doc-src/TutorialI/Inductive/document/Star.tex
author boehmes
Wed, 12 May 2010 23:54:00 +0200
changeset 36896 c030819254d3
parent 27190 431f695fc865
child 40406 313a24b66a8d
permissions -rw-r--r--
use proper context operations (for fresh names of type and term variables, and for hypothetical definitions), monomorphize theorems (instead of terms, necessary for hypothetical definitions made during lambda lifting)
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
10225
b9fd52525b69 *** empty log message ***
nipkow
parents:
diff changeset
     1
%
b9fd52525b69 *** empty log message ***
nipkow
parents:
diff changeset
     2
\begin{isabellebody}%
b9fd52525b69 *** empty log message ***
nipkow
parents:
diff changeset
     3
\def\isabellecontext{Star}%
17056
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
     4
%
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
     5
\isadelimtheory
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
     6
%
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
     7
\endisadelimtheory
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
     8
%
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
     9
\isatagtheory
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
    10
%
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
    11
\endisatagtheory
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
    12
{\isafoldtheory}%
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
    13
%
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
    14
\isadelimtheory
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
    15
%
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
    16
\endisadelimtheory
10225
b9fd52525b69 *** empty log message ***
nipkow
parents:
diff changeset
    17
%
10878
b254d5ad6dd4 auto update
paulson
parents: 10696
diff changeset
    18
\isamarkupsection{The Reflexive Transitive Closure%
10395
7ef380745743 updated;
wenzelm
parents: 10363
diff changeset
    19
}
11866
fbd097aec213 updated;
wenzelm
parents: 11494
diff changeset
    20
\isamarkuptrue%
10225
b9fd52525b69 *** empty log message ***
nipkow
parents:
diff changeset
    21
%
b9fd52525b69 *** empty log message ***
nipkow
parents:
diff changeset
    22
\begin{isamarkuptext}%
10242
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
    23
\label{sec:rtc}
11494
23a118849801 revisions and indexing
paulson
parents: 11308
diff changeset
    24
\index{reflexive transitive closure!defining inductively|(}%
10878
b254d5ad6dd4 auto update
paulson
parents: 10696
diff changeset
    25
An inductive definition may accept parameters, so it can express 
b254d5ad6dd4 auto update
paulson
parents: 10696
diff changeset
    26
functions that yield sets.
b254d5ad6dd4 auto update
paulson
parents: 10696
diff changeset
    27
Relations too can be defined inductively, since they are just sets of pairs.
b254d5ad6dd4 auto update
paulson
parents: 10696
diff changeset
    28
A perfect example is the function that maps a relation to its
b254d5ad6dd4 auto update
paulson
parents: 10696
diff changeset
    29
reflexive transitive closure.  This concept was already
11147
d848c6693185 *** empty log message ***
nipkow
parents: 10950
diff changeset
    30
introduced in \S\ref{sec:Relations}, where the operator \isa{\isactrlsup {\isacharasterisk}} was
10520
bb9dfcc87951 *** empty log message ***
nipkow
parents: 10396
diff changeset
    31
defined as a least fixed point because inductive definitions were not yet
bb9dfcc87951 *** empty log message ***
nipkow
parents: 10396
diff changeset
    32
available. But now they are:%
10225
b9fd52525b69 *** empty log message ***
nipkow
parents:
diff changeset
    33
\end{isamarkuptext}%
17175
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
    34
\isamarkuptrue%
23733
3f8ad7418e55 Adapted to new inductive definition package.
berghofe
parents: 17187
diff changeset
    35
\isacommand{inductive{\isacharunderscore}set}\isamarkupfalse%
3f8ad7418e55 Adapted to new inductive definition package.
berghofe
parents: 17187
diff changeset
    36
\isanewline
3f8ad7418e55 Adapted to new inductive definition package.
berghofe
parents: 17187
diff changeset
    37
\ \ rtc\ {\isacharcolon}{\isacharcolon}\ {\isachardoublequoteopen}{\isacharparenleft}{\isacharprime}a\ {\isasymtimes}\ {\isacharprime}a{\isacharparenright}set\ {\isasymRightarrow}\ {\isacharparenleft}{\isacharprime}a\ {\isasymtimes}\ {\isacharprime}a{\isacharparenright}set{\isachardoublequoteclose}\ \ \ {\isacharparenleft}{\isachardoublequoteopen}{\isacharunderscore}{\isacharasterisk}{\isachardoublequoteclose}\ {\isacharbrackleft}{\isadigit{1}}{\isadigit{0}}{\isadigit{0}}{\isadigit{0}}{\isacharbrackright}\ {\isadigit{9}}{\isadigit{9}}{\isadigit{9}}{\isacharparenright}\isanewline
3f8ad7418e55 Adapted to new inductive definition package.
