| author | wenzelm | 
| Tue, 26 Jan 2021 23:34:40 +0100 | |
| changeset 73194 | c0d6d57a9a31 | 
| parent 71627 | 2a24c2015a61 | 
| child 74345 | e5ff77db6f38 | 
| permissions | -rw-r--r-- | 
| 10213 | 1 | (* Title: HOL/Transitive_Closure.thy | 
| 2 | Author: Lawrence C Paulson, Cambridge University Computer Laboratory | |
| 3 | Copyright 1992 University of Cambridge | |
| 4 | *) | |
| 5 | ||
| 60758 | 6 | section \<open>Reflexive and Transitive closure of a relation\<close> | 
| 12691 | 7 | |
| 15131 | 8 | theory Transitive_Closure | 
| 63612 | 9 | imports Relation | 
| 67723 | 10 | abbrevs "^*" = "\<^sup>*" "\<^sup>*\<^sup>*" | 
| 11 | and "^+" = "\<^sup>+" "\<^sup>+\<^sup>+" | |
| 12 | and "^=" = "\<^sup>=" "\<^sup>=\<^sup>=" | |
| 15131 | 13 | begin | 
| 12691 | 14 | |
| 69605 | 15 | ML_file \<open>~~/src/Provers/trancl.ML\<close> | 
| 48891 | 16 | |
| 60758 | 17 | text \<open> | 
| 61799 | 18 | \<open>rtrancl\<close> is reflexive/transitive closure, | 
| 19 | \<open>trancl\<close> is transitive closure, | |
| 20 | \<open>reflcl\<close> is reflexive closure. | |
| 12691 | 21 | |
| 63612 | 22 | These postfix operators have \<^emph>\<open>maximum priority\<close>, forcing their | 
| 12691 | 23 | operands to be atomic. | 
| 60758 | 24 | \<close> | 
| 10213 | 25 | |
| 63612 | 26 | context notes [[inductive_internals]] | 
| 61681 
ca53150406c9
option "inductive_defs" controls exposure of def and mono facts;
 wenzelm parents: 
61424diff
changeset | 27 | begin | 
| 
ca53150406c9
option "inductive_defs" controls exposure of def and mono facts;
 wenzelm parents: 
61424diff
changeset | 28 | |
| 61955 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 29 | inductive_set rtrancl :: "('a \<times> 'a) set \<Rightarrow> ('a \<times> 'a) set"  ("(_\<^sup>*)" [1000] 999)
 | 
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 30 |   for r :: "('a \<times> 'a) set"
 | 
| 63612 | 31 | where | 
| 32 | rtrancl_refl [intro!, Pure.intro!, simp]: "(a, a) \<in> r\<^sup>*" | |
| 33 | | rtrancl_into_rtrancl [Pure.intro]: "(a, b) \<in> r\<^sup>* \<Longrightarrow> (b, c) \<in> r \<Longrightarrow> (a, c) \<in> r\<^sup>*" | |
| 61955 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 34 | |
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 35 | inductive_set trancl :: "('a \<times> 'a) set \<Rightarrow> ('a \<times> 'a) set"  ("(_\<^sup>+)" [1000] 999)
 | 
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 36 |   for r :: "('a \<times> 'a) set"
 | 
| 63612 | 37 | where | 
| 38 | r_into_trancl [intro, Pure.intro]: "(a, b) \<in> r \<Longrightarrow> (a, b) \<in> r\<^sup>+" | |
| 39 | | trancl_into_trancl [Pure.intro]: "(a, b) \<in> r\<^sup>+ \<Longrightarrow> (b, c) \<in> r \<Longrightarrow> (a, c) \<in> r\<^sup>+" | |
| 11327 
cd2c27a23df1
Transitive closure is now defined via "inductive".
 berghofe parents: 
11115diff
changeset | 40 | |
| 61955 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 41 | notation | 
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 42 |   rtranclp  ("(_\<^sup>*\<^sup>*)" [1000] 1000) and
 | 
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 43 |   tranclp  ("(_\<^sup>+\<^sup>+)" [1000] 1000)
 | 
| 13704 
854501b1e957
Transitive closure is now defined inductively as well.
 berghofe parents: 
12937diff
changeset | 44 | |
| 61955 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 45 | declare | 
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 46 | rtrancl_def [nitpick_unfold del] | 
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 47 | rtranclp_def [nitpick_unfold del] | 
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 48 | trancl_def [nitpick_unfold del] | 
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 49 | tranclp_def [nitpick_unfold del] | 
| 33878 
85102f57b4a8
removed "nitpick_def" attributes from (r)trancl(p), since "Nitpick.thy" overrides these
 blanchet parents: 
33656diff
changeset | 50 | |
| 61681 
ca53150406c9
option "inductive_defs" controls exposure of def and mono facts;
 wenzelm parents: 
61424diff
changeset | 51 | end | 
| 
ca53150406c9
option "inductive_defs" controls exposure of def and mono facts;
 wenzelm parents: 
61424diff
changeset | 52 | |
| 61955 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 53 | abbreviation reflcl :: "('a \<times> 'a) set \<Rightarrow> ('a \<times> 'a) set"  ("(_\<^sup>=)" [1000] 999)
 | 
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 54 | where "r\<^sup>= \<equiv> r \<union> Id" | 
| 10213 | 55 | |
| 61955 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 56 | abbreviation reflclp :: "('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> bool"  ("(_\<^sup>=\<^sup>=)" [1000] 1000)
 | 
| 67399 | 57 | where "r\<^sup>=\<^sup>= \<equiv> sup r (=)" | 
| 22262 | 58 | |
| 61955 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 59 | notation (ASCII) | 
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 60 |   rtrancl  ("(_^*)" [1000] 999) and
 | 
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 61 |   trancl  ("(_^+)" [1000] 999) and
 | 
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 62 |   reflcl  ("(_^=)" [1000] 999) and
 | 
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 63 |   rtranclp  ("(_^**)" [1000] 1000) and
 | 
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 64 |   tranclp  ("(_^++)" [1000] 1000) and
 | 
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 65 |   reflclp  ("(_^==)" [1000] 1000)
 | 
| 12691 | 66 | |
| 67 | ||
| 60758 | 68 | subsection \<open>Reflexive closure\<close> | 
| 26271 | 69 | |
| 63404 | 70 | lemma refl_reflcl[simp]: "refl (r\<^sup>=)" | 
| 71 | by (simp add: refl_on_def) | |
| 26271 | 72 | |
| 63404 | 73 | lemma antisym_reflcl[simp]: "antisym (r\<^sup>=) = antisym r" | 
| 74 | by (simp add: antisym_def) | |
| 26271 | 75 | |
| 63404 | 76 | lemma trans_reflclI[simp]: "trans r \<Longrightarrow> trans (r\<^sup>=)" | 
| 77 | unfolding trans_def by blast | |
| 26271 | 78 | |
| 63404 | 79 | lemma reflclp_idemp [simp]: "(P\<^sup>=\<^sup>=)\<^sup>=\<^sup>= = P\<^sup>=\<^sup>=" | 
| 80 | by blast | |
| 81 | ||
| 26271 | 82 | |
| 60758 | 83 | subsection \<open>Reflexive-transitive closure\<close> | 
| 12691 | 84 | |
| 67399 | 85 | lemma reflcl_set_eq [pred_set_conv]: "(sup (\<lambda>x y. (x, y) \<in> r) (=)) = (\<lambda>x y. (x, y) \<in> r \<union> Id)" | 
| 68618 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68456diff
changeset | 86 | by (auto simp: fun_eq_iff) | 
| 22262 | 87 | |
| 63404 | 88 | lemma r_into_rtrancl [intro]: "\<And>p. p \<in> r \<Longrightarrow> p \<in> r\<^sup>*" | 
| 61799 | 89 | \<comment> \<open>\<open>rtrancl\<close> of \<open>r\<close> contains \<open>r\<close>\<close> | 
| 71627 | 90 | by (simp add: split_tupled_all rtrancl_refl [THEN rtrancl_into_rtrancl]) | 
| 12691 | 91 | |
| 63404 | 92 | lemma r_into_rtranclp [intro]: "r x y \<Longrightarrow> r\<^sup>*\<^sup>* x y" | 
| 61799 | 93 | \<comment> \<open>\<open>rtrancl\<close> of \<open>r\<close> contains \<open>r\<close>\<close> | 
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 94 | by (erule rtranclp.rtrancl_refl [THEN rtranclp.rtrancl_into_rtrancl]) | 
| 22262 | 95 | |
| 63404 | 96 | lemma rtranclp_mono: "r \<le> s \<Longrightarrow> r\<^sup>*\<^sup>* \<le> s\<^sup>*\<^sup>*" | 
| 61799 | 97 | \<comment> \<open>monotonicity of \<open>rtrancl\<close>\<close> | 
| 71627 | 98 | proof (rule predicate2I) | 
| 99 | show "s\<^sup>*\<^sup>* x y" if "r \<le> s" "r\<^sup>*\<^sup>* x y" for x y | |
| 100 | using \<open>r\<^sup>*\<^sup>* x y\<close> \<open>r \<le> s\<close> | |
| 101 | by (induction rule: rtranclp.induct) (blast intro: rtranclp.rtrancl_into_rtrancl)+ | |
| 102 | qed | |
| 12691 | 103 | |
| 63404 | 104 | lemma mono_rtranclp[mono]: "(\<And>a b. x a b \<longrightarrow> y a b) \<Longrightarrow> x\<^sup>*\<^sup>* a b \<longrightarrow> y\<^sup>*\<^sup>* a b" | 
| 60681 | 105 | using rtranclp_mono[of x y] by auto | 
| 106 | ||
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 107 | lemmas rtrancl_mono = rtranclp_mono [to_set] | 
| 22262 | 108 | |
| 26179 
bc5d582d6cfe
rtranclp_induct, tranclp_induct: added case_names;
 wenzelm parents: 
26174diff
changeset | 109 | theorem rtranclp_induct [consumes 1, case_names base step, induct set: rtranclp]: | 
| 63404 | 110 | assumes a: "r\<^sup>*\<^sup>* a b" | 
| 111 | and cases: "P a" "\<And>y z. r\<^sup>*\<^sup>* a y \<Longrightarrow> r y z \<Longrightarrow> P y \<Longrightarrow> P z" | |
| 112 | shows "P b" | |
| 113 | using a by (induct x\<equiv>a b) (rule cases)+ | |
| 12691 | 114 | |
| 25425 
9191942c4ead
Removed some case_names and consumes attributes that are now no longer
 berghofe parents: 
25295diff
changeset | 115 | lemmas rtrancl_induct [induct set: rtrancl] = rtranclp_induct [to_set] | 
| 22262 | 116 | |
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 117 | lemmas rtranclp_induct2 = | 
| 63404 | 118 | rtranclp_induct[of _ "(ax,ay)" "(bx,by)", split_rule, consumes 1, case_names refl step] | 
| 22262 | 119 | |
| 14404 
4952c5a92e04
Transitive_Closure: added consumes and case_names attributes
 nipkow parents: 
14398diff
changeset | 120 | lemmas rtrancl_induct2 = | 
| 63404 | 121 | rtrancl_induct[of "(ax,ay)" "(bx,by)", split_format (complete), consumes 1, case_names refl step] | 
| 18372 | 122 | |
| 63404 | 123 | lemma refl_rtrancl: "refl (r\<^sup>*)" | 
| 124 | unfolding refl_on_def by fast | |
| 19228 | 125 | |
| 60758 | 126 | text \<open>Transitivity of transitive closure.\<close> | 
| 63404 | 127 | lemma trans_rtrancl: "trans (r\<^sup>*)" | 
| 12823 | 128 | proof (rule transI) | 
| 129 | fix x y z | |
| 130 | assume "(x, y) \<in> r\<^sup>*" | |
| 131 | assume "(y, z) \<in> r\<^sup>*" | |
| 26179 
bc5d582d6cfe
rtranclp_induct, tranclp_induct: added case_names;
 wenzelm parents: 
26174diff
changeset | 132 | then show "(x, z) \<in> r\<^sup>*" | 
| 
bc5d582d6cfe
rtranclp_induct, tranclp_induct: added case_names;
 wenzelm parents: 
26174diff
changeset | 133 | proof induct | 
| 
bc5d582d6cfe
rtranclp_induct, tranclp_induct: added case_names;
 wenzelm parents: 
26174diff
changeset | 134 | case base | 
| 
bc5d582d6cfe
rtranclp_induct, tranclp_induct: added case_names;
 wenzelm parents: 
26174diff
changeset | 135 | show "(x, y) \<in> r\<^sup>*" by fact | 
| 
bc5d582d6cfe
rtranclp_induct, tranclp_induct: added case_names;
 wenzelm parents: 
26174diff
changeset | 136 | next | 
| 
bc5d582d6cfe
rtranclp_induct, tranclp_induct: added case_names;
 wenzelm parents: 
26174diff
changeset | 137 | case (step u v) | 
| 60758 | 138 | from \<open>(x, u) \<in> r\<^sup>*\<close> and \<open>(u, v) \<in> r\<close> | 
| 26179 
bc5d582d6cfe
rtranclp_induct, tranclp_induct: added case_names;
 wenzelm parents: 
26174diff
changeset | 139 | show "(x, v) \<in> r\<^sup>*" .. | 
| 
bc5d582d6cfe
rtranclp_induct, tranclp_induct: added case_names;
 wenzelm parents: 
26174diff
changeset | 140 | qed | 
| 12823 | 141 | qed | 
| 12691 | 142 | |
| 45607 | 143 | lemmas rtrancl_trans = trans_rtrancl [THEN transD] | 
| 12691 | 144 | |
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 145 | lemma rtranclp_trans: | 
| 63404 | 146 | assumes "r\<^sup>*\<^sup>* x y" | 
| 147 | and "r\<^sup>*\<^sup>* y z" | |
| 148 | shows "r\<^sup>*\<^sup>* x z" | |
| 149 | using assms(2,1) by induct iprover+ | |
| 22262 | 150 | |
| 26174 
9efd4c04eaa4
rtranclE, tranclE: tuned statement, added case_names;
 wenzelm parents: 
25425diff
changeset | 151 | lemma rtranclE [cases set: rtrancl]: | 
| 63404 | 152 | fixes a b :: 'a | 
| 153 | assumes major: "(a, b) \<in> r\<^sup>*" | |
| 26174 
9efd4c04eaa4
rtranclE, tranclE: tuned statement, added case_names;
 wenzelm parents: 
25425diff
changeset | 154 | obtains | 
| 
9efd4c04eaa4
rtranclE, tranclE: tuned statement, added case_names;
 wenzelm parents: 
25425diff
changeset | 155 | (base) "a = b" | 
| 63404 | 156 | | (step) y where "(a, y) \<in> r\<^sup>*" and "(y, b) \<in> r" | 
| 61799 | 157 | \<comment> \<open>elimination of \<open>rtrancl\<close> -- by induction on a special formula\<close> | 
| 68618 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68456diff
changeset | 158 | proof - | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68456diff
changeset | 159 | have "a = b \<or> (\<exists>y. (a, y) \<in> r\<^sup>* \<and> (y, b) \<in> r)" | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68456diff
changeset | 160 | by (rule major [THEN rtrancl_induct]) blast+ | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68456diff
changeset | 161 | then show ?thesis | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68456diff
changeset | 162 | by (auto intro: base step) | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68456diff
changeset | 163 | qed | 
| 12691 | 164 | |
| 63404 | 165 | lemma rtrancl_Int_subset: "Id \<subseteq> s \<Longrightarrow> (r\<^sup>* \<inter> s) O r \<subseteq> s \<Longrightarrow> r\<^sup>* \<subseteq> s" | 
| 71627 | 166 | by (fastforce elim: rtrancl_induct) | 
| 22080 
7bf8868ab3e4
induction rules for trancl/rtrancl expressed using subsets
 paulson parents: 
21589diff
changeset | 167 | |
| 63404 | 168 | lemma converse_rtranclp_into_rtranclp: "r a b \<Longrightarrow> r\<^sup>*\<^sup>* b c \<Longrightarrow> r\<^sup>*\<^sup>* a c" | 
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 169 | by (rule rtranclp_trans) iprover+ | 
| 22262 | 170 | |
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 171 | lemmas converse_rtrancl_into_rtrancl = converse_rtranclp_into_rtranclp [to_set] | 
| 12691 | 172 | |
| 69593 | 173 | text \<open>\<^medskip> More \<^term>\<open>r\<^sup>*\<close> equations and inclusions.\<close> | 
| 12691 | 174 | |
| 63404 | 175 | lemma rtranclp_idemp [simp]: "(r\<^sup>*\<^sup>*)\<^sup>*\<^sup>* = r\<^sup>*\<^sup>*" | 
| 71627 | 176 | proof - | 
| 177 | have "r\<^sup>*\<^sup>*\<^sup>*\<^sup>* x y \<Longrightarrow> r\<^sup>*\<^sup>* x y" for x y | |
| 178 | by (induction rule: rtranclp_induct) (blast intro: rtranclp_trans)+ | |
| 179 | then show ?thesis | |
| 180 | by (auto intro!: order_antisym) | |
| 181 | qed | |
| 12691 | 182 | |
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 183 | lemmas rtrancl_idemp [simp] = rtranclp_idemp [to_set] | 
| 22262 | 184 | |
| 63404 | 185 | lemma rtrancl_idemp_self_comp [simp]: "R\<^sup>* O R\<^sup>* = R\<^sup>*" | 
| 71627 | 186 | by (force intro: rtrancl_trans) | 
| 12691 | 187 | |
| 63404 | 188 | lemma rtrancl_subset_rtrancl: "r \<subseteq> s\<^sup>* \<Longrightarrow> r\<^sup>* \<subseteq> s\<^sup>*" | 
| 71627 | 189 | by (drule rtrancl_mono, simp) | 
| 12691 | 190 | |
| 63404 | 191 | lemma rtranclp_subset: "R \<le> S \<Longrightarrow> S \<le> R\<^sup>*\<^sup>* \<Longrightarrow> S\<^sup>*\<^sup>* = R\<^sup>*\<^sup>*" | 
| 71627 | 192 | by (fastforce dest: rtranclp_mono) | 
| 12691 | 193 | |
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 194 | lemmas rtrancl_subset = rtranclp_subset [to_set] | 
| 22262 | 195 | |
| 63404 | 196 | lemma rtranclp_sup_rtranclp: "(sup (R\<^sup>*\<^sup>*) (S\<^sup>*\<^sup>*))\<^sup>*\<^sup>* = (sup R S)\<^sup>*\<^sup>*" | 
| 197 | by (blast intro!: rtranclp_subset intro: rtranclp_mono [THEN predicate2D]) | |
| 12691 | 198 | |
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 199 | lemmas rtrancl_Un_rtrancl = rtranclp_sup_rtranclp [to_set] | 
| 22262 | 200 | |
| 63404 | 201 | lemma rtranclp_reflclp [simp]: "(R\<^sup>=\<^sup>=)\<^sup>*\<^sup>* = R\<^sup>*\<^sup>*" | 
| 202 | by (blast intro!: rtranclp_subset) | |
| 22262 | 203 | |
| 50616 | 204 | lemmas rtrancl_reflcl [simp] = rtranclp_reflclp [to_set] | 
| 12691 | 205 | |
| 63404 | 206 | lemma rtrancl_r_diff_Id: "(r - Id)\<^sup>* = r\<^sup>*" | 
| 68618 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68456diff
changeset | 207 | by (rule rtrancl_subset [symmetric]) auto | 
| 12691 | 208 | |
| 67399 | 209 | lemma rtranclp_r_diff_Id: "(inf r (\<noteq>))\<^sup>*\<^sup>* = r\<^sup>*\<^sup>*" | 
| 68618 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68456diff
changeset | 210 | by (rule rtranclp_subset [symmetric]) auto | 
| 22262 | 211 | |
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 212 | theorem rtranclp_converseD: | 
| 63404 | 213 | assumes "(r\<inverse>\<inverse>)\<^sup>*\<^sup>* x y" | 
| 214 | shows "r\<^sup>*\<^sup>* y x" | |
| 215 | using assms by induct (iprover intro: rtranclp_trans dest!: conversepD)+ | |
| 12691 | 216 | |
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 217 | lemmas rtrancl_converseD = rtranclp_converseD [to_set] | 
| 22262 | 218 | |
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 219 | theorem rtranclp_converseI: | 
| 63404 | 220 | assumes "r\<^sup>*\<^sup>* y x" | 
| 221 | shows "(r\<inverse>\<inverse>)\<^sup>*\<^sup>* x y" | |
| 222 | using assms by induct (iprover intro: rtranclp_trans conversepI)+ | |
| 12691 | 223 | |
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 224 | lemmas rtrancl_converseI = rtranclp_converseI [to_set] | 
| 22262 | 225 | |
| 67613 | 226 | lemma rtrancl_converse: "(r\<inverse>)\<^sup>* = (r\<^sup>*)\<inverse>" | 
| 12691 | 227 | by (fast dest!: rtrancl_converseD intro!: rtrancl_converseI) | 
| 228 | ||
| 63404 | 229 | lemma sym_rtrancl: "sym r \<Longrightarrow> sym (r\<^sup>*)" | 
| 19228 | 230 | by (simp only: sym_conv_converse_eq rtrancl_converse [symmetric]) | 
| 231 | ||
| 34909 
a799687944af
Tuned some proofs; nicer case names for some of the induction / cases rules.
