| author | paulson <lp15@cam.ac.uk> | 
| Fri, 17 Feb 2023 13:48:42 +0000 | |
| changeset 77279 | c16d423c9cb1 | 
| parent 69597 | ff784d5a5bfb | 
| child 80768 | c7723cc15de8 | 
| permissions | -rw-r--r-- | 
| 5252 | 1  | 
(* Title: HOL/UNITY/Union.thy  | 
2  | 
Author: Lawrence C Paulson, Cambridge University Computer Laboratory  | 
|
3  | 
Copyright 1998 University of Cambridge  | 
|
4  | 
||
| 
32960
 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 
wenzelm 
parents: 
30304 
diff
changeset
 | 
5  | 
Partly from Misra's Chapter 5: Asynchronous Compositions of Programs.  | 
| 5252 | 6  | 
*)  | 
7  | 
||
| 63146 | 8  | 
section\<open>Unions of Programs\<close>  | 
| 13798 | 9  | 
|
| 16417 | 10  | 
theory Union imports SubstAx FP begin  | 
| 5252 | 11  | 
|
| 13805 | 12  | 
  (*FIXME: conjoin Init F \<inter> Init G \<noteq> {} *) 
 | 
| 36866 | 13  | 
definition  | 
| 13792 | 14  | 
ok :: "['a program, 'a program] => bool" (infixl "ok" 65)  | 
| 36866 | 15  | 
where "F ok G == Acts F \<subseteq> AllowedActs G &  | 
| 13805 | 16  | 
Acts G \<subseteq> AllowedActs F"  | 
| 
10064
 
1a77667b21ef
added compatibility relation: AllowedActs, Allowed, ok,
 
paulson 
parents: 
9685 
diff
changeset
 | 
17  | 
|
| 13805 | 18  | 
  (*FIXME: conjoin (\<Inter>i \<in> I. Init (F i)) \<noteq> {} *) 
 | 
| 36866 | 19  | 
definition  | 
| 13792 | 20  | 
OK :: "['a set, 'a => 'b program] => bool"  | 
| 36866 | 21  | 
  where "OK I F = (\<forall>i \<in> I. \<forall>j \<in> I-{i}. Acts (F i) \<subseteq> AllowedActs (F j))"
 | 
| 
10064
 
1a77667b21ef
added compatibility relation: AllowedActs, Allowed, ok,
 
paulson 
parents: 
9685 
diff
changeset
 | 
22  | 
|
| 36866 | 23  | 
definition  | 
| 13792 | 24  | 
JOIN :: "['a set, 'a => 'b program] => 'b program"  | 
| 36866 | 25  | 
where "JOIN I F = mk_program (\<Inter>i \<in> I. Init (F i), \<Union>i \<in> I. Acts (F i),  | 
| 
32960
 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 
wenzelm 
parents: 
30304 
diff
changeset
 | 
26  | 
\<Inter>i \<in> I. AllowedActs (F i))"  | 
| 5252 | 27  | 
|
| 36866 | 28  | 
definition  | 
| 60773 | 29  | 
Join :: "['a program, 'a program] => 'a program" (infixl "\<squnion>" 65)  | 
30  | 
where "F \<squnion> G = mk_program (Init F \<inter> Init G, Acts F \<union> Acts G,  | 
|
| 
32960
 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 
wenzelm 
parents: 
30304 
diff
changeset
 | 
31  | 
AllowedActs F \<inter> AllowedActs G)"  | 
| 5252 | 32  | 
|
| 60773 | 33  | 
definition SKIP :: "'a program"  ("\<bottom>")
 | 
34  | 
  where "\<bottom> = mk_program (UNIV, {}, UNIV)"
 | 
|
| 
10064
 
1a77667b21ef
added compatibility relation: AllowedActs, Allowed, ok,
 
paulson 
parents: 
9685 
diff
changeset
 | 
35  | 
|
| 
13812
 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 
paulson 
parents: 
13805 
diff
changeset
 | 
36  | 
(*Characterizes safety properties. Used with specifying Allowed*)  | 
| 36866 | 37  | 
definition  | 
| 
10064
 
1a77667b21ef
added compatibility relation: AllowedActs, Allowed, ok,
 
paulson 
parents: 
9685 
diff
changeset
 | 
38  | 
safety_prop :: "'a program set => bool"  | 
| 69313 | 39  | 
where "safety_prop X \<longleftrightarrow> SKIP \<in> X \<and> (\<forall>G. Acts G \<subseteq> \<Union>(Acts ` X) \<longrightarrow> G \<in> X)"  | 
| 5259 | 40  | 
|
| 
5313
 
1861a564d7e2
Constrains, Stable, Invariant...more of the substitution axiom, but Union
 
paulson 
parents: 
5259 
diff
changeset
 | 
41  | 
syntax  | 
| 
60586
 
1d31e3a50373
proper spacing, as for other syntax for these symbols;
 
wenzelm 
parents: 
58889 
diff
changeset
 | 
42  | 
  "_JOIN1" :: "[pttrns, 'b set] => 'b set"              ("(3\<Squnion>_./ _)" 10)
 | 
| 
 
1d31e3a50373
proper spacing, as for other syntax for these symbols;
 
wenzelm 
parents: 
58889 
diff
changeset
 | 
43  | 
  "_JOIN"  :: "[pttrn, 'a set, 'b set] => 'b set"       ("(3\<Squnion>_\<in>_./ _)" 10)
 | 
| 
5313
 