berghofe
parents: 17187
diff changeset
    38
\ \ \isakeyword{for}\ r\ {\isacharcolon}{\isacharcolon}\ {\isachardoublequoteopen}{\isacharparenleft}{\isacharprime}a\ {\isasymtimes}\ {\isacharprime}a{\isacharparenright}set{\isachardoublequoteclose}\isanewline
3f8ad7418e55 Adapted to new inductive definition package.
berghofe
parents: 17187
diff changeset
    39
\isakeyword{where}\isanewline
3f8ad7418e55 Adapted to new inductive definition package.
berghofe
parents: 17187
diff changeset
    40
\ \ rtc{\isacharunderscore}refl{\isacharbrackleft}iff{\isacharbrackright}{\isacharcolon}\ \ {\isachardoublequoteopen}{\isacharparenleft}x{\isacharcomma}x{\isacharparenright}\ {\isasymin}\ r{\isacharasterisk}{\isachardoublequoteclose}\isanewline
3f8ad7418e55 Adapted to new inductive definition package.
berghofe
parents: 17187
diff changeset
    41
{\isacharbar}\ rtc{\isacharunderscore}step{\isacharcolon}\ \ \ \ \ \ \ {\isachardoublequoteopen}{\isasymlbrakk}\ {\isacharparenleft}x{\isacharcomma}y{\isacharparenright}\ {\isasymin}\ r{\isacharsemicolon}\ {\isacharparenleft}y{\isacharcomma}z{\isacharparenright}\ {\isasymin}\ r{\isacharasterisk}\ {\isasymrbrakk}\ {\isasymLongrightarrow}\ {\isacharparenleft}x{\isacharcomma}z{\isacharparenright}\ {\isasymin}\ r{\isacharasterisk}{\isachardoublequoteclose}%
10242
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
    42
\begin{isamarkuptext}%
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
    43
\noindent
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
    44
The function \isa{rtc} is annotated with concrete syntax: instead of
11494
23a118849801 revisions and indexing
paulson
parents: 11308
diff changeset
    45
\isa{rtc\ r} we can write \isa{r{\isacharasterisk}}. The actual definition
10520
bb9dfcc87951 *** empty log message ***
nipkow
parents: 10396
diff changeset
    46
consists of two rules. Reflexivity is obvious and is immediately given the
bb9dfcc87951 *** empty log message ***
nipkow
parents: 10396
diff changeset
    47
\isa{iff} attribute to increase automation. The
10363
6e8002c1790e *** empty log message ***
nipkow
parents: 10243
diff changeset
    48
second rule, \isa{rtc{\isacharunderscore}step}, says that we can always add one more
6e8002c1790e *** empty log message ***
nipkow
parents: 10243
diff changeset
    49
\isa{r}-step to the left. Although we could make \isa{rtc{\isacharunderscore}step} an
10520
bb9dfcc87951 *** empty log message ***
nipkow
parents: 10396
diff changeset
    50
introduction rule, this is dangerous: the recursion in the second premise
bb9dfcc87951 *** empty log message ***
nipkow
parents: 10396
diff changeset
    51
slows down and may even kill the automatic tactics.
10242
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
    52
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
    53
The above definition of the concept of reflexive transitive closure may
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
    54
be sufficiently intuitive but it is certainly not the only possible one:
10878
b254d5ad6dd4 auto update
paulson
parents: 10696
diff changeset
    55
for a start, it does not even mention transitivity.
10242
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
    56
The rest of this section is devoted to proving that it is equivalent to
10878
b254d5ad6dd4 auto update
paulson
parents: 10696
diff changeset
    57
the standard definition. We start with a simple lemma:%
10242
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
    58
\end{isamarkuptext}%
17175
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
    59
\isamarkuptrue%
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
    60
\isacommand{lemma}\isamarkupfalse%
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
    61
\ {\isacharbrackleft}intro{\isacharbrackright}{\isacharcolon}\ {\isachardoublequoteopen}{\isacharparenleft}x{\isacharcomma}y{\isacharparenright}\ {\isasymin}\ r\ {\isasymLongrightarrow}\ {\isacharparenleft}x{\isacharcomma}y{\isacharparenright}\ {\isasymin}\ r{\isacharasterisk}{\isachardoublequoteclose}\isanewline
17056
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
    62
%
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
    63
\isadelimproof
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
    64
%
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
    65
\endisadelimproof
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
    66
%
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
    67
\isatagproof
17175
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
    68
\isacommand{by}\isamarkupfalse%
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
    69
{\isacharparenleft}blast\ intro{\isacharcolon}\ rtc{\isacharunderscore}step{\isacharparenright}%
17056
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
    70
\endisatagproof
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
    71
{\isafoldproof}%
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
    72
%
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
    73
\isadelimproof
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
    74
%
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
    75
\endisadelimproof
11866
fbd097aec213 updated;
wenzelm
parents: 11494
diff changeset
    76
%
10242
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
    77
\begin{isamarkuptext}%
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
    78
\noindent
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
    79
Although the lemma itself is an unremarkable consequence of the basic rules,
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
    80
it has the advantage that it can be declared an introduction rule without the
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
    81
danger of killing the automatic tactics because \isa{r{\isacharasterisk}} occurs only in
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
    82
the conclusion and not in the premise. Thus some proofs that would otherwise
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
    83
need \isa{rtc{\isacharunderscore}step} can now be found automatically. The proof also
10878
b254d5ad6dd4 auto update
paulson
parents: 10696
diff changeset
    84
shows that \isa{blast} is able to handle \isa{rtc{\isacharunderscore}step}. But
10242
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
    85
some of the other automatic tactics are more sensitive, and even \isa{blast} can be lead astray in the presence of large numbers of rules.
