| author | wenzelm | 
| Sun, 22 Apr 2012 19:44:40 +0200 | |
| changeset 47678 | c04b223d661e | 
| parent 47244 | a7f85074c169 | 
| child 50326 | b5afeccab2db | 
| permissions | -rw-r--r-- | 
| 41959 | 1  | 
(* Title: HOL/Ln.thy  | 
| 16959 | 2  | 
Author: Jeremy Avigad  | 
3  | 
*)  | 
|
4  | 
||
5  | 
header {* Properties of ln *}
 | 
|
6  | 
||
7  | 
theory Ln  | 
|
8  | 
imports Transcendental  | 
|
9  | 
begin  | 
|
10  | 
||
11  | 
lemma exp_first_two_terms: "exp x = 1 + x + suminf (%n.  | 
|
| 
40864
 
4abaaadfdaf2
moved activation of coercion inference into RealDef and declared function real a coercion.
 
nipkow 
parents: 
36777 
diff
changeset
 | 
12  | 
inverse(fact (n+2)) * (x ^ (n+2)))"  | 
| 16959 | 13  | 
proof -  | 
| 
40864
 
4abaaadfdaf2
moved activation of coercion inference into RealDef and declared function real a coercion.
 
nipkow 
parents: 
36777 
diff
changeset
 | 
14  | 
have "exp x = suminf (%n. inverse(fact n) * (x ^ n))"  | 
| 19765 | 15  | 
by (simp add: exp_def)  | 
| 
40864
 
4abaaadfdaf2
moved activation of coercion inference into RealDef and declared function real a coercion.
 
nipkow 
parents: 
36777 
diff
changeset
 | 
16  | 
  also from summable_exp have "... = (SUM n::nat : {0..<2}. 
 | 
| 
 
4abaaadfdaf2
moved activation of coercion inference into RealDef and declared function real a coercion.
 
nipkow 
parents: 
36777 
diff
changeset
 | 
17  | 
inverse(fact n) * (x ^ n)) + suminf (%n.  | 
| 
 
4abaaadfdaf2
moved activation of coercion inference into RealDef and declared function real a coercion.
 
nipkow 
parents: 
36777 
diff
changeset
 | 
18  | 
inverse(fact(n+2)) * (x ^ (n+2)))" (is "_ = ?a + _")  | 
| 16959 | 19  | 
by (rule suminf_split_initial_segment)  | 
20  | 
also have "?a = 1 + x"  | 
|
| 44289 | 21  | 
by (simp add: numeral_2_eq_2)  | 
| 16959 | 22  | 
finally show ?thesis .  | 
23  | 
qed  | 
|
24  | 
||
| 23114 | 25  | 
lemma exp_bound: "0 <= (x::real) ==> x <= 1 ==> exp x <= 1 + x + x^2"  | 
| 16959 | 26  | 
proof -  | 
27  | 
assume a: "0 <= x"  | 
|
28  | 
assume b: "x <= 1"  | 
|
| 47244 | 29  | 
  { fix n :: nat
 | 
30  | 
have "2 * 2 ^ n \<le> fact (n + 2)"  | 
|
31  | 
by (induct n, simp, simp)  | 
|
32  | 
hence "real ((2::nat) * 2 ^ n) \<le> real (fact (n + 2))"  | 
|
33  | 
by (simp only: real_of_nat_le_iff)  | 
|
34  | 
hence "2 * 2 ^ n \<le> real (fact (n + 2))"  | 
|
35  | 
by simp  | 
|
36  | 
hence "inverse (fact (n + 2)) \<le> inverse (2 * 2 ^ n)"  | 
|
37  | 
by (rule le_imp_inverse_le) simp  | 
|
38  | 
hence "inverse (fact (n + 2)) \<le> 1/2 * (1/2)^n"  | 
|
39  | 
by (simp add: inverse_mult_distrib power_inverse)  | 
|
40  | 
hence "inverse (fact (n + 2)) * (x^n * x\<twosuperior>) \<le> 1/2 * (1/2)^n * (1 * x\<twosuperior>)"  | 
|
41  | 
by (rule mult_mono)  | 
|
42  | 
(rule mult_mono, simp_all add: power_le_one a b mult_nonneg_nonneg)  | 
|
43  | 
hence "inverse (fact (n + 2)) * x ^ (n + 2) \<le> (x\<twosuperior>/2) * ((1/2)^n)"  | 
|
44  | 
unfolding power_add by (simp add: mult_ac del: fact_Suc) }  | 
|
45  | 
note aux1 = this  | 
|
46  | 
have "(\<lambda>n. x\<twosuperior> / 2 * (1 / 2) ^ n) sums (x\<twosuperior> / 2 * (1 / (1 - 1 / 2)))"  | 
|
47  | 
by (intro sums_mult geometric_sums, simp)  | 
|
48  | 
hence aux2: "(\<lambda>n. (x::real) ^ 2 / 2 * (1 / 2) ^ n) sums x^2"  | 
|
49  | 
by simp  | 
|
50  | 
have "suminf (%n. inverse(fact (n+2)) * (x ^ (n+2))) <= x^2"  | 
|
| 16959 | 51  | 
proof -  | 
| 
40864
 
