| author | wenzelm | 
| Sun, 22 Apr 2012 19:44:40 +0200 | |
| changeset 47678 | c04b223d661e | 
| parent 44647 | e4de7750cdeb | 
| child 50526 | 899c9c4e4a4c | 
| permissions | -rw-r--r-- | 
| 36432 | 1  | 
(* Author: John Harrison  | 
2  | 
Translation from HOL light: Robert Himmelmann, TU Muenchen *)  | 
|
3  | 
||
4  | 
header {* Fashoda meet theorem. *}
 | 
|
5  | 
||
6  | 
theory Fashoda  | 
|
| 
37674
 
f86de9c00c47
convert theorem path_connected_sphere to euclidean_space class
 
huffman 
parents: 
37489 
diff
changeset
 | 
7  | 
imports Brouwer_Fixpoint Path_Connected Cartesian_Euclidean_Space  | 
| 36432 | 8  | 
begin  | 
9  | 
||
10  | 
subsection {*Fashoda meet theorem. *}
 | 
|
11  | 
||
12  | 
lemma infnorm_2: "infnorm (x::real^2) = max (abs(x$1)) (abs(x$2))"  | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36593 
diff
changeset
 | 
13  | 
unfolding infnorm_cart UNIV_2 apply(rule Sup_eq) by auto  | 
| 36432 | 14  | 
|
15  | 
lemma infnorm_eq_1_2: "infnorm (x::real^2) = 1 \<longleftrightarrow>  | 
|
16  | 
(abs(x$1) \<le> 1 \<and> abs(x$2) \<le> 1 \<and> (x$1 = -1 \<or> x$1 = 1 \<or> x$2 = -1 \<or> x$2 = 1))"  | 
|
17  | 
unfolding infnorm_2 by auto  | 
|
18  | 
||
19  | 
lemma infnorm_eq_1_imp: assumes "infnorm (x::real^2) = 1" shows "abs(x$1) \<le> 1" "abs(x$2) \<le> 1"  | 
|
20  | 
using assms unfolding infnorm_eq_1_2 by auto  | 
|
21  | 
||
22  | 
lemma fashoda_unit: fixes f g::"real \<Rightarrow> real^2"  | 
|
23  | 
  assumes "f ` {- 1..1} \<subseteq> {- 1..1}" "g ` {- 1..1} \<subseteq> {- 1..1}"
 | 
|
24  | 
  "continuous_on {- 1..1} f"  "continuous_on {- 1..1} g"
 | 
|
25  | 
"f (- 1)$1 = - 1" "f 1$1 = 1" "g (- 1) $2 = -1" "g 1 $2 = 1"  | 
|
26  | 
  shows "\<exists>s\<in>{- 1..1}. \<exists>t\<in>{- 1..1}. f s = g t" proof(rule ccontr)
 | 
|
27  | 
case goal1 note as = this[unfolded bex_simps,rule_format]  | 
|
28  | 
def sqprojection \<equiv> "\<lambda>z::real^2. (inverse (infnorm z)) *\<^sub>R z"  | 
|
29  | 
def negatex \<equiv> "\<lambda>x::real^2. (vector [-(x$1), x$2])::real^2"  | 
|
30  | 
have lem1:"\<forall>z::real^2. infnorm(negatex z) = infnorm z"  | 
|
31  | 
unfolding negatex_def infnorm_2 vector_2 by auto  | 
|
32  | 
have lem2:"\<forall>z. z\<noteq>0 \<longrightarrow> infnorm(sqprojection z) = 1" unfolding sqprojection_def  | 
|
33  | 
unfolding infnorm_mul[unfolded smult_conv_scaleR] unfolding abs_inverse real_abs_infnorm  | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36593 
diff
changeset
 | 
34  | 
apply(subst infnorm_eq_0[THEN sym]) by auto  | 
| 36432 | 35  | 
let ?F = "(\<lambda>w::real^2. (f \<circ> (\<lambda>x. x$1)) w - (g \<circ> (\<lambda>x. x$2)) w)"  | 
36  | 
  have *:"\<And>i. (\<lambda>x::real^2. x $ i) ` {- 1..1} = {- 1..1::real}"
 | 
|
| 
39302
 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 
nipkow 
parents: 
37674 
diff
changeset
 | 
37  | 
apply(rule set_eqI) unfolding image_iff Bex_def mem_interval_cart apply rule defer  | 
| 36432 | 38  | 
apply(rule_tac x="vec x" in exI) by auto  | 
39  | 
  { fix x assume "x \<in> (\<lambda>w. (f \<circ> (\<lambda>x. x $ 1)) w - (g \<circ> (\<lambda>x. x $ 2)) w) ` {- 1..1::real^2}"
 | 
|
40  | 
then guess w unfolding image_iff .. note w = this  | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36593 
diff
changeset
 | 
41  | 
hence "x \<noteq> 0" using as[of "w$1" "w$2"] unfolding mem_interval_cart by auto} note x0=this  | 
| 36432 | 42  | 
have 21:"\<And>i::2. i\<noteq>1 \<Longrightarrow> i=2" using UNIV_2 by auto  | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36593 
diff
changeset
 | 
43  | 
  have 1:"{- 1<..<1::real^2} \<noteq> {}" unfolding interval_eq_empty_cart by auto
 | 
| 
44647
 
e4de7750cdeb
modernize lemmas about 'continuous' and 'continuous_on';
 
huffman 
parents: 
44531 
diff
changeset
 | 
44  | 
  have 2:"continuous_on {- 1..1} (negatex \<circ> sqprojection \<circ> ?F)"
 | 
| 
 
e4de7750cdeb
modernize lemmas about 'continuous' and 'continuous_on';
 
huffman 
parents: 
44531 
diff
changeset
 | 
45  | 
apply(intro continuous_on_intros continuous_on_component)  | 
| 
 
e4de7750cdeb
modernize lemmas about 'continuous' and 'continuous_on';
 
huffman 
parents: 
44531 
diff
changeset
 | 
46  | 
unfolding * apply(rule assms)+  | 
| 
 
e4de7750cdeb
modernize lemmas about 'continuous' and 'continuous_on';
 
huffman 
parents: 
44531 
diff
changeset
 | 
47  | 
apply(subst sqprojection_def)  | 
| 
 
e4de7750cdeb
modernize lemmas about 'continuous' and 'continuous_on';
 
huffman 
parents: 
44531 
diff
changeset
 | 
48  | 
apply(intro continuous_on_intros)  | 
| 
 
e4de7750cdeb
modernize lemmas about 'continuous' and 'continuous_on';
 
huffman 
parents: 
44531 
diff
changeset
 | 
49  | 
apply(simp add: infnorm_eq_0 x0)  | 
| 
 
e4de7750cdeb
modernize lemmas about 'continuous' and 'continuous_on';
 
huffman 
parents: 
44531 
diff
changeset
 | 
50  | 
apply(rule linear_continuous_on)  | 
| 
 
e4de7750cdeb
modernize lemmas about 'continuous' and 'continuous_on';
 
huffman 
parents: 
44531 
diff
changeset
 | 
51  | 
proof-  | 
| 
44136
 
e63ad7d5158d
more uniform naming scheme for finite cartesian product type and related theorems
 
huffman 
parents: 
41958 
diff
changeset
 | 
52  | 
show "bounded_linear negatex" apply(rule bounded_linearI') unfolding vec_eq_iff proof(rule_tac[!] allI) fix i::2 and x y::"real^2" and c::real  | 
| 
36593
 
fb69c8cd27bd
define linear algebra concepts using scaleR instead of (op *s); generalized many lemmas, though a few theorems that used to work on type int^'n are a bit less general
 
huffman 
parents: 
36583 
diff
changeset
 | 
53  | 
show "negatex (x + y) $ i = (negatex x + negatex y) $ i" "negatex (c *\<^sub>R x) $ i = (c *\<^sub>R negatex x) $ i"  | 
| 41958 | 54  | 
apply-apply(case_tac[!] "i\<noteq>1") prefer 3 apply(drule_tac[1-2] 21)  | 
| 
44647
 
e4de7750cdeb
modernize lemmas about 'continuous' and 'continuous_on';
 
huffman 
parents: 
44531 
diff
changeset
 | 
55  | 
unfolding negatex_def by(auto simp add:vector_2 ) qed  | 
| 
 
e4de7750cdeb
modernize lemmas about 'continuous' and 'continuous_on';
 