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
    86
10520
bb9dfcc87951 *** empty log message ***
nipkow
parents: 10396
diff changeset
    87
To prove transitivity, we need rule induction, i.e.\ theorem
bb9dfcc87951 *** empty log message ***
nipkow
parents: 10396
diff changeset
    88
\isa{rtc{\isachardot}induct}:
bb9dfcc87951 *** empty log message ***
nipkow
parents: 10396
diff changeset
    89
\begin{isabelle}%
23733
3f8ad7418e55 Adapted to new inductive definition package.
berghofe
parents: 17187
diff changeset
    90
\ \ \ \ \ {\isasymlbrakk}{\isacharparenleft}{\isacharquery}x{\isadigit{1}}{\isachardot}{\isadigit{0}}{\isacharcomma}\ {\isacharquery}x{\isadigit{2}}{\isachardot}{\isadigit{0}}{\isacharparenright}\ {\isasymin}\ {\isacharquery}r{\isacharasterisk}{\isacharsemicolon}\ {\isasymAnd}x{\isachardot}\ {\isacharquery}P\ x\ x{\isacharsemicolon}\isanewline
14379
ea10a8c3e9cf updated links to the old ftp site
paulson
parents: 13778
diff changeset
    91
\isaindent{\ \ \ \ \ \ }{\isasymAnd}x\ y\ z{\isachardot}\ {\isasymlbrakk}{\isacharparenleft}x{\isacharcomma}\ y{\isacharparenright}\ {\isasymin}\ {\isacharquery}r{\isacharsemicolon}\ {\isacharparenleft}y{\isacharcomma}\ z{\isacharparenright}\ {\isasymin}\ {\isacharquery}r{\isacharasterisk}{\isacharsemicolon}\ {\isacharquery}P\ y\ z{\isasymrbrakk}\ {\isasymLongrightarrow}\ {\isacharquery}P\ x\ z{\isasymrbrakk}\isanewline
23733
3f8ad7418e55 Adapted to new inductive definition package.
berghofe
parents: 17187
diff changeset
    92
\isaindent{\ \ \ \ \ }{\isasymLongrightarrow}\ {\isacharquery}P\ {\isacharquery}x{\isadigit{1}}{\isachardot}{\isadigit{0}}\ {\isacharquery}x{\isadigit{2}}{\isachardot}{\isadigit{0}}%
10520
bb9dfcc87951 *** empty log message ***
nipkow
parents: 10396
diff changeset
    93
\end{isabelle}
23848
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
    94
It says that \isa{{\isacharquery}P} holds for an arbitrary pair \isa{{\isacharparenleft}{\isacharquery}x{\isadigit{1}}{\isachardot}{\isadigit{0}}{\isacharcomma}\ {\isacharquery}x{\isadigit{2}}{\isachardot}{\isadigit{0}}{\isacharparenright}\ {\isasymin}\ {\isacharquery}r{\isacharasterisk}}
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
    95
if \isa{{\isacharquery}P} is preserved by all rules of the inductive definition,
10520
bb9dfcc87951 *** empty log message ***
nipkow
parents: 10396
diff changeset
    96
i.e.\ if \isa{{\isacharquery}P} holds for the conclusion provided it holds for the
bb9dfcc87951 *** empty log message ***
nipkow
parents: 10396
diff changeset
    97
premises. In general, rule induction for an $n$-ary inductive relation $R$
bb9dfcc87951 *** empty log message ***
nipkow
parents: 10396
diff changeset
    98
expects a premise of the form $(x@1,\dots,x@n) \in R$.