4abaaadfdaf2
moved activation of coercion inference into RealDef and declared function real a coercion.
 
nipkow 
parents: 
36777 
diff
changeset
 | 
52  | 
have "suminf (%n. inverse(fact (n+2)) * (x ^ (n+2))) <=  | 
| 16959 | 53  | 
suminf (%n. (x^2/2) * ((1/2)^n))"  | 
54  | 
apply (rule summable_le)  | 
|
| 47244 | 55  | 
apply (rule allI, rule aux1)  | 
56  | 
apply (rule summable_exp [THEN summable_ignore_initial_segment])  | 
|
57  | 
by (rule sums_summable, rule aux2)  | 
|
| 16959 | 58  | 
also have "... = x^2"  | 
59  | 
by (rule sums_unique [THEN sym], rule aux2)  | 
|
60  | 
finally show ?thesis .  | 
|
61  | 
qed  | 
|
| 47244 | 62  | 
thus ?thesis unfolding exp_first_two_terms by auto  | 
| 16959 | 63  | 
qed  | 
64  | 
||
| 47244 | 65  | 
lemma ln_one_plus_pos_lower_bound: "0 <= x ==> x <= 1 ==>  | 
66  | 
x - x^2 <= ln (1 + x)"  | 
|
| 16959 | 67  | 
proof -  | 
68  | 
assume a: "0 <= x" and b: "x <= 1"  | 
|
69  | 
have "exp (x - x^2) = exp x / exp (x^2)"  | 
|
70  | 
by (rule exp_diff)  | 
|
71  | 
also have "... <= (1 + x + x^2) / exp (x ^2)"  | 
|
72  | 
apply (rule divide_right_mono)  | 
|
73  | 
apply (rule exp_bound)  | 
|
74  | 
apply (rule a, rule b)  | 
|
75  | 
apply simp  | 
|
76  | 
done  | 
|
77  | 
also have "... <= (1 + x + x^2) / (1 + x^2)"  | 
|
78  | 
apply (rule divide_left_mono)  | 
|
| 47244 | 79  | 
apply (simp add: exp_ge_add_one_self_aux)  | 
80  | 
apply (simp add: a)  | 
|
81  | 
apply (simp add: mult_pos_pos add_pos_nonneg)  | 
|
| 16959 | 82  | 
done  | 
83  | 
also from a have "... <= 1 + x"  | 
|
| 44289 | 84  | 
by (simp add: field_simps add_strict_increasing zero_le_mult_iff)  | 
| 47244 | 85  | 
finally have "exp (x - x^2) <= 1 + x" .  | 
| 16959 | 86  | 
also have "... = exp (ln (1 + x))"  | 
87  | 
proof -  | 
|
88  | 
from a have "0 < 1 + x" by auto  | 
|
89  | 
thus ?thesis  | 
|
90  | 
by (auto simp only: exp_ln_iff [THEN sym])  | 
|
91  | 
qed  | 
|
92  | 
finally have "exp (x - x ^ 2) <= exp (ln (1 + x))" .  | 
|
93  | 
thus ?thesis by (auto simp only: exp_le_cancel_iff)  | 
|
94  | 
qed  | 
|
95  | 
||
96  | 
lemma ln_one_minus_pos_upper_bound: "0 <= x ==> x < 1 ==> ln (1 - x) <= - x"  | 
|
97  | 
proof -  | 
|
98  | 
assume a: "0 <= (x::real)" and b: "x < 1"  | 
|
99  | 
have "(1 - x) * (1 + x + x^2) = (1 - x^3)"  | 
|
| 29667 | 100  | 
by (simp add: algebra_simps power2_eq_square power3_eq_cube)  | 
| 16959 | 101  | 
also have "... <= 1"  | 
| 25875 | 102  | 
by (auto simp add: a)  | 
| 16959 | 103  | 
finally have "(1 - x) * (1 + x + x ^ 2) <= 1" .  | 
| 47244 | 104  | 
moreover have c: "0 < 1 + x + x\<twosuperior>"  | 
105  | 
by (simp add: add_pos_nonneg a)  | 
|
| 16959 | 106  | 
ultimately have "1 - x <= 1 / (1 + x + x^2)"  | 
107  | 
by (elim mult_imp_le_div_pos)  | 
|
108  | 
also have "... <= 1 / exp x"  | 
|
109  | 
apply (rule divide_left_mono)  | 
|
110  | 
apply (rule exp_bound, rule a)  | 
|
| 47244 | 111  | 
apply (rule b [THEN less_imp_le])  | 
112  | 
apply simp  | 
|
| 16959 | 113  | 
apply (rule mult_pos_pos)  | 
| 47244 | 114  | 
apply (rule c)  | 
115  | 
apply simp  | 
|
| 16959 | 116  | 
done  | 
117  | 
also have "... = exp (-x)"  | 
|
| 
36777
 