huffman 
parents: 
44531 
diff
changeset
 | 
56  | 
qed  | 
| 36432 | 57  | 
  have 3:"(negatex \<circ> sqprojection \<circ> ?F) ` {- 1..1} \<subseteq> {- 1..1}" unfolding subset_eq apply rule proof-
 | 
58  | 
case goal1 then guess y unfolding image_iff .. note y=this have "?F y \<noteq> 0" apply(rule x0) using y(1) by auto  | 
|
59  | 
hence *:"infnorm (sqprojection (?F y)) = 1" unfolding y o_def apply- by(rule lem2[rule_format])  | 
|
60  | 
have "infnorm x = 1" unfolding *[THEN sym] y o_def by(rule lem1[rule_format])  | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36593 
diff
changeset
 | 
61  | 
    thus "x\<in>{- 1..1}" unfolding mem_interval_cart infnorm_2 apply- apply rule
 | 
| 36432 | 62  | 
proof-case goal1 thus ?case apply(cases "i=1") defer apply(drule 21) by auto qed qed  | 
63  | 
  guess x apply(rule brouwer_weak[of "{- 1..1::real^2}" "negatex \<circ> sqprojection \<circ> ?F"])
 | 
|
64  | 
apply(rule compact_interval convex_interval)+ unfolding interior_closed_interval  | 
|
65  | 
apply(rule 1 2 3)+ . note x=this  | 
|
66  | 
have "?F x \<noteq> 0" apply(rule x0) using x(1) by auto  | 
|
67  | 
hence *:"infnorm (sqprojection (?F x)) = 1" unfolding o_def by(rule lem2[rule_format])  | 
|
68  | 
have nx:"infnorm x = 1" apply(subst x(2)[THEN sym]) unfolding *[THEN sym] o_def by(rule lem1[rule_format])  | 
|
69  | 
have "\<forall>x i. x \<noteq> 0 \<longrightarrow> (0 < (sqprojection x)$i \<longleftrightarrow> 0 < x$i)" "\<forall>x i. x \<noteq> 0 \<longrightarrow> ((sqprojection x)$i < 0 \<longleftrightarrow> x$i < 0)"  | 
|
70  | 
apply- apply(rule_tac[!] allI impI)+ proof- fix x::"real^2" and i::2 assume x:"x\<noteq>0"  | 
|
71  | 
have "inverse (infnorm x) > 0" using x[unfolded infnorm_pos_lt[THEN sym]] by auto  | 
|
72  | 
thus "(0 < sqprojection x $ i) = (0 < x $ i)" "(sqprojection x $ i < 0) = (x $ i < 0)"  | 
|
| 
44282
 
f0de18b62d63
remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
 
huffman 
parents: 
44136 
diff
changeset
 | 
73  | 
unfolding sqprojection_def vector_component_simps vector_scaleR_component real_scaleR_def  | 
| 36432 | 74  | 
unfolding zero_less_mult_iff mult_less_0_iff by(auto simp add:field_simps) qed  | 
75  | 
note lem3 = this[rule_format]  | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36593 
diff
changeset
 | 
76  | 
  have x1:"x $ 1 \<in> {- 1..1::real}" "x $ 2 \<in> {- 1..1::real}" using x(1) unfolding mem_interval_cart by auto
 | 
| 36432 | 77  | 
hence nz:"f (x $ 1) - g (x $ 2) \<noteq> 0" unfolding right_minus_eq apply-apply(rule as) by auto  | 
78  | 
have "x $ 1 = -1 \<or> x $ 1 = 1 \<or> x $ 2 = -1 \<or> x $ 2 = 1" using nx unfolding infnorm_eq_1_2 by auto  | 
|
79  | 
thus False proof- fix P Q R S  | 
|
80  | 
presume "P \<or> Q \<or> R \<or> S" "P\<Longrightarrow>False" "Q\<Longrightarrow>False" "R\<Longrightarrow>False" "S\<Longrightarrow>False" thus False by auto  | 
|
81  | 
next assume as:"x$1 = 1"  | 
|
82  | 
hence *:"f (x $ 1) $ 1 = 1" using assms(6) by auto  | 
|
83  | 
have "sqprojection (f (x$1) - g (x$2)) $ 1 < 0"  | 
|
| 
44136
 
e63ad7d5158d
more uniform naming scheme for finite cartesian product type and related theorems
 
huffman 
parents: 
41958 
diff
changeset
 | 
84  | 
using x(2)[unfolded o_def vec_eq_iff,THEN spec[where x=1]]  | 
| 36432 | 85  | 
unfolding as negatex_def vector_2 by auto moreover  | 
86  | 
    from x1 have "g (x $ 2) \<in> {- 1..1}" apply-apply(rule assms(2)[unfolded subset_eq,rule_format]) by auto
 | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36593 
diff
changeset
 | 
87  | 
ultimately show False unfolding lem3[OF nz] vector_component_simps * mem_interval_cart  | 
| 36432 | 88  | 
apply(erule_tac x=1 in allE) by auto  | 
89  | 
next assume as:"x$1 = -1"  | 
|
90  | 
hence *:"f (x $ 1) $ 1 = - 1" using assms(5) by auto  | 
|
91  | 
have "sqprojection (f (x$1) - g (x$2)) $ 1 > 0"  | 
|
| 
44136
 
e63ad7d5158d
more uniform naming scheme for finite cartesian product type and related theorems
 
huffman 
parents: 
41958 
diff
changeset
 | 
92  | 
using x(2)[unfolded o_def vec_eq_iff,THEN spec[where x=1]]  | 
| 36432 | 93  | 
unfolding as negatex_def vector_2 by auto moreover  | 
94  | 
    from x1 have "g (x $ 2) \<in> {- 1..1}" apply-apply(rule assms(2)[unfolded subset_eq,rule_format]) by auto
 | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36593 
diff
changeset
 | 
95  | 
ultimately show False unfolding lem3[OF nz] vector_component_simps * mem_interval_cart  | 
| 36432 | 96  | 
apply(erule_tac x=1 in allE) by auto  | 
97  | 
next assume as:"x$2 = 1"  | 
|
98  | 
hence *:"g (x $ 2) $ 2 = 1" using assms(8) by auto  | 
|
99  | 
have "sqprojection (f (x$1) - g (x$2)) $ 2 > 0"  | 
|
| 
44136
 
e63ad7d5158d
more uniform naming scheme for finite cartesian product type and related theorems
 
huffman 
parents: 
41958 
diff
changeset
 | 
100  | 
using x(2)[unfolded o_def vec_eq_iff,THEN spec[where x=2]]  | 
| 36432 | 101  | 
unfolding as negatex_def vector_2 by auto moreover  | 
102  | 
    from x1 have "f (x $ 1) \<in> {- 1..1}" apply-apply(rule assms(1)[unfolded subset_eq,rule_format]) by auto
 | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36593 
diff
changeset
 | 
103  | 
ultimately show False unfolding lem3[OF nz] vector_component_simps * mem_interval_cart  | 
| 36432 | 104  | 
apply(erule_tac x=2 in allE) by auto  | 
105  | 
next assume as:"x$2 = -1"  | 
|
106  | 
hence *:"g (x $ 2) $ 2 = - 1" using assms(7) by auto  | 
|
107  | 
have "sqprojection (f (x$1) - g (x$2)) $ 2 < 0"  | 
|
| 
44136
 
e63ad7d5158d
more uniform naming scheme for finite cartesian product type and related theorems
 
huffman 
parents: 
41958 
diff
changeset
 | 
108  | 
using x(2)[unfolded o_def vec_eq_iff,THEN spec[where x=2]]  | 
| 36432 | 109  | 
unfolding as negatex_def vector_2 by auto moreover  | 
110  | 
    from x1 have "f (x $ 1) \<in> {- 1..1}" apply-apply(rule assms(1)[unfolded subset_eq,rule_format]) by auto
 | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36593 
diff
changeset
 | 
111  | 
ultimately show False unfolding lem3[OF nz] vector_component_simps * mem_interval_cart  | 
| 36432 | 112  | 
apply(erule_tac x=2 in allE) by auto qed(auto) qed  | 
113  | 
||
114  | 
lemma fashoda_unit_path: fixes f ::"real \<Rightarrow> real^2" and g ::"real \<Rightarrow> real^2"  | 
|
115  | 
  assumes "path f" "path g" "path_image f \<subseteq> {- 1..1}" "path_image g \<subseteq> {- 1..1}"
 | 
|
116  | 
"(pathstart f)$1 = -1" "(pathfinish f)$1 = 1" "(pathstart g)$2 = -1" "(pathfinish g)$2 = 1"  | 
|
117  | 
obtains z where "z \<in> path_image f" "z \<in> path_image g" proof-  | 
|
118  | 
note assms=assms[unfolded path_def pathstart_def pathfinish_def path_image_def]  | 
|
119  | 
def iscale \<equiv> "\<lambda>z::real. inverse 2 *\<^sub>R (z + 1)"  | 
|
120  | 
  have isc:"iscale ` {- 1..1} \<subseteq> {0..1}" unfolding iscale_def by(auto)
 | 
|
121  | 
  have "\<exists>s\<in>{- 1..1}. \<exists>t\<in>{- 1..1}. (f \<circ> iscale) s = (g \<circ> iscale) t" proof(rule fashoda_unit) 
 | 
|
122  | 
    show "(f \<circ> iscale) ` {- 1..1} \<subseteq> {- 1..1}" "(g \<circ> iscale) ` {- 1..1} \<subseteq> {- 1..1}"
 | 
|
123  | 
using isc and assms(3-4) unfolding image_compose by auto  | 
|
124  | 
    have *:"continuous_on {- 1..1} iscale" unfolding iscale_def by(rule continuous_on_intros)+
 | 
|
125  | 
    show "continuous_on {- 1..1} (f \<circ> iscale)" "continuous_on {- 1..1} (g \<circ> iscale)"
 | 
|
126  | 
apply-apply(rule_tac[!] continuous_on_compose[OF *]) apply(rule_tac[!] continuous_on_subset[OF _ isc])  | 
|
| 
44136
 
