| author | wenzelm | 
| Thu, 10 Apr 2008 17:01:38 +0200 | |
| changeset 26619 | c348bbe7c87d | 
| parent 26555 | 046e63c9165c | 
| child 26739 | 947b6013e863 | 
| permissions | -rw-r--r-- | 
| 19829 | 1 | (* ID: $Id$ | 
| 2 | Authors: Klaus Aehlig, Tobias Nipkow | |
| 20807 | 3 | *) | 
| 19829 | 4 | |
| 21059 | 5 | header {* Test of normalization function *}
 | 
| 19829 | 6 | |
| 7 | theory NormalForm | |
| 25165 | 8 | imports Main "~~/src/HOL/Real/Rational" | 
| 19829 | 9 | begin | 
| 10 | ||
| 21117 | 11 | lemma "True" by normalization | 
| 19971 | 12 | lemma "p \<longrightarrow> True" by normalization | 
| 20523 
36a59e5d0039
Major update to function package, including new syntax and the (only theoretical)
 krauss parents: 
20352diff
changeset | 13 | declare disj_assoc [code func] | 
| 25866 | 14 | lemma "((P | Q) | R) = (P | (Q | R))" by normalization rule | 
| 22845 | 15 | declare disj_assoc [code func del] | 
| 25866 | 16 | lemma "0 + (n::nat) = n" by normalization rule | 
| 17 | lemma "0 + Suc n = Suc n" by normalization rule | |
| 18 | lemma "Suc n + Suc m = n + Suc (Suc m)" by normalization rule | |
| 19971 | 19 | lemma "~((0::nat) < (0::nat))" by normalization | 
| 20 | ||
| 19829 | 21 | datatype n = Z | S n | 
| 22 | consts | |
| 20842 | 23 | add :: "n \<Rightarrow> n \<Rightarrow> n" | 
| 24 | add2 :: "n \<Rightarrow> n \<Rightarrow> n" | |
| 25 | mul :: "n \<Rightarrow> n \<Rightarrow> n" | |
| 26 | mul2 :: "n \<Rightarrow> n \<Rightarrow> n" | |
| 27 | exp :: "n \<Rightarrow> n \<Rightarrow> n" | |
| 19829 | 28 | primrec | 
| 20842 | 29 | "add Z = id" | 
| 30 | "add (S m) = S o add m" | |
| 19829 | 31 | primrec | 
| 20842 | 32 | "add2 Z n = n" | 
| 33 | "add2 (S m) n = S(add2 m n)" | |
| 19829 | 34 | |
| 35 | lemma [code]: "add2 (add2 n m) k = add2 n (add2 m k)" | |
| 20842 | 36 | by(induct n) auto | 
| 37 | lemma [code]: "add2 n (S m) = S (add2 n m)" | |
| 38 | by(induct n) auto | |
| 19829 | 39 | lemma [code]: "add2 n Z = n" | 
| 20842 | 40 | by(induct n) auto | 
| 19971 | 41 | |
| 25866 | 42 | lemma "add2 (add2 n m) k = add2 n (add2 m k)" by normalization rule | 
| 43 | lemma "add2 (add2 (S n) (S m)) (S k) = S(S(S(add2 n (add2 m k))))" by normalization rule | |
| 44 | lemma "add2 (add2 (S n) (add2 (S m) Z)) (S k) = S(S(S(add2 n (add2 m k))))" by normalization rule | |
| 19829 | 45 | |
| 46 | primrec | |
| 20842 | 47 | "mul Z = (%n. Z)" | 
| 48 | "mul (S m) = (%n. add (mul m n) n)" | |
| 19829 | 49 | primrec | 
| 20842 | 50 | "mul2 Z n = Z" | 
| 51 | "mul2 (S m) n = add2 n (mul2 m n)" | |
| 19829 | 52 | primrec | 
| 20842 | 53 | "exp m Z = S Z" | 
| 54 | "exp m (S n) = mul (exp m n) m" | |
| 19829 | 55 | |
| 19971 | 56 | lemma "mul2 (S(S(S(S(S Z))))) (S(S(S Z))) = S(S(S(S(S(S(S(S(S(S(S(S(S(S(S Z))))))))))))))" by normalization | 
| 57 | lemma "mul (S(S(S(S(S Z))))) (S(S(S Z))) = S(S(S(S(S(S(S(S(S(S(S(S(S(S(S Z))))))))))))))" by normalization | |
| 58 | lemma "exp (S(S Z)) (S(S(S(S Z)))) = exp (S(S(S(S Z)))) (S(S Z))" by normalization | |
| 59 | ||
| 60 | lemma "(let ((x,y),(u,v)) = ((Z,Z),(Z,Z)) in add (add x y) (add u v)) = Z" by normalization | |
| 26513 | 61 | lemma "split (%(x\<Colon>'a\<Colon>eq) y. x) (a, b) = a" by normalization rule | 
| 19971 | 62 | lemma "(%((x,y),(u,v)). add (add x y) (add u v)) ((Z,Z),(Z,Z)) = Z" by normalization | 
| 63 | ||
| 64 | lemma "case Z of Z \<Rightarrow> True | S x \<Rightarrow> False" by normalization | |
| 19829 | 65 | |
| 20842 | 66 | lemma "[] @ [] = []" by normalization | 
| 26513 | 67 | lemma "map f [x,y,z::'x] = [f x \<Colon> 'a\<Colon>eq, f y, f z]" by normalization rule+ | 