1861a564d7e2
Constrains, Stable, Invariant...more of the substitution axiom, but Union
 
paulson 
parents: 
5259 
diff
changeset
 | 
44  | 
translations  | 
| 60773 | 45  | 
"\<Squnion>x \<in> A. B" == "CONST JOIN A (\<lambda>x. B)"  | 
46  | 
"\<Squnion>x y. B" == "\<Squnion>x. \<Squnion>y. B"  | 
|
47  | 
"\<Squnion>x. B" == "CONST JOIN (CONST UNIV) (\<lambda>x. B)"  | 
|
| 
5313
 
1861a564d7e2
Constrains, Stable, Invariant...more of the substitution axiom, but Union
 
paulson 
parents: 
5259 
diff
changeset
 | 
48  | 
|
| 13792 | 49  | 
|
| 63146 | 50  | 
subsection\<open>SKIP\<close>  | 
| 13792 | 51  | 
|
52  | 
lemma Init_SKIP [simp]: "Init SKIP = UNIV"  | 
|
53  | 
by (simp add: SKIP_def)  | 
|
54  | 
||
55  | 
lemma Acts_SKIP [simp]: "Acts SKIP = {Id}"
 | 
|
56  | 
by (simp add: SKIP_def)  | 
|
57  | 
||
58  | 
lemma AllowedActs_SKIP [simp]: "AllowedActs SKIP = UNIV"  | 
|
59  | 
by (auto simp add: SKIP_def)  | 
|
60  | 
||
61  | 
lemma reachable_SKIP [simp]: "reachable SKIP = UNIV"  | 
|
62  | 
by (force elim: reachable.induct intro: reachable.intros)  | 
|
63  | 
||
| 63146 | 64  | 
subsection\<open>SKIP and safety properties\<close>  | 
| 13792 | 65  | 
|
| 13805 | 66  | 
lemma SKIP_in_constrains_iff [iff]: "(SKIP \<in> A co B) = (A \<subseteq> B)"  | 
| 13792 | 67  | 
by (unfold constrains_def, auto)  | 
68  | 
||
| 13805 | 69  | 
lemma SKIP_in_Constrains_iff [iff]: "(SKIP \<in> A Co B) = (A \<subseteq> B)"  | 
| 13792 | 70  | 
by (unfold Constrains_def, auto)  | 
71  | 
||
| 13805 | 72  | 
lemma SKIP_in_stable [iff]: "SKIP \<in> stable A"  | 
| 13792 | 73  | 
by (unfold stable_def, auto)  | 
74  | 
||
75  | 
declare SKIP_in_stable [THEN stable_imp_Stable, iff]  | 
|
76  | 
||
77  | 
||
| 63146 | 78  | 
subsection\<open>Join\<close>  | 
| 13792 | 79  | 
|
| 13819 | 80  | 
lemma Init_Join [simp]: "Init (F\<squnion>G) = Init F \<inter> Init G"  | 
| 13792 | 81  | 
by (simp add: Join_def)  | 
82  | 
||
| 13819 | 83  | 
lemma Acts_Join [simp]: "Acts (F\<squnion>G) = Acts F \<union> Acts G"  | 
| 13792 | 84  | 
by (auto simp add: Join_def)  | 
85  | 
||
86  | 
lemma AllowedActs_Join [simp]:  | 
|
| 13819 | 87  | 
"AllowedActs (F\<squnion>G) = AllowedActs F \<inter> AllowedActs G"  | 
| 13792 | 88  | 
by (auto simp add: Join_def)  | 
89  | 
||
90  | 
||
| 63146 | 91  | 
subsection\<open>JN\<close>  | 
| 13792 | 92  | 
|
| 13805 | 93  | 
lemma JN_empty [simp]: "(\<Squnion>i\<in>{}. F i) = SKIP"
 | 
| 13792 | 94  | 
by (unfold JOIN_def SKIP_def, auto)  | 
95  | 
||
| 13819 | 96  | 
lemma JN_insert [simp]: "(\<Squnion>i \<in> insert a I. F i) = (F a)\<squnion>(\<Squnion>i \<in> I. F i)"  | 
| 13792 | 97  | 
apply (rule program_equalityI)  | 
98  | 
apply (auto simp add: JOIN_def Join_def)  | 
|
99  | 
done  | 
|
100  | 
||
| 13805 | 101  | 
lemma Init_JN [simp]: "Init (\<Squnion>i \<in> I. F i) = (\<Inter>i \<in> I. Init (F i))"  | 
| 13792 | 102  | 
by (simp add: JOIN_def)  | 
103  | 
||
| 13805 | 104  | 
lemma Acts_JN [simp]: "Acts (\<Squnion>i \<in> I. F i) = insert Id (\<Union>i \<in> I. Acts (F i))"  | 
| 13792 | 105  | 
by (auto simp add: JOIN_def)  | 
106  | 
||
107  | 
lemma AllowedActs_JN [simp]:  | 
|
| 13805 | 108  | 
"AllowedActs (\<Squnion>i \<in> I. F i) = (\<Inter>i \<in> I. AllowedActs (F i))"  | 
| 13792 | 109  | 
by (auto simp add: JOIN_def)  | 
110  | 
||
111  | 
||
112  | 