e63ad7d5158d
more uniform naming scheme for finite cartesian product type and related theorems
 
huffman 
parents: 
41958 
diff
changeset
 | 
127  | 
by(rule assms)+ have *:"(1 / 2) *\<^sub>R (1 + (1::real^1)) = 1" unfolding vec_eq_iff by auto  | 
| 36432 | 128  | 
show "(f \<circ> iscale) (- 1) $ 1 = - 1" "(f \<circ> iscale) 1 $ 1 = 1" "(g \<circ> iscale) (- 1) $ 2 = -1" "(g \<circ> iscale) 1 $ 2 = 1"  | 
129  | 
unfolding o_def iscale_def using assms by(auto simp add:*) qed  | 
|
130  | 
then guess s .. from this(2) guess t .. note st=this  | 
|
131  | 
show thesis apply(rule_tac z="f (iscale s)" in that)  | 
|
132  | 
    using st `s\<in>{- 1..1}` unfolding o_def path_image_def image_iff apply-
 | 
|
133  | 
apply(rule_tac x="iscale s" in bexI) prefer 3 apply(rule_tac x="iscale t" in bexI)  | 
|
134  | 
using isc[unfolded subset_eq, rule_format] by auto qed  | 
|
135  | 
||
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36593 
diff
changeset
 | 
136  | 
(* move *)  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36593 
diff
changeset
 | 
137  | 
lemma interval_bij_bij_cart: fixes x::"real^'n" assumes "\<forall>i. a$i < b$i \<and> u$i < v$i"  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36593 
diff
changeset
 | 
138  | 
shows "interval_bij (a,b) (u,v) (interval_bij (u,v) (a,b) x) = x"  | 
| 
44136
 
e63ad7d5158d
more uniform naming scheme for finite cartesian product type and related theorems
 
huffman 
parents: 
41958 
diff
changeset
 | 
139  | 
unfolding interval_bij_cart split_conv vec_eq_iff vec_lambda_beta  | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36593 
diff
changeset
 | 
140  | 
apply(rule,insert assms,erule_tac x=i in allE) by auto  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36593 
diff
changeset
 | 
141  | 
|
| 36432 | 142  | 
lemma fashoda: fixes b::"real^2"  | 
143  | 
  assumes "path f" "path g" "path_image f \<subseteq> {a..b}" "path_image g \<subseteq> {a..b}"
 | 
|
144  | 
"(pathstart f)$1 = a$1" "(pathfinish f)$1 = b$1"  | 
|
145  | 
"(pathstart g)$2 = a$2" "(pathfinish g)$2 = b$2"  | 
|
146  | 
obtains z where "z \<in> path_image f" "z \<in> path_image g" proof-  | 
|
147  | 
fix P Q S presume "P \<or> Q \<or> S" "P \<Longrightarrow> thesis" "Q \<Longrightarrow> thesis" "S \<Longrightarrow> thesis" thus thesis by auto  | 
|
148  | 
next have "{a..b} \<noteq> {}" using assms(3) using path_image_nonempty by auto
 | 
|
| 
44136
 
e63ad7d5158d
more uniform naming scheme for finite cartesian product type and related theorems
 
huffman 
parents: 
41958 
diff
changeset
 | 
149  | 
hence "a \<le> b" unfolding interval_eq_empty_cart less_eq_vec_def by(auto simp add: not_less)  | 
| 
 
e63ad7d5158d
more uniform naming scheme for finite cartesian product type and related theorems
 
huffman 
parents: 
41958 
diff
changeset
 | 
150  | 
thus "a$1 = b$1 \<or> a$2 = b$2 \<or> (a$1 < b$1 \<and> a$2 < b$2)" unfolding less_eq_vec_def forall_2 by auto  | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36593 
diff
changeset
 | 
151  | 
next assume as:"a$1 = b$1" have "\<exists>z\<in>path_image g. z$2 = (pathstart f)$2" apply(rule connected_ivt_component_cart)  | 
| 36432 | 152  | 
apply(rule connected_path_image assms)+apply(rule pathstart_in_path_image,rule pathfinish_in_path_image)  | 
153  | 
unfolding assms using assms(3)[unfolded path_image_def subset_eq,rule_format,of "f 0"]  | 
|
| 
44136
 
e63ad7d5158d
more uniform naming scheme for finite cartesian product type and related theorems
 
huffman 
parents: 
41958 
diff
changeset
 | 
154  | 
unfolding pathstart_def by(auto simp add: less_eq_vec_def) then guess z .. note z=this  | 
| 36432 | 155  | 
  have "z \<in> {a..b}" using z(1) assms(4) unfolding path_image_def by blast 
 | 
| 
44136
 
e63ad7d5158d
more uniform naming scheme for finite cartesian product type and related theorems
 
huffman 
parents: 
41958 
diff
changeset
 | 
156  | 
hence "z = f 0" unfolding vec_eq_iff forall_2 unfolding z(2) pathstart_def  | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36593 
diff
changeset
 | 
157  | 
using assms(3)[unfolded path_image_def subset_eq mem_interval_cart,rule_format,of "f 0" 1]  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36593 
diff
changeset
 | 
158  | 
unfolding mem_interval_cart apply(erule_tac x=1 in allE) using as by auto  | 
| 36432 | 159  | 
thus thesis apply-apply(rule that[OF _ z(1)]) unfolding path_image_def by auto  | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36593 
diff
changeset
 | 
160  | 
next assume as:"a$2 = b$2" have "\<exists>z\<in>path_image f. z$1 = (pathstart g)$1" apply(rule connected_ivt_component_cart)  | 
| 36432 | 161  | 
apply(rule connected_path_image assms)+apply(rule pathstart_in_path_image,rule pathfinish_in_path_image)  | 
162  | 
unfolding assms using assms(4)[unfolded path_image_def subset_eq,rule_format,of "g 0"]  | 
|
| 
44136
 
e63ad7d5158d
more uniform naming scheme for finite cartesian product type and related theorems
 
huffman 
parents: 
41958 
diff
changeset
 | 
163  | 
unfolding pathstart_def by(auto simp add: less_eq_vec_def) then guess z .. note z=this  | 
| 36432 | 164  | 
  have "z \<in> {a..b}" using z(1) assms(3) unfolding path_image_def by blast 
 | 
| 
44136
 
e63ad7d5158d
more uniform naming scheme for finite cartesian product type and related theorems
 
huffman 
parents: 
41958 
diff
changeset
 | 
165  | 
hence "z = g 0" unfolding vec_eq_iff forall_2 unfolding z(2) pathstart_def  | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36593 
diff
changeset
 | 
166  | 
using assms(4)[unfolded path_image_def subset_eq mem_interval_cart,rule_format,of "g 0" 2]  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36593 
diff
changeset
 | 
167  | 
unfolding mem_interval_cart apply(erule_tac x=2 in allE) using as by auto  | 
| 36432 | 168  | 
thus thesis apply-apply(rule that[OF z(1)]) unfolding path_image_def by auto  | 
169  | 
next assume as:"a $ 1 < b $ 1 \<and> a $ 2 < b $ 2"  | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36593 
diff
changeset
 | 
170  | 
  have int_nem:"{- 1..1::real^2} \<noteq> {}" unfolding interval_eq_empty_cart by auto
 | 
| 36432 | 171  | 
guess z apply(rule fashoda_unit_path[of "interval_bij (a,b) (- 1,1) \<circ> f" "interval_bij (a,b) (- 1,1) \<circ> g"])  | 
172  | 
unfolding path_def path_image_def pathstart_def pathfinish_def  | 
|
173  | 
apply(rule_tac[1-2] continuous_on_compose) apply(rule assms[unfolded path_def] continuous_on_interval_bij)+  | 
|
174  | 
unfolding subset_eq apply(rule_tac[1-2] ballI)  | 
|
175  | 
  proof- fix x assume "x \<in> (interval_bij (a, b) (- 1, 1) \<circ> f) ` {0..1}"
 | 
|
176  | 
then guess y unfolding image_iff .. note y=this  | 
|
177  | 
    show "x \<in> {- 1..1}" unfolding y o_def apply(rule in_interval_interval_bij)
 | 
|
178  | 
using y(1) using assms(3)[unfolded path_image_def subset_eq] int_nem by auto  | 
|
179  | 
  next fix x assume "x \<in> (interval_bij (a, b) (- 1, 1) \<circ> g) ` {0..1}"
 | 
|
180  | 
then guess y unfolding image_iff .. note y=this  | 
|
181  | 
    show "x \<in> {- 1..1}" unfolding y o_def apply(rule in_interval_interval_bij)
 | 
|
182  | 
using y(1) using assms(4)[unfolded path_image_def subset_eq] int_nem by auto  | 
|
183  | 
next show "(interval_bij (a, b) (- 1, 1) \<circ> f) 0 $ 1 = -1"  | 
|
184  | 
"(interval_bij (a, b) (- 1, 1) \<circ> f) 1 $ 1 = 1"  | 
|
185  | 
"(interval_bij (a, b) (- 1, 1) \<circ> g) 0 $ 2 = -1"  | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36593 
diff
changeset
 | 
186  | 
"(interval_bij (a, b) (- 1, 1) \<circ> g) 1 $ 2 = 1"  | 
| 
44457
 
