longrightarrow> x dvd z \<Longrightarrow> x dvd (y - z)" | 
| 35216 | 322 | by (simp only: diff_minus dvd_add dvd_minus_iff) | 
| 29409 | 323 | |
| 25267 | 324 | end | 
| 25152 | 325 | |
| 22990 
775e9de3db48
added classes ring_no_zero_divisors and dom (non-commutative version of idom);
 huffman parents: 
22987diff
changeset | 326 | class ring_no_zero_divisors = ring + no_zero_divisors | 
| 25230 | 327 | begin | 
| 328 | ||
| 329 | lemma mult_eq_0_iff [simp]: | |
| 330 | shows "a * b = 0 \<longleftrightarrow> (a = 0 \<or> b = 0)" | |
| 331 | proof (cases "a = 0 \<or> b = 0") | |
| 332 | case False then have "a \<noteq> 0" and "b \<noteq> 0" by auto | |
| 333 | then show ?thesis using no_zero_divisors by simp | |
| 334 | next | |
| 335 | case True then show ?thesis by auto | |
| 336 | qed | |
| 337 | ||
| 26193 | 338 | text{*Cancellation of equalities with a common factor*}
 | 
| 35828 
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
 blanchet parents: 
35631diff
changeset | 339 | lemma mult_cancel_right [simp, no_atp]: | 
| 26193 | 340 | "a * c = b * c \<longleftrightarrow> c = 0 \<or> a = b" | 
| 341 | proof - | |
| 342 | have "(a * c = b * c) = ((a - b) * c = 0)" | |
| 35216 | 343 | by (simp add: algebra_simps) | 
| 344 | thus ?thesis by (simp add: disj_commute) | |
| 26193 | 345 | qed | 
| 346 | ||
| 35828 
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
 blanchet parents: 
35631diff
changeset | 347 | lemma mult_cancel_left [simp, no_atp]: | 
| 26193 | 348 | "c * a = c * b \<longleftrightarrow> c = 0 \<or> a = b" | 
| 349 | proof - | |
| 350 | have "(c * a = c * b) = (c * (a - b) = 0)" | |
| 35216 | 351 | by (simp add: algebra_simps) | 
| 352 | thus ?thesis by simp | |
| 26193 | 353 | qed | 
| 354 | ||
| 25230 | 355 | end | 
| 22990 
775e9de3db48
added classes ring_no_zero_divisors and dom (non-commutative version of idom);
 huffman parents: 
22987diff
changeset | 356 | |
| 23544 | 357 | class ring_1_no_zero_divisors = ring_1 + ring_no_zero_divisors | 
| 26274 | 358 | begin | 
| 359 | ||
| 36970 | 360 | lemma square_eq_1_iff: | 
| 36821 
9207505d1ee5
move lemma real_mult_is_one to Rings.thy, renamed to square_eq_1_iff
 huffman parents: 
36719diff
changeset | 361 | "x * x = 1 \<longleftrightarrow> x = 1 \<or> x = - 1" | 
| 
9207505d1ee5
move lemma real_mult_is_one to Rings.thy, renamed to square_eq_1_iff
 huffman parents: 
36719diff
changeset | 362 | proof - | 
| 
9207505d1ee5
move lemma real_mult_is_one to Rings.thy, renamed to square_eq_1_iff
 huffman parents: 
36719diff
changeset | 363 | have "(x - 1) * (x + 1) = x * x - 1" | 
| 
9207505d1ee5
move lemma real_mult_is_one to Rings.thy, renamed to square_eq_1_iff
 huffman parents: 
36719diff
changeset | 364 | by (simp add: algebra_simps) | 
| 
9207505d1ee5
move lemma real_mult_is_one to Rings.thy, renamed to square_eq_1_iff
 huffman parents: 
36719diff
changeset | 365 | hence "x * x = 1 \<longleftrightarrow> (x - 1) * (x + 1) = 0" | 
| 
9207505d1ee5
move lemma real_mult_is_one to Rings.thy, renamed to square_eq_1_iff
 huffman parents: 
36719diff
changeset | 366 | by simp | 
| 
9207505d1ee5
move lemma real_mult_is_one to Rings.thy, renamed to square_eq_1_iff
 huffman parents: 
36719diff
changeset | 367 | thus ?thesis | 
| 
9207505d1ee5
move lemma real_mult_is_one to Rings.thy, renamed to square_eq_1_iff
 huffman parents: 
36719diff
changeset | 368 | by (simp add: eq_neg_iff_add_eq_0) | 
| 
9207505d1ee5
move lemma real_mult_is_one to Rings.thy, renamed to square_eq_1_iff
 huffman parents: 
36719diff
changeset | 369 | qed | 
| 
9207505d1ee5
move lemma real_mult_is_one to Rings.thy, renamed to square_eq_1_iff
 huffman parents: 
36719diff
changeset | 370 | |
| 26274 | 371 | lemma mult_cancel_right1 [simp]: | 
| 372 | "c = b * c \<longleftrightarrow> c = 0 \<or> b = 1" | |
| 29667 | 373 | by (insert mult_cancel_right [of 1 c b], force) | 
| 26274 | 374 | |
| 375 | lemma mult_cancel_right2 [simp]: | |
| 376 | "a * c = c \<longleftrightarrow> c = 0 \<or> a = 1" | |
| 29667 | 377 | by (insert mult_cancel_right [of a c 1], simp) | 
| 26274 | 378 | |
| 379 | lemma mult_cancel_left1 [simp]: | |
| 380 | "c = c * b \<longleftrightarrow> c = 0 \<or> b = 1" | |
| 29667 | 381 | by (insert mult_cancel_left [of c 1 b], force) | 
| 26274 | 382 | |
| 383 | lemma mult_cancel_left2 [simp]: | |
| 384 | "c * a = c \<longleftrightarrow> c = 0 \<or> a = 1" | |
| 29667 | 385 | by (insert mult_cancel_left [of c a 1], simp) | 
| 26274 | 386 | |
| 387 | end | |
| 22990 
775e9de3db48
added classes ring_no_zero_divisors and dom (non-commutative version of idom);
 huffman parents: 
22987diff
changeset | 388 | |
| 22390 | 389 | class idom = comm_ring_1 + no_zero_divisors | 
| 25186 | 390 | begin | 
| 14421 
ee97b6463cb4
new Ring_and_Field hierarchy, eliminating redundant axioms
 paulson parents: 
14398diff
changeset | 391 | |
| 27516 | 392 | subclass ring_1_no_zero_divisors .. | 
| 22990 
775e9de3db48
added classes ring_no_zero_divisors and dom (non-commutative version of idom);
 huffman parents: 
22987diff
changeset | 393 | |
| 29915 
2146e512cec9
generalize lemma fps_square_eq_iff, move to Ring_and_Field
 huffman parents: 
29904diff
changeset | 394 | lemma square_eq_iff: "a * a = b * b \<longleftrightarrow> (a = b \<or> a = - b)" | 
| 
2146e512cec9
generalize lemma fps_square_eq_iff, move to Ring_and_Field
 huffman parents: 
29904diff
changeset | 395 | proof | 
| 
2146e512cec9
generalize lemma fps_square_eq_iff, move to Ring_and_Field
 huffman parents: 
29904diff
changeset | 396 | assume "a * a = b * b" | 
| 
2146e512cec9
generalize lemma fps_square_eq_iff, move to Ring_and_Field
 huffman parents: 
29904diff
changeset | 397 | then have "(a - b) * (a + b) = 0" | 
| 
2146e512cec9
generalize lemma fps_square_eq_iff, move to Ring_and_Field
 huffman parents: 
29904diff
changeset | 398 | by (simp add: algebra_simps) | 
| 
2146e512cec9
generalize lemma fps_square_eq_iff, move to Ring_and_Field
 huffman parents: 
29904diff
changeset | 399 | then show "a = b \<or> a = - b" | 
| 35216 | 400 | by (simp add: eq_neg_iff_add_eq_0) | 
| 29915 
2146e512cec9
generalize lemma fps_square_eq_iff, move to Ring_and_Field
 huffman parents: 
29904diff
changeset | 401 | next | 
| 
2146e512cec9
generalize lemma fps_square_eq_iff, move to Ring_and_Field
 huffman parents: 
29904diff
changeset | 402 | assume "a = b \<or> a = - b" | 
| 
2146e512cec9
generalize lemma fps_square_eq_iff, move to Ring_and_Field
 huffman parents: 
29904diff
changeset | 403 | then show "a * a = b * b" by auto | 
| 
2146e512cec9
generalize lemma fps_square_eq_iff, move to Ring_and_Field
 huffman parents: 
29904diff
changeset | 404 | qed | 
| 
2146e512cec9
generalize lemma fps_square_eq_iff, move to Ring_and_Field
 huffman parents: 
29904diff
changeset | 405 | |
| 29981 
7d0ed261b712
generalize int_dvd_cancel_factor simproc to idom class
 huffman parents: 
29949diff
changeset | 406 | lemma dvd_mult_cancel_right [simp]: | 
| 
7d0ed261b712
generalize int_dvd_cancel_factor simproc to idom class
 huffman parents: 
29949diff
changeset | 407 | "a * c dvd b * c \<longleftrightarrow> c = 0 \<or> a dvd b" | 
| 
7d0ed261b712
generalize int_dvd_cancel_factor simproc to idom class
 huffman parents: 
29949diff
changeset | 408 | proof - | 
| 
7d0ed261b712
generalize int_dvd_cancel_factor simproc to idom class
 huffman parents: 
29949diff
changeset | 409 | have "a * c dvd b * c \<longleftrightarrow> (\<exists>k. b * c = (a * k) * c)" | 
| 
7d0ed261b712
generalize int_dvd_cancel_factor simproc to idom class
 huffman parents: 
29949diff
changeset | 410 | unfolding dvd_def by (simp add: mult_ac) | 
| 
7d0ed261b712
generalize int_dvd_cancel_factor simproc to idom class
 huffman parents: 
29949diff
changeset | 411 | also have "(\<exists>k. b * c = (a * k) * c) \<longleftrightarrow> c = 0 \<or> a dvd b" | 
| 
7d0ed261b712