 berghofe parents: 
33878diff
changeset | 232 | theorem converse_rtranclp_induct [consumes 1, case_names base step]: | 
| 63404 | 233 | assumes major: "r\<^sup>*\<^sup>* a b" | 
| 234 | and cases: "P b" "\<And>y z. r y z \<Longrightarrow> r\<^sup>*\<^sup>* z b \<Longrightarrow> P z \<Longrightarrow> P y" | |
| 12937 
0c4fd7529467
clarified syntax of ``long'' statements: fixes/assumes/shows;
 wenzelm parents: 
12823diff
changeset | 235 | shows "P a" | 
| 26179 
bc5d582d6cfe
rtranclp_induct, tranclp_induct: added case_names;
 wenzelm parents: 
26174diff
changeset | 236 | using rtranclp_converseI [OF major] | 
| 
bc5d582d6cfe
rtranclp_induct, tranclp_induct: added case_names;
 wenzelm parents: 
26174diff
changeset | 237 | by induct (iprover intro: cases dest!: conversepD rtranclp_converseD)+ | 
| 12691 | 238 | |
| 25425 
9191942c4ead
Removed some case_names and consumes attributes that are now no longer
 berghofe parents: 
25295diff
changeset | 239 | lemmas converse_rtrancl_induct = converse_rtranclp_induct [to_set] | 
| 22262 | 240 | |
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 241 | lemmas converse_rtranclp_induct2 = | 
| 63612 | 242 | converse_rtranclp_induct [of _ "(ax, ay)" "(bx, by)", split_rule, consumes 1, case_names refl step] | 
| 22262 | 243 | |
| 14404 
4952c5a92e04
Transitive_Closure: added consumes and case_names attributes
 nipkow parents: 
14398diff
changeset | 244 | lemmas converse_rtrancl_induct2 = | 
| 63612 | 245 | converse_rtrancl_induct [of "(ax, ay)" "(bx, by)", split_format (complete), | 
| 63404 | 246 | consumes 1, case_names refl step] | 
| 12691 | 247 | |
| 34909 
a799687944af
Tuned some proofs; nicer case names for some of the induction / cases rules.
 berghofe parents: 
33878diff
changeset | 248 | lemma converse_rtranclpE [consumes 1, case_names base step]: | 
| 63404 | 249 | assumes major: "r\<^sup>*\<^sup>* x z" | 
| 250 | and cases: "x = z \<Longrightarrow> P" "\<And>y. r x y \<Longrightarrow> r\<^sup>*\<^sup>* y z \<Longrightarrow> P" | |
| 18372 | 251 | shows P | 
| 68618 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68456diff
changeset | 252 | proof - | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68456diff
changeset | 253 | have "x = z \<or> (\<exists>y. r x y \<and> r\<^sup>*\<^sup>* y z)" | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68456diff
changeset | 254 | by (rule_tac major [THEN converse_rtranclp_induct]) iprover+ | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68456diff
changeset | 255 | then show ?thesis | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68456diff
changeset | 256 | by (auto intro: cases) | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68456diff
changeset | 257 | qed | 
| 12691 | 258 | |
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 259 | lemmas converse_rtranclE = converse_rtranclpE [to_set] | 
| 22262 | 260 | |
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 261 | lemmas converse_rtranclpE2 = converse_rtranclpE [of _ "(xa,xb)" "(za,zb)", split_rule] | 
| 22262 | 262 | |
| 263 | lemmas converse_rtranclE2 = converse_rtranclE [of "(xa,xb)" "(za,zb)", split_rule] | |
| 12691 | 264 | |
| 63404 | 265 | lemma r_comp_rtrancl_eq: "r O r\<^sup>* = r\<^sup>* O r" | 
| 12691 | 266 | by (blast elim: rtranclE converse_rtranclE | 
| 63612 | 267 | intro: rtrancl_into_rtrancl converse_rtrancl_into_rtrancl) | 
| 12691 | 268 | |
| 63404 | 269 | lemma rtrancl_unfold: "r\<^sup>* = Id \<union> r\<^sup>* O r" | 
| 15551 | 270 | by (auto intro: rtrancl_into_rtrancl elim: rtranclE) | 
| 271 | ||
| 31690 | 272 | lemma rtrancl_Un_separatorE: | 
| 63404 | 273 | "(a, b) \<in> (P \<union> Q)\<^sup>* \<Longrightarrow> \<forall>x y. (a, x) \<in> P\<^sup>* \<longrightarrow> (x, y) \<in> Q \<longrightarrow> x = y \<Longrightarrow> (a, b) \<in> P\<^sup>*" | 
| 63612 | 274 | proof (induct rule: rtrancl.induct) | 
| 275 | case rtrancl_refl | |
| 276 | then show ?case by blast | |
| 277 | next | |
| 278 | case rtrancl_into_rtrancl | |
| 279 | then show ?case by (blast intro: rtrancl_trans) | |
| 280 | qed | |
| 31690 | 281 | |
| 282 | lemma rtrancl_Un_separator_converseE: | |
| 63404 | 283 | "(a, b) \<in> (P \<union> Q)\<^sup>* \<Longrightarrow> \<forall>x y. (x, b) \<in> P\<^sup>* \<longrightarrow> (y, x) \<in> Q \<longrightarrow> y = x \<Longrightarrow> (a, b) \<in> P\<^sup>*" | 
| 63612 | 284 | proof (induct rule: converse_rtrancl_induct) | 
| 285 | case base | |
| 286 | then show ?case by blast | |
| 287 | next | |
| 288 | case step | |
| 289 | then show ?case by (blast intro: rtrancl_trans) | |
| 290 | qed | |
| 31690 | 291 | |
| 34970 | 292 | lemma Image_closed_trancl: | 
| 63404 | 293 | assumes "r `` X \<subseteq> X" | 
| 294 | shows "r\<^sup>* `` X = X" | |
| 34970 | 295 | proof - | 
| 63404 | 296 |   from assms have **: "{y. \<exists>x\<in>X. (x, y) \<in> r} \<subseteq> X"
 | 
| 297 | by auto | |
| 298 | have "x \<in> X" if 1: "(y, x) \<in> r\<^sup>*" and 2: "y \<in> X" for x y | |
| 34970 | 299 | proof - | 
| 63404 | 300 | from 1 show "x \<in> X" | 
| 34970 | 301 | proof induct | 
| 63404 | 302 | case base | 
| 303 | show ?case by (fact 2) | |
| 34970 | 304 | next | 
| 63404 | 305 | case step | 
| 306 | with ** show ?case by auto | |
| 34970 | 307 | qed | 
| 308 | qed | |
| 309 | then show ?thesis by auto | |
| 310 | qed | |
| 311 | ||
| 12691 | 312 | |
| 60758 | 313 | subsection \<open>Transitive closure\<close> | 
| 10331 | 314 | |
| 71627 | 315 | lemma trancl_mono: | 
| 316 | assumes "p \<in> r\<^sup>+" "r \<subseteq> s" | |
| 317 | shows "p \<in> s\<^sup>+" | |
| 318 | proof - | |
| 319 | have "\<lbrakk>(a, b) \<in> r\<^sup>+; r \<subseteq> s\<rbrakk> \<Longrightarrow> (a, b) \<in> s\<^sup>+" for a b | |
| 320 | by (induction rule: trancl.induct) (iprover dest: subsetD)+ | |
| 321 | with assms show ?thesis | |
| 322 | by (cases p) force | |
| 323 | qed | |
| 12691 | 324 | |
| 63404 | 325 | lemma r_into_trancl': "\<And>p. p \<in> r \<Longrightarrow> p \<in> r\<^sup>+" | 
| 13704 
854501b1e957
Transitive closure is now defined inductively as well.
 berghofe parents: 
12937diff
changeset | 326 | by (simp only: split_tupled_all) (erule r_into_trancl) | 
| 
854501b1e957
Transitive closure is now defined inductively as well.
 berghofe parents: 
12937diff
changeset | 327 | |
| 63404 | 328 | text \<open>\<^medskip> Conversions between \<open>trancl\<close> and \<open>rtrancl\<close>.\<close> | 
| 12691 | 329 | |
| 63404 | 330 | lemma tranclp_into_rtranclp: "r\<^sup>+\<^sup>+ a b \<Longrightarrow> r\<^sup>*\<^sup>* a b" | 
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 331 | by (erule tranclp.induct) iprover+ | 
| 12691 | 332 | |
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 333 | lemmas trancl_into_rtrancl = tranclp_into_rtranclp [to_set] | 
| 22262 | 334 | |
| 63404 | 335 | lemma rtranclp_into_tranclp1: | 
| 336 | assumes "r\<^sup>*\<^sup>* a b" | |
| 337 | shows "r b c \<Longrightarrow> r\<^sup>+\<^sup>+ a c" | |
| 338 | using assms by (induct arbitrary: c) iprover+ | |
| 12691 | 339 | |
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 340 | lemmas rtrancl_into_trancl1 = rtranclp_into_tranclp1 [to_set] | 
| 22262 | 341 | |
| 71627 | 342 | lemma rtranclp_into_tranclp2: | 
| 343 | assumes "r a b" "r\<^sup>*\<^sup>* b c" shows "r\<^sup>+\<^sup>+ a c" | |
| 61799 | 344 | \<comment> \<open>intro rule from \<open>r\<close> and \<open>rtrancl\<close>\<close> | 
| 71627 | 345 | using \<open>r\<^sup>*\<^sup>* b c\<close> | 
| 346 | proof (cases rule: rtranclp.cases) | |
| 347 | case rtrancl_refl | |
| 348 | with assms show ?thesis | |
| 349 | by iprover | |
| 350 | next | |
| 351 | case rtrancl_into_rtrancl | |
| 352 | with assms show ?thesis | |
| 353 | by (auto intro: rtranclp_trans [THEN rtranclp_into_tranclp1]) | |
| 354 | qed | |
| 12691 | 355 | |
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 356 | lemmas rtrancl_into_trancl2 = rtranclp_into_tranclp2 [to_set] | 
| 22262 | 357 | |
| 61799 | 358 | text \<open>Nice induction rule for \<open>trancl\<close>\<close> | 
| 26179 
bc5d582d6cfe
rtranclp_induct, tranclp_induct: added case_names;
 wenzelm parents: 
26174diff
changeset | 359 | lemma tranclp_induct [consumes 1, case_names base step, induct pred: tranclp]: | 
| 63404 | 360 | assumes a: "r\<^sup>+\<^sup>+ a b" | 
| 361 | and cases: "\<And>y. r a y \<Longrightarrow> P y" "\<And>y z. r\<^sup>+\<^sup>+ a y \<Longrightarrow> r y z \<Longrightarrow> P y \<Longrightarrow> P z" | |
| 362 | shows "P b" | |
| 363 | using a by (induct x\<equiv>a b) (iprover intro: cases)+ | |
| 12691 | 364 | |
| 25425 
9191942c4ead
Removed some case_names and consumes attributes that are now no longer
 berghofe parents: 
25295diff
changeset | 365 | lemmas trancl_induct [induct set: trancl] = tranclp_induct [to_set] | 
| 22262 | 366 | |
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 367 | lemmas tranclp_induct2 = | 
| 63612 | 368 | tranclp_induct [of _ "(ax, ay)" "(bx, by)", split_rule, consumes 1, case_names base step] | 
| 22262 | 369 | |
| 22172 | 370 | lemmas trancl_induct2 = | 
| 63612 | 371 | trancl_induct [of "(ax, ay)" "(bx, by)", split_format (complete), | 
| 26179 
bc5d582d6cfe
rtranclp_induct, tranclp_induct: added case_names;
 wenzelm parents: 
26174diff
changeset | 372 | consumes 1, case_names base step] | 
| 22172 | 373 | |
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 374 | lemma tranclp_trans_induct: | 
| 63404 | 375 | assumes major: "r\<^sup>+\<^sup>+ x y" | 
| 376 | and cases: "\<And>x y. r x y \<Longrightarrow> P x y" "\<And>x y z. r\<^sup>+\<^sup>+ x y \<Longrightarrow> P x y \<Longrightarrow> r\<^sup>+\<^sup>+ y z \<Longrightarrow> P y z \<Longrightarrow> P x z" | |
| 18372 | 377 | shows "P x y" | 
| 61799 | 378 | \<comment> \<open>Another induction rule for trancl, incorporating transitivity\<close> | 
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 379 | by (iprover intro: major [THEN tranclp_induct] cases) | 
| 12691 | 380 | |
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 381 | lemmas trancl_trans_induct = tranclp_trans_induct [to_set] | 
| 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 382 | |
| 26174 
9efd4c04eaa4
rtranclE, tranclE: tuned statement, added case_names;
 wenzelm parents: 
25425diff
changeset | 383 | lemma tranclE [cases set: trancl]: | 
| 63404 | 384 | assumes "(a, b) \<in> r\<^sup>+" | 
| 26174 
9efd4c04eaa4
rtranclE, tranclE: tuned statement, added case_names;
 wenzelm parents: 
25425diff
changeset | 385 | obtains | 
| 63404 | 386 | (base) "(a, b) \<in> r" | 
| 387 | | (step) c where "(a, c) \<in> r\<^sup>+" and "(c, b) \<in> r" | |
| 26174 
9efd4c04eaa4
rtranclE, tranclE: tuned statement, added case_names;
 wenzelm parents: 
25425diff
changeset | 388 | using assms by cases simp_all | 
| 10980 | 389 | |
| 63404 | 390 | lemma trancl_Int_subset: "r \<subseteq> s \<Longrightarrow> (r\<^sup>+ \<inter> s) O r \<subseteq> s \<Longrightarrow> r\<^sup>+ \<subseteq> s" | 
| 71627 | 391 | by (fastforce simp add: elim: trancl_induct) | 
| 22080 
7bf8868ab3e4
induction rules for trancl/rtrancl expressed using subsets
 paulson parents: 
21589diff
changeset | 392 | |
| 63404 | 393 | lemma trancl_unfold: "r\<^sup>+ = r \<union> r\<^sup>+ O r" | 
| 15551 | 394 | by (auto intro: trancl_into_trancl elim: tranclE) | 
| 395 | ||
| 69593 | 396 | text \<open>Transitivity of \<^term>\<open>r\<^sup>+\<close>\<close> | 
| 63404 | 397 | lemma trans_trancl [simp]: "trans (r\<^sup>+)" | 
| 13704 
854501b1e957
Transitive closure is now defined inductively as well.