d366fa5551ef
declare euclidean_simps [simp] at the point they are proved;
 
huffman 
parents: 
44282 
diff
changeset
 | 
187  | 
unfolding interval_bij_cart vector_component_simps o_def split_conv  | 
| 36432 | 188  | 
unfolding assms[unfolded pathstart_def pathfinish_def] using as by auto qed note z=this  | 
189  | 
from z(1) guess zf unfolding image_iff .. note zf=this  | 
|
190  | 
from z(2) guess zg unfolding image_iff .. note zg=this  | 
|
191  | 
have *:"\<forall>i. (- 1) $ i < (1::real^2) $ i \<and> a $ i < b $ i" unfolding forall_2 using as by auto  | 
|
192  | 
show thesis apply(rule_tac z="interval_bij (- 1,1) (a,b) z" in that)  | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36593 
diff
changeset
 | 
193  | 
apply(subst zf) defer apply(subst zg) unfolding o_def interval_bij_bij_cart[OF *] path_image_def  | 
| 36432 | 194  | 
using zf(1) zg(1) by auto qed  | 
195  | 
||
196  | 
subsection {*Some slightly ad hoc lemmas I use below*}
 | 
|
197  | 
||
198  | 
lemma segment_vertical: fixes a::"real^2" assumes "a$1 = b$1"  | 
|
199  | 
shows "x \<in> closed_segment a b \<longleftrightarrow> (x$1 = a$1 \<and> x$1 = b$1 \<and>  | 
|
200  | 
(a$2 \<le> x$2 \<and> x$2 \<le> b$2 \<or> b$2 \<le> x$2 \<and> x$2 \<le> a$2))" (is "_ = ?R")  | 
|
201  | 
proof-  | 
|
202  | 
let ?L = "\<exists>u. (x $ 1 = (1 - u) * a $ 1 + u * b $ 1 \<and> x $ 2 = (1 - u) * a $ 2 + u * b $ 2) \<and> 0 \<le> u \<and> u \<le> 1"  | 
|
203  | 
  { presume "?L \<Longrightarrow> ?R" "?R \<Longrightarrow> ?L" thus ?thesis unfolding closed_segment_def mem_Collect_eq
 | 
|
| 
44136
 
e63ad7d5158d
more uniform naming scheme for finite cartesian product type and related theorems
 
huffman 
parents: 
41958 
diff
changeset
 | 
204  | 
unfolding vec_eq_iff forall_2 smult_conv_scaleR[THEN sym] vector_component_simps by blast }  | 
| 36432 | 205  | 
  { assume ?L then guess u apply-apply(erule exE)apply(erule conjE)+ . note u=this
 | 
206  | 
    { fix b a assume "b + u * a > a + u * b"
 | 
|
207  | 
hence "(1 - u) * b > (1 - u) * a" by(auto simp add:field_simps)  | 
|
208  | 
hence "b \<ge> a" apply(drule_tac mult_less_imp_less_left) using u by auto  | 
|
209  | 
hence "u * a \<le> u * b" apply-apply(rule mult_left_mono[OF _ u(3)])  | 
|
210  | 
using u(3-4) by(auto simp add:field_simps) } note * = this  | 
|
211  | 
    { fix a b assume "u * b > u * a" hence "(1 - u) * a \<le> (1 - u) * b" apply-apply(rule mult_left_mono)
 | 
|
212  | 
apply(drule mult_less_imp_less_left) using u by auto  | 
|
213  | 
hence "a + u * b \<le> b + u * a" by(auto simp add:field_simps) } note ** = this  | 
|
214  | 
thus ?R unfolding u assms using u by(auto simp add:field_simps not_le intro:* **) }  | 
|
215  | 
  { assume ?R thus ?L proof(cases "x$2 = b$2")
 | 
|
216  | 
case True thus ?L apply(rule_tac x="(x$2 - a$2) / (b$2 - a$2)" in exI) unfolding assms True  | 
|
217  | 
using `?R` by(auto simp add:field_simps)  | 
|
218  | 
next case False thus ?L apply(rule_tac x="1 - (x$2 - b$2) / (a$2 - b$2)" in exI) unfolding assms using `?R`  | 
|
219  | 
by(auto simp add:field_simps)  | 
|
220  | 
qed } qed  | 
|
221  | 
||
222  | 
lemma segment_horizontal: fixes a::"real^2" assumes "a$2 = b$2"  | 
|
223  | 
shows "x \<in> closed_segment a b \<longleftrightarrow> (x$2 = a$2 \<and> x$2 = b$2 \<and>  | 
|
224  | 
(a$1 \<le> x$1 \<and> x$1 \<le> b$1 \<or> b$1 \<le> x$1 \<and> x$1 \<le> a$1))" (is "_ = ?R")  | 
|
225  | 
proof-  | 
|
226  | 
let ?L = "\<exists>u. (x $ 1 = (1 - u) * a $ 1 + u * b $ 1 \<and> x $ 2 = (1 - u) * a $ 2 + u * b $ 2) \<and> 0 \<le> u \<and> u \<le> 1"  | 
|
227  | 
  { presume "?L \<Longrightarrow> ?R" "?R \<Longrightarrow> ?L" thus ?thesis unfolding closed_segment_def mem_Collect_eq
 | 
|
| 
44136
 
e63ad7d5158d
more uniform naming scheme for finite cartesian product type and related theorems
 