lemma JN_cong [cong]:  | 
|
| 13805 | 113  | 
"[| I=J; !!i. i \<in> J ==> F i = G i |] ==> (\<Squnion>i \<in> I. F i) = (\<Squnion>i \<in> J. G i)"  | 
| 13792 | 114  | 
by (simp add: JOIN_def)  | 
115  | 
||
116  | 
||
| 63146 | 117  | 
subsection\<open>Algebraic laws\<close>  | 
| 13792 | 118  | 
|
| 13819 | 119  | 
lemma Join_commute: "F\<squnion>G = G\<squnion>F"  | 
| 13792 | 120  | 
by (simp add: Join_def Un_commute Int_commute)  | 
121  | 
||
| 13819 | 122  | 
lemma Join_assoc: "(F\<squnion>G)\<squnion>H = F\<squnion>(G\<squnion>H)"  | 
| 13792 | 123  | 
by (simp add: Un_ac Join_def Int_assoc insert_absorb)  | 
124  | 
||
| 13819 | 125  | 
lemma Join_left_commute: "A\<squnion>(B\<squnion>C) = B\<squnion>(A\<squnion>C)"  | 
| 13792 | 126  | 
by (simp add: Un_ac Int_ac Join_def insert_absorb)  | 
127  | 
||
| 13819 | 128  | 
lemma Join_SKIP_left [simp]: "SKIP\<squnion>F = F"  | 
| 13792 | 129  | 
apply (unfold Join_def SKIP_def)  | 
130  | 
apply (rule program_equalityI)  | 
|
131  | 
apply (simp_all (no_asm) add: insert_absorb)  | 
|
132  | 
done  | 
|
133  | 
||
| 13819 | 134  | 
lemma Join_SKIP_right [simp]: "F\<squnion>SKIP = F"  | 
| 13792 | 135  | 
apply (unfold Join_def SKIP_def)  | 
136  | 
apply (rule program_equalityI)  | 
|
137  | 
apply (simp_all (no_asm) add: insert_absorb)  | 
|
138  | 
done  | 
|
139  | 
||
| 13819 | 140  | 
lemma Join_absorb [simp]: "F\<squnion>F = F"  | 
| 13792 | 141  | 
apply (unfold Join_def)  | 
142  | 
apply (rule program_equalityI, auto)  | 
|
143  | 
done  | 
|
144  | 
||
| 13819 | 145  | 
lemma Join_left_absorb: "F\<squnion>(F\<squnion>G) = F\<squnion>G"  | 
| 13792 | 146  | 
apply (unfold Join_def)  | 
147  | 
apply (rule program_equalityI, auto)  | 
|
148  | 
done  | 
|
149  | 
||
150  | 
(*Join is an AC-operator*)  | 
|
151  | 
lemmas Join_ac = Join_assoc Join_left_absorb Join_commute Join_left_commute  | 
|
152  | 
||
153  | 
||
| 63146 | 154  | 
subsection\<open>Laws Governing \<open>\<Squnion>\<close>\<close>  | 
| 13792 | 155  | 
|
156  | 
(*Also follows by JN_insert and insert_absorb, but the proof is longer*)  | 
|
| 13819 | 157  | 
lemma JN_absorb: "k \<in> I ==> F k\<squnion>(\<Squnion>i \<in> I. F i) = (\<Squnion>i \<in> I. F i)"  | 
| 13792 | 158  | 
by (auto intro!: program_equalityI)  | 
159  | 
||
| 13819 | 160  | 
lemma JN_Un: "(\<Squnion>i \<in> I \<union> J. F i) = ((\<Squnion>i \<in> I. F i)\<squnion>(\<Squnion>i \<in> J. F i))"  | 
| 13792 | 161  | 
by (auto intro!: program_equalityI)  | 
162  | 
||
| 13805 | 163  | 
lemma JN_constant: "(\<Squnion>i \<in> I. c) = (if I={} then SKIP else c)"
 | 
| 13792 | 164  | 
by (rule program_equalityI, auto)  | 
165  | 
||
166  | 
lemma JN_Join_distrib:  | 
|
| 13819 | 167  | 
"(\<Squnion>i \<in> I. F i\<squnion>G i) = (\<Squnion>i \<in> I. F i) \<squnion> (\<Squnion>i \<in> I. G i)"  | 
| 13792 | 168  | 
by (auto intro!: program_equalityI)  | 
169  | 
||
170  | 
lemma JN_Join_miniscope:  | 
|
| 13819 | 171  | 
"i \<in> I ==> (\<Squnion>i \<in> I. F i\<squnion>G) = ((\<Squnion>i \<in> I. F i)\<squnion>G)"  | 
| 13792 | 172  | 
by (auto simp add: JN_Join_distrib JN_constant)  | 
173  | 
||
174  | 
(*Used to prove guarantees_JN_I*)  | 
|
| 13819 | 175  | 
lemma JN_Join_diff: "i \<in> I ==> F i\<squnion>JOIN (I - {i}) F = JOIN I F"
 | 
| 13792 | 176  | 
apply (unfold JOIN_def Join_def)  | 
177  | 