 berghofe parents: 
12937diff
changeset | 398 | proof (rule transI) | 
| 
854501b1e957
Transitive closure is now defined inductively as well.
 berghofe parents: 
12937diff
changeset | 399 | fix x y z | 
| 63404 | 400 | assume "(x, y) \<in> r\<^sup>+" | 
| 401 | assume "(y, z) \<in> r\<^sup>+" | |
| 402 | then show "(x, z) \<in> r\<^sup>+" | |
| 26179 
bc5d582d6cfe
rtranclp_induct, tranclp_induct: added case_names;
 wenzelm parents: 
26174diff
changeset | 403 | proof induct | 
| 
bc5d582d6cfe
rtranclp_induct, tranclp_induct: added case_names;
 wenzelm parents: 
26174diff
changeset | 404 | case (base u) | 
| 63404 | 405 | from \<open>(x, y) \<in> r\<^sup>+\<close> and \<open>(y, u) \<in> r\<close> | 
| 406 | show "(x, u) \<in> r\<^sup>+" .. | |
| 26179 
bc5d582d6cfe
rtranclp_induct, tranclp_induct: added case_names;
 wenzelm parents: 
26174diff
changeset | 407 | next | 
| 
bc5d582d6cfe
rtranclp_induct, tranclp_induct: added case_names;
 wenzelm parents: 
26174diff
changeset | 408 | case (step u v) | 
| 63404 | 409 | from \<open>(x, u) \<in> r\<^sup>+\<close> and \<open>(u, v) \<in> r\<close> | 
| 410 | show "(x, v) \<in> r\<^sup>+" .. | |
| 26179 
bc5d582d6cfe
rtranclp_induct, tranclp_induct: added case_names;
 wenzelm parents: 
26174diff
changeset | 411 | qed | 
| 13704 
854501b1e957
Transitive closure is now defined inductively as well.
 berghofe parents: 
12937diff
changeset | 412 | qed | 
| 12691 | 413 | |
| 45607 | 414 | lemmas trancl_trans = trans_trancl [THEN transD] | 
| 12691 | 415 | |
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 416 | lemma tranclp_trans: | 
| 63404 | 417 | assumes "r\<^sup>+\<^sup>+ x y" | 
| 418 | and "r\<^sup>+\<^sup>+ y z" | |
| 419 | shows "r\<^sup>+\<^sup>+ x z" | |
| 420 | using assms(2,1) by induct iprover+ | |
| 22262 | 421 | |
| 63404 | 422 | lemma trancl_id [simp]: "trans r \<Longrightarrow> r\<^sup>+ = r" | 
| 71627 | 423 | unfolding trans_def by (fastforce simp add: elim: trancl_induct) | 
| 19623 | 424 | |
| 26179 
bc5d582d6cfe
rtranclp_induct, tranclp_induct: added case_names;
 wenzelm parents: 
26174diff
changeset | 425 | lemma rtranclp_tranclp_tranclp: | 
| 63404 | 426 | assumes "r\<^sup>*\<^sup>* x y" | 
| 427 | shows "\<And>z. r\<^sup>+\<^sup>+ y z \<Longrightarrow> r\<^sup>+\<^sup>+ x z" | |
| 428 | using assms by induct (iprover intro: tranclp_trans)+ | |
| 12691 | 429 | |
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 430 | lemmas rtrancl_trancl_trancl = rtranclp_tranclp_tranclp [to_set] | 
| 22262 | 431 | |
| 63404 | 432 | lemma tranclp_into_tranclp2: "r a b \<Longrightarrow> r\<^sup>+\<^sup>+ b c \<Longrightarrow> r\<^sup>+\<^sup>+ a c" | 
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 433 | by (erule tranclp_trans [OF tranclp.r_into_trancl]) | 
| 22262 | 434 | |
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 435 | lemmas trancl_into_trancl2 = tranclp_into_tranclp2 [to_set] | 
| 12691 | 436 | |
| 71627 | 437 | lemma tranclp_converseI: | 
| 438 | assumes "(r\<^sup>+\<^sup>+)\<inverse>\<inverse> x y" shows "(r\<inverse>\<inverse>)\<^sup>+\<^sup>+ x y" | |
| 439 | using conversepD [OF assms] | |
| 440 | proof (induction rule: tranclp_induct) | |
| 441 | case (base y) | |
| 442 | then show ?case | |
| 443 | by (iprover intro: conversepI) | |
| 444 | next | |
| 445 | case (step y z) | |
| 446 | then show ?case | |
| 447 | by (iprover intro: conversepI tranclp_trans) | |
| 448 | qed | |
| 12691 | 449 | |
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 450 | lemmas trancl_converseI = tranclp_converseI [to_set] | 
| 22262 | 451 | |
| 71627 | 452 | lemma tranclp_converseD: | 
| 453 | assumes "(r\<inverse>\<inverse>)\<^sup>+\<^sup>+ x y" shows "(r\<^sup>+\<^sup>+)\<inverse>\<inverse> x y" | |
| 454 | proof - | |
| 455 | have "r\<^sup>+\<^sup>+ y x" | |
| 456 | using assms | |
| 457 | by (induction rule: tranclp_induct) (iprover dest: conversepD intro: tranclp_trans)+ | |
| 458 | then show ?thesis | |
| 459 | by (rule conversepI) | |
| 460 | qed | |
| 12691 | 461 | |
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 462 | lemmas trancl_converseD = tranclp_converseD [to_set] | 
| 22262 | 463 | |
| 63404 | 464 | lemma tranclp_converse: "(r\<inverse>\<inverse>)\<^sup>+\<^sup>+ = (r\<^sup>+\<^sup>+)\<inverse>\<inverse>" | 
| 465 | by (fastforce simp add: fun_eq_iff intro!: tranclp_converseI dest!: tranclp_converseD) | |
| 22262 | 466 | |
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 467 | lemmas trancl_converse = tranclp_converse [to_set] | 
| 12691 | 468 | |
| 63404 | 469 | lemma sym_trancl: "sym r \<Longrightarrow> sym (r\<^sup>+)" | 
| 19228 | 470 | by (simp only: sym_conv_converse_eq trancl_converse [symmetric]) | 
| 471 | ||
| 34909 
a799687944af
Tuned some proofs; nicer case names for some of the induction / cases rules.
 berghofe parents: 
33878diff
changeset | 472 | lemma converse_tranclp_induct [consumes 1, case_names base step]: | 
| 63404 | 473 | assumes major: "r\<^sup>+\<^sup>+ a b" | 
| 474 | and cases: "\<And>y. r y b \<Longrightarrow> P y" "\<And>y z. r y z \<Longrightarrow> r\<^sup>+\<^sup>+ z b \<Longrightarrow> P z \<Longrightarrow> P y" | |
| 18372 | 475 | shows "P a" | 
| 71627 | 476 | proof - | 
| 477 | have "r\<inverse>\<inverse>\<^sup>+\<^sup>+ b a" | |
| 478 | by (intro tranclp_converseI conversepI major) | |
| 479 | then show ?thesis | |
| 480 | by (induction rule: tranclp_induct) (blast intro: cases dest: tranclp_converseD)+ | |
| 481 | qed | |
| 12691 | 482 | |
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 483 | lemmas converse_trancl_induct = converse_tranclp_induct [to_set] | 
| 22262 | 484 | |
| 63404 | 485 | lemma tranclpD: "R\<^sup>+\<^sup>+ x y \<Longrightarrow> \<exists>z. R x z \<and> R\<^sup>*\<^sup>* z y" | 
| 71627 | 486 | proof (induction rule: converse_tranclp_induct) | 
| 487 | case (step u v) | |
| 488 | then show ?case | |
| 489 | by (blast intro: rtranclp_trans) | |
| 490 | qed auto | |
| 12691 | 491 | |
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 492 | lemmas tranclD = tranclpD [to_set] | 
| 22262 | 493 | |
| 31577 | 494 | lemma converse_tranclpE: | 
| 495 | assumes major: "tranclp r x z" | |
| 63404 | 496 | and base: "r x z \<Longrightarrow> P" | 
| 63612 | 497 | and step: "\<And>y. r x y \<Longrightarrow> tranclp r y z \<Longrightarrow> P" | 
| 31577 | 498 | shows P | 
| 499 | proof - | |
| 63404 | 500 | from tranclpD [OF major] obtain y where "r x y" and "rtranclp r y z" | 
| 501 | by iprover | |
| 31577 | 502 | from this(2) show P | 
| 503 | proof (cases rule: rtranclp.cases) | |
| 504 | case rtrancl_refl | |
| 63404 | 505 | with \<open>r x y\<close> base show P | 
| 506 | by iprover | |
| 31577 | 507 | next | 
| 508 | case rtrancl_into_rtrancl | |
| 71627 | 509 | then have "tranclp r y z" | 
| 31577 | 510 | by (iprover intro: rtranclp_into_tranclp1) | 
| 63404 | 511 | with \<open>r x y\<close> step show P | 
| 512 | by iprover | |
| 31577 | 513 | qed | 
| 514 | qed | |
| 515 | ||
| 516 | lemmas converse_tranclE = converse_tranclpE [to_set] | |
| 517 | ||
| 63404 | 518 | lemma tranclD2: "(x, y) \<in> R\<^sup>+ \<Longrightarrow> \<exists>z. (x, z) \<in> R\<^sup>* \<and> (z, y) \<in> R" | 
| 25295 
12985023be5e
tranclD2 (tranclD at the other end) + trancl_power
 kleing parents: 
23743diff
changeset | 519 | by (blast elim: tranclE intro: trancl_into_rtrancl) | 
| 
12985023be5e
tranclD2 (tranclD at the other end) + trancl_power
 kleing parents: 
23743diff
changeset | 520 | |
| 63404 | 521 | lemma irrefl_tranclI: "r\<inverse> \<inter> r\<^sup>* = {} \<Longrightarrow> (x, x) \<notin> r\<^sup>+"
 | 
| 18372 | 522 | by (blast elim: tranclE dest: trancl_into_rtrancl) | 
| 12691 | 523 | |
| 63404 | 524 | lemma irrefl_trancl_rD: "\<forall>x. (x, x) \<notin> r\<^sup>+ \<Longrightarrow> (x, y) \<in> r \<Longrightarrow> x \<noteq> y" | 
| 12691 | 525 | by (blast dest: r_into_trancl) | 
| 526 | ||
| 63404 | 527 | lemma trancl_subset_Sigma_aux: "(a, b) \<in> r\<^sup>* \<Longrightarrow> r \<subseteq> A \<times> A \<Longrightarrow> a = b \<or> a \<in> A" | 
| 18372 | 528 | by (induct rule: rtrancl_induct) auto | 
| 12691 | 529 | |
| 71627 | 530 | lemma trancl_subset_Sigma: | 
| 531 | assumes "r \<subseteq> A \<times> A" shows "r\<^sup>+ \<subseteq> A \<times> A" | |
| 532 | proof (rule trancl_Int_subset [OF assms]) | |
| 533 | show "(r\<^sup>+ \<inter> A \<times> A) O r \<subseteq> A \<times> A" | |
| 534 | using assms by auto | |
| 535 | qed | |
| 10996 
74e970389def
Moved some thms from Transitive_ClosureTr.ML to Transitive_Closure.thy
 nipkow parents: 
10980diff
changeset | 536 | |
| 63404 | 537 | lemma reflclp_tranclp [simp]: "(r\<^sup>+\<^sup>+)\<^sup>=\<^sup>= = r\<^sup>*\<^sup>*" | 
| 71627 | 538 | by (fast elim: rtranclp.cases tranclp_into_rtranclp dest: rtranclp_into_tranclp1) | 
| 10996 
74e970389def
Moved some thms from Transitive_ClosureTr.ML to Transitive_Closure.thy
 nipkow parents: 
10980diff
changeset | 539 | |
| 50616 | 540 | lemmas reflcl_trancl [simp] = reflclp_tranclp [to_set] | 
| 22262 | 541 | |
| 63404 | 542 | lemma trancl_reflcl [simp]: "(r\<^sup>=)\<^sup>+ = r\<^sup>*" | 
| 68618 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68456diff
changeset | 543 | proof - | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68456diff
changeset | 544 | have "(a, b) \<in> (r\<^sup>=)\<^sup>+ \<Longrightarrow> (a, b) \<in> r\<^sup>*" for a b | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68456diff
changeset | 545 | by (force dest: trancl_into_rtrancl) | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68456diff
changeset | 546 | moreover have "(a, b) \<in> (r\<^sup>=)\<^sup>+" if "(a, b) \<in> r\<^sup>*" for a b | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68456diff
changeset | 547 | using that | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68456diff
changeset | 548 | proof (cases a b rule: rtranclE) | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68456diff
changeset | 549 | case step | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68456diff
changeset | 550 | show ?thesis | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68456diff
changeset | 551 | by (rule rtrancl_into_trancl1) (use step in auto) | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68456diff
changeset | 552 | qed auto | 
| 71393 
fce780f9c9c6
new examples of BNF lifting across quotients using a new theory of confluence,
 traytel parents: 
70749diff
changeset | 553 | ultimately show ?thesis | 
| 68618 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68456diff
changeset | 554 | by auto | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68456diff
changeset | 555 | qed | 
| 10996 
74e970389def
Moved some thms from Transitive_ClosureTr.ML to Transitive_Closure.thy
 nipkow parents: 
10980diff
changeset | 556 | |
| 63404 | 557 | lemma rtrancl_trancl_reflcl [code]: "r\<^sup>* = (r\<^sup>+)\<^sup>=" | 
| 45140 | 558 | by simp | 
| 559 | ||
| 63404 | 560 | lemma trancl_empty [simp]: "{}\<^sup>+ = {}"
 | 
| 11084 | 561 | by (auto elim: trancl_induct) | 
| 10996 
74e970389def
Moved some thms from Transitive_ClosureTr.ML to Transitive_Closure.thy
 nipkow parents: 
10980diff
changeset | 562 | |
| 63404 | 563 | lemma rtrancl_empty [simp]: "{}\<^sup>* = Id"
 | 
| 11084 | 564 | by (rule subst [OF reflcl_trancl]) simp | 
| 10996 
74e970389def
Moved some thms from Transitive_ClosureTr.ML to Transitive_Closure.thy
 nipkow parents: 
10980diff
changeset | 565 | |
| 63404 | 566 | lemma rtranclpD: "R\<^sup>*\<^sup>* a b \<Longrightarrow> a = b \<or> a \<noteq> b \<and> R\<^sup>+\<^sup>+ a b" | 
| 68618 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68456diff
changeset | 567 | by (force simp: reflclp_tranclp [symmetric] simp del: reflclp_tranclp) | 
| 22262 | 568 | |
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 569 | lemmas rtranclD = rtranclpD [to_set] | 
| 11084 | 570 | |
| 63404 | 571 | lemma rtrancl_eq_or_trancl: "(x,y) \<in> R\<^sup>* \<longleftrightarrow> x = y \<or> x \<noteq> y \<and> (x, y) \<in> R\<^sup>+" | 
| 16514 | 572 | by (fast elim: trancl_into_rtrancl dest: rtranclD) | 
| 10996 
74e970389def
Moved some thms from Transitive_ClosureTr.ML to Transitive_Closure.thy
 nipkow parents: 
10980diff
changeset | 573 | |
| 63404 | 574 | lemma trancl_unfold_right: "r\<^sup>+ = r\<^sup>* O r" | 
| 575 | by (auto dest: tranclD2 intro: rtrancl_into_trancl1) | |
| 33656 
fc1af6753233
a few lemmas for point-free reasoning about transitive closure
 krauss parents: 
32901diff
changeset | 576 | |
| 63404 | 577 | lemma trancl_unfold_left: "r\<^sup>+ = r O r\<^sup>*" | 
| 578 | by (auto dest: tranclD intro: rtrancl_into_trancl2) | |
| 33656 
fc1af6753233
a few lemmas for point-free reasoning about transitive closure
 krauss parents: 
32901diff
changeset | 579 | |
| 63404 | 580 | lemma trancl_insert: "(insert (y, x) r)\<^sup>+ = r\<^sup>+ \<union> {(a, b). (a, y) \<in> r\<^sup>* \<and> (x, b) \<in> r\<^sup>*}"
 | 
| 61799 | 581 | \<comment> \<open>primitive recursion for \<open>trancl\<close> over finite relations\<close> | 
| 68618 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68456diff
changeset | 582 | proof - | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68456diff
changeset | 583 | have "\<And>a b. (a, b) \<in> (insert (y, x) r)\<^sup>+ \<Longrightarrow> | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68456diff
changeset | 584 |            (a, b) \<in> r\<^sup>+ \<union> {(a, b). (a, y) \<in> r\<^sup>* \<and> (x, b) \<in> r\<^sup>*}"
 | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68456diff
changeset | 585 | by (erule trancl_induct) (blast intro: rtrancl_into_trancl1 trancl_into_rtrancl trancl_trans)+ | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68456diff
changeset | 586 |   moreover have "r\<^sup>+ \<union> {(a, b). (a, y) \<in> r\<^sup>* \<and> (x, b) \<in> r\<^sup>*}  \<subseteq> (insert (y, x) r)\<^sup>+"
 | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68456diff