huffman 
parents: 
41958 
diff
changeset
 | 
228  | 
unfolding vec_eq_iff forall_2 smult_conv_scaleR[THEN sym] vector_component_simps by blast }  | 
| 36432 | 229  | 
  { assume ?L then guess u apply-apply(erule exE)apply(erule conjE)+ . note u=this
 | 
230  | 
    { fix b a assume "b + u * a > a + u * b"
 | 
|
231  | 
hence "(1 - u) * b > (1 - u) * a" by(auto simp add:field_simps)  | 
|
232  | 
hence "b \<ge> a" apply(drule_tac mult_less_imp_less_left) using u by auto  | 
|
233  | 
hence "u * a \<le> u * b" apply-apply(rule mult_left_mono[OF _ u(3)])  | 
|
234  | 
using u(3-4) by(auto simp add:field_simps) } note * = this  | 
|
235  | 
    { fix a b assume "u * b > u * a" hence "(1 - u) * a \<le> (1 - u) * b" apply-apply(rule mult_left_mono)
 | 
|
236  | 
apply(drule mult_less_imp_less_left) using u by auto  | 
|
237  | 
hence "a + u * b \<le> b + u * a" by(auto simp add:field_simps) } note ** = this  | 
|
238  | 
thus ?R unfolding u assms using u by(auto simp add:field_simps not_le intro:* **) }  | 
|
239  | 
  { assume ?R thus ?L proof(cases "x$1 = b$1")
 | 
|
240  | 
case True thus ?L apply(rule_tac x="(x$1 - a$1) / (b$1 - a$1)" in exI) unfolding assms True  | 
|
241  | 
using `?R` by(auto simp add:field_simps)  | 
|
242  | 
next case False thus ?L apply(rule_tac x="1 - (x$1 - b$1) / (a$1 - b$1)" in exI) unfolding assms using `?R`  | 
|
243  | 
by(auto simp add:field_simps)  | 
|
244  | 
qed } qed  | 
|
245  | 
||
246  | 
subsection {*useful Fashoda corollary pointed out to me by Tom Hales. *}
 | 
|
247  | 
||
248  | 
lemma fashoda_interlace: fixes a::"real^2"  | 
|
249  | 
assumes "path f" "path g"  | 
|
250  | 
  "path_image f \<subseteq> {a..b}" "path_image g \<subseteq> {a..b}"
 | 
|
251  | 
"(pathstart f)$2 = a$2" "(pathfinish f)$2 = a$2"  | 
|
252  | 
"(pathstart g)$2 = a$2" "(pathfinish g)$2 = a$2"  | 
|
253  | 
"(pathstart f)$1 < (pathstart g)$1" "(pathstart g)$1 < (pathfinish f)$1"  | 
|
254  | 
"(pathfinish f)$1 < (pathfinish g)$1"  | 
|
255  | 
obtains z where "z \<in> path_image f" "z \<in> path_image g"  | 
|
256  | 
proof-  | 
|
257  | 
  have "{a..b} \<noteq> {}" using path_image_nonempty using assms(3) by auto
 | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36593 
diff
changeset
 | 
258  | 
note ab=this[unfolded interval_eq_empty_cart not_ex forall_2 not_less]  | 
| 36432 | 259  | 
  have "pathstart f \<in> {a..b}" "pathfinish f \<in> {a..b}" "pathstart g \<in> {a..b}" "pathfinish g \<in> {a..b}"
 | 
260  | 
using pathstart_in_path_image pathfinish_in_path_image using assms(3-4) by auto  | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36593 
diff
changeset
 | 
261  | 
note startfin = this[unfolded mem_interval_cart forall_2]  | 
| 36432 | 262  | 
let ?P1 = "linepath (vector[a$1 - 2, a$2 - 2]) (vector[(pathstart f)$1,a$2 - 2]) +++  | 
263  | 
linepath(vector[(pathstart f)$1,a$2 - 2])(pathstart f) +++ f +++  | 
|
264  | 
linepath(pathfinish f)(vector[(pathfinish f)$1,a$2 - 2]) +++  | 
|
265  | 
linepath(vector[(pathfinish f)$1,a$2 - 2])(vector[b$1 + 2,a$2 - 2])"  | 
|
266  | 
let ?P2 = "linepath(vector[(pathstart g)$1, (pathstart g)$2 - 3])(pathstart g) +++ g +++  | 
|
267  | 
linepath(pathfinish g)(vector[(pathfinish g)$1,a$2 - 1]) +++  | 
|
268  | 
linepath(vector[(pathfinish g)$1,a$2 - 1])(vector[b$1 + 1,a$2 - 1]) +++  | 
|
269  | 
linepath(vector[b$1 + 1,a$2 - 1])(vector[b$1 + 1,b$2 + 3])"  | 
|
270  | 
let ?a = "vector[a$1 - 2, a$2 - 3]"  | 
|
271  | 
let ?b = "vector[b$1 + 2, b$2 + 3]"  | 
|
272  | 
have P1P2:"path_image ?P1 = path_image (linepath (vector[a$1 - 2, a$2 - 2]) (vector[(pathstart f)$1,a$2 - 2])) \<union>  | 
|
273  | 
path_image (linepath(vector[(pathstart f)$1,a$2 - 2])(pathstart f)) \<union> path_image f \<union>  | 
|
274  | 
path_image (linepath(pathfinish f)(vector[(pathfinish f)$1,a$2 - 2])) \<union>  | 
|
275  | 
path_image (linepath(vector[(pathfinish f)$1,a$2 - 2])(vector[b$1 + 2,a$2 - 2]))"  | 
|
276  | 
"path_image ?P2 = path_image(linepath(vector[(pathstart g)$1, (pathstart g)$2 - 3])(pathstart g)) \<union> path_image g \<union>  | 
|
277  | 
path_image(linepath(pathfinish g)(vector[(pathfinish g)$1,a$2 - 1])) \<union>  | 
|
278  | 
path_image(linepath(vector[(pathfinish g)$1,a$2 - 1])(vector[b$1 + 1,a$2 - 1])) \<union>  | 
|
279  | 
path_image(linepath(vector[b$1 + 1,a$2 - 1])(vector[b$1 + 1,b$2 + 3]))" using assms(1-2)  | 
|
280  | 
by(auto simp add: path_image_join path_linepath)  | 
|
| 
44136
 
e63ad7d5158d
more uniform naming scheme for finite cartesian product type and related theorems
 
huffman 
parents: 
41958 
diff
changeset
 | 
281  | 
  have abab: "{a..b} \<subseteq> {?a..?b}" by(auto simp add:less_eq_vec_def forall_2 vector_2)
 | 
| 36432 | 282  | 
guess z apply(rule fashoda[of ?P1 ?P2 ?a ?b])  | 
283  | 
unfolding pathstart_join pathfinish_join pathstart_linepath pathfinish_linepath vector_2 proof-  | 
|
284  | 
show "path ?P1" "path ?P2" using assms by auto  | 
|
285  | 
    have "path_image ?P1 \<subseteq> {?a .. ?b}" unfolding P1P2 path_image_linepath apply(rule Un_least)+ defer 3
 | 
|
286  | 
apply(rule_tac[1-4] convex_interval(1)[unfolded convex_contains_segment,rule_format])  | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36593 
diff
changeset
 | 
287  | 
unfolding mem_interval_cart forall_2 vector_2 using ab startfin abab assms(3)  | 
| 36432 | 288  | 
using assms(9-) unfolding assms by(auto simp add:field_simps)  | 
289  | 
    thus "path_image ?P1  \<subseteq> {?a .. ?b}" .
 | 
|
290  | 
    have "path_image ?P2 \<subseteq> {?a .. ?b}" unfolding P1P2 path_image_linepath apply(rule Un_least)+ defer 2
 | 
|
291  | 
apply(rule_tac[1-4] convex_interval(1)[unfolded convex_contains_segment,rule_format])  | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36593 
diff
changeset
 | 
292  | 
unfolding mem_interval_cart forall_2 vector_2 using ab startfin abab assms(4)  | 
| 36432 | 293  | 
using assms(9-) unfolding assms by(auto simp add:field_simps)  | 
294  | 
    thus "path_image ?P2  \<subseteq> {?a .. ?b}" . 
 | 
|
295  | 
show "a $ 1 - 2 = a $ 1 - 2" "b $ 1 + 2 = b $ 1 + 2" "pathstart g $ 2 - 3 = a $ 2 - 3" "b $ 2 + 3 = b $ 2 + 3"  | 
|
296  | 
by(auto simp add: assms)  | 
|
297  | 
qed note z=this[unfolded P1P2 path_image_linepath]  | 
|
298  | 
show thesis apply(rule that[of z]) proof-  | 
|
299  | 
have "(z \<in> closed_segment (vector [a $ 1 - 2, a $ 2 - 2]) (vector [pathstart f $ 1, a $ 2 - 2]) \<or>  | 
|
300  | 
z \<in> closed_segment (vector [pathstart f $ 1, a $ 2 - 2]) (pathstart f)) \<or>  | 
|
301  | 
z \<in> closed_segment (pathfinish f) (vector [pathfinish f $ 1, a $ 2 - 2]) \<or>  | 
|
302  | 
z \<in> closed_segment (vector [pathfinish f $ 1, a $ 2 - 2]) (vector [b $ 1 + 2, a $ 2 - 2]) \<Longrightarrow>  | 
|
303  | 
(((z \<in> closed_segment (vector [pathstart g $ 1, pathstart g $ 2 - 3]) (pathstart g)) \<or>  | 
|
304  | 
z \<in> closed_segment (pathfinish g) (vector [pathfinish g $ 1, a $ 2 - 1])) \<or>  | 
|
305  | 
z \<in> closed_segment (vector [pathfinish g $ 1, a $ 2 - 1]) (vector [b $ 1 + 1, a $ 2 - 1])) \<or>  | 
|
306  | 
z \<in> closed_segment (vector [b $ 1 + 1, a $ 2 - 1]) (vector [b $ 1 + 1, b $ 2 + 3]) \<Longrightarrow> False"  | 
|
307  | 
apply(simp only: segment_vertical segment_horizontal vector_2) proof- case goal1 note as=this  | 
|
308  | 
      have "pathfinish f \<in> {a..b}" using assms(3) pathfinish_in_path_image[of f] by auto 
 | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36593 
diff
changeset
 | 
309  | 
hence "1 + b $ 1 \<le> pathfinish f $ 1 \<Longrightarrow> False" unfolding mem_interval_cart forall_2 by auto  | 
| 36432 | 310  | 
hence "z$1 \<noteq> pathfinish f$1" using as(2) using assms ab by(auto simp add:field_simps)  | 
311  | 
      moreover have "pathstart f \<in> {a..b}" using assms(3) pathstart_in_path_image[of f] by auto 
 | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36593 
diff
changeset
 | 
312  | 
hence "1 + b $ 1 \<le> pathstart f $ 1 \<Longrightarrow> False" unfolding mem_interval_cart forall_2 by auto  | 
| 36432 | 313  | 
hence "z$1 \<noteq> pathstart f$1" using as(2) using assms ab by(auto simp add:field_simps)  | 
314  | 
ultimately have *:"z$2 = a$2 - 2" using goal1(1) by auto  | 
|
315  | 
have "z$1 \<noteq> pathfinish g$1" using as(2) using assms ab by(auto simp add:field_simps *)  | 
|
316  | 
      moreover have "pathstart g \<in> {a..b}" using assms(4) pathstart_in_path_image[of g] by auto 
 | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36593 
diff
changeset
 | 
317  | 
note this[unfolded mem_interval_cart forall_2]  | 
| 36432 | 318  | 
hence "z$1 \<noteq> pathstart g$1" using as(1) using assms ab by(auto simp add:field_simps *)  | 
319  | 
ultimately have "a $ 2 - 1 \<le> z $ 2 \<and> z $ 2 \<le> b $ 2 + 3 \<or> b $ 2 + 3 \<le> z $ 2 \<and> z $ 2 \<le> a $ 2 - 1"  | 
|
320  | 
using as(2) unfolding * assms by(auto simp add:field_simps)  | 
|
321  | 
thus False unfolding * using ab by auto  | 
|
322  | 
qed hence "z \<in> path_image f \<or> z \<in> path_image g" using z unfolding Un_iff by blast  | 
|
323  | 
    hence z':"z\<in>{a..b}" using assms(3-4) by auto
 | 
|
324  | 
have "a $ 2 = z $ 2 \<Longrightarrow> (z $ 1 = pathstart f $ 1 \<or> z $ 1 = pathfinish f $ 1) \<Longrightarrow> (z = pathstart f \<or> z = pathfinish f)"  | 
|
| 
44136
 