bb9dfcc87951 *** empty log message ***
nipkow
parents: 10396
diff changeset
    99
bb9dfcc87951 *** empty log message ***
nipkow
parents: 10396
diff changeset
   100
Now we turn to the inductive proof of transitivity:%
10242
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
   101
\end{isamarkuptext}%
17175
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   102
\isamarkuptrue%
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   103
\isacommand{lemma}\isamarkupfalse%
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   104
\ rtc{\isacharunderscore}trans{\isacharcolon}\ {\isachardoublequoteopen}{\isasymlbrakk}\ {\isacharparenleft}x{\isacharcomma}y{\isacharparenright}\ {\isasymin}\ r{\isacharasterisk}{\isacharsemicolon}\ {\isacharparenleft}y{\isacharcomma}z{\isacharparenright}\ {\isasymin}\ r{\isacharasterisk}\ {\isasymrbrakk}\ {\isasymLongrightarrow}\ {\isacharparenleft}x{\isacharcomma}z{\isacharparenright}\ {\isasymin}\ r{\isacharasterisk}{\isachardoublequoteclose}\isanewline
17056
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
   105
%
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
   106
\isadelimproof
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
   107
%
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
   108
\endisadelimproof
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
   109
%
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
   110
\isatagproof
17175
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   111
\isacommand{apply}\isamarkupfalse%
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   112
{\isacharparenleft}erule\ rtc{\isachardot}induct{\isacharparenright}%
16069
3f2a9f400168 *** empty log message ***
nipkow
parents: 15614
diff changeset
   113
\begin{isamarkuptxt}%
3f2a9f400168 *** empty log message ***
nipkow
parents: 15614
diff changeset
   114
\noindent
3f2a9f400168 *** empty log message ***
nipkow
parents: 15614
diff changeset
   115
Unfortunately, even the base case is a problem:
3f2a9f400168 *** empty log message ***
nipkow
parents: 15614
diff changeset
   116
\begin{isabelle}%
3f2a9f400168 *** empty log message ***
nipkow
parents: 15614
diff changeset
   117
\ {\isadigit{1}}{\isachardot}\ {\isasymAnd}x{\isachardot}\ {\isacharparenleft}y{\isacharcomma}\ z{\isacharparenright}\ {\isasymin}\ r{\isacharasterisk}\ {\isasymLongrightarrow}\ {\isacharparenleft}x{\isacharcomma}\ z{\isacharparenright}\ {\isasymin}\ r{\isacharasterisk}%
3f2a9f400168 *** empty log message ***
nipkow
parents: 15614
diff changeset
   118
\end{isabelle}
3f2a9f400168 *** empty log message ***
nipkow
parents: 15614
diff changeset
   119
We have to abandon this proof attempt.
3f2a9f400168 *** empty log message ***
nipkow
parents: 15614
diff changeset
   120
To understand what is going on, let us look again at \isa{rtc{\isachardot}induct}.
3f2a9f400168 *** empty log message ***
nipkow
parents: 15614
diff changeset
   121
In the above application of \isa{erule}, the first premise of
3f2a9f400168 *** empty log message ***
nipkow
parents: 15614
diff changeset
   122
\isa{rtc{\isachardot}induct} is unified with the first suitable assumption, which
3f2a9f400168 *** empty log message ***
nipkow
parents: 15614
diff changeset
   123
is \isa{{\isacharparenleft}x{\isacharcomma}\ y{\isacharparenright}\ {\isasymin}\ r{\isacharasterisk}} rather than \isa{{\isacharparenleft}y{\isacharcomma}\ z{\isacharparenright}\ {\isasymin}\ r{\isacharasterisk}}. Although that
3f2a9f400168 *** empty log message ***
nipkow
parents: 15614
diff changeset
   124
is what we want, it is merely due to the order in which the assumptions occur
3f2a9f400168 *** empty log message ***
nipkow
parents: 15614
diff changeset
   125
in the subgoal, which it is not good practice to rely on. As a result,
3f2a9f400168 *** empty log message ***
nipkow
parents: 15614
diff changeset
   126
\isa{{\isacharquery}xb} becomes \isa{x}, \isa{{\isacharquery}xa} becomes
3f2a9f400168 *** empty log message ***
nipkow
parents: 15614
diff changeset
   127
\isa{y} and \isa{{\isacharquery}P} becomes \isa{{\isasymlambda}u\ v{\isachardot}\ {\isacharparenleft}u{\isacharcomma}\ z{\isacharparenright}\ {\isasymin}\ r{\isacharasterisk}}, thus
3f2a9f400168 *** empty log message ***
nipkow
parents: 15614
diff changeset
   128
yielding the above subgoal. So what went wrong?