changeset | 587 | by (blast intro: trancl_mono rtrancl_mono [THEN [2] rev_subsetD] | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68456diff
changeset | 588 | rtrancl_trancl_trancl rtrancl_into_trancl2) | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68456diff
changeset | 589 | ultimately show ?thesis | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68456diff
changeset | 590 | by auto | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68456diff
changeset | 591 | qed | 
| 57178 | 592 | |
| 593 | lemma trancl_insert2: | |
| 63404 | 594 |   "(insert (a, b) r)\<^sup>+ = r\<^sup>+ \<union> {(x, y). ((x, a) \<in> r\<^sup>+ \<or> x = a) \<and> ((b, y) \<in> r\<^sup>+ \<or> y = b)}"
 | 
| 68618 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68456diff
changeset | 595 | by (auto simp: trancl_insert rtrancl_eq_or_trancl) | 
| 57178 | 596 | |
| 63404 | 597 | lemma rtrancl_insert: "(insert (a,b) r)\<^sup>* = r\<^sup>* \<union> {(x, y). (x, a) \<in> r\<^sup>* \<and> (b, y) \<in> r\<^sup>*}"
 | 
| 598 | using trancl_insert[of a b r] | |
| 599 | by (simp add: rtrancl_trancl_reflcl del: reflcl_trancl) blast | |
| 57178 | 600 | |
| 33656 
fc1af6753233
a few lemmas for point-free reasoning about transitive closure
 krauss parents: 
32901diff
changeset | 601 | |
| 60758 | 602 | text \<open>Simplifying nested closures\<close> | 
| 33656 
fc1af6753233
a few lemmas for point-free reasoning about transitive closure
 krauss parents: 
32901diff
changeset | 603 | |
| 63404 | 604 | lemma rtrancl_trancl_absorb[simp]: "(R\<^sup>*)\<^sup>+ = R\<^sup>*" | 
| 605 | by (simp add: trans_rtrancl) | |
| 33656 
fc1af6753233
a few lemmas for point-free reasoning about transitive closure
 krauss parents: 
32901diff
changeset | 606 | |
| 63404 | 607 | lemma trancl_rtrancl_absorb[simp]: "(R\<^sup>+)\<^sup>* = R\<^sup>*" | 
| 608 | by (subst reflcl_trancl[symmetric]) simp | |
| 33656 
fc1af6753233
a few lemmas for point-free reasoning about transitive closure
 krauss parents: 
32901diff
changeset | 609 | |
| 63404 | 610 | lemma rtrancl_reflcl_absorb[simp]: "(R\<^sup>*)\<^sup>= = R\<^sup>*" | 
| 611 | by auto | |
| 33656 
fc1af6753233
a few lemmas for point-free reasoning about transitive closure
 krauss parents: 
32901diff
changeset | 612 | |
| 
fc1af6753233
a few lemmas for point-free reasoning about transitive closure
 krauss parents: 
32901diff
changeset | 613 | |
| 61799 | 614 | text \<open>\<open>Domain\<close> and \<open>Range\<close>\<close> | 
| 10996 
74e970389def
Moved some thms from Transitive_ClosureTr.ML to Transitive_Closure.thy
 nipkow parents: 
10980diff
changeset | 615 | |
| 63404 | 616 | lemma Domain_rtrancl [simp]: "Domain (R\<^sup>*) = UNIV" | 
| 11084 | 617 | by blast | 
| 10996 
74e970389def
Moved some thms from Transitive_ClosureTr.ML to Transitive_Closure.thy
 nipkow parents: 
10980diff
changeset | 618 | |
| 63404 | 619 | lemma Range_rtrancl [simp]: "Range (R\<^sup>*) = UNIV" | 
| 11084 | 620 | by blast | 
| 10996 
74e970389def
Moved some thms from Transitive_ClosureTr.ML to Transitive_Closure.thy
 nipkow parents: 
10980diff
changeset | 621 | |
| 63404 | 622 | lemma rtrancl_Un_subset: "(R\<^sup>* \<union> S\<^sup>*) \<subseteq> (R \<union> S)\<^sup>*" | 
| 11084 | 623 | by (rule rtrancl_Un_rtrancl [THEN subst]) fast | 
| 10996 
74e970389def
Moved some thms from Transitive_ClosureTr.ML to Transitive_Closure.thy
 nipkow parents: 
10980diff
changeset | 624 | |
| 63404 | 625 | lemma in_rtrancl_UnI: "x \<in> R\<^sup>* \<or> x \<in> S\<^sup>* \<Longrightarrow> x \<in> (R \<union> S)\<^sup>*" | 
| 11084 | 626 | by (blast intro: subsetD [OF rtrancl_Un_subset]) | 
| 10996 
74e970389def
Moved some thms from Transitive_ClosureTr.ML to Transitive_Closure.thy
 nipkow parents: 
10980diff
changeset | 627 | |
| 63404 | 628 | lemma trancl_domain [simp]: "Domain (r\<^sup>+) = Domain r" | 
| 46752 
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
 haftmann parents: 
46664diff
changeset | 629 | by (unfold Domain_unfold) (blast dest: tranclD) | 
| 10996 
74e970389def
Moved some thms from Transitive_ClosureTr.ML to Transitive_Closure.thy
 nipkow parents: 
10980diff
changeset | 630 | |
| 63404 | 631 | lemma trancl_range [simp]: "Range (r\<^sup>+) = Range r" | 
| 46752 
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
 haftmann parents: 
46664diff
changeset | 632 | unfolding Domain_converse [symmetric] by (simp add: trancl_converse [symmetric]) | 
| 10996 
74e970389def
Moved some thms from Transitive_ClosureTr.ML to Transitive_Closure.thy
 nipkow parents: 
10980diff
changeset | 633 | |
| 71393 
fce780f9c9c6
new examples of BNF lifting across quotients using a new theory of confluence,
 traytel parents: 
70749diff
changeset | 634 | lemma Not_Domain_rtrancl: | 
| 68618 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68456diff
changeset | 635 | assumes "x \<notin> Domain R" shows "(x, y) \<in> R\<^sup>* \<longleftrightarrow> x = y" | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68456diff
changeset | 636 | proof - | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68456diff
changeset | 637 | have "(x, y) \<in> R\<^sup>* \<Longrightarrow> x = y" | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68456diff
changeset | 638 | by (erule rtrancl_induct) (use assms in auto) | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68456diff
changeset | 639 | then show ?thesis | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68456diff
changeset | 640 | by auto | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68456diff
changeset | 641 | qed | 
| 11327 
cd2c27a23df1
Transitive closure is now defined via "inductive".
 berghofe parents: 
11115diff
changeset | 642 | |
| 63404 | 643 | lemma trancl_subset_Field2: "r\<^sup>+ \<subseteq> Field r \<times> Field r" | 
| 71627 | 644 | by (rule trancl_Int_subset) (auto simp: Field_def) | 
| 29609 | 645 | |
| 63404 | 646 | lemma finite_trancl[simp]: "finite (r\<^sup>+) = finite r" | 
| 68618 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68456diff
changeset | 647 | proof | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68456diff
changeset | 648 | show "finite (r\<^sup>+) \<Longrightarrow> finite r" | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68456diff
changeset | 649 | by (blast intro: r_into_trancl' finite_subset) | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68456diff
changeset | 650 | show "finite r \<Longrightarrow> finite (r\<^sup>+)" | 
| 71627 | 651 | by (auto simp: finite_Field trancl_subset_Field2 [THEN finite_subset]) | 
| 68618 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68456diff
changeset | 652 | qed | 
| 29609 | 653 | |
| 68456 | 654 | lemma finite_rtrancl_Image[simp]: assumes "finite R" "finite A" shows "finite (R\<^sup>* `` A)" | 
| 68455 | 655 | proof (rule ccontr) | 
| 656 | assume "infinite (R\<^sup>* `` A)" | |
| 657 | with assms show False | |
| 658 | by(simp add: rtrancl_trancl_reflcl Un_Image del: reflcl_trancl) | |
| 659 | qed | |
| 660 | ||
| 61799 | 661 | text \<open>More about converse \<open>rtrancl\<close> and \<open>trancl\<close>, should | 
| 60758 | 662 | be merged with main body.\<close> | 
| 12428 
f3033eed309a
setup [trans] rules for calculational Isar reasoning
 kleing parents: 
11327diff
changeset | 663 | |
| 14337 
e13731554e50
undid split_comp_eq[simp] because it leads to nontermination together with split_def!
 nipkow parents: 
14208diff
changeset | 664 | lemma single_valued_confluent: | 
| 68618 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68456diff
changeset | 665 | assumes "single_valued r" and xy: "(x, y) \<in> r\<^sup>*" and xz: "(x, z) \<in> r\<^sup>*" | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68456diff
changeset | 666 | shows "(y, z) \<in> r\<^sup>* \<or> (z, y) \<in> r\<^sup>*" | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68456diff
changeset | 667 | using xy | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68456diff
changeset | 668 | proof (induction rule: rtrancl_induct) | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68456diff
changeset | 669 | case base | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68456diff
changeset | 670 | show ?case | 
| 71393 
fce780f9c9c6
new examples of BNF lifting across quotients using a new theory of confluence,
 traytel parents: 
70749diff
changeset | 671 | by (simp add: assms) | 
| 68618 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68456diff
changeset | 672 | next | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68456diff
changeset | 673 | case (step y z) | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68456diff
changeset | 674 | with xz \<open>single_valued r\<close> show ?case | 
| 71627 | 675 | by (auto elim: converse_rtranclE dest: single_valuedD intro: rtrancl_trans) | 
| 68618 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68456diff
changeset | 676 | qed | 
| 14337 
e13731554e50
undid split_comp_eq[simp] because it leads to nontermination together with split_def!
 nipkow parents: 
14208diff
changeset | 677 | |
| 63404 | 678 | lemma r_r_into_trancl: "(a, b) \<in> R \<Longrightarrow> (b, c) \<in> R \<Longrightarrow> (a, c) \<in> R\<^sup>+" | 
| 12428 
f3033eed309a
setup [trans] rules for calculational Isar reasoning
 kleing parents: 
11327diff
changeset | 679 | by (fast intro: trancl_trans) | 
| 
f3033eed309a
setup [trans] rules for calculational Isar reasoning
 kleing parents: 
11327diff
changeset | 680 | |
| 63404 | 681 | lemma trancl_into_trancl: "(a, b) \<in> r\<^sup>+ \<Longrightarrow> (b, c) \<in> r \<Longrightarrow> (a, c) \<in> r\<^sup>+" | 
| 63612 | 682 | by (induct rule: trancl_induct) (fast intro: r_r_into_trancl trancl_trans)+ | 
| 12428 
f3033eed309a
setup [trans] rules for calculational Isar reasoning
 kleing parents: 
11327diff
changeset | 683 | |
| 71627 | 684 | lemma tranclp_rtranclp_tranclp: | 
| 685 | assumes "r\<^sup>+\<^sup>+ a b" "r\<^sup>*\<^sup>* b c" shows "r\<^sup>+\<^sup>+ a c" | |
| 686 | proof - | |
| 687 | obtain z where "r a z" "r\<^sup>*\<^sup>* z c" | |
| 688 | using assms by (iprover dest: tranclpD rtranclp_trans) | |
| 689 | then show ?thesis | |
| 690 | by (blast dest: rtranclp_into_tranclp2) | |
| 691 | qed | |
| 12428 
f3033eed309a
setup [trans] rules for calculational Isar reasoning
 kleing parents: 
11327diff
changeset | 692 | |
| 71393 
fce780f9c9c6
new examples of BNF lifting across quotients using a new theory of confluence,
 traytel parents: 
70749diff
changeset | 693 | lemma rtranclp_conversep: "r\<inverse>\<inverse>\<^sup>*\<^sup>* = r\<^sup>*\<^sup>*\<inverse>\<inverse>" | 
| 
fce780f9c9c6
new examples of BNF lifting across quotients using a new theory of confluence,
 traytel parents: 
70749diff
changeset | 694 | by(auto simp add: fun_eq_iff intro: rtranclp_converseI rtranclp_converseD) | 
| 
fce780f9c9c6
new examples of BNF lifting across quotients using a new theory of confluence,
 traytel parents: 
70749diff
changeset | 695 | |
| 
fce780f9c9c6
new examples of BNF lifting across quotients using a new theory of confluence,
 traytel parents: 
70749diff
changeset | 696 | lemmas symp_rtranclp = sym_rtrancl[to_pred] | 
| 
fce780f9c9c6
new examples of BNF lifting across quotients using a new theory of confluence,
 traytel parents: 
70749diff
changeset | 697 | |
| 
fce780f9c9c6
new examples of BNF lifting across quotients using a new theory of confluence,
 traytel parents: 
70749diff
changeset | 698 | lemmas symp_conv_conversep_eq = sym_conv_converse_eq[to_pred] | 
| 
fce780f9c9c6
new examples of BNF lifting across quotients using a new theory of confluence,
 traytel parents: 
70749diff
changeset | 699 | |
| 
fce780f9c9c6
new examples of BNF lifting across quotients using a new theory of confluence,
 traytel parents: 
70749diff
changeset | 700 | lemmas rtranclp_tranclp_absorb [simp] = rtrancl_trancl_absorb[to_pred] | 
| 
fce780f9c9c6
new examples of BNF lifting across quotients using a new theory of confluence,
 traytel parents: 
70749diff
changeset | 701 | lemmas tranclp_rtranclp_absorb [simp] = trancl_rtrancl_absorb[to_pred] | 
| 
fce780f9c9c6
new examples of BNF lifting across quotients using a new theory of confluence,
 traytel parents: 
70749diff
changeset | 702 | lemmas rtranclp_reflclp_absorb [simp] = rtrancl_reflcl_absorb[to_pred] | 
| 
fce780f9c9c6
new examples of BNF lifting across quotients using a new theory of confluence,
 traytel parents: 
70749diff
changeset | 703 | |
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 704 | lemmas trancl_rtrancl_trancl = tranclp_rtranclp_tranclp [to_set] | 
| 22262 | 705 | |
| 12691 | 706 | lemmas transitive_closure_trans [trans] = | 
| 707 | r_r_into_trancl trancl_trans rtrancl_trans | |
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 708 | trancl.trancl_into_trancl trancl_into_trancl2 | 
| 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 709 | rtrancl.rtrancl_into_rtrancl converse_rtrancl_into_rtrancl | 
| 12691 | 710 | rtrancl_trancl_trancl trancl_rtrancl_trancl | 
| 12428 
f3033eed309a
setup [trans] rules for calculational Isar reasoning
 kleing parents: 
11327diff
changeset | 711 | |
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 712 | lemmas transitive_closurep_trans' [trans] = | 
| 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 713 | tranclp_trans rtranclp_trans | 
| 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 714 | tranclp.trancl_into_trancl tranclp_into_tranclp2 | 
| 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 715 | rtranclp.rtrancl_into_rtrancl converse_rtranclp_into_rtranclp | 
| 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 716 | rtranclp_tranclp_tranclp tranclp_rtranclp_tranclp | 
| 22262 | 717 | |
| 12428 
f3033eed309a
setup [trans] rules for calculational Isar reasoning
 kleing parents: 
11327diff
changeset | 718 | declare trancl_into_rtrancl [elim] | 
| 11327 
cd2c27a23df1
Transitive closure is now defined via "inductive".