generalize int_dvd_cancel_factor simproc to idom class
 huffman parents: 
29949diff
changeset | 412 | unfolding dvd_def by simp | 
| 
7d0ed261b712
generalize int_dvd_cancel_factor simproc to idom class
 huffman parents: 
29949diff
changeset | 413 | finally show ?thesis . | 
| 
7d0ed261b712
generalize int_dvd_cancel_factor simproc to idom class
 huffman parents: 
29949diff
changeset | 414 | qed | 
| 
7d0ed261b712
generalize int_dvd_cancel_factor simproc to idom class
 huffman parents: 
29949diff
changeset | 415 | |
| 
7d0ed261b712
generalize int_dvd_cancel_factor simproc to idom class
 huffman parents: 
29949diff
changeset | 416 | lemma dvd_mult_cancel_left [simp]: | 
| 
7d0ed261b712
generalize int_dvd_cancel_factor simproc to idom class
 huffman parents: 
29949diff
changeset | 417 | "c * a dvd c * b \<longleftrightarrow> c = 0 \<or> a dvd b" | 
| 
7d0ed261b712
generalize int_dvd_cancel_factor simproc to idom class
 huffman parents: 
29949diff
changeset | 418 | proof - | 
| 
7d0ed261b712
generalize int_dvd_cancel_factor simproc to idom class
 huffman parents: 
29949diff
changeset | 419 | have "c * a dvd c * b \<longleftrightarrow> (\<exists>k. b * c = (a * k) * c)" | 
| 
7d0ed261b712
generalize int_dvd_cancel_factor simproc to idom class
 huffman parents: 
29949diff
changeset | 420 | unfolding dvd_def by (simp add: mult_ac) | 
| 
7d0ed261b712
generalize int_dvd_cancel_factor simproc to idom class
 huffman parents: 
29949diff
changeset | 421 | also have "(\<exists>k. b * c = (a * k) * c) \<longleftrightarrow> c = 0 \<or> a dvd b" | 
| 
7d0ed261b712
generalize int_dvd_cancel_factor simproc to idom class
 huffman parents: 
29949diff
changeset | 422 | unfolding dvd_def by simp | 
| 
7d0ed261b712
generalize int_dvd_cancel_factor simproc to idom class
 huffman parents: 
29949diff
changeset | 423 | finally show ?thesis . | 
| 
7d0ed261b712
generalize int_dvd_cancel_factor simproc to idom class
 huffman parents: 
29949diff
changeset | 424 | qed | 
| 
7d0ed261b712
generalize int_dvd_cancel_factor simproc to idom class
 huffman parents: 
29949diff
changeset | 425 | |
| 25186 | 426 | end | 
| 25152 | 427 | |
| 35302 | 428 | text {*
 | 
| 429 | The theory of partially ordered rings is taken from the books: | |
| 430 |   \begin{itemize}
 | |
| 431 |   \item \emph{Lattice Theory} by Garret Birkhoff, American Mathematical Society 1979 
 | |
| 432 |   \item \emph{Partially Ordered Algebraic Systems}, Pergamon Press 1963
 | |
| 433 |   \end{itemize}
 | |
| 434 | Most of the used notions can also be looked up in | |
| 435 |   \begin{itemize}
 | |
| 436 |   \item \url{http://www.mathworld.com} by Eric Weisstein et. al.
 | |
| 437 |   \item \emph{Algebra I} by van der Waerden, Springer.
 | |
| 438 |   \end{itemize}
 | |
| 439 | *} | |
| 440 | ||
| 38642 
8fa437809c67
dropped type classes mult_mono and mult_mono1; tuned names of technical rule duplicates
 haftmann parents: 
37767diff
changeset | 441 | class ordered_semiring = semiring + comm_monoid_add + ordered_ab_semigroup_add + | 
| 
8fa437809c67
dropped type classes mult_mono and mult_mono1; tuned names of technical rule duplicates
 haftmann parents: 
37767diff
changeset | 442 | assumes mult_left_mono: "a \<le> b \<Longrightarrow> 0 \<le> c \<Longrightarrow> c * a \<le> c * b" | 
| 
8fa437809c67
dropped type classes mult_mono and mult_mono1; tuned names of technical rule duplicates
 haftmann parents: 
37767diff
changeset | 443 | assumes mult_right_mono: "a \<le> b \<Longrightarrow> 0 \<le> c \<Longrightarrow> a * c \<le> b * c" | 
| 25230 | 444 | begin | 
| 445 | ||
| 446 | lemma mult_mono: | |
| 38642 
8fa437809c67
dropped type classes mult_mono and mult_mono1; tuned names of technical rule duplicates
 haftmann parents: 
37767diff
changeset | 447 | "a \<le> b \<Longrightarrow> c \<le> d \<Longrightarrow> 0 \<le> b \<Longrightarrow> 0 \<le> c \<Longrightarrow> a * c \<le> b * d" | 
| 25230 | 448 | apply (erule mult_right_mono [THEN order_trans], assumption) | 
| 449 | apply (erule mult_left_mono, assumption) | |
| 450 | done | |
| 451 | ||
| 452 | lemma mult_mono': | |
| 38642 
8fa437809c67
dropped type classes mult_mono and mult_mono1; tuned names of technical rule duplicates
 haftmann parents: 
37767diff
changeset | 453 | "a \<le> b \<Longrightarrow> c \<le> d \<Longrightarrow> 0 \<le> a \<Longrightarrow> 0 \<le> c \<Longrightarrow> a * c \<le> b * d" | 
| 25230 | 454 | apply (rule mult_mono) | 
| 455 | apply (fast intro: order_trans)+ | |
| 456 | done | |
| 457 | ||
| 458 | end | |
| 21199 
2d83f93c3580
* Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
 krauss parents: 
20633diff
changeset | 459 | |
| 38642 
8fa437809c67
dropped type classes mult_mono and mult_mono1; tuned names of technical rule duplicates
 haftmann parents: 
37767diff
changeset | 460 | class ordered_cancel_semiring = ordered_semiring + cancel_comm_monoid_add | 
| 25267 | 461 | begin | 
| 14268 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 462 | |
| 27516 | 463 | subclass semiring_0_cancel .. | 
| 23521 | 464 | |
| 25230 | 465 | lemma mult_nonneg_nonneg: "0 \<le> a \<Longrightarrow> 0 \<le> b \<Longrightarrow> 0 \<le> a * b" | 
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 466 | using mult_left_mono [of 0 b a] by simp | 
| 25230 | 467 | |
| 468 | lemma mult_nonneg_nonpos: "0 \<le> a \<Longrightarrow> b \<le> 0 \<Longrightarrow> a * b \<le> 0" | |
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 469 | using mult_left_mono [of b 0 a] by simp | 
| 30692 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 470 | |
| 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 471 | lemma mult_nonpos_nonneg: "a \<le> 0 \<Longrightarrow> 0 \<le> b \<Longrightarrow> a * b \<le> 0" | 
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 472 | using mult_right_mono [of a 0 b] by simp | 
| 30692 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 473 | |
| 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 474 | text {* Legacy - use @{text mult_nonpos_nonneg} *}
 | 
| 25230 | 475 | lemma mult_nonneg_nonpos2: "0 \<le> a \<Longrightarrow> b \<le> 0 \<Longrightarrow> b * a \<le> 0" | 
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 476 | by (drule mult_right_mono [of b 0], auto) | 
| 25230 | 477 | |
| 26234 | 478 | lemma split_mult_neg_le: "(0 \<le> a & b \<le> 0) | (a \<le> 0 & 0 \<le> b) \<Longrightarrow> a * b \<le> 0" | 
| 29667 | 479 | by (auto simp add: mult_nonneg_nonpos mult_nonneg_nonpos2) | 
| 25230 | 480 | |
| 481 | end | |
| 482 | ||
| 38642 
8fa437809c67
dropped type classes mult_mono and mult_mono1; tuned names of technical rule duplicates
 haftmann parents: 
37767diff
changeset | 483 | class linordered_semiring = ordered_semiring + linordered_cancel_ab_semigroup_add | 
| 25267 | 484 | begin | 
| 25230 | 485 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 486 | subclass ordered_cancel_semiring .. | 
| 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 487 | |
| 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 488 | subclass ordered_comm_monoid_add .. | 
| 25304 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 489 | |
| 25230 | 490 | lemma mult_left_less_imp_less: | 
| 491 | "c * a < c * b \<Longrightarrow> 0 \<le> c \<Longrightarrow> a < b" | |
| 29667 | 492 | by (force simp add: mult_left_mono not_le [symmetric]) | 
| 25230 | 493 | |
| 494 | lemma mult_right_less_imp_less: | |
| 495 | "a * c < b * c \<Longrightarrow> 0 \<le> c \<Longrightarrow> a < b" | |
| 29667 | 496 | by (force simp add: mult_right_mono not_le [symmetric]) | 
| 23521 | 497 | |
| 25186 | 498 | end | 
| 25152 | 499 | |
| 35043 
07dbdf60d5ad
dropped accidental duplication of "lin" prefix from cs. 108662d50512
 haftmann parents: 
35032diff
changeset | 500 | class linordered_semiring_1 = linordered_semiring + semiring_1 | 
| 36622 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36348diff