3f2a9f400168 *** empty log message ***
nipkow
parents: 15614
diff changeset
   129
3f2a9f400168 *** empty log message ***
nipkow
parents: 15614
diff changeset
   130
When looking at the instantiation of \isa{{\isacharquery}P} we see that it does not
3f2a9f400168 *** empty log message ***
nipkow
parents: 15614
diff changeset
   131
depend on its second parameter at all. The reason is that in our original
3f2a9f400168 *** empty log message ***
nipkow
parents: 15614
diff changeset
   132
goal, of the pair \isa{{\isacharparenleft}x{\isacharcomma}\ y{\isacharparenright}} only \isa{x} appears also in the
3f2a9f400168 *** empty log message ***
nipkow
parents: 15614
diff changeset
   133
conclusion, but not \isa{y}. Thus our induction statement is too
27190
431f695fc865 updated generated file;
wenzelm
parents: 23848
diff changeset
   134
general. Fortunately, it can easily be specialized:
16069
3f2a9f400168 *** empty log message ***
nipkow
parents: 15614
diff changeset
   135
transfer the additional premise \isa{{\isacharparenleft}y{\isacharcomma}\ z{\isacharparenright}\ {\isasymin}\ r{\isacharasterisk}} into the conclusion:%
3f2a9f400168 *** empty log message ***
nipkow
parents: 15614
diff changeset
   136
\end{isamarkuptxt}%
17175
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   137
\isamarkuptrue%
17056
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
   138
%
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
   139
\endisatagproof
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
   140
{\isafoldproof}%
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
   141
%
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
   142
\isadelimproof
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
   143
%
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
   144
\endisadelimproof
17175
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   145
\isacommand{lemma}\isamarkupfalse%
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   146
\ rtc{\isacharunderscore}trans{\isacharbrackleft}rule{\isacharunderscore}format{\isacharbrackright}{\isacharcolon}\isanewline
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   147
\ \ {\isachardoublequoteopen}{\isacharparenleft}x{\isacharcomma}y{\isacharparenright}\ {\isasymin}\ r{\isacharasterisk}\ {\isasymLongrightarrow}\ {\isacharparenleft}y{\isacharcomma}z{\isacharparenright}\ {\isasymin}\ r{\isacharasterisk}\ {\isasymlongrightarrow}\ {\isacharparenleft}x{\isacharcomma}z{\isacharparenright}\ {\isasymin}\ r{\isacharasterisk}{\isachardoublequoteclose}%
17056
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
   148
\isadelimproof
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
   149
%
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
   150
\endisadelimproof
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
   151
%
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
   152
\isatagproof
16069
3f2a9f400168 *** empty log message ***
nipkow
parents: 15614
diff changeset
   153
%
3f2a9f400168 *** empty log message ***
nipkow
parents: 15614
diff changeset
   154
\begin{isamarkuptxt}%
3f2a9f400168 *** empty log message ***
nipkow
parents: 15614
diff changeset
   155
\noindent
3f2a9f400168 *** empty log message ***
nipkow
parents: 15614
diff changeset
   156
This is not an obscure trick but a generally applicable heuristic:
3f2a9f400168 *** empty log message ***
nipkow
parents: 15614
diff changeset
   157
\begin{quote}\em
3f2a9f400168 *** empty log message ***
nipkow
parents: 15614
diff changeset
   158
When proving a statement by rule induction on $(x@1,\dots,x@n) \in R$,
3f2a9f400168 *** empty log message ***
nipkow
parents: 15614
diff changeset
   159
pull all other premises containing any of the $x@i$ into the conclusion
3f2a9f400168 *** empty log message ***
nipkow
parents: 15614
diff changeset
   160
using $\longrightarrow$.
3f2a9f400168 *** empty log message ***
nipkow
parents: 15614
diff changeset
   161
\end{quote}
3f2a9f400168 *** empty log message ***
nipkow
parents: 15614
diff changeset
   162
A similar heuristic for other kinds of inductions is formulated in
3f2a9f400168 *** empty log message ***
nipkow
parents: 15614
diff changeset
   163
\S\ref{sec:ind-var-in-prems}. The \isa{rule{\isacharunderscore}format} directive turns
3f2a9f400168 *** empty log message ***
nipkow
parents: 15614
diff changeset
   164
\isa{{\isasymlongrightarrow}} back into \isa{{\isasymLongrightarrow}}: in the end we obtain the original
3f2a9f400168 *** empty log message ***
nipkow
parents: 15614
diff changeset
   165
statement of our lemma.%
3f2a9f400168 *** empty log message ***
nipkow
parents: 15614
diff changeset
   166
\end{isamarkuptxt}%
17175
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   167
\isamarkuptrue%
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   168
\isacommand{apply}\isamarkupfalse%
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   169
{\isacharparenleft}erule\ rtc{\isachardot}induct{\isacharparenright}%
16069
3f2a9f400168 *** empty log message ***
nipkow
parents: 15614