 berghofe parents: 
11115diff
changeset | 719 | |
| 71393 
fce780f9c9c6
new examples of BNF lifting across quotients using a new theory of confluence,
 traytel parents: 
70749diff
changeset | 720 | subsection \<open>Symmetric closure\<close> | 
| 
fce780f9c9c6
new examples of BNF lifting across quotients using a new theory of confluence,
 traytel parents: 
70749diff
changeset | 721 | |
| 
fce780f9c9c6
new examples of BNF lifting across quotients using a new theory of confluence,
 traytel parents: 
70749diff
changeset | 722 | definition symclp :: "('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> bool"
 | 
| 
fce780f9c9c6
new examples of BNF lifting across quotients using a new theory of confluence,
 traytel parents: 
70749diff
changeset | 723 | where "symclp r x y \<longleftrightarrow> r x y \<or> r y x" | 
| 
fce780f9c9c6
new examples of BNF lifting across quotients using a new theory of confluence,
 traytel parents: 
70749diff
changeset | 724 | |
| 
fce780f9c9c6
new examples of BNF lifting across quotients using a new theory of confluence,
 traytel parents: 
70749diff
changeset | 725 | lemma symclpI [simp, intro?]: | 
| 
fce780f9c9c6
new examples of BNF lifting across quotients using a new theory of confluence,
 traytel parents: 
70749diff
changeset | 726 | shows symclpI1: "r x y \<Longrightarrow> symclp r x y" | 
| 71627 | 727 | and symclpI2: "r y x \<Longrightarrow> symclp r x y" | 
| 728 | by(simp_all add: symclp_def) | |
| 71393 
fce780f9c9c6
new examples of BNF lifting across quotients using a new theory of confluence,
 traytel parents: 
70749diff
changeset | 729 | |
| 
fce780f9c9c6
new examples of BNF lifting across quotients using a new theory of confluence,
 traytel parents: 
70749diff
changeset | 730 | lemma symclpE [consumes 1, cases pred]: | 
| 
fce780f9c9c6
new examples of BNF lifting across quotients using a new theory of confluence,
 traytel parents: 
70749diff
changeset | 731 | assumes "symclp r x y" | 
| 
fce780f9c9c6
new examples of BNF lifting across quotients using a new theory of confluence,
 traytel parents: 
70749diff
changeset | 732 | obtains (base) "r x y" | (sym) "r y x" | 
| 71627 | 733 | using assms by(auto simp add: symclp_def) | 
| 71393 
fce780f9c9c6
new examples of BNF lifting across quotients using a new theory of confluence,
 traytel parents: 
70749diff
changeset | 734 | |
| 
fce780f9c9c6
new examples of BNF lifting across quotients using a new theory of confluence,
 traytel parents: 
70749diff
changeset | 735 | lemma symclp_pointfree: "symclp r = sup r r\<inverse>\<inverse>" | 
| 
fce780f9c9c6
new examples of BNF lifting across quotients using a new theory of confluence,
 traytel parents: 
70749diff
changeset | 736 | by(auto simp add: symclp_def fun_eq_iff) | 
| 
fce780f9c9c6
new examples of BNF lifting across quotients using a new theory of confluence,
 traytel parents: 
70749diff
changeset | 737 | |
| 
fce780f9c9c6
new examples of BNF lifting across quotients using a new theory of confluence,
 traytel parents: 
70749diff
changeset | 738 | lemma symclp_greater: "r \<le> symclp r" | 
| 
fce780f9c9c6
new examples of BNF lifting across quotients using a new theory of confluence,
 traytel parents: 
70749diff
changeset | 739 | by(simp add: symclp_pointfree) | 
| 
fce780f9c9c6
new examples of BNF lifting across quotients using a new theory of confluence,
 traytel parents: 
70749diff
changeset | 740 | |
| 
fce780f9c9c6
new examples of BNF lifting across quotients using a new theory of confluence,
 traytel parents: 
70749diff
changeset | 741 | lemma symclp_conversep [simp]: "symclp r\<inverse>\<inverse> = symclp r" | 
| 
fce780f9c9c6
new examples of BNF lifting across quotients using a new theory of confluence,
 traytel parents: 
70749diff
changeset | 742 | by(simp add: symclp_pointfree sup.commute) | 
| 
fce780f9c9c6
new examples of BNF lifting across quotients using a new theory of confluence,
 traytel parents: 
70749diff
changeset | 743 | |
| 
fce780f9c9c6
new examples of BNF lifting across quotients using a new theory of confluence,
 traytel parents: 
70749diff
changeset | 744 | lemma symp_symclp [simp]: "symp (symclp r)" | 
| 
fce780f9c9c6
new examples of BNF lifting across quotients using a new theory of confluence,
 traytel parents: 
70749diff
changeset | 745 | by(auto simp add: symp_def elim: symclpE intro: symclpI) | 
| 
fce780f9c9c6
new examples of BNF lifting across quotients using a new theory of confluence,
 traytel parents: 
70749diff
changeset | 746 | |
| 
fce780f9c9c6
new examples of BNF lifting across quotients using a new theory of confluence,
 traytel parents: 
70749diff
changeset | 747 | lemma symp_symclp_eq: "symp r \<Longrightarrow> symclp r = r" | 
| 
fce780f9c9c6
new examples of BNF lifting across quotients using a new theory of confluence,
 traytel parents: 
70749diff
changeset | 748 | by(simp add: symclp_pointfree symp_conv_conversep_eq) | 
| 
fce780f9c9c6
new examples of BNF lifting across quotients using a new theory of confluence,
 traytel parents: 
70749diff
changeset | 749 | |
| 
fce780f9c9c6
new examples of BNF lifting across quotients using a new theory of confluence,
 traytel parents: 
70749diff
changeset | 750 | lemma symp_rtranclp_symclp [simp]: "symp (symclp r)\<^sup>*\<^sup>*" | 
| 
fce780f9c9c6
new examples of BNF lifting across quotients using a new theory of confluence,
 traytel parents: 
70749diff
changeset | 751 | by(simp add: symp_rtranclp) | 
| 
fce780f9c9c6
new examples of BNF lifting across quotients using a new theory of confluence,
 traytel parents: 
70749diff
changeset | 752 | |
| 
fce780f9c9c6
new examples of BNF lifting across quotients using a new theory of confluence,
 traytel parents: 
70749diff
changeset | 753 | lemma rtranclp_symclp_sym [sym]: "(symclp r)\<^sup>*\<^sup>* x y \<Longrightarrow> (symclp r)\<^sup>*\<^sup>* y x" | 
| 
fce780f9c9c6
new examples of BNF lifting across quotients using a new theory of confluence,
 traytel parents: 
70749diff
changeset | 754 | by(rule sympD[OF symp_rtranclp_symclp]) | 
| 
fce780f9c9c6
new examples of BNF lifting across quotients using a new theory of confluence,
 traytel parents: 
70749diff
changeset | 755 | |
| 
fce780f9c9c6
new examples of BNF lifting across quotients using a new theory of confluence,
 traytel parents: 
70749diff
changeset | 756 | lemma symclp_idem [simp]: "symclp (symclp r) = symclp r" | 
| 
fce780f9c9c6
new examples of BNF lifting across quotients using a new theory of confluence,
 traytel parents: 
70749diff
changeset | 757 | by(simp add: symclp_pointfree sup_commute converse_join) | 
| 
fce780f9c9c6
new examples of BNF lifting across quotients using a new theory of confluence,
 traytel parents: 
70749diff
changeset | 758 | |
| 
fce780f9c9c6
new examples of BNF lifting across quotients using a new theory of confluence,
 traytel parents: 
70749diff
changeset | 759 | lemma reflp_rtranclp [simp]: "reflp R\<^sup>*\<^sup>*" | 
| 
fce780f9c9c6
new examples of BNF lifting across quotients using a new theory of confluence,
 traytel parents: 
70749diff
changeset | 760 |   using refl_rtrancl[to_pred, of R] reflp_refl_eq[of "{(x, y). R\<^sup>*\<^sup>* x y}"] by simp
 | 
| 63404 | 761 | |
| 60758 | 762 | subsection \<open>The power operation on relations\<close> | 
| 30954 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 763 | |
| 63404 | 764 | text \<open>\<open>R ^^ n = R O \<dots> O R\<close>, the n-fold composition of \<open>R\<close>\<close> | 
| 30954 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 765 | |
| 30971 | 766 | overloading | 
| 63404 | 767 |   relpow \<equiv> "compow :: nat \<Rightarrow> ('a \<times> 'a) set \<Rightarrow> ('a \<times> 'a) set"
 | 
| 768 |   relpowp \<equiv> "compow :: nat \<Rightarrow> ('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> 'a \<Rightarrow> bool)"
 | |
| 30971 | 769 | begin | 
| 30954 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 770 | |
| 63404 | 771 | primrec relpow :: "nat \<Rightarrow> ('a \<times> 'a) set \<Rightarrow> ('a \<times> 'a) set"
 | 
| 63612 | 772 | where | 
| 773 | "relpow 0 R = Id" | |
| 774 | | "relpow (Suc n) R = (R ^^ n) O R" | |
| 30954 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 775 | |
| 63404 | 776 | primrec relpowp :: "nat \<Rightarrow> ('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> 'a \<Rightarrow> bool)"
 | 
| 63612 | 777 | where | 
| 778 | "relpowp 0 R = HOL.eq" | |
| 779 | | "relpowp (Suc n) R = (R ^^ n) OO R" | |
| 47202 | 780 | |
| 30971 | 781 | end | 
| 30954 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 782 | |
| 47202 | 783 | lemma relpowp_relpow_eq [pred_set_conv]: | 
| 63404 | 784 | "(\<lambda>x y. (x, y) \<in> R) ^^ n = (\<lambda>x y. (x, y) \<in> R ^^ n)" for R :: "'a rel" | 
| 47433 
07f4bf913230
renamed "rel_comp" to "relcomp" (to be consistent with, e.g., "relpow")
 griff parents: 
47202diff
changeset | 785 | by (induct n) (simp_all add: relcompp_relcomp_eq) | 
| 47202 | 786 | |
| 63404 | 787 | text \<open>For code generation:\<close> | 
| 46360 
5cb81e3fa799
adding code generation for relpow by copying the ideas for code generation of funpow
 bulwahn parents: 
46347diff
changeset | 788 | |
| 63404 | 789 | definition relpow :: "nat \<Rightarrow> ('a \<times> 'a) set \<Rightarrow> ('a \<times> 'a) set"
 | 
| 790 | where relpow_code_def [code_abbrev]: "relpow = compow" | |
| 46360 
5cb81e3fa799
adding code generation for relpow by copying the ideas for code generation of funpow
 bulwahn parents: 
46347diff
changeset | 791 | |
| 63404 | 792 | definition relpowp :: "nat \<Rightarrow> ('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> 'a \<Rightarrow> bool)"
 | 
| 793 | where relpowp_code_def [code_abbrev]: "relpowp = compow" | |
| 47492 
2631a12fb2d1
duplicate "relpow" facts for "relpowp" (to emphasize that both worlds exist and obtain better search results with "find_theorems")
 Christian Sternagel parents: 
47433diff
changeset | 794 | |
| 46360 
5cb81e3fa799
adding code generation for relpow by copying the ideas for code generation of funpow
 bulwahn parents: 
46347diff
changeset | 795 | lemma [code]: | 
| 
5cb81e3fa799
adding code generation for relpow by copying the ideas for code generation of funpow
 bulwahn parents: 
46347diff
changeset | 796 | "relpow (Suc n) R = (relpow n R) O R" | 
| 
5cb81e3fa799
adding code generation for relpow by copying the ideas for code generation of funpow
 bulwahn parents: 
46347diff
changeset | 797 | "relpow 0 R = Id" | 
| 
5cb81e3fa799
adding code generation for relpow by copying the ideas for code generation of funpow
 bulwahn parents: 
46347diff
changeset | 798 | by (simp_all add: relpow_code_def) | 
| 
5cb81e3fa799
adding code generation for relpow by copying the ideas for code generation of funpow
 bulwahn parents: 
46347diff
changeset | 799 | |
| 47492 
2631a12fb2d1
duplicate "relpow" facts for "relpowp" (to emphasize that both worlds exist and obtain better search results with "find_theorems")
 Christian Sternagel parents: 
47433diff
changeset | 800 | lemma [code]: | 
| 
2631a12fb2d1
duplicate "relpow" facts for "relpowp" (to emphasize that both worlds exist and obtain better search results with "find_theorems")
 Christian Sternagel parents: 
47433diff
changeset | 801 | "relpowp (Suc n) R = (R ^^ n) OO R" | 
| 
2631a12fb2d1
duplicate "relpow" facts for "relpowp" (to emphasize that both worlds exist and obtain better search results with "find_theorems")
 Christian Sternagel parents: 
47433diff
changeset | 802 | "relpowp 0 R = HOL.eq" | 
| 
2631a12fb2d1
duplicate "relpow" facts for "relpowp" (to emphasize that both worlds exist and obtain better search results with "find_theorems")
 Christian Sternagel parents: 
47433diff
changeset | 803 | by (simp_all add: relpowp_code_def) | 
| 
2631a12fb2d1
duplicate "relpow" facts for "relpowp" (to emphasize that both worlds exist and obtain better search results with "find_theorems")
 Christian Sternagel parents: 
47433diff
changeset | 804 | |
| 46360 
5cb81e3fa799
adding code generation for relpow by copying the ideas for code generation of funpow
 bulwahn parents: 
46347diff
changeset | 805 | hide_const (open) relpow | 
| 47492 
2631a12fb2d1
duplicate "relpow" facts for "relpowp" (to emphasize that both worlds exist and obtain better search results with "find_theorems")
 Christian Sternagel parents: 
47433diff
changeset | 806 | hide_const (open) relpowp | 
| 46360 
5cb81e3fa799
adding code generation for relpow by copying the ideas for code generation of funpow
 bulwahn parents: 
46347diff
changeset | 807 | |
| 63612 | 808 | lemma relpow_1 [simp]: "R ^^ 1 = R" | 
| 809 |   for R :: "('a \<times> 'a) set"
 | |
| 30954 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 810 | by simp | 
| 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 811 | |
| 63612 | 812 | lemma relpowp_1 [simp]: "P ^^ 1 = P" | 
| 813 | for P :: "'a \<Rightarrow> 'a \<Rightarrow> bool" | |
| 47492 
2631a12fb2d1
duplicate "relpow" facts for "relpowp" (to emphasize that both worlds exist and obtain better search results with "find_theorems")
 Christian Sternagel parents: 
47433diff
changeset | 814 | by (fact relpow_1 [to_pred]) | 
| 
2631a12fb2d1
duplicate "relpow" facts for "relpowp" (to emphasize that both worlds exist and obtain better search results with "find_theorems")
 Christian Sternagel parents: 
47433diff
changeset | 815 | |
| 63404 | 816 | lemma relpow_0_I: "(x, x) \<in> R ^^ 0" | 
| 30954 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 817 | by simp | 
| 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 818 | |
| 63404 | 819 | lemma relpowp_0_I: "(P ^^ 0) x x" | 
| 47492 
2631a12fb2d1
duplicate "relpow" facts for "relpowp" (to emphasize that both worlds exist and obtain better search results with "find_theorems")
 Christian Sternagel parents: 
47433diff
changeset | 820 | by (fact relpow_0_I [to_pred]) | 
| 
2631a12fb2d1
duplicate "relpow" facts for "relpowp" (to emphasize that both worlds exist and obtain better search results with "find_theorems")
 Christian Sternagel parents: 
47433diff
changeset | 821 | |
| 63404 | 822 | lemma relpow_Suc_I: "(x, y) \<in> R ^^ n \<Longrightarrow> (y, z) \<in> R \<Longrightarrow> (x, z) \<in> R ^^ Suc n" | 