apply (rule program_equalityI, auto)  | 
|
178  | 
done  | 
|
179  | 
||
180  | 
||
| 63146 | 181  | 
subsection\<open>Safety: co, stable, FP\<close>  | 
| 13792 | 182  | 
|
| 13805 | 183  | 
(*Fails if I={} because it collapses to SKIP \<in> A co B, i.e. to A \<subseteq> B.  So an
 | 
184  | 
alternative precondition is A \<subseteq> B, but most proofs using this rule require  | 
|
| 13792 | 185  | 
I to be nonempty for other reasons anyway.*)  | 
186  | 
lemma JN_constrains:  | 
|
| 13805 | 187  | 
"i \<in> I ==> (\<Squnion>i \<in> I. F i) \<in> A co B = (\<forall>i \<in> I. F i \<in> A co B)"  | 
| 13792 | 188  | 
by (simp add: constrains_def JOIN_def, blast)  | 
189  | 
||
190  | 
lemma Join_constrains [simp]:  | 
|
| 13819 | 191  | 
"(F\<squnion>G \<in> A co B) = (F \<in> A co B & G \<in> A co B)"  | 
| 13792 | 192  | 
by (auto simp add: constrains_def Join_def)  | 
193  | 
||
194  | 
lemma Join_unless [simp]:  | 
|
| 13819 | 195  | 
"(F\<squnion>G \<in> A unless B) = (F \<in> A unless B & G \<in> A unless B)"  | 
| 46577 | 196  | 
by (simp add: unless_def)  | 
| 13792 | 197  | 
|
198  | 
(*Analogous weak versions FAIL; see Misra [1994] 5.4.1, Substitution Axiom.  | 
|
| 13819 | 199  | 
reachable (F\<squnion>G) could be much bigger than reachable F, reachable G  | 
| 13792 | 200  | 
*)  | 
201  | 
||
202  | 
||
203  | 
lemma Join_constrains_weaken:  | 
|
| 13805 | 204  | 
"[| F \<in> A co A'; G \<in> B co B' |]  | 
| 13819 | 205  | 
==> F\<squnion>G \<in> (A \<inter> B) co (A' \<union> B')"  | 
| 13792 | 206  | 
by (simp, blast intro: constrains_weaken)  | 
207  | 
||
| 13805 | 208  | 
(*If I={}, it degenerates to SKIP \<in> UNIV co {}, which is false.*)
 | 
| 13792 | 209  | 
lemma JN_constrains_weaken:  | 
| 13805 | 210  | 
"[| \<forall>i \<in> I. F i \<in> A i co A' i; i \<in> I |]  | 
211  | 
==> (\<Squnion>i \<in> I. F i) \<in> (\<Inter>i \<in> I. A i) co (\<Union>i \<in> I. A' i)"  | 
|
| 13792 | 212  | 
apply (simp (no_asm_simp) add: JN_constrains)  | 
213  | 
apply (blast intro: constrains_weaken)  | 
|
214  | 
done  | 
|
215  | 
||
| 13805 | 216  | 
lemma JN_stable: "(\<Squnion>i \<in> I. F i) \<in> stable A = (\<forall>i \<in> I. F i \<in> stable A)"  | 
| 13792 | 217  | 
by (simp add: stable_def constrains_def JOIN_def)  | 
218  | 
||
219  | 
lemma invariant_JN_I:  | 
|
| 13805 | 220  | 
"[| !!i. i \<in> I ==> F i \<in> invariant A; i \<in> I |]  | 
221  | 
==> (\<Squnion>i \<in> I. F i) \<in> invariant A"  | 
|
| 13792 | 222  | 
by (simp add: invariant_def JN_stable, blast)  | 
223  | 
||
224  | 
lemma Join_stable [simp]:  | 
|
| 13819 | 225  | 
"(F\<squnion>G \<in> stable A) =  | 
| 13805 | 226  | 
(F \<in> stable A & G \<in> stable A)"  | 
| 13792 | 227  | 
by (simp add: stable_def)  | 
228  | 
||
229  | 
lemma Join_increasing [simp]:  | 
|
| 13819 | 230  | 
"(F\<squnion>G \<in> increasing f) =  | 
| 13805 | 231  | 
(F \<in> increasing f & G \<in> increasing f)"  | 
| 46577 | 232  | 
by (auto simp add: increasing_def)  | 
| 13792 | 233  | 
|
234  | 
lemma invariant_JoinI:  | 
|
| 13805 | 235  | 
"[| F \<in> invariant A; G \<in> invariant A |]  | 
| 13819 | 236  | 
==> F\<squnion>G \<in> invariant A"  | 
| 46577 | 237  | 
by (auto simp add: invariant_def)  | 
| 13792 | 238  | 
|
| 13805 | 239  | 
lemma FP_JN: "FP (\<Squnion>i \<in> I. F i) = (\<Inter>i \<in> I. FP (F i))"  | 
| 
44928
 