be5461582d0f
avoid using real-specific versions of generic lemmas
 
huffman 
parents: 
33667 
diff
changeset
 | 
118  | 
by (auto simp add: exp_minus divide_inverse)  | 
| 16959 | 119  | 
finally have "1 - x <= exp (- x)" .  | 
120  | 
also have "1 - x = exp (ln (1 - x))"  | 
|
121  | 
proof -  | 
|
122  | 
have "0 < 1 - x"  | 
|
123  | 
by (insert b, auto)  | 
|
124  | 
thus ?thesis  | 
|
125  | 
by (auto simp only: exp_ln_iff [THEN sym])  | 
|
126  | 
qed  | 
|
127  | 
finally have "exp (ln (1 - x)) <= exp (- x)" .  | 
|
128  | 
thus ?thesis by (auto simp only: exp_le_cancel_iff)  | 
|
129  | 
qed  | 
|
130  | 
||
131  | 
lemma aux5: "x < 1 ==> ln(1 - x) = - ln(1 + x / (1 - x))"  | 
|
132  | 
proof -  | 
|
133  | 
assume a: "x < 1"  | 
|
134  | 
have "ln(1 - x) = - ln(1 / (1 - x))"  | 
|
135  | 
proof -  | 
|
136  | 
have "ln(1 - x) = - (- ln (1 - x))"  | 
|
137  | 
by auto  | 
|
138  | 
also have "- ln(1 - x) = ln 1 - ln(1 - x)"  | 
|
139  | 
by simp  | 
|
140  | 
also have "... = ln(1 / (1 - x))"  | 
|
141  | 
apply (rule ln_div [THEN sym])  | 
|
142  | 
by (insert a, auto)  | 
|
143  | 
finally show ?thesis .  | 
|
144  | 
qed  | 
|
| 23482 | 145  | 
also have " 1 / (1 - x) = 1 + x / (1 - x)" using a by(simp add:field_simps)  | 
| 16959 | 146  | 
finally show ?thesis .  | 
147  | 
qed  | 
|
148  | 
||
149  | 
lemma ln_one_minus_pos_lower_bound: "0 <= x ==> x <= (1 / 2) ==>  | 
|
150  | 
- x - 2 * x^2 <= ln (1 - x)"  | 
|
151  | 
proof -  | 
|
152  | 
assume a: "0 <= x" and b: "x <= (1 / 2)"  | 
|
153  | 
from b have c: "x < 1"  | 
|
154  | 
by auto  | 
|
155  | 
then have "ln (1 - x) = - ln (1 + x / (1 - x))"  | 
|
156  | 
by (rule aux5)  | 
|
157  | 
also have "- (x / (1 - x)) <= ..."  | 
|
158  | 
proof -  | 
|
159  | 
have "ln (1 + x / (1 - x)) <= x / (1 - x)"  | 
|
160  | 
apply (rule ln_add_one_self_le_self)  | 
|
161  | 
apply (rule divide_nonneg_pos)  | 
|
162  | 
by (insert a c, auto)  | 
|
163  | 
thus ?thesis  | 
|
164  | 
by auto  | 
|
165  | 
qed  | 
|
166  | 
also have "- (x / (1 - x)) = -x / (1 - x)"  | 
|
167  | 
by auto  | 
|
168  | 
finally have d: "- x / (1 - x) <= ln (1 - x)" .  | 
|
| 41550 | 169  | 
have "0 < 1 - x" using a b by simp  | 
| 23482 | 170  | 
hence e: "-x - 2 * x^2 <= - x / (1 - x)"  | 
| 41550 | 171  | 
using mult_right_le_one_le[of "x*x" "2*x"] a b  | 
172  | 
by (simp add:field_simps power2_eq_square)  | 
|
| 16959 | 173  | 
from e d show "- x - 2 * x^2 <= ln (1 - x)"  | 
174  | 
by (rule order_trans)  | 
|
175  | 
qed  | 
|
176  | 
||
| 23114 | 177  | 
lemma exp_ge_add_one_self [simp]: "1 + (x::real) <= exp x"  | 
| 16959 | 178  | 
apply (case_tac "0 <= x")  | 
| 
17013
 