changeset | 501 | begin | 
| 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36348diff
changeset | 502 | |
| 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36348diff
changeset | 503 | lemma convex_bound_le: | 
| 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36348diff
changeset | 504 | assumes "x \<le> a" "y \<le> a" "0 \<le> u" "0 \<le> v" "u + v = 1" | 
| 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36348diff
changeset | 505 | shows "u * x + v * y \<le> a" | 
| 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36348diff
changeset | 506 | proof- | 
| 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36348diff
changeset | 507 | from assms have "u * x + v * y \<le> u * a + v * a" | 
| 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36348diff
changeset | 508 | by (simp add: add_mono mult_left_mono) | 
| 49962 
a8cc904a6820
Renamed {left,right}_distrib to distrib_{right,left}.
 webertj parents: 
44921diff
changeset | 509 | thus ?thesis using assms unfolding distrib_right[symmetric] by simp | 
| 36622 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36348diff
changeset | 510 | qed | 
| 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36348diff
changeset | 511 | |
| 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36348diff
changeset | 512 | end | 
| 35043 
07dbdf60d5ad
dropped accidental duplication of "lin" prefix from cs. 108662d50512
 haftmann parents: 
35032diff
changeset | 513 | |
| 
07dbdf60d5ad
dropped accidental duplication of "lin" prefix from cs. 108662d50512
 haftmann parents: 
35032diff
changeset | 514 | class linordered_semiring_strict = semiring + comm_monoid_add + linordered_cancel_ab_semigroup_add + | 
| 25062 | 515 | assumes mult_strict_left_mono: "a < b \<Longrightarrow> 0 < c \<Longrightarrow> c * a < c * b" | 
| 516 | assumes mult_strict_right_mono: "a < b \<Longrightarrow> 0 < c \<Longrightarrow> a * c < b * c" | |
| 25267 | 517 | begin | 
| 14341 
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
 paulson parents: 
14334diff
changeset | 518 | |
| 27516 | 519 | subclass semiring_0_cancel .. | 
| 14940 | 520 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 521 | subclass linordered_semiring | 
| 28823 | 522 | proof | 
| 23550 | 523 | fix a b c :: 'a | 
| 524 | assume A: "a \<le> b" "0 \<le> c" | |
| 525 | from A show "c * a \<le> c * b" | |
| 25186 | 526 | unfolding le_less | 
| 527 | using mult_strict_left_mono by (cases "c = 0") auto | |
| 23550 | 528 | from A show "a * c \<le> b * c" | 
| 25152 | 529 | unfolding le_less | 
| 25186 | 530 | using mult_strict_right_mono by (cases "c = 0") auto | 
| 25152 | 531 | qed | 
| 532 | ||
| 25230 | 533 | lemma mult_left_le_imp_le: | 
| 534 | "c * a \<le> c * b \<Longrightarrow> 0 < c \<Longrightarrow> a \<le> b" | |
| 29667 | 535 | by (force simp add: mult_strict_left_mono _not_less [symmetric]) | 
| 25230 | 536 | |
| 537 | lemma mult_right_le_imp_le: | |
| 538 | "a * c \<le> b * c \<Longrightarrow> 0 < c \<Longrightarrow> a \<le> b" | |
| 29667 | 539 | by (force simp add: mult_strict_right_mono not_less [symmetric]) | 
| 25230 | 540 | |
| 30692 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 541 | lemma mult_pos_pos: "0 < a \<Longrightarrow> 0 < b \<Longrightarrow> 0 < a * b" | 
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 542 | using mult_strict_left_mono [of 0 b a] by simp | 
| 30692 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 543 | |
| 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 544 | lemma mult_pos_neg: "0 < a \<Longrightarrow> b < 0 \<Longrightarrow> a * b < 0" | 
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 545 | using mult_strict_left_mono [of b 0 a] by simp | 
| 30692 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 546 | |
| 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 547 | lemma mult_neg_pos: "a < 0 \<Longrightarrow> 0 < b \<Longrightarrow> a * b < 0" | 
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 548 | using mult_strict_right_mono [of a 0 b] by simp | 
| 30692 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 549 | |
| 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 550 | text {* Legacy - use @{text mult_neg_pos} *}
 | 
| 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 551 | lemma mult_pos_neg2: "0 < a \<Longrightarrow> b < 0 \<Longrightarrow> b * a < 0" | 
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 552 | by (drule mult_strict_right_mono [of b 0], auto) | 
| 25230 | 553 | |
| 554 | lemma zero_less_mult_pos: | |
| 555 | "0 < a * b \<Longrightarrow> 0 < a \<Longrightarrow> 0 < b" | |
| 30692 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 556 | apply (cases "b\<le>0") | 
| 25230 | 557 | apply (auto simp add: le_less not_less) | 
| 30692 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 558 | apply (drule_tac mult_pos_neg [of a b]) | 
| 25230 | 559 | apply (auto dest: less_not_sym) | 
| 560 | done | |
| 561 | ||
| 562 | lemma zero_less_mult_pos2: | |
| 563 | "0 < b * a \<Longrightarrow> 0 < a \<Longrightarrow> 0 < b" | |
| 30692 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 564 | apply (cases "b\<le>0") | 
| 25230 | 565 | apply (auto simp add: le_less not_less) | 
| 30692 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 566 | apply (drule_tac mult_pos_neg2 [of a b]) | 
| 25230 | 567 | apply (auto dest: less_not_sym) | 
| 568 | done | |
| 569 | ||
| 26193 | 570 | text{*Strict monotonicity in both arguments*}
 | 
| 571 | lemma mult_strict_mono: | |
| 572 | assumes "a < b" and "c < d" and "0 < b" and "0 \<le> c" | |
| 573 | shows "a * c < b * d" | |
| 574 | using assms apply (cases "c=0") | |
| 30692 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 575 | apply (simp add: mult_pos_pos) | 
| 26193 | 576 | apply (erule mult_strict_right_mono [THEN less_trans]) | 
| 30692 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 577 | apply (force simp add: le_less) | 
| 26193 | 578 | apply (erule mult_strict_left_mono, assumption) | 
| 579 | done | |
| 580 | ||
| 581 | text{*This weaker variant has more natural premises*}
 | |
| 582 | lemma mult_strict_mono': | |
| 583 | assumes "a < b" and "c < d" and "0 \<le> a" and "0 \<le> c" | |
| 584 | shows "a * c < b * d" | |
| 29667 | 585 | by (rule mult_strict_mono) (insert assms, auto) | 
| 26193 | 586 | |
| 587 | lemma mult_less_le_imp_less: | |
| 588 | assumes "a < b" and "c \<le> d" and "0 \<le> a" and "0 < c" | |
| 589 | shows "a * c < b * d" | |
| 590 | using assms apply (subgoal_tac "a * c < b * c") | |
| 591 | apply (erule less_le_trans) | |
| 592 | apply (erule mult_left_mono) | |
| 593 | apply simp | |
| 594 | apply (erule mult_strict_right_mono) | |
| 595 | apply assumption | |
| 596 | done | |
| 597 | ||
| 598 | lemma mult_le_less_imp_less: | |
| 599 | assumes "a \<le> b" and "c < d" and "0 < a" and "0 \<le> c" | |
| 600 | shows "a * c < b * d" | |
| 601 | using assms apply (subgoal_tac "a * c \<le> b * c") | |
| 602 | apply (erule le_less_trans) | |
| 603 | apply (erule mult_strict_left_mono) | |
| 604 | apply simp | |
| 605 | apply (erule mult_right_mono) | |
| 606 | apply simp | |
| 607 | done | |
| 608 | ||
| 609 | lemma mult_less_imp_less_left: | |
| 610 | assumes less: "c * a < c * b" and nonneg: "0 \<le> c" | |
| 611 | shows "a < b" | |
| 612 | proof (rule ccontr) | |
| 613 | assume "\<not> a < b" | |
| 614 | hence "b \<le> a" by (simp add: linorder_not_less) | |
| 615 | hence "c * b \<le> c * a" using nonneg by (rule mult_left_mono) | |
| 29667 | 616 | with this and less show False by (simp add: not_less [symmetric]) | 
| 26193 | 617 | qed | 
| 618 | ||
| 619 | lemma mult_less_imp_less_right: | |
| 620 | assumes less: "a * c < b * c" and nonneg: "0 \<le> c" | |
| 621 | shows "a < b" | |
| 622 | proof (rule ccontr) | |
| 623 | assume "\<not> a < b" | |
| 624 | hence "b \<le> a" by (simp add: linorder_not_less) | |