diff changeset
   170
\begin{isamarkuptxt}%
3f2a9f400168 *** empty log message ***
nipkow
parents: 15614
diff changeset
   171
\noindent
3f2a9f400168 *** empty log message ***
nipkow
parents: 15614
diff changeset
   172
Now induction produces two subgoals which are both proved automatically:
3f2a9f400168 *** empty log message ***
nipkow
parents: 15614
diff changeset
   173
\begin{isabelle}%
3f2a9f400168 *** empty log message ***
nipkow
parents: 15614
diff changeset
   174
\ {\isadigit{1}}{\isachardot}\ {\isasymAnd}x{\isachardot}\ {\isacharparenleft}x{\isacharcomma}\ z{\isacharparenright}\ {\isasymin}\ r{\isacharasterisk}\ {\isasymlongrightarrow}\ {\isacharparenleft}x{\isacharcomma}\ z{\isacharparenright}\ {\isasymin}\ r{\isacharasterisk}\isanewline
3f2a9f400168 *** empty log message ***
nipkow
parents: 15614
diff changeset
   175
\ {\isadigit{2}}{\isachardot}\ {\isasymAnd}x\ y\ za{\isachardot}\isanewline
3f2a9f400168 *** empty log message ***
nipkow
parents: 15614
diff changeset
   176
\isaindent{\ {\isadigit{2}}{\isachardot}\ \ \ \ }{\isasymlbrakk}{\isacharparenleft}x{\isacharcomma}\ y{\isacharparenright}\ {\isasymin}\ r{\isacharsemicolon}\ {\isacharparenleft}y{\isacharcomma}\ za{\isacharparenright}\ {\isasymin}\ r{\isacharasterisk}{\isacharsemicolon}\ {\isacharparenleft}za{\isacharcomma}\ z{\isacharparenright}\ {\isasymin}\ r{\isacharasterisk}\ {\isasymlongrightarrow}\ {\isacharparenleft}y{\isacharcomma}\ z{\isacharparenright}\ {\isasymin}\ r{\isacharasterisk}{\isasymrbrakk}\isanewline
3f2a9f400168 *** empty log message ***
nipkow
parents: 15614
diff changeset
   177
\isaindent{\ {\isadigit{2}}{\isachardot}\ \ \ \ }{\isasymLongrightarrow}\ {\isacharparenleft}za{\isacharcomma}\ z{\isacharparenright}\ {\isasymin}\ r{\isacharasterisk}\ {\isasymlongrightarrow}\ {\isacharparenleft}x{\isacharcomma}\ z{\isacharparenright}\ {\isasymin}\ r{\isacharasterisk}%
3f2a9f400168 *** empty log message ***
nipkow
parents: 15614
diff changeset
   178
\end{isabelle}%
3f2a9f400168 *** empty log message ***
nipkow
parents: 15614
diff changeset
   179
\end{isamarkuptxt}%
17175
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   180
\isamarkuptrue%
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   181
\ \isacommand{apply}\isamarkupfalse%
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   182
{\isacharparenleft}blast{\isacharparenright}\isanewline
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   183
\isacommand{apply}\isamarkupfalse%
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   184
{\isacharparenleft}blast\ intro{\isacharcolon}\ rtc{\isacharunderscore}step{\isacharparenright}\isanewline
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   185
\isacommand{done}\isamarkupfalse%
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   186
%
17056
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
   187
\endisatagproof
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
   188
{\isafoldproof}%
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
   189
%
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
   190
\isadelimproof
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
   191
%
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
   192
\endisadelimproof
11866
fbd097aec213 updated;
wenzelm
parents: 11494
diff changeset
   193
%
10242
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
   194
\begin{isamarkuptext}%
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
   195
Let us now prove that \isa{r{\isacharasterisk}} is really the reflexive transitive closure
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
   196
of \isa{r}, i.e.\ the least reflexive and transitive
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
   197
relation containing \isa{r}. The latter is easily formalized%
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
   198
\end{isamarkuptext}%
17175
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   199
\isamarkuptrue%
23733
3f8ad7418e55 Adapted to new inductive definition package.
berghofe
parents: 17187
diff changeset
   200
\isacommand{inductive{\isacharunderscore}set}\isamarkupfalse%
3f8ad7418e55 Adapted to new inductive definition package.
berghofe
parents: 17187
diff changeset
   201
\isanewline
3f8ad7418e55 Adapted to new inductive definition package.
berghofe
parents: 17187
diff changeset
   202
\ \ rtc{\isadigit{2}}\ {\isacharcolon}{\isacharcolon}\ {\isachardoublequoteopen}{\isacharparenleft}{\isacharprime}a\ {\isasymtimes}\ {\isacharprime}a{\isacharparenright}set\ {\isasymRightarrow}\ {\isacharparenleft}{\isacharprime}a\ {\isasymtimes}\ {\isacharprime}a{\isacharparenright}set{\isachardoublequoteclose}\isanewline
3f8ad7418e55 Adapted to new inductive definition package.
berghofe
parents: 17187
diff changeset
   203
\ \ \isakeyword{for}\ r\ {\isacharcolon}{\isacharcolon}\ {\isachardoublequoteopen}{\isacharparenleft}{\isacharprime}a\ {\isasymtimes}\ {\isacharprime}a{\isacharparenright}set{\isachardoublequoteclose}\isanewline
3f8ad7418e55 Adapted to new inductive definition package.