74bc935273ea
renamed exp_ge_add_one_self2 to exp_ge_add_one_self
 
avigad 
parents: 
16963 
diff
changeset
 | 
179  | 
apply (erule exp_ge_add_one_self_aux)  | 
| 16959 | 180  | 
apply (case_tac "x <= -1")  | 
181  | 
apply (subgoal_tac "1 + x <= 0")  | 
|
182  | 
apply (erule order_trans)  | 
|
183  | 
apply simp  | 
|
184  | 
apply simp  | 
|
185  | 
apply (subgoal_tac "1 + x = exp(ln (1 + x))")  | 
|
186  | 
apply (erule ssubst)  | 
|
187  | 
apply (subst exp_le_cancel_iff)  | 
|
188  | 
apply (subgoal_tac "ln (1 - (- x)) <= - (- x)")  | 
|
189  | 
apply simp  | 
|
190  | 
apply (rule ln_one_minus_pos_upper_bound)  | 
|
191  | 
apply auto  | 
|
192  | 
done  | 
|
193  | 
||
194  | 
lemma ln_add_one_self_le_self2: "-1 < x ==> ln(1 + x) <= x"  | 
|
| 47244 | 195  | 
apply (subgoal_tac "ln (1 + x) \<le> ln (exp x)", simp)  | 
| 16959 | 196  | 
apply (subst ln_le_cancel_iff)  | 
197  | 
apply auto  | 
|
198  | 
done  | 
|
199  | 
||
200  | 
lemma abs_ln_one_plus_x_minus_x_bound_nonneg:  | 
|
201  | 
"0 <= x ==> x <= 1 ==> abs(ln (1 + x) - x) <= x^2"  | 
|
202  | 
proof -  | 
|
| 23441 | 203  | 
assume x: "0 <= x"  | 
| 41550 | 204  | 
assume x1: "x <= 1"  | 
| 23441 | 205  | 
from x have "ln (1 + x) <= x"  | 
| 16959 | 206  | 
by (rule ln_add_one_self_le_self)  | 
207  | 
then have "ln (1 + x) - x <= 0"  | 
|
208  | 
by simp  | 
|
209  | 
then have "abs(ln(1 + x) - x) = - (ln(1 + x) - x)"  | 
|
210  | 
by (rule abs_of_nonpos)  | 
|
211  | 
also have "... = x - ln (1 + x)"  | 
|
212  | 
by simp  | 
|
213  | 
also have "... <= x^2"  | 
|
214  | 
proof -  | 
|
| 41550 | 215  | 
from x x1 have "x - x^2 <= ln (1 + x)"  | 
| 16959 | 216  | 
by (intro ln_one_plus_pos_lower_bound)  | 
217  | 
thus ?thesis  | 
|
218  | 
by simp  | 
|
219  | 
qed  | 
|
220  | 
finally show ?thesis .  | 
|
221  | 
qed  | 
|
222  | 
||
223  | 
lemma abs_ln_one_plus_x_minus_x_bound_nonpos:  | 
|
224  | 
"-(1 / 2) <= x ==> x <= 0 ==> abs(ln (1 + x) - x) <= 2 * x^2"  | 
|
225  | 
proof -  | 
|
| 41550 | 226  | 
assume a: "-(1 / 2) <= x"  | 
227  | 
assume b: "x <= 0"  | 
|
| 16959 | 228  | 
have "abs(ln (1 + x) - x) = x - ln(1 - (-x))"  | 
229  | 
apply (subst abs_of_nonpos)  | 
|
230  | 
apply simp  | 
|
231  | 
apply (rule ln_add_one_self_le_self2)  | 
|
| 41550 | 232  | 
using a apply auto  | 
| 16959 | 233  | 