e63ad7d5158d
more uniform naming scheme for finite cartesian product type and related theorems
 
huffman 
parents: 
41958 
diff
changeset
 | 
325  | 
unfolding vec_eq_iff forall_2 assms by auto  | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36593 
diff
changeset
 | 
326  | 
with z' show "z\<in>path_image f" using z(1) unfolding Un_iff mem_interval_cart forall_2 apply-  | 
| 36432 | 327  | 
apply(simp only: segment_vertical segment_horizontal vector_2) unfolding assms by auto  | 
328  | 
have "a $ 2 = z $ 2 \<Longrightarrow> (z $ 1 = pathstart g $ 1 \<or> z $ 1 = pathfinish g $ 1) \<Longrightarrow> (z = pathstart g \<or> z = pathfinish g)"  | 
|
| 
44136
 
e63ad7d5158d
more uniform naming scheme for finite cartesian product type and related theorems
 
huffman 
parents: 
41958 
diff
changeset
 | 
329  | 
unfolding vec_eq_iff forall_2 assms by auto  | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36593 
diff
changeset
 | 
330  | 
with z' show "z\<in>path_image g" using z(2) unfolding Un_iff mem_interval_cart forall_2 apply-  | 
| 36432 | 331  | 
apply(simp only: segment_vertical segment_horizontal vector_2) unfolding assms by auto  | 
332  | 
qed qed  | 
|
333  | 
||
334  | 
(** The Following still needs to be translated. Maybe I will do that later.  | 
|
335  | 
||
336  | 
(* ------------------------------------------------------------------------- *)  | 
|
337  | 
(* Complement in dimension N >= 2 of set homeomorphic to any interval in *)  | 
|
338  | 
(* any dimension is (path-)connected. This naively generalizes the argument *)  | 
|
339  | 
(* in Ryuji Maehara's paper "The Jordan curve theorem via the Brouwer *)  | 
|
340  | 
(* fixed point theorem", American Mathematical Monthly 1984. *)  | 
|
341  | 
(* ------------------------------------------------------------------------- *)  | 
|
342  | 
||
343  | 
let RETRACTION_INJECTIVE_IMAGE_INTERVAL = prove  | 
|
344  | 
(`!p:real^M->real^N a b.  | 
|
345  | 
        ~(interval[a,b] = {}) /\
 | 
|
346  | 
p continuous_on interval[a,b] /\  | 
|
347  | 
(!x y. x IN interval[a,b] /\ y IN interval[a,b] /\ p x = p y ==> x = y)  | 
|
348  | 
==> ?f. f continuous_on (:real^N) /\  | 
|
349  | 
IMAGE f (:real^N) SUBSET (IMAGE p (interval[a,b])) /\  | 
|
350  | 
(!x. x IN (IMAGE p (interval[a,b])) ==> f x = x)`,  | 
|
351  | 
REPEAT STRIP_TAC THEN  | 
|
352  | 
FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [INJECTIVE_ON_LEFT_INVERSE]) THEN  | 
|
353  | 
DISCH_THEN(X_CHOOSE_TAC `q:real^N->real^M`) THEN  | 
|
354  | 
SUBGOAL_THEN `(q:real^N->real^M) continuous_on  | 
|
355  | 
(IMAGE p (interval[a:real^M,b]))`  | 
|
356  | 
ASSUME_TAC THENL  | 
|
357  | 
[MATCH_MP_TAC CONTINUOUS_ON_INVERSE THEN ASM_REWRITE_TAC[COMPACT_INTERVAL];  | 
|
358  | 
ALL_TAC] THEN  | 
|
359  | 
MP_TAC(ISPECL [`q:real^N->real^M`;  | 
|
360  | 
`IMAGE (p:real^M->real^N)  | 
|
361  | 
(interval[a,b])`;  | 
|
362  | 
`a:real^M`; `b:real^M`]  | 
|
363  | 
TIETZE_CLOSED_INTERVAL) THEN  | 
|
364  | 
ASM_SIMP_TAC[COMPACT_INTERVAL; COMPACT_CONTINUOUS_IMAGE;  | 
|
365  | 
COMPACT_IMP_CLOSED] THEN  | 
|
366  | 
ANTS_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN  | 
|
367  | 
DISCH_THEN(X_CHOOSE_THEN `r:real^N->real^M` STRIP_ASSUME_TAC) THEN  | 
|
368  | 
EXISTS_TAC `(p:real^M->real^N) o (r:real^N->real^M)` THEN  | 
|
369  | 
REWRITE_TAC[SUBSET; FORALL_IN_IMAGE; o_THM; IN_UNIV] THEN  | 
|
370  | 
CONJ_TAC THENL [ALL_TAC; ASM SET_TAC[]] THEN  | 
|
371  | 
MATCH_MP_TAC CONTINUOUS_ON_COMPOSE THEN ASM_REWRITE_TAC[] THEN  | 
|
372  | 
FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP(REWRITE_RULE[IMP_CONJ]  | 
|
373  | 
CONTINUOUS_ON_SUBSET)) THEN ASM SET_TAC[]);;  | 
|
374  | 
||
375  | 
let UNBOUNDED_PATH_COMPONENTS_COMPLEMENT_HOMEOMORPHIC_INTERVAL = prove  | 
|
376  | 
(`!s:real^N->bool a b:real^M.  | 
|
377  | 
s homeomorphic (interval[a,b])  | 
|
378  | 
==> !x. ~(x IN s) ==> ~bounded(path_component((:real^N) DIFF s) x)`,  | 
|
379  | 
REPEAT GEN_TAC THEN REWRITE_TAC[homeomorphic; homeomorphism] THEN  | 
|
380  | 
REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN  | 
|
381  | 
MAP_EVERY X_GEN_TAC [`p':real^N->real^M`; `p:real^M->real^N`] THEN  | 
|
382  | 
DISCH_TAC THEN  | 
|
383  | 
SUBGOAL_THEN  | 
|
384  | 
`!x y. x IN interval[a,b] /\ y IN interval[a,b] /\  | 
|
385  | 
(p:real^M->real^N) x = p y ==> x = y`  | 
|
386  | 
ASSUME_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN  | 
|
387  | 
FIRST_X_ASSUM(MP_TAC o funpow 4 CONJUNCT2) THEN  | 
|
388  | 
DISCH_THEN(CONJUNCTS_THEN2 (SUBST1_TAC o SYM) ASSUME_TAC) THEN  | 
|
389  | 
  ASM_CASES_TAC `interval[a:real^M,b] = {}` THEN
 | 
|
390  | 
ASM_REWRITE_TAC[IMAGE_CLAUSES; DIFF_EMPTY; PATH_COMPONENT_UNIV;  | 
|
391  | 
NOT_BOUNDED_UNIV] THEN  | 
|
392  | 
ABBREV_TAC `s = (:real^N) DIFF (IMAGE p (interval[a:real^M,b]))` THEN  | 
|
393  | 
X_GEN_TAC `c:real^N` THEN REPEAT STRIP_TAC THEN  | 
|
394  | 
SUBGOAL_THEN `(c:real^N) IN s` ASSUME_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN  | 
|
395  | 
SUBGOAL_THEN `bounded((path_component s c) UNION  | 
|
396  | 
(IMAGE (p:real^M->real^N) (interval[a,b])))`  | 
|
397  | 
MP_TAC THENL  | 
|
398  | 
[ASM_SIMP_TAC[BOUNDED_UNION; COMPACT_IMP_BOUNDED; COMPACT_IMP_BOUNDED;  | 
|