| 625 | hence "b * c \<le> a * c" using nonneg by (rule mult_right_mono) | |
| 29667 | 626 | with this and less show False by (simp add: not_less [symmetric]) | 
| 26193 | 627 | qed | 
| 628 | ||
| 25230 | 629 | end | 
| 630 | ||
| 35097 
4554bb2abfa3
dropped last occurence of the linlinordered accident
 haftmann parents: 
35092diff
changeset | 631 | class linordered_semiring_1_strict = linordered_semiring_strict + semiring_1 | 
| 36622 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36348diff
changeset | 632 | begin | 
| 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36348diff
changeset | 633 | |
| 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36348diff
changeset | 634 | subclass linordered_semiring_1 .. | 
| 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36348diff
changeset | 635 | |
| 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36348diff
changeset | 636 | lemma convex_bound_lt: | 
| 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36348diff
changeset | 637 | assumes "x < a" "y < a" "0 \<le> u" "0 \<le> v" "u + v = 1" | 
| 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36348diff
changeset | 638 | shows "u * x + v * y < a" | 
| 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36348diff
changeset | 639 | proof - | 
| 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36348diff
changeset | 640 | from assms have "u * x + v * y < u * a + v * a" | 
| 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36348diff
changeset | 641 | by (cases "u = 0") | 
| 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36348diff
changeset | 642 | (auto intro!: add_less_le_mono mult_strict_left_mono mult_left_mono) | 
| 49962 
a8cc904a6820
Renamed {left,right}_distrib to distrib_{right,left}.
 webertj parents: 
44921diff
changeset | 643 | thus ?thesis using assms unfolding distrib_right[symmetric] by simp | 
| 36622 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36348diff
changeset | 644 | qed | 
| 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36348diff
changeset | 645 | |
| 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36348diff
changeset | 646 | end | 
| 33319 | 647 | |
| 38642 
8fa437809c67
dropped type classes mult_mono and mult_mono1; tuned names of technical rule duplicates
 haftmann parents: 
37767diff
changeset | 648 | class ordered_comm_semiring = comm_semiring_0 + ordered_ab_semigroup_add + | 
| 
8fa437809c67
dropped type classes mult_mono and mult_mono1; tuned names of technical rule duplicates
 haftmann parents: 
37767diff
changeset | 649 | assumes comm_mult_left_mono: "a \<le> b \<Longrightarrow> 0 \<le> c \<Longrightarrow> c * a \<le> c * b" | 
| 25186 | 650 | begin | 
| 25152 | 651 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 652 | subclass ordered_semiring | 
| 28823 | 653 | proof | 
| 21199 
2d83f93c3580
* Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
 krauss parents: 
20633diff
changeset | 654 | fix a b c :: 'a | 
| 23550 | 655 | assume "a \<le> b" "0 \<le> c" | 
| 38642 
8fa437809c67
dropped type classes mult_mono and mult_mono1; tuned names of technical rule duplicates
 haftmann parents: 
37767diff
changeset | 656 | thus "c * a \<le> c * b" by (rule comm_mult_left_mono) | 
| 23550 | 657 | thus "a * c \<le> b * c" by (simp only: mult_commute) | 
| 21199 
2d83f93c3580
* Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
 krauss parents: 
20633diff
changeset | 658 | qed | 
| 14265 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 659 | |
| 25267 | 660 | end | 
| 661 | ||
| 38642 
8fa437809c67
dropped type classes mult_mono and mult_mono1; tuned names of technical rule duplicates
 haftmann parents: 
37767diff
changeset | 662 | class ordered_cancel_comm_semiring = ordered_comm_semiring + cancel_comm_monoid_add | 
| 25267 | 663 | begin | 
| 14265 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 664 | |
| 38642 
8fa437809c67
dropped type classes mult_mono and mult_mono1; tuned names of technical rule duplicates
 haftmann parents: 
37767diff
changeset | 665 | subclass comm_semiring_0_cancel .. | 
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 666 | subclass ordered_comm_semiring .. | 
| 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 667 | subclass ordered_cancel_semiring .. | 
| 25267 | 668 | |
| 669 | end | |
| 670 | ||
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 671 | class linordered_comm_semiring_strict = comm_semiring_0 + linordered_cancel_ab_semigroup_add + | 
| 38642 
8fa437809c67
dropped type classes mult_mono and mult_mono1; tuned names of technical rule duplicates
 haftmann parents: 
37767diff
changeset | 672 | assumes comm_mult_strict_left_mono: "a < b \<Longrightarrow> 0 < c \<Longrightarrow> c * a < c * b" | 
| 25267 | 673 | begin | 
| 674 | ||
| 35043 
07dbdf60d5ad
dropped accidental duplication of "lin" prefix from cs. 108662d50512
 haftmann parents: 
35032diff
changeset | 675 | subclass linordered_semiring_strict | 
| 28823 | 676 | proof | 
| 23550 | 677 | fix a b c :: 'a | 
| 678 | assume "a < b" "0 < c" | |
| 38642 
8fa437809c67
dropped type classes mult_mono and mult_mono1; tuned names of technical rule duplicates
 haftmann parents: 
37767diff
changeset | 679 | thus "c * a < c * b" by (rule comm_mult_strict_left_mono) | 
| 23550 | 680 | thus "a * c < b * c" by (simp only: mult_commute) | 
| 681 | qed | |
| 14272 
5efbb548107d
Tidying of the integer development; towards removing the
 paulson parents: 
14270diff
changeset | 682 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 683 | subclass ordered_cancel_comm_semiring | 
| 28823 | 684 | proof | 
| 23550 | 685 | fix a b c :: 'a | 
| 686 | assume "a \<le> b" "0 \<le> c" | |
| 687 | thus "c * a \<le> c * b" | |
| 25186 | 688 | unfolding le_less | 
| 26193 | 689 | using mult_strict_left_mono by (cases "c = 0") auto | 
| 23550 | 690 | qed | 
| 14272 
5efbb548107d
Tidying of the integer development; towards removing the
 paulson parents: 
14270diff
changeset | 691 | |
| 25267 | 692 | end | 
| 25230 | 693 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 694 | class ordered_ring = ring + ordered_cancel_semiring | 
| 25267 | 695 | begin | 
| 25230 | 696 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 697 | subclass ordered_ab_group_add .. | 
| 14270 | 698 | |
| 25230 | 699 | lemma less_add_iff1: | 
| 700 | "a * e + c < b * e + d \<longleftrightarrow> (a - b) * e + c < d" | |
| 29667 | 701 | by (simp add: algebra_simps) | 
| 25230 | 702 | |
| 703 | lemma less_add_iff2: | |
| 704 | "a * e + c < b * e + d \<longleftrightarrow> c < (b - a) * e + d" | |
| 29667 | 705 | by (simp add: algebra_simps) | 
| 25230 | 706 | |
| 707 | lemma le_add_iff1: | |
| 708 | "a * e + c \<le> b * e + d \<longleftrightarrow> (a - b) * e + c \<le> d" | |
| 29667 | 709 | by (simp add: algebra_simps) | 
| 25230 | 710 | |
| 711 | lemma le_add_iff2: | |
| 712 | "a * e + c \<le> b * e + d \<longleftrightarrow> c \<le> (b - a) * e + d" | |
| 29667 | 713 | by (simp add: algebra_simps) | 
| 25230 | 714 | |
| 715 | lemma mult_left_mono_neg: | |
| 716 | "b \<le> a \<Longrightarrow> c \<le> 0 \<Longrightarrow> c * a \<le> c * b" | |
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 717 | apply (drule mult_left_mono [of _ _ "- c"]) | 
| 35216 | 718 | apply simp_all | 
| 25230 | 719 | done | 
| 720 | ||
| 721 | lemma mult_right_mono_neg: | |
| 722 | "b \<le> a \<Longrightarrow> c \<le> 0 \<Longrightarrow> a * c \<le> b * c" | |
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 723 | apply (drule mult_right_mono [of _ _ "- c"]) | 
| 35216 | 724 | apply simp_all | 
| 25230 | 725 | done | 
| 726 | ||
| 30692 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 727 | lemma mult_nonpos_nonpos: "a \<le> 0 \<Longrightarrow> b \<le> 0 \<Longrightarrow> 0 \<le> a * b" | 
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 728 | using mult_right_mono_neg [of a 0 b] by simp | 