done  | 
234  | 
also have "... <= 2 * x^2"  | 
|
235  | 
apply (subgoal_tac "- (-x) - 2 * (-x)^2 <= ln (1 - (-x))")  | 
|
| 29667 | 236  | 
apply (simp add: algebra_simps)  | 
| 16959 | 237  | 
apply (rule ln_one_minus_pos_lower_bound)  | 
| 41550 | 238  | 
using a b apply auto  | 
| 29667 | 239  | 
done  | 
| 16959 | 240  | 
finally show ?thesis .  | 
241  | 
qed  | 
|
242  | 
||
243  | 
lemma abs_ln_one_plus_x_minus_x_bound:  | 
|
244  | 
"abs x <= 1 / 2 ==> abs(ln (1 + x) - x) <= 2 * x^2"  | 
|
245  | 
apply (case_tac "0 <= x")  | 
|
246  | 
apply (rule order_trans)  | 
|
247  | 
apply (rule abs_ln_one_plus_x_minus_x_bound_nonneg)  | 
|
248  | 
apply auto  | 
|
249  | 
apply (rule abs_ln_one_plus_x_minus_x_bound_nonpos)  | 
|
250  | 
apply auto  | 
|
251  | 
done  | 
|
252  | 
||
253  | 
lemma ln_x_over_x_mono: "exp 1 <= x ==> x <= y ==> (ln y / y) <= (ln x / x)"  | 
|
254  | 
proof -  | 
|
| 41550 | 255  | 
assume x: "exp 1 <= x" "x <= y"  | 
| 44289 | 256  | 
moreover have "0 < exp (1::real)" by simp  | 
257  | 
ultimately have a: "0 < x" and b: "0 < y"  | 
|
258  | 
by (fast intro: less_le_trans order_trans)+  | 
|
| 16959 | 259  | 
have "x * ln y - x * ln x = x * (ln y - ln x)"  | 
| 29667 | 260  | 
by (simp add: algebra_simps)  | 
| 16959 | 261  | 
also have "... = x * ln(y / x)"  | 
| 44289 | 262  | 
by (simp only: ln_div a b)  | 
| 16959 | 263  | 
also have "y / x = (x + (y - x)) / x"  | 
264  | 
by simp  | 
|
| 44289 | 265  | 
also have "... = 1 + (y - x) / x"  | 
266  | 
using x a by (simp add: field_simps)  | 
|
| 16959 | 267  | 
also have "x * ln(1 + (y - x) / x) <= x * ((y - x) / x)"  | 
268  | 
apply (rule mult_left_mono)  | 
|
269  | 
apply (rule ln_add_one_self_le_self)  | 
|
270  | 
apply (rule divide_nonneg_pos)  | 
|
| 41550 | 271  | 
using x a apply simp_all  | 
| 16959 | 272  | 
done  | 
| 23482 | 273  | 
also have "... = y - x" using a by simp  | 
274  | 
also have "... = (y - x) * ln (exp 1)" by simp  | 
|
| 16959 | 275  | 
also have "... <= (y - x) * ln x"  | 
276  | 
apply (rule mult_left_mono)  | 
|
277  | 
apply (subst ln_le_cancel_iff)  | 
|
| 44289 | 278  | 
apply fact  | 
| 16959 | 279  | 
apply (rule a)  | 
| 41550 | 280  | 
apply (rule x)  | 
281  | 
using x apply simp  | 
|
| 16959 | 282  | 
done  | 
283  | 
also have "... = y * ln x - x * ln x"  | 