7ef6505bde7f
renamed Complete_Lattices lemmas, removed legacy names
 
hoelzl 
parents: 
36866 
diff
changeset
 | 
240  | 
by (simp add: FP_def JN_stable INTER_eq)  | 
| 13792 | 241  | 
|
242  | 
||
| 63146 | 243  | 
subsection\<open>Progress: transient, ensures\<close>  | 
| 13792 | 244  | 
|
245  | 
lemma JN_transient:  | 
|
| 13805 | 246  | 
"i \<in> I ==>  | 
247  | 
(\<Squnion>i \<in> I. F i) \<in> transient A = (\<exists>i \<in> I. F i \<in> transient A)"  | 
|
| 13792 | 248  | 
by (auto simp add: transient_def JOIN_def)  | 
249  | 
||
250  | 
lemma Join_transient [simp]:  | 
|
| 13819 | 251  | 
"F\<squnion>G \<in> transient A =  | 
| 13805 | 252  | 
(F \<in> transient A | G \<in> transient A)"  | 
| 13792 | 253  | 
by (auto simp add: bex_Un transient_def Join_def)  | 
254  | 
||
| 13819 | 255  | 
lemma Join_transient_I1: "F \<in> transient A ==> F\<squnion>G \<in> transient A"  | 
| 46577 | 256  | 
by simp  | 
| 13792 | 257  | 
|
| 13819 | 258  | 
lemma Join_transient_I2: "G \<in> transient A ==> F\<squnion>G \<in> transient A"  | 
| 46577 | 259  | 
by simp  | 
| 13792 | 260  | 
|
| 13805 | 261  | 
(*If I={} it degenerates to (SKIP \<in> A ensures B) = False, i.e. to ~(A \<subseteq> B) *)
 | 
| 13792 | 262  | 
lemma JN_ensures:  | 
| 13805 | 263  | 
"i \<in> I ==>  | 
264  | 
(\<Squnion>i \<in> I. F i) \<in> A ensures B =  | 
|
265  | 
((\<forall>i \<in> I. F i \<in> (A-B) co (A \<union> B)) & (\<exists>i \<in> I. F i \<in> A ensures B))"  | 
|
| 13792 | 266  | 
by (auto simp add: ensures_def JN_constrains JN_transient)  | 
267  | 
||
268  | 
lemma Join_ensures:  | 
|
| 13819 | 269  | 
"F\<squnion>G \<in> A ensures B =  | 
| 13805 | 270  | 
(F \<in> (A-B) co (A \<union> B) & G \<in> (A-B) co (A \<union> B) &  | 
271  | 
(F \<in> transient (A-B) | G \<in> transient (A-B)))"  | 
|
| 46577 | 272  | 
by (auto simp add: ensures_def)  | 
| 13792 | 273  | 
|
274  | 
lemma stable_Join_constrains:  | 
|
| 13805 | 275  | 
"[| F \<in> stable A; G \<in> A co A' |]  | 
| 13819 | 276  | 
==> F\<squnion>G \<in> A co A'"  | 
| 13792 | 277  | 
apply (unfold stable_def constrains_def Join_def)  | 
278  | 
apply (simp add: ball_Un, blast)  | 
|
279  | 
done  | 
|
280  | 
||
| 13805 | 281  | 
(*Premise for G cannot use Always because F \<in> Stable A is weaker than  | 
282  | 
G \<in> stable A *)  | 
|
| 13792 | 283  | 
lemma stable_Join_Always1:  | 
| 13819 | 284  | 
"[| F \<in> stable A; G \<in> invariant A |] ==> F\<squnion>G \<in> Always A"  | 
| 13792 | 285  | 
apply (simp (no_asm_use) add: Always_def invariant_def Stable_eq_stable)  | 
286  | 
apply (force intro: stable_Int)  | 
|
287  | 
done  | 
|
288  | 
||
289  | 
(*As above, but exchanging the roles of F and G*)  | 
|
290  | 
lemma stable_Join_Always2:  | 
|
| 13819 | 291  | 
"[| F \<in> invariant A; G \<in> stable A |] ==> F\<squnion>G \<in> Always A"  | 
| 13792 | 292  | 
apply (subst Join_commute)  | 
293  | 
apply (blast intro: stable_Join_Always1)  | 
|
294  | 
done  | 
|
295  | 
||
296  | 
lemma stable_Join_ensures1:  | 
|
| 13819 | 297  | 
"[| F \<in> stable A; G \<in> A ensures B |] ==> F\<squnion>G \<in> A ensures B"  | 
| 13792 | 298  | 
apply (simp (no_asm_simp) add: Join_ensures)  | 
299  | 
apply (simp add: stable_def ensures_def)  | 
|
300  | 
apply (erule constrains_weaken, auto)  | 
|
301  | 
done  | 
|
302  | 
||
303  | 
(*As above, but exchanging the roles of F and G*)  | 
|
304  | 
lemma stable_Join_ensures2:  | 
|
| 13819 | 305  | 
"[| F \<in> A ensures B; G \<in> stable A |] ==> F\<squnion>G \<in> A ensures B"  | 
| 13792 | 306  | 
apply (subst Join_commute)  | 
307  | 
apply (blast intro: stable_Join_ensures1)  | 
|
308  | 
done  | 
|
309  | 
||
310  | 
||
| 63146 | 311  | 
subsection\<open>the ok and OK relations\<close>  | 
| 13792 | 312  | 
|
313  | 
lemma ok_SKIP1 [iff]: "SKIP ok F"  | 
|
| 
13812
 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 
paulson 
parents: 
13805 
diff
changeset
 | 
314  | 
by (simp add: ok_def)  | 
| 13792 | 315  | 
|
316  | 
lemma ok_SKIP2 [iff]: "F ok SKIP"  | 
|
| 
13812
 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 
paulson 
parents: 
13805 
diff
changeset
 | 
317  | 