| 30954 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 823 | by auto | 
| 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 824 | |
| 63404 | 825 | lemma relpowp_Suc_I: "(P ^^ n) x y \<Longrightarrow> P y z \<Longrightarrow> (P ^^ Suc n) x z" | 
| 47492 
2631a12fb2d1
duplicate "relpow" facts for "relpowp" (to emphasize that both worlds exist and obtain better search results with "find_theorems")
 Christian Sternagel parents: 
47433diff
changeset | 826 | by (fact relpow_Suc_I [to_pred]) | 
| 
2631a12fb2d1
duplicate "relpow" facts for "relpowp" (to emphasize that both worlds exist and obtain better search results with "find_theorems")
 Christian Sternagel parents: 
47433diff
changeset | 827 | |
| 63404 | 828 | lemma relpow_Suc_I2: "(x, y) \<in> R \<Longrightarrow> (y, z) \<in> R ^^ n \<Longrightarrow> (x, z) \<in> R ^^ Suc n" | 
| 44890 
22f665a2e91c
new fastforce replacing fastsimp - less confusing name
 nipkow parents: 
43596diff
changeset | 829 | by (induct n arbitrary: z) (simp, fastforce) | 
| 30954 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 830 | |
| 63404 | 831 | lemma relpowp_Suc_I2: "P x y \<Longrightarrow> (P ^^ n) y z \<Longrightarrow> (P ^^ Suc n) x z" | 
| 47492 
2631a12fb2d1
duplicate "relpow" facts for "relpowp" (to emphasize that both worlds exist and obtain better search results with "find_theorems")
 Christian Sternagel parents: 
47433diff
changeset | 832 | by (fact relpow_Suc_I2 [to_pred]) | 
| 
2631a12fb2d1
duplicate "relpow" facts for "relpowp" (to emphasize that both worlds exist and obtain better search results with "find_theorems")
 Christian Sternagel parents: 
47433diff
changeset | 833 | |
| 63404 | 834 | lemma relpow_0_E: "(x, y) \<in> R ^^ 0 \<Longrightarrow> (x = y \<Longrightarrow> P) \<Longrightarrow> P" | 
| 30954 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 835 | by simp | 
| 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 836 | |
| 63404 | 837 | lemma relpowp_0_E: "(P ^^ 0) x y \<Longrightarrow> (x = y \<Longrightarrow> Q) \<Longrightarrow> Q" | 
| 47492 
2631a12fb2d1
duplicate "relpow" facts for "relpowp" (to emphasize that both worlds exist and obtain better search results with "find_theorems")
 Christian Sternagel parents: 
47433diff
changeset | 838 | by (fact relpow_0_E [to_pred]) | 
| 
2631a12fb2d1
duplicate "relpow" facts for "relpowp" (to emphasize that both worlds exist and obtain better search results with "find_theorems")
 Christian Sternagel parents: 
47433diff
changeset | 839 | |
| 63404 | 840 | lemma relpow_Suc_E: "(x, z) \<in> R ^^ Suc n \<Longrightarrow> (\<And>y. (x, y) \<in> R ^^ n \<Longrightarrow> (y, z) \<in> R \<Longrightarrow> P) \<Longrightarrow> P" | 
| 30954 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 841 | by auto | 
| 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 842 | |
| 63404 | 843 | lemma relpowp_Suc_E: "(P ^^ Suc n) x z \<Longrightarrow> (\<And>y. (P ^^ n) x y \<Longrightarrow> P y z \<Longrightarrow> Q) \<Longrightarrow> Q" | 
| 47492 
2631a12fb2d1
duplicate "relpow" facts for "relpowp" (to emphasize that both worlds exist and obtain better search results with "find_theorems")
 Christian Sternagel parents: 
47433diff
changeset | 844 | by (fact relpow_Suc_E [to_pred]) | 
| 
2631a12fb2d1
duplicate "relpow" facts for "relpowp" (to emphasize that both worlds exist and obtain better search results with "find_theorems")
 Christian Sternagel parents: 
47433diff
changeset | 845 | |
| 46362 | 846 | lemma relpow_E: | 
| 63612 | 847 | "(x, z) \<in> R ^^ n \<Longrightarrow> | 
| 848 | (n = 0 \<Longrightarrow> x = z \<Longrightarrow> P) \<Longrightarrow> | |
| 849 | (\<And>y m. n = Suc m \<Longrightarrow> (x, y) \<in> R ^^ m \<Longrightarrow> (y, z) \<in> R \<Longrightarrow> P) \<Longrightarrow> P" | |
| 30954 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 850 | by (cases n) auto | 
| 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 851 | |
| 47492 
2631a12fb2d1
duplicate "relpow" facts for "relpowp" (to emphasize that both worlds exist and obtain better search results with "find_theorems")
 Christian Sternagel parents: 
47433diff
changeset | 852 | lemma relpowp_E: | 
| 63612 | 853 | "(P ^^ n) x z \<Longrightarrow> | 
| 854 | (n = 0 \<Longrightarrow> x = z \<Longrightarrow> Q) \<Longrightarrow> | |
| 855 | (\<And>y m. n = Suc m \<Longrightarrow> (P ^^ m) x y \<Longrightarrow> P y z \<Longrightarrow> Q) \<Longrightarrow> Q" | |
| 47492 
2631a12fb2d1
duplicate "relpow" facts for "relpowp" (to emphasize that both worlds exist and obtain better search results with "find_theorems")
 Christian Sternagel parents: 
47433diff
changeset | 856 | by (fact relpow_E [to_pred]) | 
| 
2631a12fb2d1
duplicate "relpow" facts for "relpowp" (to emphasize that both worlds exist and obtain better search results with "find_theorems")
 Christian Sternagel parents: 
47433diff
changeset | 857 | |
| 63404 | 858 | lemma relpow_Suc_D2: "(x, z) \<in> R ^^ Suc n \<Longrightarrow> (\<exists>y. (x, y) \<in> R \<and> (y, z) \<in> R ^^ n)" | 
| 63612 | 859 | by (induct n arbitrary: x z) | 
| 860 | (blast intro: relpow_0_I relpow_Suc_I elim: relpow_0_E relpow_Suc_E)+ | |
| 30954 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 861 | |
| 63404 | 862 | lemma relpowp_Suc_D2: "(P ^^ Suc n) x z \<Longrightarrow> \<exists>y. P x y \<and> (P ^^ n) y z" | 
| 47492 
2631a12fb2d1
duplicate "relpow" facts for "relpowp" (to emphasize that both worlds exist and obtain better search results with "find_theorems")
 Christian Sternagel parents: 
47433diff
changeset | 863 | by (fact relpow_Suc_D2 [to_pred]) | 
| 
2631a12fb2d1
duplicate "relpow" facts for "relpowp" (to emphasize that both worlds exist and obtain better search results with "find_theorems")
 Christian Sternagel parents: 
47433diff
changeset | 864 | |
| 63404 | 865 | lemma relpow_Suc_E2: "(x, z) \<in> R ^^ Suc n \<Longrightarrow> (\<And>y. (x, y) \<in> R \<Longrightarrow> (y, z) \<in> R ^^ n \<Longrightarrow> P) \<Longrightarrow> P" | 
| 46362 | 866 | by (blast dest: relpow_Suc_D2) | 
| 30954 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 867 | |
| 63404 | 868 | lemma relpowp_Suc_E2: "(P ^^ Suc n) x z \<Longrightarrow> (\<And>y. P x y \<Longrightarrow> (P ^^ n) y z \<Longrightarrow> Q) \<Longrightarrow> Q" | 
| 47492 
2631a12fb2d1
duplicate "relpow" facts for "relpowp" (to emphasize that both worlds exist and obtain better search results with "find_theorems")
 Christian Sternagel parents: 
47433diff
changeset | 869 | by (fact relpow_Suc_E2 [to_pred]) | 
| 
2631a12fb2d1
duplicate "relpow" facts for "relpowp" (to emphasize that both worlds exist and obtain better search results with "find_theorems")
 Christian Sternagel parents: 
47433diff
changeset | 870 | |
| 63404 | 871 | lemma relpow_Suc_D2': "\<forall>x y z. (x, y) \<in> R ^^ n \<and> (y, z) \<in> R \<longrightarrow> (\<exists>w. (x, w) \<in> R \<and> (w, z) \<in> R ^^ n)" | 
| 30954 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 872 | by (induct n) (simp_all, blast) | 
| 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 873 | |
| 63404 | 874 | lemma relpowp_Suc_D2': "\<forall>x y z. (P ^^ n) x y \<and> P y z \<longrightarrow> (\<exists>w. P x w \<and> (P ^^ n) w z)" | 
| 47492 
2631a12fb2d1
duplicate "relpow" facts for "relpowp" (to emphasize that both worlds exist and obtain better search results with "find_theorems")
 Christian Sternagel parents: 
47433diff
changeset | 875 | by (fact relpow_Suc_D2' [to_pred]) | 
| 
2631a12fb2d1
duplicate "relpow" facts for "relpowp" (to emphasize that both worlds exist and obtain better search results with "find_theorems")
 Christian Sternagel parents: 
47433diff
changeset | 876 | |
| 46362 | 877 | lemma relpow_E2: | 
| 68618 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68456diff
changeset | 878 | assumes "(x, z) \<in> R ^^ n" "n = 0 \<Longrightarrow> x = z \<Longrightarrow> P" | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68456diff
changeset | 879 | "\<And>y m. n = Suc m \<Longrightarrow> (x, y) \<in> R \<Longrightarrow> (y, z) \<in> R ^^ m \<Longrightarrow> P" | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68456diff
changeset | 880 | shows "P" | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68456diff
changeset | 881 | proof (cases n) | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68456diff
changeset | 882 | case 0 | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68456diff
changeset | 883 | with assms show ?thesis | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68456diff
changeset | 884 | by simp | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68456diff
changeset | 885 | next | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68456diff
changeset | 886 | case (Suc m) | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68456diff
changeset | 887 | with assms relpow_Suc_D2' [of m R] show ?thesis | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68456diff
changeset | 888 | by force | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68456diff
changeset | 889 | qed | 
| 30954 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 890 | |
| 47492 
2631a12fb2d1
duplicate "relpow" facts for "relpowp" (to emphasize that both worlds exist and obtain better search results with "find_theorems")
 Christian Sternagel parents: 
47433diff
changeset | 891 | lemma relpowp_E2: | 
| 63612 | 892 | "(P ^^ n) x z \<Longrightarrow> | 
| 893 | (n = 0 \<Longrightarrow> x = z \<Longrightarrow> Q) \<Longrightarrow> | |
| 894 | (\<And>y m. n = Suc m \<Longrightarrow> P x y \<Longrightarrow> (P ^^ m) y z \<Longrightarrow> Q) \<Longrightarrow> Q" | |
| 47492 
2631a12fb2d1
duplicate "relpow" facts for "relpowp" (to emphasize that both worlds exist and obtain better search results with "find_theorems")
 Christian Sternagel parents: 
47433diff
changeset | 895 | by (fact relpow_E2 [to_pred]) | 
| 
2631a12fb2d1
duplicate "relpow" facts for "relpowp" (to emphasize that both worlds exist and obtain better search results with "find_theorems")
 Christian Sternagel parents: 
47433diff
changeset | 896 | |
| 63404 | 897 | lemma relpow_add: "R ^^ (m + n) = R^^m O R^^n" | 
| 45976 | 898 | by (induct n) auto | 
| 31351 | 899 | |
| 47492 
2631a12fb2d1
duplicate "relpow" facts for "relpowp" (to emphasize that both worlds exist and obtain better search results with "find_theorems")
 Christian Sternagel parents: 
47433diff
changeset | 900 | lemma relpowp_add: "P ^^ (m + n) = P ^^ m OO P ^^ n" | 
| 
2631a12fb2d1
duplicate "relpow" facts for "relpowp" (to emphasize that both worlds exist and obtain better search results with "find_theorems")
 Christian Sternagel parents: 
47433diff
changeset | 901 | by (fact relpow_add [to_pred]) | 
| 
2631a12fb2d1
duplicate "relpow" facts for "relpowp" (to emphasize that both worlds exist and obtain better search results with "find_theorems")
 Christian Sternagel parents: 
47433diff
changeset | 902 | |
| 46362 | 903 | lemma relpow_commute: "R O R ^^ n = R ^^ n O R" | 
| 63404 | 904 | by (induct n) (simp_all add: O_assoc [symmetric]) | 
| 31970 
ccaadfcf6941
move rel_pow_commute: "R O R ^^ n = R ^^ n O R" to Transitive_Closure
 krauss parents: 
31690diff
changeset | 905 | |
| 47492 
2631a12fb2d1
duplicate "relpow" facts for "relpowp" (to emphasize that both worlds exist and obtain better search results with "find_theorems")
 Christian Sternagel parents: 
47433diff
changeset | 906 | lemma relpowp_commute: "P OO P ^^ n = P ^^ n OO P" | 
| 
2631a12fb2d1
duplicate "relpow" facts for "relpowp" (to emphasize that both worlds exist and obtain better search results with "find_theorems")
 Christian Sternagel parents: 
47433diff
changeset | 907 | by (fact relpow_commute [to_pred]) | 
| 
2631a12fb2d1
duplicate "relpow" facts for "relpowp" (to emphasize that both worlds exist and obtain better search results with "find_theorems")
 Christian Sternagel parents: 
47433diff
changeset | 908 | |
| 63404 | 909 | lemma relpow_empty: "0 < n \<Longrightarrow> ({} :: ('a \<times> 'a) set) ^^ n = {}"
 | 
| 45153 | 910 | by (cases n) auto | 
| 45116 
f947eeef6b6f
adding lemma about rel_pow in Transitive_Closure for executable equation of the (refl) transitive closure
 bulwahn parents: 
44921diff
changeset | 911 | |
| 63404 | 912 | lemma relpowp_bot: "0 < n \<Longrightarrow> (\<bottom> :: 'a \<Rightarrow> 'a \<Rightarrow> bool) ^^ n = \<bottom>" | 
| 47492 
2631a12fb2d1
duplicate "relpow" facts for "relpowp" (to emphasize that both worlds exist and obtain better search results with "find_theorems")
 Christian Sternagel parents: 
47433diff
changeset | 913 | by (fact relpow_empty [to_pred]) | 
| 
2631a12fb2d1
duplicate "relpow" facts for "relpowp" (to emphasize that both worlds exist and obtain better search results with "find_theorems")
 Christian Sternagel parents: 
47433diff
changeset | 914 | |
| 46362 | 915 | lemma rtrancl_imp_UN_relpow: | 
| 63404 | 916 | assumes "p \<in> R\<^sup>*" | 
| 30954 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 917 | shows "p \<in> (\<Union>n. R ^^ n)" | 
| 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 918 | proof (cases p) | 
| 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 919 | case (Pair x y) | 
| 63404 | 920 | with assms have "(x, y) \<in> R\<^sup>*" by simp | 
| 63612 | 921 | then have "(x, y) \<in> (\<Union>n. R ^^ n)" | 
| 922 | proof induct | |
| 63404 | 923 | case base | 
| 924 | show ?case by (blast intro: relpow_0_I) | |
| 30954 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 925 | next | 
| 63404 | 926 | case step | 
| 927 | then show ?case by (blast intro: relpow_Suc_I) | |
| 30954 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 928 | qed | 
| 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 929 | with Pair show ?thesis by simp | 
| 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 930 | qed | 
| 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 931 | |
| 47492 
2631a12fb2d1
duplicate "relpow" facts for "relpowp" (to emphasize that both worlds exist and obtain better search results with "find_theorems")
 Christian Sternagel parents: 
47433diff
changeset | 932 | lemma rtranclp_imp_Sup_relpowp: | 
| 63404 | 933 | assumes "(P\<^sup>*\<^sup>*) x y" | 