berghofe
parents: 17187
diff changeset
   204
\isakeyword{where}\isanewline
3f8ad7418e55 Adapted to new inductive definition package.
berghofe
parents: 17187
diff changeset
   205
\ \ {\isachardoublequoteopen}{\isacharparenleft}x{\isacharcomma}y{\isacharparenright}\ {\isasymin}\ r\ {\isasymLongrightarrow}\ {\isacharparenleft}x{\isacharcomma}y{\isacharparenright}\ {\isasymin}\ rtc{\isadigit{2}}\ r{\isachardoublequoteclose}\isanewline
3f8ad7418e55 Adapted to new inductive definition package.
berghofe
parents: 17187
diff changeset
   206
{\isacharbar}\ {\isachardoublequoteopen}{\isacharparenleft}x{\isacharcomma}x{\isacharparenright}\ {\isasymin}\ rtc{\isadigit{2}}\ r{\isachardoublequoteclose}\isanewline
3f8ad7418e55 Adapted to new inductive definition package.
berghofe
parents: 17187
diff changeset
   207
{\isacharbar}\ {\isachardoublequoteopen}{\isasymlbrakk}\ {\isacharparenleft}x{\isacharcomma}y{\isacharparenright}\ {\isasymin}\ rtc{\isadigit{2}}\ r{\isacharsemicolon}\ {\isacharparenleft}y{\isacharcomma}z{\isacharparenright}\ {\isasymin}\ rtc{\isadigit{2}}\ r\ {\isasymrbrakk}\ {\isasymLongrightarrow}\ {\isacharparenleft}x{\isacharcomma}z{\isacharparenright}\ {\isasymin}\ rtc{\isadigit{2}}\ r{\isachardoublequoteclose}%
10237
875bf54b5d74 *** empty log message ***
nipkow
parents: 10225
diff changeset
   208
\begin{isamarkuptext}%
10242
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
   209
\noindent
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
   210
and the equivalence of the two definitions is easily shown by the obvious rule
10237
875bf54b5d74 *** empty log message ***
nipkow
parents: 10225
diff changeset
   211
inductions:%
875bf54b5d74 *** empty log message ***
nipkow
parents: 10225
diff changeset
   212
\end{isamarkuptext}%
17175
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   213
\isamarkuptrue%
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   214
\isacommand{lemma}\isamarkupfalse%
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   215
\ {\isachardoublequoteopen}{\isacharparenleft}x{\isacharcomma}y{\isacharparenright}\ {\isasymin}\ rtc{\isadigit{2}}\ r\ {\isasymLongrightarrow}\ {\isacharparenleft}x{\isacharcomma}y{\isacharparenright}\ {\isasymin}\ r{\isacharasterisk}{\isachardoublequoteclose}\isanewline
17056
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
   216
%
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
   217
\isadelimproof
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
   218
%
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
   219
\endisadelimproof
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
   220
%
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
   221
\isatagproof
17175
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   222
\isacommand{apply}\isamarkupfalse%
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   223
{\isacharparenleft}erule\ rtc{\isadigit{2}}{\isachardot}induct{\isacharparenright}\isanewline
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   224
\ \ \isacommand{apply}\isamarkupfalse%
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   225
{\isacharparenleft}blast{\isacharparenright}\isanewline
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   226
\ \isacommand{apply}\isamarkupfalse%
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   227
{\isacharparenleft}blast{\isacharparenright}\isanewline
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   228
\isacommand{apply}\isamarkupfalse%
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   229
{\isacharparenleft}blast\ intro{\isacharcolon}\ rtc{\isacharunderscore}trans{\isacharparenright}\isanewline
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   230
\isacommand{done}\isamarkupfalse%
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   231
%
17056
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
   232
\endisatagproof
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
   233
{\isafoldproof}%
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
   234
%
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
   235
\isadelimproof
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
   236
\isanewline
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
   237
%
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
   238
\endisadelimproof
15481
fc075ae929e4 the new subst tactic, by Lucas Dixon
paulson
parents: 14379
diff changeset
   239
\isanewline
17175
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   240
\isacommand{lemma}\isamarkupfalse%
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   241
\ {\isachardoublequoteopen}{\isacharparenleft}x{\isacharcomma}y{\isacharparenright}\ {\isasymin}\ r{\isacharasterisk}\ {\isasymLongrightarrow}\ {\isacharparenleft}x{\isacharcomma}y{\isacharparenright}\ {\isasymin}\ rtc{\isadigit{2}}\ r{\isachardoublequoteclose}\isanewline
17056
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
   242
%
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
   243
\isadelimproof
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
   244
%
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
   245
\endisadelimproof
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
   246
%
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
   247
\isatagproof
17175
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   248
\isacommand{apply}\isamarkupfalse%
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   249
{\isacharparenleft}erule\ rtc{\isachardot}induct{\isacharparenright}\isanewline
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   250
\ \isacommand{apply}\isamarkupfalse%
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   251
{\isacharparenleft}blast\ intro{\isacharcolon}\ rtc{\isadigit{2}}{\isachardot}intros{\isacharparenright}\isanewline
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   252
\isacommand{apply}\isamarkupfalse%
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   253
{\isacharparenleft}blast\ intro{\isacharcolon}\ rtc{\isadigit{2}}{\isachardot}intros{\isacharparenright}\isanewline
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   254
\isacommand{done}\isamarkupfalse%
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   255
%
17056
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
   256
\endisatagproof
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
   257
{\isafoldproof}%
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
   258
%
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
   259
\isadelimproof
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
   260
%
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
   261
\endisadelimproof
11866
fbd097aec213 updated;
wenzelm
parents: 11494
diff changeset
   262
%
10242
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
   263
\begin{isamarkuptext}%
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
   264
So why did we start with the first definition? Because it is simpler. It
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
   265
contains only two rules, and the single step rule is simpler than
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
   266
transitivity.  As a consequence, \isa{rtc{\isachardot}induct} is simpler than
10878
b254d5ad6dd4 auto update
paulson
parents: 10696
diff changeset
   267
\isa{rtc{\isadigit{2}}{\isachardot}induct}. Since inductive proofs are hard enough
11147
d848c6693185 *** empty log message ***
nipkow
parents: 10950
diff changeset
   268
anyway, we should always pick the simplest induction schema available.