399  | 
COMPACT_CONTINUOUS_IMAGE; COMPACT_INTERVAL];  | 
|
400  | 
ALL_TAC] THEN  | 
|
401  | 
DISCH_THEN(MP_TAC o SPEC `c:real^N` o MATCH_MP BOUNDED_SUBSET_BALL) THEN  | 
|
402  | 
REWRITE_TAC[UNION_SUBSET] THEN  | 
|
403  | 
DISCH_THEN(X_CHOOSE_THEN `B:real` STRIP_ASSUME_TAC) THEN  | 
|
404  | 
MP_TAC(ISPECL [`p:real^M->real^N`; `a:real^M`; `b:real^M`]  | 
|
405  | 
RETRACTION_INJECTIVE_IMAGE_INTERVAL) THEN  | 
|
406  | 
ASM_REWRITE_TAC[SUBSET; IN_UNIV] THEN  | 
|
407  | 
DISCH_THEN(X_CHOOSE_THEN `r:real^N->real^N` MP_TAC) THEN  | 
|
408  | 
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC  | 
|
409  | 
(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC)) THEN  | 
|
410  | 
REWRITE_TAC[FORALL_IN_IMAGE; IN_UNIV] THEN DISCH_TAC THEN  | 
|
411  | 
ABBREV_TAC `q = \z:real^N. if z IN path_component s c then r(z) else z` THEN  | 
|
412  | 
SUBGOAL_THEN  | 
|
413  | 
`(q:real^N->real^N) continuous_on  | 
|
414  | 
(closure(path_component s c) UNION ((:real^N) DIFF (path_component s c)))`  | 
|
415  | 
MP_TAC THENL  | 
|
416  | 
[EXPAND_TAC "q" THEN MATCH_MP_TAC CONTINUOUS_ON_CASES THEN  | 
|
417  | 
REWRITE_TAC[CLOSED_CLOSURE; CONTINUOUS_ON_ID; GSYM OPEN_CLOSED] THEN  | 
|
418  | 
REPEAT CONJ_TAC THENL  | 
|
419  | 
[MATCH_MP_TAC OPEN_PATH_COMPONENT THEN EXPAND_TAC "s" THEN  | 
|
420  | 
ASM_SIMP_TAC[GSYM CLOSED_OPEN; COMPACT_IMP_CLOSED;  | 
|
421  | 
COMPACT_CONTINUOUS_IMAGE; COMPACT_INTERVAL];  | 
|
422  | 
ASM_MESON_TAC[CONTINUOUS_ON_SUBSET; SUBSET_UNIV];  | 
|
423  | 
ALL_TAC] THEN  | 
|
424  | 
X_GEN_TAC `z:real^N` THEN  | 
|
425  | 
REWRITE_TAC[SET_RULE `~(z IN (s DIFF t) /\ z IN t)`] THEN  | 
|
426  | 
STRIP_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN  | 
|
427  | 
MP_TAC(ISPECL  | 
|
428  | 
[`path_component s (z:real^N)`; `path_component s (c:real^N)`]  | 
|
429  | 
OPEN_INTER_CLOSURE_EQ_EMPTY) THEN  | 
|
430  | 
ASM_REWRITE_TAC[GSYM DISJOINT; PATH_COMPONENT_DISJOINT] THEN ANTS_TAC THENL  | 
|
431  | 
[MATCH_MP_TAC OPEN_PATH_COMPONENT THEN EXPAND_TAC "s" THEN  | 
|
432  | 
ASM_SIMP_TAC[GSYM CLOSED_OPEN; COMPACT_IMP_CLOSED;  | 
|
433  | 
COMPACT_CONTINUOUS_IMAGE; COMPACT_INTERVAL];  | 
|
434  | 
REWRITE_TAC[DISJOINT; EXTENSION; IN_INTER; NOT_IN_EMPTY] THEN  | 
|
435  | 
DISCH_THEN(MP_TAC o SPEC `z:real^N`) THEN ASM_REWRITE_TAC[] THEN  | 
|
436  | 
GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) [IN] THEN  | 
|
437  | 
REWRITE_TAC[PATH_COMPONENT_REFL_EQ] THEN ASM SET_TAC[]];  | 
|
438  | 
ALL_TAC] THEN  | 
|
439  | 
SUBGOAL_THEN  | 
|
440  | 
`closure(path_component s c) UNION ((:real^N) DIFF (path_component s c)) =  | 
|
441  | 
(:real^N)`  | 
|
442  | 
SUBST1_TAC THENL  | 
|
443  | 
[MATCH_MP_TAC(SET_RULE `s SUBSET t ==> t UNION (UNIV DIFF s) = UNIV`) THEN  | 
|
444  | 
REWRITE_TAC[CLOSURE_SUBSET];  | 
|
445  | 
DISCH_TAC] THEN  | 
|
446  | 
MP_TAC(ISPECL  | 
|
447  | 
[`(\x. &2 % c - x) o  | 
|
448  | 
(\x. c + B / norm(x - c) % (x - c)) o (q:real^N->real^N)`;  | 
|
449  | 
`cball(c:real^N,B)`]  | 
|
450  | 
BROUWER) THEN  | 
|
451  | 
REWRITE_TAC[NOT_IMP; GSYM CONJ_ASSOC; COMPACT_CBALL; CONVEX_CBALL] THEN  | 
|
452  | 
ASM_SIMP_TAC[CBALL_EQ_EMPTY; REAL_LT_IMP_LE; REAL_NOT_LT] THEN  | 
|
453  | 
SUBGOAL_THEN `!x. ~((q:real^N->real^N) x = c)` ASSUME_TAC THENL  | 
|
454  | 
[X_GEN_TAC `x:real^N` THEN EXPAND_TAC "q" THEN  | 
|
455  | 
REWRITE_TAC[NORM_EQ_0; VECTOR_SUB_EQ] THEN COND_CASES_TAC THEN  | 
|
456  | 
ASM SET_TAC[PATH_COMPONENT_REFL_EQ];  | 
|
457  | 
ALL_TAC] THEN  | 
|
458  | 
REPEAT CONJ_TAC THENL  | 
|
459  | 
[MATCH_MP_TAC CONTINUOUS_ON_COMPOSE THEN  | 
|
460  | 
SIMP_TAC[CONTINUOUS_ON_SUB; CONTINUOUS_ON_ID; CONTINUOUS_ON_CONST] THEN  | 
|
461  | 
MATCH_MP_TAC CONTINUOUS_ON_COMPOSE THEN CONJ_TAC THENL  | 
|
462  | 
[ASM_MESON_TAC[CONTINUOUS_ON_SUBSET; SUBSET_UNIV]; ALL_TAC] THEN  | 
|
463  | 
MATCH_MP_TAC CONTINUOUS_ON_ADD THEN REWRITE_TAC[CONTINUOUS_ON_CONST] THEN  | 
|
464  | 
MATCH_MP_TAC CONTINUOUS_ON_MUL THEN  | 
|
465  | 
SIMP_TAC[CONTINUOUS_ON_SUB; CONTINUOUS_ON_ID; CONTINUOUS_ON_CONST] THEN  | 
|
466  | 
REWRITE_TAC[o_DEF; real_div; LIFT_CMUL] THEN  | 
|
467  | 
MATCH_MP_TAC CONTINUOUS_ON_CMUL THEN  | 
|
468  | 
MATCH_MP_TAC(REWRITE_RULE[o_DEF] CONTINUOUS_ON_INV) THEN  | 
|
469  | 
ASM_REWRITE_TAC[FORALL_IN_IMAGE; NORM_EQ_0; VECTOR_SUB_EQ] THEN  | 
|
470  | 
SUBGOAL_THEN  | 
|
471  | 
`(\x:real^N. lift(norm(x - c))) = (lift o norm) o (\x. x - c)`  | 
|
472  | 
SUBST1_TAC THENL [REWRITE_TAC[o_DEF]; ALL_TAC] THEN  | 
|
473  | 
MATCH_MP_TAC CONTINUOUS_ON_COMPOSE THEN  | 
|
474  | 
ASM_SIMP_TAC[CONTINUOUS_ON_SUB; CONTINUOUS_ON_ID; CONTINUOUS_ON_CONST;  | 
|
475  | 
CONTINUOUS_ON_LIFT_NORM];  | 
|
476  | 
REWRITE_TAC[SUBSET; FORALL_IN_IMAGE; IN_CBALL; o_THM; dist] THEN  | 
|
477  | 
X_GEN_TAC `x:real^N` THEN DISCH_TAC THEN  | 
|
478  | 
REWRITE_TAC[VECTOR_ARITH `c - (&2 % c - (c + x)) = x`] THEN  | 
|
479  | 
REWRITE_TAC[NORM_MUL; REAL_ABS_DIV; REAL_ABS_NORM] THEN  | 
|
480  | 
ASM_SIMP_TAC[REAL_DIV_RMUL; NORM_EQ_0; VECTOR_SUB_EQ] THEN  | 
|
481  | 
ASM_REAL_ARITH_TAC;  | 
|
482  | 
REWRITE_TAC[NOT_EXISTS_THM; TAUT `~(c /\ b) <=> c ==> ~b`] THEN  | 
|
483  | 
REWRITE_TAC[IN_CBALL; o_THM; dist] THEN  | 
|
484  | 
X_GEN_TAC `x:real^N` THEN DISCH_TAC THEN  | 
|
485  | 
REWRITE_TAC[VECTOR_ARITH `&2 % c - (c + x') = x <=> --x' = x - c`] THEN  | 
|
486  | 
ASM_CASES_TAC `(x:real^N) IN path_component s c` THENL  | 
|
487  | 
[MATCH_MP_TAC(NORM_ARITH `norm(y) < B /\ norm(x) = B ==> ~(--x = y)`) THEN  | 
|
488  | 
REWRITE_TAC[NORM_MUL; REAL_ABS_DIV; REAL_ABS_NORM] THEN  | 
|
489  | 
ASM_SIMP_TAC[REAL_DIV_RMUL; NORM_EQ_0; VECTOR_SUB_EQ] THEN  | 
|
490  | 
ASM_SIMP_TAC[REAL_ARITH `&0 < B ==> abs B = B`] THEN  | 
|
491  | 
UNDISCH_TAC `path_component s c SUBSET ball(c:real^N,B)` THEN  | 
|
492  | 
REWRITE_TAC[SUBSET; IN_BALL] THEN ASM_MESON_TAC[dist; NORM_SUB];  | 
|
493  | 
EXPAND_TAC "q" THEN REWRITE_TAC[] THEN ASM_REWRITE_TAC[] THEN  | 
|
494  | 
REWRITE_TAC[VECTOR_ARITH `--(c % x) = x <=> (&1 + c) % x = vec 0`] THEN  | 
|
495  | 
ASM_REWRITE_TAC[DE_MORGAN_THM; VECTOR_SUB_EQ; VECTOR_MUL_EQ_0] THEN  | 
|
496  | 
SUBGOAL_THEN `~(x:real^N = c)` ASSUME_TAC THENL  | 
|
497  | 
[ASM_MESON_TAC[PATH_COMPONENT_REFL; IN]; ALL_TAC] THEN  | 
|
498  | 
ASM_REWRITE_TAC[] THEN  | 
|
499  | 
MATCH_MP_TAC(REAL_ARITH `&0 < x ==> ~(&1 + x = &0)`) THEN  | 
|
500  | 
ASM_SIMP_TAC[REAL_LT_DIV; NORM_POS_LT; VECTOR_SUB_EQ]]]);;  | 
|
501  | 
||
502  | 
let PATH_CONNECTED_COMPLEMENT_HOMEOMORPHIC_INTERVAL = prove  | 
|
503  | 
(`!s:real^N->bool a b:real^M.  | 
|
504  | 
2 <= dimindex(:N) /\ s homeomorphic interval[a,b]  | 
|
505  | 
==> path_connected((:real^N) DIFF s)`,  | 
|
506  | 
REPEAT STRIP_TAC THEN REWRITE_TAC[PATH_CONNECTED_IFF_PATH_COMPONENT] THEN  | 
|
507  | 
FIRST_ASSUM(MP_TAC o MATCH_MP  | 
|
508  | 
UNBOUNDED_PATH_COMPONENTS_COMPLEMENT_HOMEOMORPHIC_INTERVAL) THEN  | 
|
509  | 
ASM_REWRITE_TAC[SET_RULE `~(x IN s) <=> x IN (UNIV DIFF s)`] THEN  | 
|
510  | 
ABBREV_TAC `t = (:real^N) DIFF s` THEN  | 
|
511  | 
DISCH_TAC THEN MAP_EVERY X_GEN_TAC [`x:real^N`; `y:real^N`] THEN  | 
|
512  | 
STRIP_TAC THEN FIRST_ASSUM(MP_TAC o MATCH_MP HOMEOMORPHIC_COMPACTNESS) THEN  | 
|
513  | 
REWRITE_TAC[COMPACT_INTERVAL] THEN  | 
|
514  | 
DISCH_THEN(MP_TAC o MATCH_MP COMPACT_IMP_BOUNDED) THEN  | 
|
515  | 
REWRITE_TAC[BOUNDED_POS; LEFT_IMP_EXISTS_THM] THEN  | 
|
516  | 
X_GEN_TAC `B:real` THEN STRIP_TAC THEN  | 
|
517  | 
SUBGOAL_THEN `(?u:real^N. u IN path_component t x /\ B < norm(u)) /\  | 
|
518  | 
(?v:real^N. v IN path_component t y /\ B < norm(v))`  | 
|
519  | 
STRIP_ASSUME_TAC THENL  | 
|
520  | 
[ASM_MESON_TAC[BOUNDED_POS; REAL_NOT_LE]; ALL_TAC] THEN  | 
|
521  | 
MATCH_MP_TAC PATH_COMPONENT_TRANS THEN EXISTS_TAC `u:real^N` THEN  | 
|
522  | 
CONJ_TAC THENL [ASM_MESON_TAC[IN]; ALL_TAC] THEN  | 
|
523  | 
MATCH_MP_TAC PATH_COMPONENT_SYM THEN  | 
|
524  | 
MATCH_MP_TAC PATH_COMPONENT_TRANS THEN EXISTS_TAC `v:real^N` THEN  | 
|
525  | 
CONJ_TAC THENL [ASM_MESON_TAC[IN]; ALL_TAC] THEN  | 
|
526  | 
MATCH_MP_TAC PATH_COMPONENT_OF_SUBSET THEN  | 
|
527  | 
EXISTS_TAC `(:real^N) DIFF cball(vec 0,B)` THEN CONJ_TAC THENL  | 
|
528  | 
[EXPAND_TAC "t" THEN MATCH_MP_TAC(SET_RULE  | 
|
529  | 
`s SUBSET t ==> (u DIFF t) SUBSET (u DIFF s)`) THEN  | 
|
530  | 
ASM_REWRITE_TAC[SUBSET; IN_CBALL_0];  | 
|
531  | 
MP_TAC(ISPEC `cball(vec 0:real^N,B)`  | 
|
532  | 
PATH_CONNECTED_COMPLEMENT_BOUNDED_CONVEX) THEN  | 
|
533  | 
ASM_REWRITE_TAC[BOUNDED_CBALL; CONVEX_CBALL] THEN  | 
|
534  | 
REWRITE_TAC[PATH_CONNECTED_IFF_PATH_COMPONENT] THEN  | 
|
535  | 
DISCH_THEN MATCH_MP_TAC THEN  | 
|
536  | 
ASM_REWRITE_TAC[IN_DIFF; IN_UNIV; IN_CBALL_0; REAL_NOT_LE]]);;  | 
|
537  | 
||
538  | 
(* ------------------------------------------------------------------------- *)  | 
|
539  | 
(* In particular, apply all these to the special case of an arc. *)  | 
|
540  | 
(* ------------------------------------------------------------------------- *)  | 
|
541  | 
||
542  | 
let RETRACTION_ARC = prove  | 
|
543  | 
(`!p. arc p  | 
|
544  | 
==> ?f. f continuous_on (:real^N) /\  | 
|
545  | 
IMAGE f (:real^N) SUBSET path_image p /\  | 
|
546  | 
(!x. x IN path_image p ==> f x = x)`,  | 
|
547  | 
REWRITE_TAC[arc; path; path_image] THEN REPEAT STRIP_TAC THEN  | 
|
548  | 
MATCH_MP_TAC RETRACTION_INJECTIVE_IMAGE_INTERVAL THEN  | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36593 
diff
changeset
 | 
549  | 
ASM_REWRITE_TAC[INTERVAL_EQ_EMPTY_CART_1; DROP_VEC; REAL_NOT_LT; REAL_POS]);;  | 
| 36432 | 550  | 
|
551  | 
let PATH_CONNECTED_ARC_COMPLEMENT = prove  | 
|
552  | 
(`!p. 2 <= dimindex(:N) /\ arc p  | 
|
553  | 
==> path_connected((:real^N) DIFF path_image p)`,  | 
|
554  | 
REWRITE_TAC[arc; path] THEN REPEAT STRIP_TAC THEN SIMP_TAC[path_image] THEN  | 
|
555  | 
MP_TAC(ISPECL [`path_image p:real^N->bool`; `vec 0:real^1`; `vec 1:real^1`]  | 
|
556  | 
PATH_CONNECTED_COMPLEMENT_HOMEOMORPHIC_INTERVAL) THEN  | 
|
557  | 
ASM_REWRITE_TAC[path_image] THEN DISCH_THEN MATCH_MP_TAC THEN  | 
|
558  | 
ONCE_REWRITE_TAC[HOMEOMORPHIC_SYM] THEN  | 
|
559  | 
MATCH_MP_TAC HOMEOMORPHIC_COMPACT THEN  | 
|
560  | 
EXISTS_TAC `p:real^1->real^N` THEN ASM_REWRITE_TAC[COMPACT_INTERVAL]);;  | 
|
561  | 
||
562  | 
let CONNECTED_ARC_COMPLEMENT = prove  | 
|
563  | 
(`!p. 2 <= dimindex(:N) /\ arc p  | 
|
564  | 
==> connected((:real^N) DIFF path_image p)`,  | 
|
565  | 
SIMP_TAC[PATH_CONNECTED_ARC_COMPLEMENT; PATH_CONNECTED_IMP_CONNECTED]);; *)  | 
|
566  | 
||
567  | 
end  |