| 25230 | 729 | |
| 730 | lemma split_mult_pos_le: | |
| 731 | "(0 \<le> a \<and> 0 \<le> b) \<or> (a \<le> 0 \<and> b \<le> 0) \<Longrightarrow> 0 \<le> a * b" | |
| 29667 | 732 | by (auto simp add: mult_nonneg_nonneg mult_nonpos_nonpos) | 
| 25186 | 733 | |
| 734 | end | |
| 14270 | 735 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 736 | class linordered_ring = ring + linordered_semiring + linordered_ab_group_add + abs_if | 
| 25304 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 737 | begin | 
| 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 738 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 739 | subclass ordered_ring .. | 
| 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 740 | |
| 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 741 | subclass ordered_ab_group_add_abs | 
| 28823 | 742 | proof | 
| 25304 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 743 | fix a b | 
| 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 744 | show "\<bar>a + b\<bar> \<le> \<bar>a\<bar> + \<bar>b\<bar>" | 
| 35216 | 745 | by (auto simp add: abs_if not_less) | 
| 746 | (auto simp del: minus_add_distrib simp add: minus_add_distrib [symmetric], | |
| 36977 
71c8973a604b
declare add_nonneg_nonneg [simp]; remove now-redundant lemmas realpow_two_le_order(2)
 huffman parents: 
36970diff
changeset | 747 | auto intro!: less_imp_le add_neg_neg) | 
| 35216 | 748 | qed (auto simp add: abs_if) | 
| 25304 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 749 | |
| 35631 
0b8a5fd339ab
generalize some lemmas from class linordered_ring_strict to linordered_ring
 huffman parents: 
35302diff
changeset | 750 | lemma zero_le_square [simp]: "0 \<le> a * a" | 
| 
0b8a5fd339ab
generalize some lemmas from class linordered_ring_strict to linordered_ring
 huffman parents: 
35302diff
changeset | 751 | using linear [of 0 a] | 
| 
0b8a5fd339ab
generalize some lemmas from class linordered_ring_strict to linordered_ring
 huffman parents: 
35302diff
changeset | 752 | by (auto simp add: mult_nonneg_nonneg mult_nonpos_nonpos) | 
| 
0b8a5fd339ab
generalize some lemmas from class linordered_ring_strict to linordered_ring
 huffman parents: 
35302diff
changeset | 753 | |
| 
0b8a5fd339ab
generalize some lemmas from class linordered_ring_strict to linordered_ring
 huffman parents: 
35302diff
changeset | 754 | lemma not_square_less_zero [simp]: "\<not> (a * a < 0)" | 
| 
0b8a5fd339ab
generalize some lemmas from class linordered_ring_strict to linordered_ring
 huffman parents: 
35302diff
changeset | 755 | by (simp add: not_less) | 
| 
0b8a5fd339ab
generalize some lemmas from class linordered_ring_strict to linordered_ring
 huffman parents: 
35302diff
changeset | 756 | |
| 25304 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 757 | end | 
| 23521 | 758 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 759 | (* The "strict" suffix can be seen as describing the combination of linordered_ring and no_zero_divisors. | 
| 35043 
07dbdf60d5ad
dropped accidental duplication of "lin" prefix from cs. 108662d50512
 haftmann parents: 
35032diff
changeset | 760 | Basically, linordered_ring + no_zero_divisors = linordered_ring_strict. | 
| 25230 | 761 | *) | 
| 35043 
07dbdf60d5ad
dropped accidental duplication of "lin" prefix from cs. 108662d50512
 haftmann parents: 
35032diff
changeset | 762 | class linordered_ring_strict = ring + linordered_semiring_strict | 
| 25304 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 763 | + ordered_ab_group_add + abs_if | 
| 25230 | 764 | begin | 
| 14348 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
14341diff
changeset | 765 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 766 | subclass linordered_ring .. | 
| 25304 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 767 | |
| 30692 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 768 | lemma mult_strict_left_mono_neg: "b < a \<Longrightarrow> c < 0 \<Longrightarrow> c * a < c * b" | 
| 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 769 | using mult_strict_left_mono [of b a "- c"] by simp | 
| 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 770 | |
| 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 771 | lemma mult_strict_right_mono_neg: "b < a \<Longrightarrow> c < 0 \<Longrightarrow> a * c < b * c" | 
| 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 772 | using mult_strict_right_mono [of b a "- c"] by simp | 
| 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 773 | |
| 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 774 | lemma mult_neg_neg: "a < 0 \<Longrightarrow> b < 0 \<Longrightarrow> 0 < a * b" | 
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 775 | using mult_strict_right_mono_neg [of a 0 b] by simp | 
| 14738 | 776 | |
| 25917 | 777 | subclass ring_no_zero_divisors | 
| 28823 | 778 | proof | 
| 25917 | 779 | fix a b | 
| 780 | assume "a \<noteq> 0" then have A: "a < 0 \<or> 0 < a" by (simp add: neq_iff) | |
| 781 | assume "b \<noteq> 0" then have B: "b < 0 \<or> 0 < b" by (simp add: neq_iff) | |
| 782 | have "a * b < 0 \<or> 0 < a * b" | |
| 783 | proof (cases "a < 0") | |
| 784 | case True note A' = this | |
| 785 | show ?thesis proof (cases "b < 0") | |
| 786 | case True with A' | |
| 787 | show ?thesis by (auto dest: mult_neg_neg) | |
| 788 | next | |
| 789 | case False with B have "0 < b" by auto | |
| 790 | with A' show ?thesis by (auto dest: mult_strict_right_mono) | |
| 791 | qed | |
| 792 | next | |
| 793 | case False with A have A': "0 < a" by auto | |
| 794 | show ?thesis proof (cases "b < 0") | |
| 795 | case True with A' | |
| 796 | show ?thesis by (auto dest: mult_strict_right_mono_neg) | |
| 797 | next | |
| 798 | case False with B have "0 < b" by auto | |
| 799 | with A' show ?thesis by (auto dest: mult_pos_pos) | |
| 800 | qed | |
| 801 | qed | |
| 802 | then show "a * b \<noteq> 0" by (simp add: neq_iff) | |
| 803 | qed | |
| 25304 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 804 | |
| 14265 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 805 | lemma zero_less_mult_iff: | 
| 25917 | 806 | "0 < a * b \<longleftrightarrow> 0 < a \<and> 0 < b \<or> a < 0 \<and> b < 0" | 
| 807 | apply (auto simp add: mult_pos_pos mult_neg_neg) | |
| 808 | apply (simp_all add: not_less le_less) | |
| 809 | apply (erule disjE) apply assumption defer | |
| 810 | apply (erule disjE) defer apply (drule sym) apply simp | |
| 811 | apply (erule disjE) defer apply (drule sym) apply simp | |
| 812 | apply (erule disjE) apply assumption apply (drule sym) apply simp | |
| 813 | apply (drule sym) apply simp | |
| 814 | apply (blast dest: zero_less_mult_pos) | |
| 25230 | 815 | apply (blast dest: zero_less_mult_pos2) | 
| 816 | done | |
| 22990 
775e9de3db48
added classes ring_no_zero_divisors and dom (non-commutative version of idom);
 huffman parents: 
22987diff
changeset | 817 | |
| 14265 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 818 | lemma zero_le_mult_iff: | 
| 25917 | 819 | "0 \<le> a * b \<longleftrightarrow> 0 \<le> a \<and> 0 \<le> b \<or> a \<le> 0 \<and> b \<le> 0" | 
| 29667 | 820 | by (auto simp add: eq_commute [of 0] le_less not_less zero_less_mult_iff) | 
| 14265 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 821 | |
| 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 822 | lemma mult_less_0_iff: | 
| 25917 | 823 | "a * b < 0 \<longleftrightarrow> 0 < a \<and> b < 0 \<or> a < 0 \<and> 0 < b" | 
| 35216 | 824 | apply (insert zero_less_mult_iff [of "-a" b]) | 
| 825 | apply force | |
| 25917 | 826 | done | 
| 14265 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 827 | |
| 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 828 | lemma mult_le_0_iff: | 
| 25917 | 829 | "a * b \<le> 0 \<longleftrightarrow> 0 \<le> a \<and> b \<le> 0 \<or> a \<le> 0 \<and> 0 \<le> b" | 