10242
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
   269
Hence \isa{rtc} is the definition of choice.
11494
23a118849801 revisions and indexing
paulson
parents: 11308
diff changeset
   270
\index{reflexive transitive closure!defining inductively|)}
10242
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
   271
10520
bb9dfcc87951 *** empty log message ***
nipkow
parents: 10396
diff changeset
   272
\begin{exercise}\label{ex:converse-rtc-step}
10242
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
   273
Show that the converse of \isa{rtc{\isacharunderscore}step} also holds:
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
   274
\begin{isabelle}%
10696
76d7f6c9a14c *** empty log message ***
nipkow
parents: 10668
diff changeset
   275
\ \ \ \ \ {\isasymlbrakk}{\isacharparenleft}x{\isacharcomma}\ y{\isacharparenright}\ {\isasymin}\ r{\isacharasterisk}{\isacharsemicolon}\ {\isacharparenleft}y{\isacharcomma}\ z{\isacharparenright}\ {\isasymin}\ r{\isasymrbrakk}\ {\isasymLongrightarrow}\ {\isacharparenleft}x{\isacharcomma}\ z{\isacharparenright}\ {\isasymin}\ r{\isacharasterisk}%
10242
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
   276
\end{isabelle}
10520
bb9dfcc87951 *** empty log message ***
nipkow
parents: 10396
diff changeset
   277
\end{exercise}
bb9dfcc87951 *** empty log message ***
nipkow
parents: 10396
diff changeset
   278
\begin{exercise}
bb9dfcc87951 *** empty log message ***
nipkow
parents: 10396
diff changeset
   279
Repeat the development of this section, but starting with a definition of
bb9dfcc87951 *** empty log message ***
nipkow
parents: 10396
diff changeset
   280
\isa{rtc} where \isa{rtc{\isacharunderscore}step} is replaced by its converse as shown
bb9dfcc87951 *** empty log message ***
nipkow
parents: 10396
diff changeset
   281
in exercise~\ref{ex:converse-rtc-step}.
10242
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
   282
\end{exercise}%
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
   283
\end{isamarkuptext}%
17175
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   284
\isamarkuptrue%
17056
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
   285
%
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
   286
\isadelimproof
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
   287
%
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
   288
\endisadelimproof
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
   289
%
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
   290
\isatagproof
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
   291
%
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
   292
\endisatagproof
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
   293
{\isafoldproof}%
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
   294
%
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
   295
\isadelimproof
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
   296
%
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
   297
\endisadelimproof
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
   298
%
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
   299
\isadelimtheory
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
   300
%
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
   301
\endisadelimtheory
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
   302
%
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
   303
\isatagtheory
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
   304
%
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
   305
\endisatagtheory
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
   306
{\isafoldtheory}%
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
   307
%
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
   308
\isadelimtheory
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
   309
%
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
   310
\endisadelimtheory
10225
b9fd52525b69 *** empty log message ***
nipkow
parents:
diff changeset
   311
\end{isabellebody}%
b9fd52525b69 *** empty log message ***
nipkow
parents:
diff changeset
   312
%%% Local Variables:
b9fd52525b69 *** empty log message ***
nipkow
parents:
diff changeset
   313
%%% mode: latex
b9fd52525b69 *** empty log message ***
nipkow
parents:
diff changeset
   314
%%% TeX-master: "root"
b9fd52525b69 *** empty log message ***
nipkow
parents:
diff changeset
   315
%%% End: