| author | wenzelm | 
| Sun, 26 Feb 2012 17:44:09 +0100 | |
| changeset 46681 | c083a3f621c0 | 
| parent 44305 | 3bdc02eb1637 | 
| child 47242 | 1caeecc72aea | 
| permissions | -rw-r--r-- | 
| 41959 | 1  | 
(* Title: HOL/Ln.thy  | 
| 16959 | 2  | 
Author: Jeremy Avigad  | 
3  | 
*)  | 
|
4  | 
||
5  | 
header {* Properties of ln *}
 | 
|
6  | 
||
7  | 
theory Ln  | 
|
8  | 
imports Transcendental  | 
|
9  | 
begin  | 
|
10  | 
||
11  | 
lemma exp_first_two_terms: "exp x = 1 + x + suminf (%n.  | 
|
| 
40864
 
4abaaadfdaf2
moved activation of coercion inference into RealDef and declared function real a coercion.
 
nipkow 
parents: 
36777 
diff
changeset
 | 
12  | 
inverse(fact (n+2)) * (x ^ (n+2)))"  | 
| 16959 | 13  | 
proof -  | 
| 
40864
 
4abaaadfdaf2
moved activation of coercion inference into RealDef and declared function real a coercion.
 
nipkow 
parents: 
36777 
diff
changeset
 | 
14  | 
have "exp x = suminf (%n. inverse(fact n) * (x ^ n))"  | 
| 19765 | 15  | 
by (simp add: exp_def)  | 
| 
40864
 
4abaaadfdaf2
moved activation of coercion inference into RealDef and declared function real a coercion.
 
nipkow 
parents: 
36777 
diff
changeset
 | 
16  | 
  also from summable_exp have "... = (SUM n::nat : {0..<2}. 
 | 
| 
 
4abaaadfdaf2
moved activation of coercion inference into RealDef and declared function real a coercion.
 
nipkow 
parents: 
36777 
diff
changeset
 | 
17  | 
inverse(fact n) * (x ^ n)) + suminf (%n.  | 
| 
 
4abaaadfdaf2
moved activation of coercion inference into RealDef and declared function real a coercion.
 
nipkow 
parents: 
36777 
diff
changeset
 | 
18  | 
inverse(fact(n+2)) * (x ^ (n+2)))" (is "_ = ?a + _")  | 
| 16959 | 19  | 
by (rule suminf_split_initial_segment)  | 
20  | 
also have "?a = 1 + x"  | 
|
| 44289 | 21  | 
by (simp add: numeral_2_eq_2)  | 
| 16959 | 22  | 
finally show ?thesis .  | 
23  | 
qed  | 
|
24  | 
||
25  | 
lemma exp_tail_after_first_two_terms_summable:  | 
|
| 
40864
 
4abaaadfdaf2
moved activation of coercion inference into RealDef and declared function real a coercion.
 
nipkow 
parents: 
36777 
diff
changeset
 | 
26  | 
"summable (%n. inverse(fact (n+2)) * (x ^ (n+2)))"  | 
| 16959 | 27  | 
proof -  | 
28  | 
note summable_exp  | 
|
29  | 
thus ?thesis  | 
|
30  | 
by (frule summable_ignore_initial_segment)  | 
|
31  | 
qed  | 
|
32  | 
||
33  | 
lemma aux1: assumes a: "0 <= x" and b: "x <= 1"  | 
|
| 
40864
 
4abaaadfdaf2
moved activation of coercion inference into RealDef and declared function real a coercion.
 
nipkow 
parents: 
36777 
diff
changeset
 | 
34  | 
shows "inverse (fact ((n::nat) + 2)) * x ^ (n + 2) <= (x^2/2) * ((1/2)^n)"  | 
| 16959 | 35  | 
proof (induct n)  | 
| 
40864
 
4abaaadfdaf2
moved activation of coercion inference into RealDef and declared function real a coercion.
 
nipkow 
parents: 
36777 
diff
changeset
 | 
36  | 
show "inverse (fact ((0::nat) + 2)) * x ^ (0 + 2) <=  | 
| 16959 | 37  | 
x ^ 2 / 2 * (1 / 2) ^ 0"  | 
| 23482 | 38  | 
by (simp add: real_of_nat_Suc power2_eq_square)  | 
| 16959 | 39  | 
next  | 
| 32038 | 40  | 
fix n :: nat  | 
| 
40864
 
4abaaadfdaf2
moved activation of coercion inference into RealDef and declared function real a coercion.
 
nipkow 
parents: 
36777 
diff
changeset
 | 
41  | 
assume c: "inverse (fact (n + 2)) * x ^ (n + 2)  | 
| 16959 | 42  | 
<= x ^ 2 / 2 * (1 / 2) ^ n"  | 
| 
40864
 
4abaaadfdaf2
moved activation of coercion inference into RealDef and declared function real a coercion.
 
nipkow 
parents: 
36777 
diff
changeset
 | 
43  | 
show "inverse (fact (Suc n + 2)) * x ^ (Suc n + 2)  | 
| 16959 | 44  | 
<= x ^ 2 / 2 * (1 / 2) ^ Suc n"  | 
45  | 
proof -  | 
|
| 
40864
 
4abaaadfdaf2
moved activation of coercion inference into RealDef and declared function real a coercion.
 
nipkow 
parents: 
36777 
diff
changeset
 | 
46  | 
have "inverse(fact (Suc n + 2)) <= (1/2) * inverse (fact (n+2))"  | 
| 16959 | 47  | 
proof -  | 
48  | 
have "Suc n + 2 = Suc (n + 2)" by simp  | 
|
49  | 
then have "fact (Suc n + 2) = Suc (n + 2) * fact (n + 2)"  | 
|
50  | 
by simp  | 
|
51  | 
then have "real(fact (Suc n + 2)) = real(Suc (n + 2) * fact (n + 2))"  | 
|
52  | 
apply (rule subst)  | 
|
53  | 
apply (rule refl)  | 
|
54  | 
done  | 
|
55  | 
also have "... = real(Suc (n + 2)) * real(fact (n + 2))"  | 
|
56  | 
by (rule real_of_nat_mult)  | 
|
57  | 
finally have "real (fact (Suc n + 2)) =  | 
|
58  | 
real (Suc (n + 2)) * real (fact (n + 2))" .  | 
|
| 
40864
 
4abaaadfdaf2
moved activation of coercion inference into RealDef and declared function real a coercion.
 
nipkow 
parents: 
36777 
diff
changeset
 | 
59  | 
then have "inverse(fact (Suc n + 2)) =  | 
| 
 
4abaaadfdaf2
moved activation of coercion inference into RealDef and declared function real a coercion.
 
nipkow 
parents: 
36777 
diff
changeset
 | 
60  | 
inverse(Suc (n + 2)) * inverse(fact (n + 2))"  | 
| 16959 | 61  | 
apply (rule ssubst)  | 
62  | 
apply (rule inverse_mult_distrib)  | 
|
63  | 
done  | 
|
| 
40864
 
4abaaadfdaf2
moved activation of coercion inference into RealDef and declared function real a coercion.
 
nipkow 
parents: 
36777 
diff
changeset
 | 
64  | 
also have "... <= (1/2) * inverse(fact (n + 2))"  | 
| 16959 | 65  | 
apply (rule mult_right_mono)  | 
66  | 
apply (subst inverse_eq_divide)  | 
|
67  | 
apply simp  | 
|
| 44305 | 68  | 
apply (simp del: fact_Suc)  | 
| 16959 | 69  | 
done  | 
70  | 
finally show ?thesis .  | 
|
71  | 
qed  | 
|
72  | 
moreover have "x ^ (Suc n + 2) <= x ^ (n + 2)"  | 
|
| 44289 | 73  | 
by (simp add: mult_left_le_one_le mult_nonneg_nonneg a b)  | 
| 
40864
 
4abaaadfdaf2
moved activation of coercion inference into RealDef and declared function real a coercion.
 
nipkow 
parents: 
36777 
diff
changeset
 | 
74  | 
ultimately have "inverse (fact (Suc n + 2)) * x ^ (Suc n + 2) <=  | 
| 
 
4abaaadfdaf2
moved activation of coercion inference into RealDef and declared function real a coercion.
 
nipkow 
parents: 
36777 
diff
changeset
 | 
75  | 
(1 / 2 * inverse (fact (n + 2))) * x ^ (n + 2)"  | 
| 16959 | 76  | 
apply (rule mult_mono)  | 
77  | 
apply (rule mult_nonneg_nonneg)  | 
|
78  | 
apply simp  | 
|
79  | 
apply (subst inverse_nonnegative_iff_nonnegative)  | 
|
| 
27483
 
7c58324cd418
use real_of_nat_ge_zero instead of real_of_nat_fact_ge_zero
 
huffman 
parents: 
25875 
diff
changeset
 | 
80  | 
apply (rule real_of_nat_ge_zero)  | 
| 16959 | 81  | 
apply (rule zero_le_power)  | 
| 23441 | 82  | 
apply (rule a)  | 
| 16959 | 83  | 
done  | 
| 
40864
 
4abaaadfdaf2
moved activation of coercion inference into RealDef and declared function real a coercion.
 
nipkow 
parents: 
36777 
diff
changeset
 | 
84  | 
also have "... = 1 / 2 * (inverse (fact (n + 2)) * x ^ (n + 2))"  | 
| 16959 | 85  | 
by simp  | 
86  | 
also have "... <= 1 / 2 * (x ^ 2 / 2 * (1 / 2) ^ n)"  | 
|
87  | 
apply (rule mult_left_mono)  | 
|
| 41550 | 88  | 
apply (rule c)  | 
| 16959 | 89  | 
apply simp  | 
90  | 
done  | 
|
91  | 
also have "... = x ^ 2 / 2 * (1 / 2 * (1 / 2) ^ n)"  | 
|
92  | 
by auto  | 
|
93  | 
also have "(1::real) / 2 * (1 / 2) ^ n = (1 / 2) ^ (Suc n)"  | 
|
| 
30273
 
ecd6f0ca62ea
declare power_Suc [simp]; remove redundant type-specific versions of power_Suc
 
huffman 
parents: 
29667 
diff
changeset
 | 
94  | 
by (rule power_Suc [THEN sym])  | 
| 16959 | 95  | 
finally show ?thesis .  | 
96  | 
qed  | 
|
97  | 
qed  | 
|
98  | 
||
| 20692 | 99  | 
lemma aux2: "(%n. (x::real) ^ 2 / 2 * (1 / 2) ^ n) sums x^2"  | 
| 16959 | 100  | 
proof -  | 
| 20692 | 101  | 
have "(%n. (1 / 2::real)^n) sums (1 / (1 - (1/2)))"  | 
| 16959 | 102  | 
apply (rule geometric_sums)  | 
| 22998 | 103  | 
by (simp add: abs_less_iff)  | 
| 16959 | 104  | 
also have "(1::real) / (1 - 1/2) = 2"  | 
105  | 
by simp  | 
|
| 20692 | 106  | 
finally have "(%n. (1 / 2::real)^n) sums 2" .  | 
| 16959 | 107  | 
then have "(%n. x ^ 2 / 2 * (1 / 2) ^ n) sums (x^2 / 2 * 2)"  | 
108  | 
by (rule sums_mult)  | 
|
109  | 
also have "x^2 / 2 * 2 = x^2"  | 
|
110  | 
by simp  | 
|
111  | 
finally show ?thesis .  | 
|
112  | 
qed  | 
|
113  | 
||
| 23114 | 114  | 
lemma exp_bound: "0 <= (x::real) ==> x <= 1 ==> exp x <= 1 + x + x^2"  | 
| 16959 | 115  | 
proof -  | 
116  | 
assume a: "0 <= x"  | 
|
117  | 
assume b: "x <= 1"  | 
|
| 
40864
 
4abaaadfdaf2
moved activation of coercion inference into RealDef and declared function real a coercion.
 
nipkow 
parents: 
36777 
diff
changeset
 | 
118  | 
have c: "exp x = 1 + x + suminf (%n. inverse(fact (n+2)) *  | 
| 16959 | 119  | 
(x ^ (n+2)))"  | 
120  | 
by (rule exp_first_two_terms)  | 
|
| 
40864
 
4abaaadfdaf2
moved activation of coercion inference into RealDef and declared function real a coercion.
 
nipkow 
parents: 
36777 
diff
changeset
 | 
121  | 
moreover have "suminf (%n. inverse(fact (n+2)) * (x ^ (n+2))) <= x^2"  | 
| 16959 | 122  | 
proof -  | 
| 
40864
 
4abaaadfdaf2
moved activation of coercion inference into RealDef and declared function real a coercion.
 
nipkow 
parents: 
36777 
diff
changeset
 | 
123  | 
have "suminf (%n. inverse(fact (n+2)) * (x ^ (n+2))) <=  | 
| 16959 | 124  | 
suminf (%n. (x^2/2) * ((1/2)^n))"  | 
125  | 
apply (rule summable_le)  | 
|
| 41550 | 126  | 
apply (auto simp only: aux1 a b)  | 
| 16959 | 127  | 
apply (rule exp_tail_after_first_two_terms_summable)  | 
128  | 
by (rule sums_summable, rule aux2)  | 
|
129  | 
also have "... = x^2"  | 
|
130  | 
by (rule sums_unique [THEN sym], rule aux2)  | 
|
131  | 
finally show ?thesis .  | 
|
132  | 
qed  | 
|
133  | 
ultimately show ?thesis  | 
|
134  | 
by auto  | 
|
135  | 
qed  | 
|
136  | 
||
| 23114 | 137  | 
lemma aux4: "0 <= (x::real) ==> x <= 1 ==> exp (x - x^2) <= 1 + x"  | 
| 16959 | 138  | 
proof -  | 
139  | 
assume a: "0 <= x" and b: "x <= 1"  | 
|
140  | 
have "exp (x - x^2) = exp x / exp (x^2)"  | 
|
141  | 
by (rule exp_diff)  | 
|
142  | 
also have "... <= (1 + x + x^2) / exp (x ^2)"  | 
|
143  | 
apply (rule divide_right_mono)  | 
|
144  | 
apply (rule exp_bound)  | 
|
145  | 
apply (rule a, rule b)  | 
|
146  | 
apply simp  | 
|
147  | 
done  | 
|
148  | 
also have "... <= (1 + x + x^2) / (1 + x^2)"  | 
|
149  | 
apply (rule divide_left_mono)  | 
|
| 
17013
 
74bc935273ea
renamed exp_ge_add_one_self2 to exp_ge_add_one_self
 
avigad 
parents: 
16963 
diff
changeset
 | 
150  | 
apply (auto simp add: exp_ge_add_one_self_aux)  | 
| 16959 | 151  | 
apply (rule add_nonneg_nonneg)  | 
| 41550 | 152  | 
using a apply auto  | 
| 16959 | 153  | 
apply (rule mult_pos_pos)  | 
154  | 
apply auto  | 
|
155  | 
apply (rule add_pos_nonneg)  | 
|
156  | 
apply auto  | 
|
157  | 
done  | 
|
158  | 
also from a have "... <= 1 + x"  | 
|
| 44289 | 159  | 
by (simp add: field_simps add_strict_increasing zero_le_mult_iff)  | 
| 16959 | 160  | 
finally show ?thesis .  | 
161  | 
qed  | 
|
162  | 
||
163  | 
lemma ln_one_plus_pos_lower_bound: "0 <= x ==> x <= 1 ==>  | 
|
164  | 
x - x^2 <= ln (1 + x)"  | 
|
165  | 
proof -  | 
|
166  | 
assume a: "0 <= x" and b: "x <= 1"  | 
|
167  | 
then have "exp (x - x^2) <= 1 + x"  | 
|
168  | 
by (rule aux4)  | 
|
169  | 
also have "... = exp (ln (1 + x))"  | 
|
170  | 
proof -  | 
|
171  | 
from a have "0 < 1 + x" by auto  | 
|
172  | 
thus ?thesis  | 
|
173  | 
by (auto simp only: exp_ln_iff [THEN sym])  | 
|
174  | 
qed  | 
|
175  | 
finally have "exp (x - x ^ 2) <= exp (ln (1 + x))" .  | 
|
176  | 
thus ?thesis by (auto simp only: exp_le_cancel_iff)  | 
|
177  | 
qed  | 
|
178  | 
||
179  | 
lemma ln_one_minus_pos_upper_bound: "0 <= x ==> x < 1 ==> ln (1 - x) <= - x"  | 
|
180  | 
proof -  | 
|
181  | 
assume a: "0 <= (x::real)" and b: "x < 1"  | 
|
182  | 
have "(1 - x) * (1 + x + x^2) = (1 - x^3)"  | 
|
| 29667 | 183  | 
by (simp add: algebra_simps power2_eq_square power3_eq_cube)  | 
| 16959 | 184  | 
also have "... <= 1"  | 
| 25875 | 185  | 
by (auto simp add: a)  | 
| 16959 | 186  | 
finally have "(1 - x) * (1 + x + x ^ 2) <= 1" .  | 
187  | 
moreover have "0 < 1 + x + x^2"  | 
|
188  | 
apply (rule add_pos_nonneg)  | 
|
| 41550 | 189  | 
using a apply auto  | 
| 16959 | 190  | 
done  | 
191  | 
ultimately have "1 - x <= 1 / (1 + x + x^2)"  | 
|
192  | 
by (elim mult_imp_le_div_pos)  | 
|
193  | 
also have "... <= 1 / exp x"  | 
|
194  | 
apply (rule divide_left_mono)  | 
|
195  | 
apply (rule exp_bound, rule a)  | 
|
| 41550 | 196  | 
using a b apply auto  | 
| 16959 | 197  | 
apply (rule mult_pos_pos)  | 
198  | 
apply (rule add_pos_nonneg)  | 
|
199  | 
apply auto  | 
|
200  | 
done  | 
|
201  | 
also have "... = exp (-x)"  | 
|
| 
36777
 
be5461582d0f
avoid using real-specific versions of generic lemmas
 
huffman 
parents: 
33667 
diff
changeset
 | 
202  | 
by (auto simp add: exp_minus divide_inverse)  | 
| 16959 | 203  | 
finally have "1 - x <= exp (- x)" .  | 
204  | 
also have "1 - x = exp (ln (1 - x))"  | 
|
205  | 
proof -  | 
|
206  | 
have "0 < 1 - x"  | 
|
207  | 
by (insert b, auto)  | 
|
208  | 
thus ?thesis  | 
|
209  | 
by (auto simp only: exp_ln_iff [THEN sym])  | 
|
210  | 
qed  | 
|
211  | 
finally have "exp (ln (1 - x)) <= exp (- x)" .  | 
|
212  | 
thus ?thesis by (auto simp only: exp_le_cancel_iff)  | 
|
213  | 
qed  | 
|
214  | 
||
215  | 
lemma aux5: "x < 1 ==> ln(1 - x) = - ln(1 + x / (1 - x))"  | 
|
216  | 
proof -  | 
|
217  | 
assume a: "x < 1"  | 
|
218  | 
have "ln(1 - x) = - ln(1 / (1 - x))"  | 
|
219  | 
proof -  | 
|
220  | 
have "ln(1 - x) = - (- ln (1 - x))"  | 
|
221  | 
by auto  | 
|
222  | 
also have "- ln(1 - x) = ln 1 - ln(1 - x)"  | 
|
223  | 
by simp  | 
|
224  | 
also have "... = ln(1 / (1 - x))"  | 
|
225  | 
apply (rule ln_div [THEN sym])  | 
|
226  | 
by (insert a, auto)  | 
|
227  | 
finally show ?thesis .  | 
|
228  | 
qed  | 
|
| 23482 | 229  | 
also have " 1 / (1 - x) = 1 + x / (1 - x)" using a by(simp add:field_simps)  | 
| 16959 | 230  | 
finally show ?thesis .  | 
231  | 
qed  | 
|
232  | 
||
233  | 
lemma ln_one_minus_pos_lower_bound: "0 <= x ==> x <= (1 / 2) ==>  | 
|
234  | 
- x - 2 * x^2 <= ln (1 - x)"  | 
|
235  | 
proof -  | 
|
236  | 
assume a: "0 <= x" and b: "x <= (1 / 2)"  | 
|
237  | 
from b have c: "x < 1"  | 
|
238  | 
by auto  | 
|
239  | 
then have "ln (1 - x) = - ln (1 + x / (1 - x))"  | 
|
240  | 
by (rule aux5)  | 
|
241  | 
also have "- (x / (1 - x)) <= ..."  | 
|
242  | 
proof -  | 
|
243  | 
have "ln (1 + x / (1 - x)) <= x / (1 - x)"  | 
|
244  | 
apply (rule ln_add_one_self_le_self)  | 
|
245  | 
apply (rule divide_nonneg_pos)  | 
|
246  | 
by (insert a c, auto)  | 
|
247  | 
thus ?thesis  | 
|
248  | 
by auto  | 
|
249  | 
qed  | 
|
250  | 
also have "- (x / (1 - x)) = -x / (1 - x)"  | 
|
251  | 
by auto  | 
|
252  | 
finally have d: "- x / (1 - x) <= ln (1 - x)" .  | 
|
| 41550 | 253  | 
have "0 < 1 - x" using a b by simp  | 
| 23482 | 254  | 
hence e: "-x - 2 * x^2 <= - x / (1 - x)"  | 
| 41550 | 255  | 
using mult_right_le_one_le[of "x*x" "2*x"] a b  | 
256  | 
by (simp add:field_simps power2_eq_square)  | 
|
| 16959 | 257  | 
from e d show "- x - 2 * x^2 <= ln (1 - x)"  | 
258  | 
by (rule order_trans)  | 
|
259  | 
qed  | 
|
260  | 
||
| 23114 | 261  | 
lemma exp_ge_add_one_self [simp]: "1 + (x::real) <= exp x"  | 
| 16959 | 262  | 
apply (case_tac "0 <= x")  | 
| 
17013
 
74bc935273ea
renamed exp_ge_add_one_self2 to exp_ge_add_one_self
 
avigad 
parents: 
16963 
diff
changeset
 | 
263  | 
apply (erule exp_ge_add_one_self_aux)  | 
| 16959 | 264  | 
apply (case_tac "x <= -1")  | 
265  | 
apply (subgoal_tac "1 + x <= 0")  | 
|
266  | 
apply (erule order_trans)  | 
|
267  | 
apply simp  | 
|
268  | 
apply simp  | 
|
269  | 
apply (subgoal_tac "1 + x = exp(ln (1 + x))")  | 
|
270  | 
apply (erule ssubst)  | 
|
271  | 
apply (subst exp_le_cancel_iff)  | 
|
272  | 
apply (subgoal_tac "ln (1 - (- x)) <= - (- x)")  | 
|
273  | 
apply simp  | 
|
274  | 
apply (rule ln_one_minus_pos_upper_bound)  | 
|
275  | 
apply auto  | 
|
276  | 
done  | 
|
277  | 
||
278  | 
lemma ln_add_one_self_le_self2: "-1 < x ==> ln(1 + x) <= x"  | 
|
279  | 
apply (subgoal_tac "x = ln (exp x)")  | 
|
280  | 
apply (erule ssubst)back  | 
|
281  | 
apply (subst ln_le_cancel_iff)  | 
|
282  | 
apply auto  | 
|
283  | 
done  | 
|
284  | 
||
285  | 
lemma abs_ln_one_plus_x_minus_x_bound_nonneg:  | 
|
286  | 
"0 <= x ==> x <= 1 ==> abs(ln (1 + x) - x) <= x^2"  | 
|
287  | 
proof -  | 
|
| 23441 | 288  | 
assume x: "0 <= x"  | 
| 41550 | 289  | 
assume x1: "x <= 1"  | 
| 23441 | 290  | 
from x have "ln (1 + x) <= x"  | 
| 16959 | 291  | 
by (rule ln_add_one_self_le_self)  | 
292  | 
then have "ln (1 + x) - x <= 0"  | 
|
293  | 
by simp  | 
|
294  | 
then have "abs(ln(1 + x) - x) = - (ln(1 + x) - x)"  | 
|
295  | 
by (rule abs_of_nonpos)  | 
|
296  | 
also have "... = x - ln (1 + x)"  | 
|
297  | 
by simp  | 
|
298  | 
also have "... <= x^2"  | 
|
299  | 
proof -  | 
|
| 41550 | 300  | 
from x x1 have "x - x^2 <= ln (1 + x)"  | 
| 16959 | 301  | 
by (intro ln_one_plus_pos_lower_bound)  | 
302  | 
thus ?thesis  | 
|
303  | 
by simp  | 
|
304  | 
qed  | 
|
305  | 
finally show ?thesis .  | 
|
306  | 
qed  | 
|
307  | 
||
308  | 
lemma abs_ln_one_plus_x_minus_x_bound_nonpos:  | 
|
309  | 
"-(1 / 2) <= x ==> x <= 0 ==> abs(ln (1 + x) - x) <= 2 * x^2"  | 
|
310  | 
proof -  | 
|
| 41550 | 311  | 
assume a: "-(1 / 2) <= x"  | 
312  | 
assume b: "x <= 0"  | 
|
| 16959 | 313  | 
have "abs(ln (1 + x) - x) = x - ln(1 - (-x))"  | 
314  | 
apply (subst abs_of_nonpos)  | 
|
315  | 
apply simp  | 
|
316  | 
apply (rule ln_add_one_self_le_self2)  | 
|
| 41550 | 317  | 
using a apply auto  | 
| 16959 | 318  | 
done  | 
319  | 
also have "... <= 2 * x^2"  | 
|
320  | 
apply (subgoal_tac "- (-x) - 2 * (-x)^2 <= ln (1 - (-x))")  | 
|
| 29667 | 321  | 
apply (simp add: algebra_simps)  | 
| 16959 | 322  | 
apply (rule ln_one_minus_pos_lower_bound)  | 
| 41550 | 323  | 
using a b apply auto  | 
| 29667 | 324  | 
done  | 
| 16959 | 325  | 
finally show ?thesis .  | 
326  | 
qed  | 
|
327  | 
||
328  | 
lemma abs_ln_one_plus_x_minus_x_bound:  | 
|
329  | 
"abs x <= 1 / 2 ==> abs(ln (1 + x) - x) <= 2 * x^2"  | 
|
330  | 
apply (case_tac "0 <= x")  | 
|
331  | 
apply (rule order_trans)  | 
|
332  | 
apply (rule abs_ln_one_plus_x_minus_x_bound_nonneg)  | 
|
333  | 
apply auto  | 
|
334  | 
apply (rule abs_ln_one_plus_x_minus_x_bound_nonpos)  | 
|
335  | 
apply auto  | 
|
336  | 
done  | 
|
337  | 
||
338  | 
lemma ln_x_over_x_mono: "exp 1 <= x ==> x <= y ==> (ln y / y) <= (ln x / x)"  | 
|
339  | 
proof -  | 
|
| 41550 | 340  | 
assume x: "exp 1 <= x" "x <= y"  | 
| 44289 | 341  | 
moreover have "0 < exp (1::real)" by simp  | 
342  | 
ultimately have a: "0 < x" and b: "0 < y"  | 
|
343  | 
by (fast intro: less_le_trans order_trans)+  | 
|
| 16959 | 344  | 
have "x * ln y - x * ln x = x * (ln y - ln x)"  | 
| 29667 | 345  | 
by (simp add: algebra_simps)  | 
| 16959 | 346  | 
also have "... = x * ln(y / x)"  | 
| 44289 | 347  | 
by (simp only: ln_div a b)  | 
| 16959 | 348  | 
also have "y / x = (x + (y - x)) / x"  | 
349  | 
by simp  | 
|
| 44289 | 350  | 
also have "... = 1 + (y - x) / x"  | 
351  | 
using x a by (simp add: field_simps)  | 
|
| 16959 | 352  | 
also have "x * ln(1 + (y - x) / x) <= x * ((y - x) / x)"  | 
353  | 
apply (rule mult_left_mono)  | 
|
354  | 
apply (rule ln_add_one_self_le_self)  | 
|
355  | 
apply (rule divide_nonneg_pos)  | 
|
| 41550 | 356  | 
using x a apply simp_all  | 
| 16959 | 357  | 
done  | 
| 23482 | 358  | 
also have "... = y - x" using a by simp  | 
359  | 
also have "... = (y - x) * ln (exp 1)" by simp  | 
|
| 16959 | 360  | 
also have "... <= (y - x) * ln x"  | 
361  | 
apply (rule mult_left_mono)  | 
|
362  | 
apply (subst ln_le_cancel_iff)  | 
|
| 44289 | 363  | 
apply fact  | 
| 16959 | 364  | 
apply (rule a)  | 
| 41550 | 365  | 
apply (rule x)  | 
366  | 
using x apply simp  | 
|
| 16959 | 367  | 
done  | 
368  | 
also have "... = y * ln x - x * ln x"  | 
|
369  | 
by (rule left_diff_distrib)  | 
|
370  | 
finally have "x * ln y <= y * ln x"  | 
|
371  | 
by arith  | 
|
| 41550 | 372  | 
then have "ln y <= (y * ln x) / x" using a by (simp add: field_simps)  | 
373  | 
also have "... = y * (ln x / x)" by simp  | 
|
374  | 
finally show ?thesis using b by (simp add: field_simps)  | 
|
| 16959 | 375  | 
qed  | 
376  | 
||
| 43336 | 377  | 
lemma ln_le_minus_one:  | 
378  | 
"0 < x \<Longrightarrow> ln x \<le> x - 1"  | 
|
379  | 
using exp_ge_add_one_self[of "ln x"] by simp  | 
|
380  | 
||
381  | 
lemma ln_eq_minus_one:  | 
|
382  | 
assumes "0 < x" "ln x = x - 1" shows "x = 1"  | 
|
383  | 
proof -  | 
|
384  | 
let "?l y" = "ln y - y + 1"  | 
|
385  | 
have D: "\<And>x. 0 < x \<Longrightarrow> DERIV ?l x :> (1 / x - 1)"  | 
|
386  | 
by (auto intro!: DERIV_intros)  | 
|
387  | 
||
388  | 
show ?thesis  | 
|
389  | 
proof (cases rule: linorder_cases)  | 
|
390  | 
assume "x < 1"  | 
|
391  | 
from dense[OF `x < 1`] obtain a where "x < a" "a < 1" by blast  | 
|
392  | 
from `x < a` have "?l x < ?l a"  | 
|
393  | 
proof (rule DERIV_pos_imp_increasing, safe)  | 
|
394  | 
fix y assume "x \<le> y" "y \<le> a"  | 
|
395  | 
with `0 < x` `a < 1` have "0 < 1 / y - 1" "0 < y"  | 
|
396  | 
by (auto simp: field_simps)  | 
|
397  | 
with D show "\<exists>z. DERIV ?l y :> z \<and> 0 < z"  | 
|
398  | 
by auto  | 
|
399  | 
qed  | 
|
400  | 
also have "\<dots> \<le> 0"  | 
|
401  | 
using ln_le_minus_one `0 < x` `x < a` by (auto simp: field_simps)  | 
|
402  | 
finally show "x = 1" using assms by auto  | 
|
403  | 
next  | 
|
404  | 
assume "1 < x"  | 
|
405  | 
from dense[OF `1 < x`] obtain a where "1 < a" "a < x" by blast  | 
|
406  | 
from `a < x` have "?l x < ?l a"  | 
|
407  | 
proof (rule DERIV_neg_imp_decreasing, safe)  | 
|
408  | 
fix y assume "a \<le> y" "y \<le> x"  | 
|
409  | 
with `1 < a` have "1 / y - 1 < 0" "0 < y"  | 
|
410  | 
by (auto simp: field_simps)  | 
|
411  | 
with D show "\<exists>z. DERIV ?l y :> z \<and> z < 0"  | 
|
412  | 
by blast  | 
|
413  | 
qed  | 
|
414  | 
also have "\<dots> \<le> 0"  | 
|
415  | 
using ln_le_minus_one `1 < a` by (auto simp: field_simps)  | 
|
416  | 
finally show "x = 1" using assms by auto  | 
|
417  | 
qed simp  | 
|
418  | 
qed  | 
|
419  | 
||
| 16959 | 420  | 
end  |