| 830 | apply (insert zero_le_mult_iff [of "-a" b]) | |
| 35216 | 831 | apply force | 
| 25917 | 832 | done | 
| 833 | ||
| 26193 | 834 | text{*Cancellation laws for @{term "c*a < c*b"} and @{term "a*c < b*c"},
 | 
| 835 |    also with the relations @{text "\<le>"} and equality.*}
 | |
| 836 | ||
| 837 | text{*These ``disjunction'' versions produce two cases when the comparison is
 | |
| 838 | an assumption, but effectively four when the comparison is a goal.*} | |
| 839 | ||
| 840 | lemma mult_less_cancel_right_disj: | |
| 841 | "a * c < b * c \<longleftrightarrow> 0 < c \<and> a < b \<or> c < 0 \<and> b < a" | |
| 842 | apply (cases "c = 0") | |
| 843 | apply (auto simp add: neq_iff mult_strict_right_mono | |
| 844 | mult_strict_right_mono_neg) | |
| 845 | apply (auto simp add: not_less | |
| 846 | not_le [symmetric, of "a*c"] | |
| 847 | not_le [symmetric, of a]) | |
| 848 | apply (erule_tac [!] notE) | |
| 849 | apply (auto simp add: less_imp_le mult_right_mono | |
| 850 | mult_right_mono_neg) | |
| 851 | done | |
| 852 | ||
| 853 | lemma mult_less_cancel_left_disj: | |
| 854 | "c * a < c * b \<longleftrightarrow> 0 < c \<and> a < b \<or> c < 0 \<and> b < a" | |
| 855 | apply (cases "c = 0") | |
| 856 | apply (auto simp add: neq_iff mult_strict_left_mono | |
| 857 | mult_strict_left_mono_neg) | |
| 858 | apply (auto simp add: not_less | |
| 859 | not_le [symmetric, of "c*a"] | |
| 860 | not_le [symmetric, of a]) | |
| 861 | apply (erule_tac [!] notE) | |
| 862 | apply (auto simp add: less_imp_le mult_left_mono | |
| 863 | mult_left_mono_neg) | |
| 864 | done | |
| 865 | ||
| 866 | text{*The ``conjunction of implication'' lemmas produce two cases when the
 | |
| 867 | comparison is a goal, but give four when the comparison is an assumption.*} | |
| 868 | ||
| 869 | lemma mult_less_cancel_right: | |
| 870 | "a * c < b * c \<longleftrightarrow> (0 \<le> c \<longrightarrow> a < b) \<and> (c \<le> 0 \<longrightarrow> b < a)" | |
| 871 | using mult_less_cancel_right_disj [of a c b] by auto | |
| 872 | ||
| 873 | lemma mult_less_cancel_left: | |
| 874 | "c * a < c * b \<longleftrightarrow> (0 \<le> c \<longrightarrow> a < b) \<and> (c \<le> 0 \<longrightarrow> b < a)" | |
| 875 | using mult_less_cancel_left_disj [of c a b] by auto | |
| 876 | ||
| 877 | lemma mult_le_cancel_right: | |
| 878 | "a * c \<le> b * c \<longleftrightarrow> (0 < c \<longrightarrow> a \<le> b) \<and> (c < 0 \<longrightarrow> b \<le> a)" | |
| 29667 | 879 | by (simp add: not_less [symmetric] mult_less_cancel_right_disj) | 
| 26193 | 880 | |
| 881 | lemma mult_le_cancel_left: | |
| 882 | "c * a \<le> c * b \<longleftrightarrow> (0 < c \<longrightarrow> a \<le> b) \<and> (c < 0 \<longrightarrow> b \<le> a)" | |
| 29667 | 883 | by (simp add: not_less [symmetric] mult_less_cancel_left_disj) | 
| 26193 | 884 | |
| 30649 
57753e0ec1d4
1. New cancellation simprocs for common factors in inequations
 nipkow parents: 
30242diff
changeset | 885 | lemma mult_le_cancel_left_pos: | 
| 
57753e0ec1d4
1. New cancellation simprocs for common factors in inequations
 nipkow parents: 
30242diff
changeset | 886 | "0 < c \<Longrightarrow> c * a \<le> c * b \<longleftrightarrow> a \<le> b" | 
| 
57753e0ec1d4
1. New cancellation simprocs for common factors in inequations
 nipkow parents: 
30242diff
changeset | 887 | by (auto simp: mult_le_cancel_left) | 
| 
57753e0ec1d4
1. New cancellation simprocs for common factors in inequations
 nipkow parents: 
30242diff
changeset | 888 | |
| 
57753e0ec1d4
1. New cancellation simprocs for common factors in inequations
 nipkow parents: 
30242diff
changeset | 889 | lemma mult_le_cancel_left_neg: | 
| 
57753e0ec1d4
1. New cancellation simprocs for common factors in inequations
 nipkow parents: 
30242diff
changeset | 890 | "c < 0 \<Longrightarrow> c * a \<le> c * b \<longleftrightarrow> b \<le> a" | 
| 
57753e0ec1d4
1. New cancellation simprocs for common factors in inequations
 nipkow parents: 
30242diff
changeset | 891 | by (auto simp: mult_le_cancel_left) | 
| 
57753e0ec1d4
1. New cancellation simprocs for common factors in inequations
 nipkow parents: 
30242diff
changeset | 892 | |
| 
57753e0ec1d4
1. New cancellation simprocs for common factors in inequations
 nipkow parents: 
30242diff
changeset | 893 | lemma mult_less_cancel_left_pos: | 
| 
57753e0ec1d4
1. New cancellation simprocs for common factors in inequations
 nipkow parents: 
30242diff
changeset | 894 | "0 < c \<Longrightarrow> c * a < c * b \<longleftrightarrow> a < b" | 
| 
57753e0ec1d4
1. New cancellation simprocs for common factors in inequations
 nipkow parents: 
30242diff
changeset | 895 | by (auto simp: mult_less_cancel_left) | 
| 
57753e0ec1d4
1. New cancellation simprocs for common factors in inequations
 nipkow parents: 
30242diff
changeset | 896 | |
| 
57753e0ec1d4
1. New cancellation simprocs for common factors in inequations
 nipkow parents: 
30242diff
changeset | 897 | lemma mult_less_cancel_left_neg: | 
| 
57753e0ec1d4
1. New cancellation simprocs for common factors in inequations
 nipkow parents: 
30242diff
changeset | 898 | "c < 0 \<Longrightarrow> c * a < c * b \<longleftrightarrow> b < a" | 
| 
57753e0ec1d4
1. New cancellation simprocs for common factors in inequations
 nipkow parents: 
30242diff
changeset | 899 | by (auto simp: mult_less_cancel_left) | 
| 
57753e0ec1d4
1. New cancellation simprocs for common factors in inequations
 nipkow parents: 
30242diff
changeset | 900 | |
| 25917 | 901 | end | 
| 14265 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 902 | |
| 30692 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 903 | lemmas mult_sign_intros = | 
| 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 904 | mult_nonneg_nonneg mult_nonneg_nonpos | 
| 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 905 | mult_nonpos_nonneg mult_nonpos_nonpos | 
| 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 906 | mult_pos_pos mult_pos_neg | 
| 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 907 | mult_neg_pos mult_neg_neg | 
| 25230 | 908 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 909 | class ordered_comm_ring = comm_ring + ordered_comm_semiring | 
| 25267 | 910 | begin | 
| 25230 | 911 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 912 | subclass ordered_ring .. | 
| 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 913 | subclass ordered_cancel_comm_semiring .. | 
| 25230 | 914 | |
| 25267 | 915 | end | 
| 25230 | 916 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 917 | class linordered_semidom = comm_semiring_1_cancel + linordered_comm_semiring_strict + | 
| 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 918 | (*previously linordered_semiring*) | 
| 25230 | 919 | assumes zero_less_one [simp]: "0 < 1" | 
| 920 | begin | |
| 921 | ||
| 922 | lemma pos_add_strict: | |
| 923 | shows "0 < a \<Longrightarrow> b < c \<Longrightarrow> b < a + c" | |
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 924 | using add_strict_mono [of 0 a b c] by simp | 
| 25230 | 925 | |
| 26193 | 926 | lemma zero_le_one [simp]: "0 \<le> 1" | 
| 29667 | 927 | by (rule zero_less_one [THEN less_imp_le]) | 
| 26193 | 928 | |
| 929 | lemma not_one_le_zero [simp]: "\<not> 1 \<le> 0" | |
| 29667 | 930 | by (simp add: not_le) | 
| 26193 | 931 | |
| 932 | lemma not_one_less_zero [simp]: "\<not> 1 < 0" | |
| 29667 | 933 | by (simp add: not_less) | 
| 26193 | 934 | |
| 935 | lemma less_1_mult: | |
| 936 | assumes "1 < m" and "1 < n" | |
| 937 | shows "1 < m * n" | |
| 938 | using assms mult_strict_mono [of 1 m 1 n] | |
| 939 | by (simp add: less_trans [OF zero_less_one]) | |
| 940 | ||
| 25230 | 941 | end | 
| 942 | ||
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 943 | class linordered_idom = comm_ring_1 + | 
| 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 944 | linordered_comm_semiring_strict + ordered_ab_group_add + | 