| 47492 
2631a12fb2d1
duplicate "relpow" facts for "relpowp" (to emphasize that both worlds exist and obtain better search results with "find_theorems")
 Christian Sternagel parents: 
47433diff
changeset | 934 | shows "(\<Squnion>n. P ^^ n) x y" | 
| 61424 
c3658c18b7bc
prod_case as canonical name for product type eliminator
 haftmann parents: 
61378diff
changeset | 935 | using assms and rtrancl_imp_UN_relpow [of "(x, y)", to_pred] by simp | 
| 47492 
2631a12fb2d1
duplicate "relpow" facts for "relpowp" (to emphasize that both worlds exist and obtain better search results with "find_theorems")
 Christian Sternagel parents: 
47433diff
changeset | 936 | |
| 46362 | 937 | lemma relpow_imp_rtrancl: | 
| 30954 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 938 | assumes "p \<in> R ^^ n" | 
| 63404 | 939 | shows "p \<in> R\<^sup>*" | 
| 30954 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 940 | proof (cases p) | 
| 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 941 | case (Pair x y) | 
| 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 942 | with assms have "(x, y) \<in> R ^^ n" by simp | 
| 63612 | 943 | then have "(x, y) \<in> R\<^sup>*" | 
| 944 | proof (induct n arbitrary: x y) | |
| 63404 | 945 | case 0 | 
| 946 | then show ?case by simp | |
| 30954 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 947 | next | 
| 63404 | 948 | case Suc | 
| 949 | then show ?case | |
| 46362 | 950 | by (blast elim: relpow_Suc_E intro: rtrancl_into_rtrancl) | 
| 30954 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 951 | qed | 
| 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 952 | with Pair show ?thesis by simp | 
| 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 953 | qed | 
| 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 954 | |
| 63404 | 955 | lemma relpowp_imp_rtranclp: "(P ^^ n) x y \<Longrightarrow> (P\<^sup>*\<^sup>*) x y" | 
| 956 | using relpow_imp_rtrancl [of "(x, y)", to_pred] by simp | |
| 47492 
2631a12fb2d1
duplicate "relpow" facts for "relpowp" (to emphasize that both worlds exist and obtain better search results with "find_theorems")
 Christian Sternagel parents: 
47433diff
changeset | 957 | |
| 63404 | 958 | lemma rtrancl_is_UN_relpow: "R\<^sup>* = (\<Union>n. R ^^ n)" | 
| 46362 | 959 | by (blast intro: rtrancl_imp_UN_relpow relpow_imp_rtrancl) | 
| 30954 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 960 | |
| 63404 | 961 | lemma rtranclp_is_Sup_relpowp: "P\<^sup>*\<^sup>* = (\<Squnion>n. P ^^ n)" | 
| 47492 
2631a12fb2d1
duplicate "relpow" facts for "relpowp" (to emphasize that both worlds exist and obtain better search results with "find_theorems")
 Christian Sternagel parents: 
47433diff
changeset | 962 | using rtrancl_is_UN_relpow [to_pred, of P] by auto | 
| 
2631a12fb2d1
duplicate "relpow" facts for "relpowp" (to emphasize that both worlds exist and obtain better search results with "find_theorems")
 Christian Sternagel parents: 
47433diff
changeset | 963 | |
| 63404 | 964 | lemma rtrancl_power: "p \<in> R\<^sup>* \<longleftrightarrow> (\<exists>n. p \<in> R ^^ n)" | 
| 46362 | 965 | by (simp add: rtrancl_is_UN_relpow) | 
| 30954 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 966 | |
| 63404 | 967 | lemma rtranclp_power: "(P\<^sup>*\<^sup>*) x y \<longleftrightarrow> (\<exists>n. (P ^^ n) x y)" | 
| 47492 
2631a12fb2d1
duplicate "relpow" facts for "relpowp" (to emphasize that both worlds exist and obtain better search results with "find_theorems")
 Christian Sternagel parents: 
47433diff
changeset | 968 | by (simp add: rtranclp_is_Sup_relpowp) | 
| 
2631a12fb2d1
duplicate "relpow" facts for "relpowp" (to emphasize that both worlds exist and obtain better search results with "find_theorems")
 Christian Sternagel parents: 
47433diff
changeset | 969 | |
| 63404 | 970 | lemma trancl_power: "p \<in> R\<^sup>+ \<longleftrightarrow> (\<exists>n > 0. p \<in> R ^^ n)" | 
| 68618 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68456diff
changeset | 971 | proof - | 
| 71627 | 972 | have "(a, b) \<in> R\<^sup>+ \<longleftrightarrow> (\<exists>n>0. (a, b) \<in> R ^^ n)" for a b | 
| 68618 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68456diff
changeset | 973 | proof safe | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68456diff
changeset | 974 | show "(a, b) \<in> R\<^sup>+ \<Longrightarrow> \<exists>n>0. (a, b) \<in> R ^^ n" | 
| 71627 | 975 | by (fastforce simp: rtrancl_is_UN_relpow relcomp_unfold dest: tranclD2) | 
| 68618 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68456diff
changeset | 976 | show "(a, b) \<in> R\<^sup>+" if "n > 0" "(a, b) \<in> R ^^ n" for n | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68456diff
changeset | 977 | proof (cases n) | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68456diff
changeset | 978 | case (Suc m) | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68456diff
changeset | 979 | with that show ?thesis | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68456diff
changeset | 980 | by (auto simp: dest: relpow_imp_rtrancl rtrancl_into_trancl1) | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68456diff
changeset | 981 | qed (use that in auto) | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68456diff
changeset | 982 | qed | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68456diff
changeset | 983 | then show ?thesis | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68456diff
changeset | 984 | by (cases p) auto | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68456diff
changeset | 985 | qed | 
| 30954 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 986 | |
| 63404 | 987 | lemma tranclp_power: "(P\<^sup>+\<^sup>+) x y \<longleftrightarrow> (\<exists>n > 0. (P ^^ n) x y)" | 
| 47492 
2631a12fb2d1
duplicate "relpow" facts for "relpowp" (to emphasize that both worlds exist and obtain better search results with "find_theorems")
 Christian Sternagel parents: 
47433diff
changeset | 988 | using trancl_power [to_pred, of P "(x, y)"] by simp | 
| 
2631a12fb2d1
duplicate "relpow" facts for "relpowp" (to emphasize that both worlds exist and obtain better search results with "find_theorems")
 Christian Sternagel parents: 
47433diff
changeset | 989 | |
| 63404 | 990 | lemma rtrancl_imp_relpow: "p \<in> R\<^sup>* \<Longrightarrow> \<exists>n. p \<in> R ^^ n" | 
| 46362 | 991 | by (auto dest: rtrancl_imp_UN_relpow) | 
| 30954 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 992 | |
| 63404 | 993 | lemma rtranclp_imp_relpowp: "(P\<^sup>*\<^sup>*) x y \<Longrightarrow> \<exists>n. (P ^^ n) x y" | 
| 47492 
2631a12fb2d1
duplicate "relpow" facts for "relpowp" (to emphasize that both worlds exist and obtain better search results with "find_theorems")
 Christian Sternagel parents: 
47433diff
changeset | 994 | by (auto dest: rtranclp_imp_Sup_relpowp) | 
| 
2631a12fb2d1
duplicate "relpow" facts for "relpowp" (to emphasize that both worlds exist and obtain better search results with "find_theorems")
 Christian Sternagel parents: 
47433diff
changeset | 995 | |
| 63404 | 996 | text \<open>By Sternagel/Thiemann:\<close> | 
| 997 | lemma relpow_fun_conv: "(a, b) \<in> R ^^ n \<longleftrightarrow> (\<exists>f. f 0 = a \<and> f n = b \<and> (\<forall>i<n. (f i, f (Suc i)) \<in> R))" | |
| 41987 | 998 | proof (induct n arbitrary: b) | 
| 63404 | 999 | case 0 | 
| 1000 | show ?case by auto | |
| 41987 | 1001 | next | 
| 1002 | case (Suc n) | |
| 1003 | show ?case | |
| 47433 
07f4bf913230
renamed "rel_comp" to "relcomp" (to be consistent with, e.g., "relpow")
 griff parents: 
47202diff
changeset | 1004 | proof (simp add: relcomp_unfold Suc) | 
| 63404 | 1005 | show "(\<exists>y. (\<exists>f. f 0 = a \<and> f n = y \<and> (\<forall>i<n. (f i,f(Suc i)) \<in> R)) \<and> (y,b) \<in> R) \<longleftrightarrow> | 
| 1006 | (\<exists>f. f 0 = a \<and> f(Suc n) = b \<and> (\<forall>i<Suc n. (f i, f (Suc i)) \<in> R))" | |
| 41987 | 1007 | (is "?l = ?r") | 
| 1008 | proof | |
| 1009 | assume ?l | |
| 63404 | 1010 | then obtain c f | 
| 1011 | where 1: "f 0 = a" "f n = c" "\<And>i. i < n \<Longrightarrow> (f i, f (Suc i)) \<in> R" "(c,b) \<in> R" | |
| 1012 | by auto | |
| 41987 | 1013 | let ?g = "\<lambda> m. if m = Suc n then b else f m" | 
| 63404 | 1014 | show ?r by (rule exI[of _ ?g]) (simp add: 1) | 
| 41987 | 1015 | next | 
| 1016 | assume ?r | |
| 63404 | 1017 | then obtain f where 1: "f 0 = a" "b = f (Suc n)" "\<And>i. i < Suc n \<Longrightarrow> (f i, f (Suc i)) \<in> R" | 
| 1018 | by auto | |
| 41987 | 1019 | show ?l by (rule exI[of _ "f n"], rule conjI, rule exI[of _ f], insert 1, auto) | 
| 1020 | qed | |
| 1021 | qed | |
| 1022 | qed | |
| 1023 | ||
| 63404 | 1024 | lemma relpowp_fun_conv: "(P ^^ n) x y \<longleftrightarrow> (\<exists>f. f 0 = x \<and> f n = y \<and> (\<forall>i<n. P (f i) (f (Suc i))))" | 
| 47492 
2631a12fb2d1
duplicate "relpow" facts for "relpowp" (to emphasize that both worlds exist and obtain better search results with "find_theorems")
 Christian Sternagel parents: 
47433diff
changeset | 1025 | by (fact relpow_fun_conv [to_pred]) | 
| 
2631a12fb2d1
duplicate "relpow" facts for "relpowp" (to emphasize that both worlds exist and obtain better search results with "find_theorems")
 Christian Sternagel parents: 
47433diff
changeset | 1026 | |
| 46362 | 1027 | lemma relpow_finite_bounded1: | 
| 63404 | 1028 |   fixes R :: "('a \<times> 'a) set"
 | 
| 1029 | assumes "finite R" and "k > 0" | |
| 63612 | 1030 |   shows "R^^k \<subseteq> (\<Union>n\<in>{n. 0 < n \<and> n \<le> card R}. R^^n)"
 | 
| 1031 | (is "_ \<subseteq> ?r") | |
| 63404 | 1032 | proof - | 
| 1033 | have "(a, b) \<in> R^^(Suc k) \<Longrightarrow> \<exists>n. 0 < n \<and> n \<le> card R \<and> (a, b) \<in> R^^n" for a b k | |
| 1034 | proof (induct k arbitrary: b) | |
| 1035 | case 0 | |
| 1036 |     then have "R \<noteq> {}" by auto
 | |
| 1037 | with card_0_eq[OF \<open>finite R\<close>] have "card R \<ge> Suc 0" by auto | |
| 1038 | then show ?case using 0 by force | |
| 1039 | next | |
| 1040 | case (Suc k) | |
| 1041 | then obtain a' where "(a, a') \<in> R^^(Suc k)" and "(a', b) \<in> R" | |
| 1042 | by auto | |
| 1043 | from Suc(1)[OF \<open>(a, a') \<in> R^^(Suc k)\<close>] obtain n where "n \<le> card R" and "(a, a') \<in> R ^^ n" | |
| 1044 | by auto | |
| 1045 | have "(a, b) \<in> R^^(Suc n)" | |
| 1046 | using \<open>(a, a') \<in> R^^n\<close> and \<open>(a', b)\<in> R\<close> by auto | |
| 1047 | from \<open>n \<le> card R\<close> consider "n < card R" | "n = card R" by force | |
| 1048 | then show ?case | |
| 1049 | proof cases | |
| 1050 | case 1 | |
| 1051 | then show ?thesis | |
| 1052 | using \<open>(a, b) \<in> R^^(Suc n)\<close> Suc_leI[OF \<open>n < card R\<close>] by blast | |
| 41987 | 1053 | next | 
| 63404 | 1054 | case 2 | 
| 1055 | from \<open>(a, b) \<in> R ^^ (Suc n)\<close> [unfolded relpow_fun_conv] | |
| 1056 | obtain f where "f 0 = a" and "f (Suc n) = b" | |
| 1057 | and steps: "\<And>i. i \<le> n \<Longrightarrow> (f i, f (Suc i)) \<in> R" by auto | |
| 1058 | let ?p = "\<lambda>i. (f i, f(Suc i))" | |
| 1059 |       let ?N = "{i. i \<le> n}"
 | |
| 1060 | have "?p ` ?N \<subseteq> R" | |
| 1061 | using steps by auto | |
| 1062 | from card_mono[OF assms(1) this] have "card (?p ` ?N) \<le> card R" . | |
| 1063 | also have "\<dots> < card ?N" | |
| 1064 | using \<open>n = card R\<close> by simp | |
| 1065 | finally have "\<not> inj_on ?p ?N" | |
| 1066 | by (rule pigeonhole) | |
| 1067 | then obtain i j where i: "i \<le> n" and j: "j \<le> n" and ij: "i \<noteq> j" and pij: "?p i = ?p j" | |
| 1068 | by (auto simp: inj_on_def) | |
| 1069 | let ?i = "min i j" | |
| 1070 | let ?j = "max i j" | |
| 1071 | have i: "?i \<le> n" and j: "?j \<le> n" and pij: "?p ?i = ?p ?j" and ij: "?i < ?j" | |
| 1072 | using i j ij pij unfolding min_def max_def by auto | |
| 1073 | from i j pij ij obtain i j where i: "i \<le> n" and j: "j \<le> n" and ij: "i < j" | |
| 1074 | and pij: "?p i = ?p j" | |
| 1075 | by blast | |
| 1076 | let ?g = "\<lambda>l. if l \<le> i then f l else f (l + (j - i))" | |
| 1077 | let ?n = "Suc (n - (j - i))" | |
| 1078 | have abl: "(a, b) \<in> R ^^ ?n" | |
| 1079 | unfolding relpow_fun_conv | |
| 1080 | proof (rule exI[of _ ?g], intro conjI impI allI) | |
| 1081 | show "?g ?n = b" | |
| 1082 | using \<open>f(Suc n) = b\<close> j ij by auto | |
| 1083 | next | |
| 1084 | fix k | |
| 1085 | assume "k < ?n" | |
| 1086 | show "(?g k, ?g (Suc k)) \<in> R" | |
| 1087 | proof (cases "k < i") | |
| 1088 | case True | |
| 1089 | with i have "k \<le> n" | |
| 1090 | by auto | |
| 1091 | from steps[OF this] show ?thesis | |
| 1092 | using True by simp | |
| 41987 | 1093 | next | 
| 63404 | 1094 | case False | 
| 1095 | then have "i \<le> k" by auto | |
| 1096 | show ?thesis | |
| 1097 | proof (cases "k = i") | |
| 41987 | 1098 | case True | 
| 63404 | 1099 | then show ?thesis | 
| 1100 | using ij pij steps[OF i] by simp | |
| 41987 | 1101 | next | 
| 1102 | case False | |
| 63404 | 1103 | with \<open>i \<le> k\<close> have "i < k" by auto | 
| 1104 | then have small: "k + (j - i) \<le> n" | |
| 1105 | using \<open>k<?n\<close> by arith | |
| 41987 | 1106 | show ?thesis | 
| 63404 | 1107 | using steps[OF small] \<open>i<k\<close> by auto | 
| 41987 | 1108 | qed | 
| 63404 | 1109 | qed | 
| 1110 | qed (simp add: \<open>f 0 = a\<close>) | |
| 1111 | moreover have "?n \<le> n" | |
| 1112 | using i j ij by arith | |
| 1113 | ultimately show ?thesis | |
| 1114 | using \<open>n = card R\<close> by blast | |
| 41987 | 1115 | qed | 
| 63404 | 1116 | qed | 
| 1117 | then show ?thesis | |
| 1118 | using gr0_implies_Suc[OF \<open>k > 0\<close>] by auto | |
| 41987 | 1119 | qed | 
| 1120 | ||
| 46362 | 1121 | lemma relpow_finite_bounded: | 
| 63404 | 1122 |   fixes R :: "('a \<times> 'a) set"
 | 
| 1123 | assumes "finite R" | |
| 69276 | 1124 |   shows "R^^k \<subseteq> (\<Union>n\<in>{n. n \<le> card R}. R^^n)"
 | 
| 71627 | 1125 | proof (cases k) | 
| 1126 | case (Suc k') | |
| 1127 | then show ?thesis | |
| 1128 | using relpow_finite_bounded1[OF assms, of k] by auto | |
| 1129 | qed force | |
| 41987 | 1130 | |