by (simp add: ok_def)  | 
| 13792 | 318  | 
|
319  | 
lemma ok_Join_commute:  | 
|
| 13819 | 320  | 
"(F ok G & (F\<squnion>G) ok H) = (G ok H & F ok (G\<squnion>H))"  | 
| 13792 | 321  | 
by (auto simp add: ok_def)  | 
322  | 
||
323  | 
lemma ok_commute: "(F ok G) = (G ok F)"  | 
|
324  | 
by (auto simp add: ok_def)  | 
|
325  | 
||
| 45605 | 326  | 
lemmas ok_sym = ok_commute [THEN iffD1]  | 
| 13792 | 327  | 
|
328  | 
lemma ok_iff_OK:  | 
|
| 13819 | 329  | 
     "OK {(0::int,F),(1,G),(2,H)} snd = (F ok G & (F\<squnion>G) ok H)"
 | 
| 16977 | 330  | 
apply (simp add: Ball_def conj_disj_distribR ok_def Join_def OK_def insert_absorb  | 
331  | 
all_conj_distrib)  | 
|
332  | 
apply blast  | 
|
333  | 
done  | 
|
| 13792 | 334  | 
|
| 13819 | 335  | 
lemma ok_Join_iff1 [iff]: "F ok (G\<squnion>H) = (F ok G & F ok H)"  | 
| 13792 | 336  | 
by (auto simp add: ok_def)  | 
337  | 
||
| 13819 | 338  | 
lemma ok_Join_iff2 [iff]: "(G\<squnion>H) ok F = (G ok F & H ok F)"  | 
| 13792 | 339  | 
by (auto simp add: ok_def)  | 
340  | 
||
341  | 
(*useful? Not with the previous two around*)  | 
|
| 13819 | 342  | 
lemma ok_Join_commute_I: "[| F ok G; (F\<squnion>G) ok H |] ==> F ok (G\<squnion>H)"  | 
| 13792 | 343  | 
by (auto simp add: ok_def)  | 
344  | 
||
| 13805 | 345  | 
lemma ok_JN_iff1 [iff]: "F ok (JOIN I G) = (\<forall>i \<in> I. F ok G i)"  | 
| 13792 | 346  | 
by (auto simp add: ok_def)  | 
347  | 
||
| 13805 | 348  | 
lemma ok_JN_iff2 [iff]: "(JOIN I G) ok F = (\<forall>i \<in> I. G i ok F)"  | 
| 13792 | 349  | 
by (auto simp add: ok_def)  | 
350  | 
||
| 13805 | 351  | 
lemma OK_iff_ok: "OK I F = (\<forall>i \<in> I. \<forall>j \<in> I-{i}. (F i) ok (F j))"
 | 
| 13792 | 352  | 
by (auto simp add: ok_def OK_def)  | 
353  | 
||
| 13805 | 354  | 
lemma OK_imp_ok: "[| OK I F; i \<in> I; j \<in> I; i \<noteq> j|] ==> (F i) ok (F j)"  | 
| 13792 | 355  | 
by (auto simp add: OK_iff_ok)  | 
356  | 
||
357  | 
||
| 63146 | 358  | 
subsection\<open>Allowed\<close>  | 
| 13792 | 359  | 
|
360  | 
lemma Allowed_SKIP [simp]: "Allowed SKIP = UNIV"  | 
|
361  | 
by (auto simp add: Allowed_def)  | 
|
362  | 
||
| 13819 | 363  | 
lemma Allowed_Join [simp]: "Allowed (F\<squnion>G) = Allowed F \<inter> Allowed G"  | 
| 13792 | 364  | 
by (auto simp add: Allowed_def)  | 
365  | 
||
| 13805 | 366  | 
lemma Allowed_JN [simp]: "Allowed (JOIN I F) = (\<Inter>i \<in> I. Allowed (F i))"  | 
| 13792 | 367  | 
by (auto simp add: Allowed_def)  | 
368  | 
||
| 13805 | 369  | 
lemma ok_iff_Allowed: "F ok G = (F \<in> Allowed G & G \<in> Allowed F)"  | 
| 13792 | 370  | 
by (simp add: ok_def Allowed_def)  | 
371  | 
||
| 13805 | 372  | 
lemma OK_iff_Allowed: "OK I F = (\<forall>i \<in> I. \<forall>j \<in> I-{i}. F i \<in> Allowed(F j))"
 | 
| 13792 | 373  | 
by (auto simp add: OK_iff_ok ok_iff_Allowed)  | 
374  | 
||
| 69597 | 375  | 
subsection\<open>\<^term>\<open>safety_prop\<close>, for reasoning about  | 
| 63146 | 376  | 
given instances of "ok"\<close>  | 
| 13792 | 377  | 
|
378  | 
lemma safety_prop_Acts_iff:  | 
|
| 69313 | 379  | 
"safety_prop X ==> (Acts G \<subseteq> insert Id (\<Union>(Acts ` X))) = (G \<in> X)"  | 
| 13792 | 380  | 
by (auto simp add: safety_prop_def)  | 
381  | 
||
382  | 
lemma safety_prop_AllowedActs_iff_Allowed:  | 
|
| 69313 | 383  | 
"safety_prop X ==> (\<Union>(Acts ` X) \<subseteq> AllowedActs F) = (X \<subseteq> Allowed F)"  | 
| 13792 | 384  | 
by (auto simp add: Allowed_def safety_prop_Acts_iff [symmetric])  | 
385  | 
||
386  | 
lemma Allowed_eq:  | 
|
| 69313 | 387  | 
"safety_prop X ==> Allowed (mk_program (init, acts, \<Union>(Acts ` X))) = X"  | 
| 13792 | 388  | 
by (simp add: Allowed_def safety_prop_Acts_iff)  | 
389  | 
||
390  | 
(*For safety_prop to hold, the property must be satisfiable!*)  | 
|
| 13805 | 391  | 
lemma safety_prop_constrains [iff]: "safety_prop (A co B) = (A \<subseteq> B)"  | 
| 13792 | 392  | 
by (simp add: safety_prop_def constrains_def, blast)  | 
393  | 
||
394  | 
lemma safety_prop_stable [iff]: "safety_prop (stable A)"  | 
|
395  | 
by (simp add: stable_def)  | 
|
396  | 
||
397  | 
lemma safety_prop_Int [simp]:  | 
|
| 
56248
 
67dc9549fa15
generalized and strengthened cong rules on compound operators, similar to 1ed737a98198
 
haftmann 
parents: 
46577 
diff
changeset
 | 
398  | 
"safety_prop X \<Longrightarrow> safety_prop Y \<Longrightarrow> safety_prop (X \<inter> Y)"  | 
| 
62343
 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 
haftmann 
parents: 
61941 
diff
changeset
 | 
399  | 
proof (clarsimp simp add: safety_prop_def)  | 
| 
 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 
haftmann 
parents: 
61941 
diff
changeset
 | 
400  | 
fix G  | 
| 
 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 
haftmann 
parents: 
61941 
diff
changeset
 | 
401  | 
assume "\<forall>G. Acts G \<subseteq> (\<Union>x\<in>X. Acts x) \<longrightarrow> G \<in> X"  | 
| 
 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 
haftmann 
parents: 
61941 
diff
changeset
 | 
402  | 
then have X: "Acts G \<subseteq> (\<Union>x\<in>X. Acts x) \<Longrightarrow> G \<in> X" by blast  | 
| 
 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 
haftmann 
parents: 
61941 
diff
changeset
 | 
403  | 
assume "\<forall>G. Acts G \<subseteq> (\<Union>x\<in>Y. Acts x) \<longrightarrow> G \<in> Y"  | 
| 
 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 
haftmann 
parents: 
61941 
diff
changeset
 | 
404  | 
then have Y: "Acts G \<subseteq> (\<Union>x\<in>Y. Acts x) \<Longrightarrow> G \<in> Y" by blast  | 
| 
 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 
haftmann 
parents: 
61941 
diff
changeset
 | 
405  | 
assume Acts: "Acts G \<subseteq> (\<Union>x\<in>X \<inter> Y. Acts x)"  | 
| 
 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 
haftmann 
parents: 
61941 
diff
changeset
 | 
406  | 
with X and Y show "G \<in> X \<and> G \<in> Y" by auto  | 
| 
 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 
haftmann 
parents: 
61941 
diff
changeset
 | 
407  | 
qed  | 
| 
56248
 
67dc9549fa15
generalized and strengthened cong rules on compound operators, similar to 1ed737a98198
 
haftmann 
parents: 
46577 
diff
changeset
 | 
408  | 
|
| 
 
67dc9549fa15
generalized and strengthened cong rules on compound operators, similar to 1ed737a98198
 
haftmann 
parents: 
46577 
diff
changeset
 | 
409  | 
lemma safety_prop_INTER [simp]:  | 
| 
 
67dc9549fa15
generalized and strengthened cong rules on compound operators, similar to 1ed737a98198
 
haftmann 
parents: 
46577 
diff
changeset
 | 
410  | 
"(\<And>i. i \<in> I \<Longrightarrow> safety_prop (X i)) \<Longrightarrow> safety_prop (\<Inter>i\<in>I. X i)"  | 
| 
62343
 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 
haftmann 
parents: 
61941 
diff
changeset
 | 
411  | 
proof (clarsimp simp add: safety_prop_def)  | 
| 
 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 
haftmann 
parents: 
61941 
diff
changeset
 | 
412  | 
fix G and i  | 
| 
 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 
haftmann 
parents: 
61941 
diff
changeset
 | 
413  | 
assume "\<And>i. i \<in> I \<Longrightarrow> \<bottom> \<in> X i \<and>  | 
| 
 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 
haftmann 
parents: 
61941 
diff
changeset
 | 
414  | 
(\<forall>G. Acts G \<subseteq> (\<Union>x\<in>X i. Acts x) \<longrightarrow> G \<in> X i)"  | 
| 
 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 
haftmann 
parents: 
61941 
diff
changeset
 | 
415  | 
then have *: "i \<in> I \<Longrightarrow> Acts G \<subseteq> (\<Union>x\<in>X i. Acts x) \<Longrightarrow> G \<in> X i"  | 
| 
 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 
haftmann 
parents: 
61941 
diff
changeset
 | 
416  | 
by blast  | 
| 
 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 
haftmann 
parents: 
61941 
diff
changeset
 | 
417  | 
assume "i \<in> I"  | 
| 
 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 
haftmann 
parents: 
61941 
diff
changeset
 | 
418  | 
moreover assume "Acts G \<subseteq> (\<Union>j\<in>\<Inter>i\<in>I. X i. Acts j)"  | 
| 
 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 
haftmann 
parents: 
61941 
diff
changeset
 | 
419  | 
ultimately have "Acts G \<subseteq> (\<Union>i\<in>X i. Acts i)"  | 
| 
 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 
haftmann 
parents: 
61941 
diff
changeset
 | 
420  | 
by auto  | 
| 63146 | 421  | 
with * \<open>i \<in> I\<close> show "G \<in> X i" by blast  | 
| 
62343
 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 
haftmann 
parents: 
61941 
diff
changeset
 | 
422  | 
qed  | 
| 13792 | 423  | 
|
424  | 
lemma safety_prop_INTER1 [simp]:  | 
|
| 
56248
 
67dc9549fa15
generalized and strengthened cong rules on compound operators, similar to 1ed737a98198
 
haftmann 
parents: 
46577 
diff
changeset
 | 
425  | 
"(\<And>i. safety_prop (X i)) \<Longrightarrow> safety_prop (\<Inter>i. X i)"  | 
| 
 
67dc9549fa15
generalized and strengthened cong rules on compound operators, similar to 1ed737a98198
 
haftmann 
parents: 
46577 
diff
changeset
 | 
426  | 
by (rule safety_prop_INTER) simp  | 
| 13792 | 427  | 
|
| 
13812
 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 
paulson 
parents: 
13805 
diff
changeset
 | 
428  | 
lemma def_prg_Allowed:  | 
| 69313 | 429  | 
"[| F == mk_program (init, acts, \<Union>(Acts ` X)) ; safety_prop X |]  | 
| 
13812
 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 
paulson 
parents: 
13805 
diff
changeset
 | 
430  | 
==> Allowed F = X"  | 
| 
 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 
paulson 
parents: 
13805 
diff
changeset
 | 
431  | 
by (simp add: Allowed_eq)  | 
| 
 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 
paulson 
parents: 
13805 
diff
changeset
 | 
432  | 
|
| 
 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 
paulson 
parents: 
13805 
diff
changeset
 | 
433  | 
lemma Allowed_totalize [simp]: "Allowed (totalize F) = Allowed F"  | 
| 
 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 
paulson 
parents: 
13805 
diff
changeset
 | 
434  | 
by (simp add: Allowed_def)  | 
| 
 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 
paulson 
parents: 
13805 
diff
changeset
 | 
435  | 
|
| 
 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 
paulson 
parents: 
13805 
diff
changeset
 | 
436  | 
lemma def_total_prg_Allowed:  | 
| 69313 | 437  | 
"[| F = mk_total_program (init, acts, \<Union>(Acts ` X)) ; safety_prop X |]  | 
| 
13812
 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 
paulson 
parents: 
13805 
diff
changeset
 | 
438  | 
==> Allowed F = X"  | 
| 
 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 
paulson 
parents: 
13805 
diff
changeset
 | 
439  | 
by (simp add: mk_total_program_def def_prg_Allowed)  | 
| 
 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 
paulson 
parents: 
13805 
diff
changeset
 | 
440  | 
|
| 13792 | 441  | 
lemma def_UNION_ok_iff:  | 
| 69313 | 442  | 
"[| F = mk_program(init,acts,\<Union>(Acts ` X)); safety_prop X |]  | 
| 13805 | 443  | 
==> F ok G = (G \<in> X & acts \<subseteq> AllowedActs G)"  | 
| 13792 | 444  | 
by (auto simp add: ok_def safety_prop_Acts_iff)  | 
| 9685 | 445  | 
|
| 63146 | 446  | 
text\<open>The union of two total programs is total.\<close>  | 
| 13819 | 447  | 
lemma totalize_Join: "totalize F\<squnion>totalize G = totalize (F\<squnion>G)"  | 
| 
13812
 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 
paulson 
parents: 
13805 
diff
changeset
 | 
448  | 
by (simp add: program_equalityI totalize_def Join_def image_Un)  | 
| 
 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 
paulson 
parents: 
13805 
diff
changeset
 | 
449  | 
|
| 13819 | 450  | 
lemma all_total_Join: "[|all_total F; all_total G|] ==> all_total (F\<squnion>G)"  | 
| 
13812
 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 
paulson 
parents: 
13805 
diff
changeset
 | 
451  | 
by (simp add: all_total_def, blast)  | 
| 
 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 
paulson 
parents: 
13805 
diff
changeset
 | 
452  | 
|
| 
 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 
paulson 
parents: 
13805 
diff
changeset
 | 
453  | 
lemma totalize_JN: "(\<Squnion>i \<in> I. totalize (F i)) = totalize(\<Squnion>i \<in> I. F i)"  | 
| 
 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 
paulson 
parents: 
13805 
diff
changeset
 | 
454  | 
by (simp add: program_equalityI totalize_def JOIN_def image_UN)  | 
| 
 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 
paulson 
parents: 
13805 
diff
changeset
 | 
455  | 
|
| 
 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 
paulson 
parents: 
13805 
diff
changeset
 | 
456  | 
lemma all_total_JN: "(!!i. i\<in>I ==> all_total (F i)) ==> all_total(\<Squnion>i\<in>I. F i)"  | 
| 
 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 
paulson 
parents: 
13805 
diff
changeset
 | 
457  | 
by (simp add: all_total_iff_totalize totalize_JN [symmetric])  | 
| 
 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 
paulson 
parents: 
13805 
diff
changeset
 | 
458  | 
|
| 5252 | 459  | 
end  |