| 25230 | 945 | abs_if + sgn_if | 
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 946 | (*previously linordered_ring*) | 
| 25917 | 947 | begin | 
| 948 | ||
| 36622 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36348diff
changeset | 949 | subclass linordered_semiring_1_strict .. | 
| 35043 
07dbdf60d5ad
dropped accidental duplication of "lin" prefix from cs. 108662d50512
 haftmann parents: 
35032diff
changeset | 950 | subclass linordered_ring_strict .. | 
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 951 | subclass ordered_comm_ring .. | 
| 27516 | 952 | subclass idom .. | 
| 25917 | 953 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 954 | subclass linordered_semidom | 
| 28823 | 955 | proof | 
| 26193 | 956 | have "0 \<le> 1 * 1" by (rule zero_le_square) | 
| 957 | thus "0 < 1" by (simp add: le_less) | |
| 25917 | 958 | qed | 
| 959 | ||
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 960 | lemma linorder_neqE_linordered_idom: | 
| 26193 | 961 | assumes "x \<noteq> y" obtains "x < y" | "y < x" | 
| 962 | using assms by (rule neqE) | |
| 963 | ||
| 26274 | 964 | text {* These cancellation simprules also produce two cases when the comparison is a goal. *}
 | 
| 965 | ||
| 966 | lemma mult_le_cancel_right1: | |
| 967 | "c \<le> b * c \<longleftrightarrow> (0 < c \<longrightarrow> 1 \<le> b) \<and> (c < 0 \<longrightarrow> b \<le> 1)" | |
| 29667 | 968 | by (insert mult_le_cancel_right [of 1 c b], simp) | 
| 26274 | 969 | |
| 970 | lemma mult_le_cancel_right2: | |
| 971 | "a * c \<le> c \<longleftrightarrow> (0 < c \<longrightarrow> a \<le> 1) \<and> (c < 0 \<longrightarrow> 1 \<le> a)" | |
| 29667 | 972 | by (insert mult_le_cancel_right [of a c 1], simp) | 
| 26274 | 973 | |
| 974 | lemma mult_le_cancel_left1: | |
| 975 | "c \<le> c * b \<longleftrightarrow> (0 < c \<longrightarrow> 1 \<le> b) \<and> (c < 0 \<longrightarrow> b \<le> 1)" | |
| 29667 | 976 | by (insert mult_le_cancel_left [of c 1 b], simp) | 
| 26274 | 977 | |
| 978 | lemma mult_le_cancel_left2: | |
| 979 | "c * a \<le> c \<longleftrightarrow> (0 < c \<longrightarrow> a \<le> 1) \<and> (c < 0 \<longrightarrow> 1 \<le> a)" | |
| 29667 | 980 | by (insert mult_le_cancel_left [of c a 1], simp) | 
| 26274 | 981 | |
| 982 | lemma mult_less_cancel_right1: | |
| 983 | "c < b * c \<longleftrightarrow> (0 \<le> c \<longrightarrow> 1 < b) \<and> (c \<le> 0 \<longrightarrow> b < 1)" | |
| 29667 | 984 | by (insert mult_less_cancel_right [of 1 c b], simp) | 
| 26274 | 985 | |
| 986 | lemma mult_less_cancel_right2: | |
| 987 | "a * c < c \<longleftrightarrow> (0 \<le> c \<longrightarrow> a < 1) \<and> (c \<le> 0 \<longrightarrow> 1 < a)" | |
| 29667 | 988 | by (insert mult_less_cancel_right [of a c 1], simp) | 
| 26274 | 989 | |
| 990 | lemma mult_less_cancel_left1: | |
| 991 | "c < c * b \<longleftrightarrow> (0 \<le> c \<longrightarrow> 1 < b) \<and> (c \<le> 0 \<longrightarrow> b < 1)" | |
| 29667 | 992 | by (insert mult_less_cancel_left [of c 1 b], simp) | 
| 26274 | 993 | |
| 994 | lemma mult_less_cancel_left2: | |
| 995 | "c * a < c \<longleftrightarrow> (0 \<le> c \<longrightarrow> a < 1) \<and> (c \<le> 0 \<longrightarrow> 1 < a)" | |
| 29667 | 996 | by (insert mult_less_cancel_left [of c a 1], simp) | 
| 26274 | 997 | |
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 998 | lemma sgn_sgn [simp]: | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 999 | "sgn (sgn a) = sgn a" | 
| 29700 | 1000 | unfolding sgn_if by simp | 
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 1001 | |
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 1002 | lemma sgn_0_0: | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 1003 | "sgn a = 0 \<longleftrightarrow> a = 0" | 
| 29700 | 1004 | unfolding sgn_if by simp | 
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 1005 | |
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 1006 | lemma sgn_1_pos: | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 1007 | "sgn a = 1 \<longleftrightarrow> a > 0" | 
| 35216 | 1008 | unfolding sgn_if by simp | 
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 1009 | |
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 1010 | lemma sgn_1_neg: | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 1011 | "sgn a = - 1 \<longleftrightarrow> a < 0" | 
| 35216 | 1012 | unfolding sgn_if by auto | 
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 1013 | |
| 29940 | 1014 | lemma sgn_pos [simp]: | 
| 1015 | "0 < a \<Longrightarrow> sgn a = 1" | |
| 1016 | unfolding sgn_1_pos . | |
| 1017 | ||
| 1018 | lemma sgn_neg [simp]: | |
| 1019 | "a < 0 \<Longrightarrow> sgn a = - 1" | |
| 1020 | unfolding sgn_1_neg . | |
| 1021 | ||
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 1022 | lemma sgn_times: | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 1023 | "sgn (a * b) = sgn a * sgn b" | 
| 29667 | 1024 | by (auto simp add: sgn_if zero_less_mult_iff) | 
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 1025 | |
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 1026 | lemma abs_sgn: "\<bar>k\<bar> = k * sgn k" | 
| 29700 | 1027 | unfolding sgn_if abs_if by auto | 
| 1028 | ||
| 29940 | 1029 | lemma sgn_greater [simp]: | 
| 1030 | "0 < sgn a \<longleftrightarrow> 0 < a" | |
| 1031 | unfolding sgn_if by auto | |
| 1032 | ||
| 1033 | lemma sgn_less [simp]: | |
| 1034 | "sgn a < 0 \<longleftrightarrow> a < 0" | |
| 1035 | unfolding sgn_if by auto | |
| 1036 | ||
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 1037 | lemma abs_dvd_iff [simp]: "\<bar>m\<bar> dvd k \<longleftrightarrow> m dvd k" | 
| 29949 | 1038 | by (simp add: abs_if) | 
| 1039 | ||
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 1040 | lemma dvd_abs_iff [simp]: "m dvd \<bar>k\<bar> \<longleftrightarrow> m dvd k" | 
| 29949 | 1041 | by (simp add: abs_if) | 
| 29653 | 1042 | |
| 33676 
802f5e233e48
moved lemma from Algebra/IntRing to Ring_and_Field
 nipkow parents: 
33364diff
changeset | 1043 | lemma dvd_if_abs_eq: | 
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 1044 | "\<bar>l\<bar> = \<bar>k\<bar> \<Longrightarrow> l dvd k" | 
| 33676 
802f5e233e48
moved lemma from Algebra/IntRing to Ring_and_Field
 nipkow parents: 
33364diff
changeset | 1045 | by(subst abs_dvd_iff[symmetric]) simp | 
| 
802f5e233e48
moved lemma from Algebra/IntRing to Ring_and_Field
 nipkow parents: 
33364diff
changeset | 1046 | |
| 25917 | 1047 | end | 
| 25230 | 1048 | |
| 26274 | 1049 | text {* Simprules for comparisons where common factors can be cancelled. *}
 | 
| 15234 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 1050 | |
| 35828 
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
 blanchet parents: 
35631diff
changeset | 1051 | lemmas mult_compare_simps[no_atp] = | 
| 15234 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 1052 | mult_le_cancel_right mult_le_cancel_left | 
| 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 1053 | mult_le_cancel_right1 mult_le_cancel_right2 | 
| 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 1054 | mult_le_cancel_left1 mult_le_cancel_left2 | 
| 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 1055 | mult_less_cancel_right mult_less_cancel_left | 
| 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 1056 | mult_less_cancel_right1 mult_less_cancel_right2 | 
| 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 1057 | mult_less_cancel_left1 mult_less_cancel_left2 | 
| 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 1058 | mult_cancel_right mult_cancel_left | 
| 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 1059 | mult_cancel_right1 mult_cancel_right2 | 
| 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 1060 | mult_cancel_left1 mult_cancel_left2 | 
| 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 1061 | |