| 63404 | 1131 | lemma rtrancl_finite_eq_relpow: "finite R \<Longrightarrow> R\<^sup>* = (\<Union>n\<in>{n. n \<le> card R}. R^^n)"
 | 
| 1132 | by (fastforce simp: rtrancl_power dest: relpow_finite_bounded) | |
| 41987 | 1133 | |
| 71627 | 1134 | lemma trancl_finite_eq_relpow: | 
| 1135 |   assumes "finite R" shows "R\<^sup>+ = (\<Union>n\<in>{n. 0 < n \<and> n \<le> card R}. R^^n)"
 | |
| 1136 | proof - | |
| 1137 | have "\<And>a b n. \<lbrakk>0 < n; (a, b) \<in> R ^^ n\<rbrakk> \<Longrightarrow> \<exists>x>0. x \<le> card R \<and> (a, b) \<in> R ^^ x" | |
| 1138 | using assms by (auto dest: relpow_finite_bounded1) | |
| 1139 | then show ?thesis | |
| 1140 | by (auto simp: trancl_power) | |
| 1141 | qed | |
| 41987 | 1142 | |
| 47433 
07f4bf913230
renamed "rel_comp" to "relcomp" (to be consistent with, e.g., "relpow")
 griff parents: 
47202diff
changeset | 1143 | lemma finite_relcomp[simp,intro]: | 
| 63404 | 1144 | assumes "finite R" and "finite S" | 
| 1145 | shows "finite (R O S)" | |
| 41987 | 1146 | proof- | 
| 62343 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 haftmann parents: 
62093diff
changeset | 1147 |   have "R O S = (\<Union>(x, y)\<in>R. \<Union>(u, v)\<in>S. if u = y then {(x, v)} else {})"
 | 
| 68618 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68456diff
changeset | 1148 | by (force simp: split_def image_constant_conv split: if_splits) | 
| 63404 | 1149 | then show ?thesis | 
| 1150 | using assms by clarsimp | |
| 41987 | 1151 | qed | 
| 1152 | ||
| 63404 | 1153 | lemma finite_relpow [simp, intro]: | 
| 1154 |   fixes R :: "('a \<times> 'a) set"
 | |
| 1155 | assumes "finite R" | |
| 1156 | shows "n > 0 \<Longrightarrow> finite (R^^n)" | |
| 63612 | 1157 | proof (induct n) | 
| 1158 | case 0 | |
| 1159 | then show ?case by simp | |
| 1160 | next | |
| 1161 | case (Suc n) | |
| 1162 | then show ?case by (cases n) (use assms in simp_all) | |
| 1163 | qed | |
| 41987 | 1164 | |
| 46362 | 1165 | lemma single_valued_relpow: | 
| 63404 | 1166 |   fixes R :: "('a \<times> 'a) set"
 | 
| 30954 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 1167 | shows "single_valued R \<Longrightarrow> single_valued (R ^^ n)" | 
| 63612 | 1168 | proof (induct n arbitrary: R) | 
| 1169 | case 0 | |
| 1170 | then show ?case by simp | |
| 1171 | next | |
| 1172 | case (Suc n) | |
| 1173 | show ?case | |
| 1174 | by (rule single_valuedI) | |
| 1175 | (use Suc in \<open>fast dest: single_valuedD elim: relpow_Suc_E\<close>) | |
| 1176 | qed | |
| 15551 | 1177 | |
| 45140 | 1178 | |
| 60758 | 1179 | subsection \<open>Bounded transitive closure\<close> | 
| 45140 | 1180 | |
| 1181 | definition ntrancl :: "nat \<Rightarrow> ('a \<times> 'a) set \<Rightarrow> ('a \<times> 'a) set"
 | |
| 63404 | 1182 |   where "ntrancl n R = (\<Union>i\<in>{i. 0 < i \<and> i \<le> Suc n}. R ^^ i)"
 | 
| 45140 | 1183 | |
| 63404 | 1184 | lemma ntrancl_Zero [simp, code]: "ntrancl 0 R = R" | 
| 45140 | 1185 | proof | 
| 1186 | show "R \<subseteq> ntrancl 0 R" | |
| 1187 | unfolding ntrancl_def by fastforce | |
| 63404 | 1188 | have "0 < i \<and> i \<le> Suc 0 \<longleftrightarrow> i = 1" for i | 
| 1189 | by auto | |
| 1190 | then show "ntrancl 0 R \<le> R" | |
| 45140 | 1191 | unfolding ntrancl_def by auto | 
| 1192 | qed | |
| 1193 | ||
| 63404 | 1194 | lemma ntrancl_Suc [simp]: "ntrancl (Suc n) R = ntrancl n R O (Id \<union> R)" | 
| 45140 | 1195 | proof | 
| 63612 | 1196 | have "(a, b) \<in> ntrancl n R O (Id \<union> R)" if "(a, b) \<in> ntrancl (Suc n) R" for a b | 
| 1197 | proof - | |
| 1198 | from that obtain i where "0 < i" "i \<le> Suc (Suc n)" "(a, b) \<in> R ^^ i" | |
| 45140 | 1199 | unfolding ntrancl_def by auto | 
| 63612 | 1200 | show ?thesis | 
| 45140 | 1201 | proof (cases "i = 1") | 
| 1202 | case True | |
| 71627 | 1203 | with \<open>(a, b) \<in> R ^^ i\<close> show ?thesis | 
| 63612 | 1204 | by (auto simp: ntrancl_def) | 
| 45140 | 1205 | next | 
| 1206 | case False | |
| 63612 | 1207 | with \<open>0 < i\<close> obtain j where j: "i = Suc j" "0 < j" | 
| 45140 | 1208 | by (cases i) auto | 
| 63612 | 1209 | with \<open>(a, b) \<in> R ^^ i\<close> obtain c where c1: "(a, c) \<in> R ^^ j" and c2: "(c, b) \<in> R" | 
| 45140 | 1210 | by auto | 
| 60758 | 1211 | from c1 j \<open>i \<le> Suc (Suc n)\<close> have "(a, c) \<in> ntrancl n R" | 
| 63612 | 1212 | by (fastforce simp: ntrancl_def) | 
| 1213 | with c2 show ?thesis by fastforce | |
| 45140 | 1214 | qed | 
| 63612 | 1215 | qed | 
| 63404 | 1216 | then show "ntrancl (Suc n) R \<subseteq> ntrancl n R O (Id \<union> R)" | 
| 45140 | 1217 | by auto | 
| 1218 | show "ntrancl n R O (Id \<union> R) \<subseteq> ntrancl (Suc n) R" | |
| 63612 | 1219 | by (fastforce simp: ntrancl_def) | 
| 45140 | 1220 | qed | 
| 1221 | ||
| 63404 | 1222 | lemma [code]: "ntrancl (Suc n) r = (let r' = ntrancl n r in r' \<union> r' O r)" | 
| 1223 | by (auto simp: Let_def) | |
| 46347 
54870ad19af4
new code equation for ntrancl that allows computation of the transitive closure of sets on infinite types as well
 bulwahn parents: 
46127diff
changeset | 1224 | |
| 63404 | 1225 | lemma finite_trancl_ntranl: "finite R \<Longrightarrow> trancl R = ntrancl (card R - 1) R" | 
| 68618 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68456diff
changeset | 1226 | by (cases "card R") (auto simp: trancl_finite_eq_relpow relpow_empty ntrancl_def) | 
| 45140 | 1227 | |
| 1228 | ||
| 60758 | 1229 | subsection \<open>Acyclic relations\<close> | 
| 45139 | 1230 | |
| 63404 | 1231 | definition acyclic :: "('a \<times> 'a) set \<Rightarrow> bool"
 | 
| 1232 | where "acyclic r \<longleftrightarrow> (\<forall>x. (x,x) \<notin> r\<^sup>+)" | |
| 45139 | 1233 | |
| 63404 | 1234 | abbreviation acyclicP :: "('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> bool"
 | 
| 1235 |   where "acyclicP r \<equiv> acyclic {(x, y). r x y}"
 | |
| 45139 | 1236 | |
| 63404 | 1237 | lemma acyclic_irrefl [code]: "acyclic r \<longleftrightarrow> irrefl (r\<^sup>+)" | 
| 45139 | 1238 | by (simp add: acyclic_def irrefl_def) | 
| 1239 | ||
| 63404 | 1240 | lemma acyclicI: "\<forall>x. (x, x) \<notin> r\<^sup>+ \<Longrightarrow> acyclic r" | 
| 45139 | 1241 | by (simp add: acyclic_def) | 
| 1242 | ||
| 70749 
5d06b7bb9d22
More type class generalisations. Note that linorder_antisym_conv1 and linorder_antisym_conv2 no longer exist.
 paulson <lp15@cam.ac.uk> parents: 
69605diff
changeset | 1243 | lemma (in preorder) acyclicI_order: | 
| 54412 | 1244 | assumes *: "\<And>a b. (a, b) \<in> r \<Longrightarrow> f b < f a" | 
| 1245 | shows "acyclic r" | |
| 1246 | proof - | |
| 63404 | 1247 | have "f b < f a" if "(a, b) \<in> r\<^sup>+" for a b | 
| 1248 | using that by induct (auto intro: * less_trans) | |
| 54412 | 1249 | then show ?thesis | 
| 1250 | by (auto intro!: acyclicI) | |
| 1251 | qed | |
| 1252 | ||
| 63404 | 1253 | lemma acyclic_insert [iff]: "acyclic (insert (y, x) r) \<longleftrightarrow> acyclic r \<and> (x, y) \<notin> r\<^sup>*" | 
| 63612 | 1254 | by (simp add: acyclic_def trancl_insert) (blast intro: rtrancl_trans) | 
| 45139 | 1255 | |
| 63404 | 1256 | lemma acyclic_converse [iff]: "acyclic (r\<inverse>) \<longleftrightarrow> acyclic r" | 
| 1257 | by (simp add: acyclic_def trancl_converse) | |
| 45139 | 1258 | |
| 1259 | lemmas acyclicP_converse [iff] = acyclic_converse [to_pred] | |
| 1260 | ||
| 63404 | 1261 | lemma acyclic_impl_antisym_rtrancl: "acyclic r \<Longrightarrow> antisym (r\<^sup>*)" | 
| 63612 | 1262 | by (simp add: acyclic_def antisym_def) | 
| 1263 | (blast elim: rtranclE intro: rtrancl_into_trancl1 rtrancl_trancl_trancl) | |
| 45139 | 1264 | |
| 1265 | (* Other direction: | |
| 1266 | acyclic = no loops | |
| 1267 | antisym = only self loops | |
| 63404 | 1268 | Goalw [acyclic_def,antisym_def] "antisym( r\<^sup>* ) \<Longrightarrow> acyclic(r - Id) | 
| 1269 | \<Longrightarrow> antisym( r\<^sup>* ) = acyclic(r - Id)"; | |
| 45139 | 1270 | *) | 
| 1271 | ||
| 63404 | 1272 | lemma acyclic_subset: "acyclic s \<Longrightarrow> r \<subseteq> s \<Longrightarrow> acyclic r" | 
| 1273 | unfolding acyclic_def by (blast intro: trancl_mono) | |
| 45139 | 1274 | |
| 1275 | ||
| 60758 | 1276 | subsection \<open>Setup of transitivity reasoner\<close> | 
| 15076 
4b3d280ef06a
New prover for transitive and reflexive-transitive closure of relations.
 ballarin parents: 
14565diff
changeset | 1277 | |
| 60758 | 1278 | ML \<open> | 
| 32215 | 1279 | structure Trancl_Tac = Trancl_Tac | 
| 1280 | ( | |
| 1281 |   val r_into_trancl = @{thm trancl.r_into_trancl};
 | |
| 1282 |   val trancl_trans  = @{thm trancl_trans};
 | |
| 1283 |   val rtrancl_refl = @{thm rtrancl.rtrancl_refl};
 | |
| 1284 |   val r_into_rtrancl = @{thm r_into_rtrancl};
 | |
| 1285 |   val trancl_into_rtrancl = @{thm trancl_into_rtrancl};
 | |
| 1286 |   val rtrancl_trancl_trancl = @{thm rtrancl_trancl_trancl};
 | |
| 1287 |   val trancl_rtrancl_trancl = @{thm trancl_rtrancl_trancl};
 | |
| 1288 |   val rtrancl_trans = @{thm rtrancl_trans};
 | |
| 15096 | 1289 | |
| 69597 | 1290 | fun decomp (\<^const>\<open>Trueprop\<close> $ t) = | 
| 63404 | 1291 | let | 
| 69593 | 1292 | fun dec (Const (\<^const_name>\<open>Set.member\<close>, _) $ (Const (\<^const_name>\<open>Pair\<close>, _) $ a $ b) $ rel) = | 
| 63404 | 1293 | let | 
| 69593 | 1294 | fun decr (Const (\<^const_name>\<open>rtrancl\<close>, _ ) $ r) = (r,"r*") | 
| 1295 | | decr (Const (\<^const_name>\<open>trancl\<close>, _ ) $ r) = (r,"r+") | |
| 63404 | 1296 | | decr r = (r,"r"); | 
| 1297 | val (rel,r) = decr (Envir.beta_eta_contract rel); | |
| 1298 | in SOME (a,b,rel,r) end | |
| 1299 | | dec _ = NONE | |
| 1300 | in dec t end | |
| 30107 
f3b3b0e3d184
Fixed nonexhaustive match problem in decomp, to make it fail more gracefully
 berghofe parents: 
29609diff
changeset | 1301 | | decomp _ = NONE; | 
| 32215 | 1302 | ); | 
| 15076 
4b3d280ef06a
New prover for transitive and reflexive-transitive closure of relations.
 ballarin parents: 
14565diff
changeset | 1303 | |
| 32215 | 1304 | structure Tranclp_Tac = Trancl_Tac | 
| 1305 | ( | |
| 1306 |   val r_into_trancl = @{thm tranclp.r_into_trancl};
 | |
| 1307 |   val trancl_trans  = @{thm tranclp_trans};
 | |
| 1308 |   val rtrancl_refl = @{thm rtranclp.rtrancl_refl};
 | |
| 1309 |   val r_into_rtrancl = @{thm r_into_rtranclp};
 | |
| 1310 |   val trancl_into_rtrancl = @{thm tranclp_into_rtranclp};
 | |
| 1311 |   val rtrancl_trancl_trancl = @{thm rtranclp_tranclp_tranclp};
 | |
| 1312 |   val trancl_rtrancl_trancl = @{thm tranclp_rtranclp_tranclp};
 | |
| 1313 |   val rtrancl_trans = @{thm rtranclp_trans};
 | |
| 22262 | 1314 | |
| 69597 | 1315 | fun decomp (\<^const>\<open>Trueprop\<close> $ t) = | 
| 63404 | 1316 | let | 
| 1317 | fun dec (rel $ a $ b) = | |
| 1318 | let | |
| 69593 | 1319 | fun decr (Const (\<^const_name>\<open>rtranclp\<close>, _ ) $ r) = (r,"r*") | 
| 1320 | | decr (Const (\<^const_name>\<open>tranclp\<close>, _ ) $ r) = (r,"r+") | |
| 63404 | 1321 | | decr r = (r,"r"); | 
| 1322 | val (rel,r) = decr rel; | |
| 1323 | in SOME (a, b, rel, r) end | |
| 1324 | | dec _ = NONE | |
| 1325 | in dec t end | |
| 30107 
f3b3b0e3d184
Fixed nonexhaustive match problem in decomp, to make it fail more gracefully
 berghofe parents: 
29609diff
changeset | 1326 | | decomp _ = NONE; | 
| 32215 | 1327 | ); | 
| 60758 | 1328 | \<close> | 
| 22262 | 1329 | |
| 60758 | 1330 | setup \<open> | 
| 51717 
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
 wenzelm parents: 
50616diff
changeset | 1331 | map_theory_simpset (fn ctxt => ctxt | 
| 
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
 wenzelm parents: 
50616diff
changeset | 1332 | addSolver (mk_solver "Trancl" Trancl_Tac.trancl_tac) | 
| 
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
 wenzelm parents: 
50616diff
changeset | 1333 | addSolver (mk_solver "Rtrancl" Trancl_Tac.rtrancl_tac) | 
| 
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
 wenzelm parents: 
50616diff
changeset | 1334 | addSolver (mk_solver "Tranclp" Tranclp_Tac.trancl_tac) | 
| 
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
 wenzelm parents: 
50616diff
changeset | 1335 | addSolver (mk_solver "Rtranclp" Tranclp_Tac.rtrancl_tac)) | 
| 60758 | 1336 | \<close> | 
| 15076 
4b3d280ef06a
New prover for transitive and reflexive-transitive closure of relations.
 ballarin parents: 
14565diff
changeset | 1337 | |
| 71393 
fce780f9c9c6
new examples of BNF lifting across quotients using a new theory of confluence,
 traytel parents: 
70749diff
changeset | 1338 | lemma transp_rtranclp [simp]: "transp R\<^sup>*\<^sup>*" | 
| 
fce780f9c9c6
new examples of BNF lifting across quotients using a new theory of confluence,
 traytel parents: 
70749diff
changeset | 1339 | by(auto simp add: transp_def) | 
| 32215 | 1340 | |
| 60758 | 1341 | text \<open>Optional methods.\<close> | 
| 15076 
4b3d280ef06a
New prover for transitive and reflexive-transitive closure of relations.
 ballarin parents: 
14565diff
changeset | 1342 | |
| 
4b3d280ef06a
New prover for transitive and reflexive-transitive closure of relations.
 ballarin parents: 
14565diff
changeset | 1343 | method_setup trancl = | 
| 60758 | 1344 | \<open>Scan.succeed (SIMPLE_METHOD' o Trancl_Tac.trancl_tac)\<close> | 
| 1345 | \<open>simple transitivity reasoner\<close> | |
| 15076 
4b3d280ef06a
New prover for transitive and reflexive-transitive closure of relations.
 ballarin parents: 
14565diff
changeset | 1346 | method_setup rtrancl = | 
| 60758 | 1347 | \<open>Scan.succeed (SIMPLE_METHOD' o Trancl_Tac.rtrancl_tac)\<close> | 
| 1348 | \<open>simple transitivity reasoner\<close> | |
| 22262 | 1349 | method_setup tranclp = | 
| 60758 | 1350 | \<open>Scan.succeed (SIMPLE_METHOD' o Tranclp_Tac.trancl_tac)\<close> | 
| 1351 | \<open>simple transitivity reasoner (predicate version)\<close> | |
| 22262 | 1352 | method_setup rtranclp = | 
| 60758 | 1353 | \<open>Scan.succeed (SIMPLE_METHOD' o Tranclp_Tac.rtrancl_tac)\<close> | 
| 1354 | \<open>simple transitivity reasoner (predicate version)\<close> | |
| 15076 
4b3d280ef06a
New prover for transitive and reflexive-transitive closure of relations.
 ballarin parents: 
14565diff
changeset | 1355 | |
| 10213 | 1356 | end |