|
284  | 
by (rule left_diff_distrib)  | 
|
285  | 
finally have "x * ln y <= y * ln x"  | 
|
286  | 
by arith  | 
|
| 41550 | 287  | 
then have "ln y <= (y * ln x) / x" using a by (simp add: field_simps)  | 
288  | 
also have "... = y * (ln x / x)" by simp  | 
|
289  | 
finally show ?thesis using b by (simp add: field_simps)  | 
|
| 16959 | 290  | 
qed  | 
291  | 
||
| 43336 | 292  | 
lemma ln_le_minus_one:  | 
293  | 
"0 < x \<Longrightarrow> ln x \<le> x - 1"  | 
|
294  | 
using exp_ge_add_one_self[of "ln x"] by simp  | 
|
295  | 
||
296  | 
lemma ln_eq_minus_one:  | 
|
297  | 
assumes "0 < x" "ln x = x - 1" shows "x = 1"  | 
|
298  | 
proof -  | 
|
299  | 
let "?l y" = "ln y - y + 1"  | 
|
300  | 
have D: "\<And>x. 0 < x \<Longrightarrow> DERIV ?l x :> (1 / x - 1)"  | 
|
301  | 
by (auto intro!: DERIV_intros)  | 
|
302  | 
||
303  | 
show ?thesis  | 
|
304  | 
proof (cases rule: linorder_cases)  | 
|
305  | 
assume "x < 1"  | 
|
306  | 
from dense[OF `x < 1`] obtain a where "x < a" "a < 1" by blast  | 
|
307  | 
from `x < a` have "?l x < ?l a"  | 
|
308  | 
proof (rule DERIV_pos_imp_increasing, safe)  | 
|
309  | 
fix y assume "x \<le> y" "y \<le> a"  | 
|
310  | 
with `0 < x` `a < 1` have "0 < 1 / y - 1" "0 < y"  | 
|
311  | 
by (auto simp: field_simps)  | 
|
312  | 
with D show "\<exists>z. DERIV ?l y :> z \<and> 0 < z"  | 
|
313  | 
by auto  | 
|
314  | 
qed  | 
|
315  | 
also have "\<dots> \<le> 0"  | 
|
316  | 
using ln_le_minus_one `0 < x` `x < a` by (auto simp: field_simps)  | 
|
317  | 
finally show "x = 1" using assms by auto  | 
|
318  | 
next  | 
|
319  | 
assume "1 < x"  | 
|
320  | 
from dense[OF `1 < x`] obtain a where "1 < a" "a < x" by blast  | 
|
321  | 
from `a < x` have "?l x < ?l a"  | 
|
322  | 
proof (rule DERIV_neg_imp_decreasing, safe)  | 
|
323  | 
fix y assume "a \<le> y" "y \<le> x"  | 
|
324  | 
with `1 < a` have "1 / y - 1 < 0" "0 < y"  | 
|
325  | 
by (auto simp: field_simps)  | 
|
326  | 
with D show "\<exists>z. DERIV ?l y :> z \<and> z < 0"  | 
|
327  | 
by blast  | 
|
328  | 
qed  | 
|
329  | 
also have "\<dots> \<le> 0"  | 
|
330  | 
using ln_le_minus_one `1 < a` by (auto simp: field_simps)  | 
|
331  | 
finally show "x = 1" using assms by auto  | 
|
332  | 
qed simp  | 
|
333  | 
qed  | 
|
334  | 
||
| 16959 | 335  | 
end  |