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 1062 | text {* Reasoning about inequalities with division *}
 | 
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1063 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 1064 | context linordered_semidom | 
| 25193 | 1065 | begin | 
| 1066 | ||
| 1067 | lemma less_add_one: "a < a + 1" | |
| 14293 | 1068 | proof - | 
| 25193 | 1069 | have "a + 0 < a + 1" | 
| 23482 | 1070 | by (blast intro: zero_less_one add_strict_left_mono) | 
| 14293 | 1071 | thus ?thesis by simp | 
| 1072 | qed | |
| 1073 | ||
| 25193 | 1074 | lemma zero_less_two: "0 < 1 + 1" | 
| 29667 | 1075 | by (blast intro: less_trans zero_less_one less_add_one) | 
| 25193 | 1076 | |
| 1077 | end | |
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14353diff
changeset | 1078 | |
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 1079 | context linordered_idom | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 1080 | begin | 
| 15234 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 1081 | |
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 1082 | lemma mult_right_le_one_le: | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 1083 | "0 \<le> x \<Longrightarrow> 0 \<le> y \<Longrightarrow> y \<le> 1 \<Longrightarrow> x * y \<le> x" | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 1084 | by (auto simp add: mult_le_cancel_left2) | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 1085 | |
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 1086 | lemma mult_left_le_one_le: | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 1087 | "0 \<le> x \<Longrightarrow> 0 \<le> y \<Longrightarrow> y \<le> 1 \<Longrightarrow> y * x \<le> x" | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 1088 | by (auto simp add: mult_le_cancel_right2) | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 1089 | |
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 1090 | end | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 1091 | |
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 1092 | text {* Absolute Value *}
 | 
| 14293 | 1093 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 1094 | context linordered_idom | 
| 25304 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 1095 | begin | 
| 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 1096 | |
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 1097 | lemma mult_sgn_abs: | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 1098 | "sgn x * \<bar>x\<bar> = x" | 
| 25304 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 1099 | unfolding abs_if sgn_if by auto | 
| 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 1100 | |
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 1101 | lemma abs_one [simp]: | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 1102 | "\<bar>1\<bar> = 1" | 
| 44921 | 1103 | by (simp add: abs_if) | 
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 1104 | |
| 25304 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 1105 | end | 
| 24491 | 1106 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 1107 | class ordered_ring_abs = ordered_ring + ordered_ab_group_add_abs + | 
| 25304 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 1108 | assumes abs_eq_mult: | 
| 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 1109 | "(0 \<le> a \<or> a \<le> 0) \<and> (0 \<le> b \<or> b \<le> 0) \<Longrightarrow> \<bar>a * b\<bar> = \<bar>a\<bar> * \<bar>b\<bar>" | 
| 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 1110 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 1111 | context linordered_idom | 
| 30961 | 1112 | begin | 
| 1113 | ||
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 1114 | subclass ordered_ring_abs proof | 
| 35216 | 1115 | qed (auto simp add: abs_if not_less mult_less_0_iff) | 
| 30961 | 1116 | |
| 1117 | lemma abs_mult: | |
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 1118 | "\<bar>a * b\<bar> = \<bar>a\<bar> * \<bar>b\<bar>" | 
| 30961 | 1119 | by (rule abs_eq_mult) auto | 
| 1120 | ||
| 1121 | lemma abs_mult_self: | |
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 1122 | "\<bar>a\<bar> * \<bar>a\<bar> = a * a" | 
| 30961 | 1123 | by (simp add: abs_if) | 
| 1124 | ||
| 14294 
f4d806fd72ce
absolute value theorems moved to HOL/Ring_and_Field
 paulson parents: 
14293diff
changeset | 1125 | lemma abs_mult_less: | 
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 1126 | "\<bar>a\<bar> < c \<Longrightarrow> \<bar>b\<bar> < d \<Longrightarrow> \<bar>a\<bar> * \<bar>b\<bar> < c * d" | 
| 14294 
f4d806fd72ce
absolute value theorems moved to HOL/Ring_and_Field
 paulson parents: 
14293diff
changeset | 1127 | proof - | 
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 1128 | assume ac: "\<bar>a\<bar> < c" | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 1129 | hence cpos: "0<c" by (blast intro: le_less_trans abs_ge_zero) | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 1130 | assume "\<bar>b\<bar> < d" | 
| 14294 
f4d806fd72ce
absolute value theorems moved to HOL/Ring_and_Field
 paulson parents: 
14293diff
changeset | 1131 | thus ?thesis by (simp add: ac cpos mult_strict_mono) | 
| 
f4d806fd72ce
absolute value theorems moved to HOL/Ring_and_Field
 paulson parents: 
14293diff
changeset | 1132 | qed | 
| 14293 | 1133 | |
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 1134 | lemma less_minus_self_iff: | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 1135 | "a < - a \<longleftrightarrow> a < 0" | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 1136 | by (simp only: less_le less_eq_neg_nonpos equal_neg_zero) | 
| 14738 | 1137 | |
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 1138 | lemma abs_less_iff: | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 1139 | "\<bar>a\<bar> < b \<longleftrightarrow> a < b \<and> - a < b" | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 1140 | by (simp add: less_le abs_le_iff) (auto simp add: abs_if) | 
| 14738 | 1141 | |
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 1142 | lemma abs_mult_pos: | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 1143 | "0 \<le> x \<Longrightarrow> \<bar>y\<bar> * x = \<bar>y * x\<bar>" | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 1144 | by (simp add: abs_mult) | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 1145 | |
| 51520 
e9b361845809
move real_isLub_unique to isLub_unique in Lubs; real_sum_of_halves to RealDef; abs_diff_less_iff to Rings
 hoelzl parents: 
50420diff
changeset | 1146 | lemma abs_diff_less_iff: | 
| 
e9b361845809
move real_isLub_unique to isLub_unique in Lubs; real_sum_of_halves to RealDef; abs_diff_less_iff to Rings
 hoelzl parents: 
50420diff
changeset | 1147 | "\<bar>x - a\<bar> < r \<longleftrightarrow> a - r < x \<and> x < a + r" | 
| 
e9b361845809
move real_isLub_unique to isLub_unique in Lubs; real_sum_of_halves to RealDef; abs_diff_less_iff to Rings
 hoelzl parents: 
50420diff
changeset | 1148 | by (auto simp add: diff_less_eq ac_simps abs_less_iff) | 
| 
e9b361845809
move real_isLub_unique to isLub_unique in Lubs; real_sum_of_halves to RealDef; abs_diff_less_iff to Rings
 hoelzl parents: 
50420diff
changeset | 1149 | |
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 1150 | end | 
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1151 | |
| 52435 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 haftmann parents: 
51520diff
changeset | 1152 | code_identifier | 
| 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 haftmann parents: 
51520diff
changeset | 1153 | code_module Rings \<rightharpoonup> (SML) Arith and (OCaml) Arith and (Haskell) Arith | 
| 33364 | 1154 | |
| 14265 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 1155 | end | 
| 52435 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 haftmann parents: 
51520diff
changeset | 1156 |