| 68 | lemma "[a \<Colon> 'a\<Colon>eq, b, c] @ xs = a # b # c # xs" by normalization rule+ | |
| 69 | lemma "[] @ xs = (xs \<Colon> 'a\<Colon>eq list)" by normalization rule | |
| 25934 | 70 | lemma "map (%f. f True) [id, g, Not] = [True, g True, False]" by normalization rule+ | 
| 71 | lemma "map (%f. f True) ([id, g, Not] @ fs) = [True, g True, False] @ map (%f. f True) fs" by normalization rule+ | |
| 26513 | 72 | lemma "rev [a, b, c] = [c \<Colon> 'a\<Colon>eq, b, a]" by normalization rule+ | 
| 73 | normal_form "rev (a#b#cs) = rev cs @ [b, a \<Colon> 'a\<Colon>eq]" | |
| 19829 | 74 | normal_form "map (%F. F [a,b,c::'x]) (map map [f,g,h])" | 
| 75 | normal_form "map (%F. F ([a,b,c] @ ds)) (map map ([f,g,h]@fs))" | |
| 76 | normal_form "map (%F. F [Z,S Z,S(S Z)]) (map map [S,add (S Z),mul (S(S Z)),id])" | |
| 25934 | 77 | lemma "map (%x. case x of None \<Rightarrow> False | Some y \<Rightarrow> True) [None, Some ()] = [False, True]" | 
| 78 | by normalization | |
| 19829 | 79 | normal_form "case xs of [] \<Rightarrow> True | x#xs \<Rightarrow> False" | 
| 25934 | 80 | normal_form "map (%x. case x of None \<Rightarrow> False | Some y \<Rightarrow> True) xs = P" | 
| 26513 | 81 | lemma "let x = y in [x, x] = [y \<Colon> 'a\<Colon>eq, y]" by normalization rule+ | 
| 82 | lemma "Let y (%x. [x,x]) = [y \<Colon> 'a\<Colon>eq, y]" by normalization rule+ | |
| 19829 | 83 | normal_form "case n of Z \<Rightarrow> True | S x \<Rightarrow> False" | 
| 25934 | 84 | lemma "(%(x,y). add x y) (S z,S z) = S (add z (S z))" by normalization rule+ | 
| 19829 | 85 | normal_form "filter (%x. x) ([True,False,x]@xs)" | 
| 86 | normal_form "filter Not ([True,False,x]@xs)" | |
| 87 | ||
| 26513 | 88 | lemma "[x,y,z] @ [a,b,c] = [x, y, z, a, b ,c \<Colon> 'a\<Colon>eq]" by normalization rule+ | 
| 89 | lemma "(%(xs, ys). xs @ ys) ([a, b, c], [d, e, f]) = [a, b, c, d, e, f \<Colon> 'a\<Colon>eq]" by normalization rule+ | |
| 25100 | 90 | lemma "map (%x. case x of None \<Rightarrow> False | Some y \<Rightarrow> True) [None, Some ()] = [False, True]" by normalization | 
| 19829 | 91 | |
| 26513 | 92 | lemma "last [a, b, c \<Colon> 'a\<Colon>eq] = c" by normalization rule | 
| 93 | lemma "last ([a, b, c \<Colon> 'a\<Colon>eq] @ xs) = (if null xs then c else last xs)" | |
| 25866 | 94 | by normalization rule | 
| 19829 | 95 | |
| 25866 | 96 | lemma "(2::int) + 3 - 1 + (- k) * 2 = 4 + - k * 2" by normalization rule | 
| 20842 | 97 | lemma "(-4::int) * 2 = -8" by normalization | 
| 98 | lemma "abs ((-4::int) + 2 * 1) = 2" by normalization | |
| 99 | lemma "(2::int) + 3 = 5" by normalization | |
| 100 | lemma "(2::int) + 3 * (- 4) * (- 1) = 14" by normalization | |
| 101 | lemma "(2::int) + 3 * (- 4) * 1 + 0 = -10" by normalization | |
| 102 | lemma "(2::int) < 3" by normalization | |
| 103 | lemma "(2::int) <= 3" by normalization | |
| 104 | lemma "abs ((-4::int) + 2 * 1) = 2" by normalization | |
| 105 | lemma "4 - 42 * abs (3 + (-7\<Colon>int)) = -164" by normalization | |
| 106 | lemma "(if (0\<Colon>nat) \<le> (x\<Colon>nat) then 0\<Colon>nat else x) = 0" by normalization | |
| 22394 | 107 | lemma "4 = Suc (Suc (Suc (Suc 0)))" by normalization | 
| 108 | lemma "nat 4 = Suc (Suc (Suc (Suc 0)))" by normalization | |
| 25100 | 109 | lemma "[Suc 0, 0] = [Suc 0, 0]" by normalization | 
| 110 | lemma "max (Suc 0) 0 = Suc 0" by normalization | |
| 25187 | 111 | lemma "(42::rat) / 1704 = 1 / 284 + 3 / 142" by normalization | 
| 21059 | 112 | normal_form "Suc 0 \<in> set ms" | 
| 20922 | 113 | |
| 26513 | 114 | lemma "f = (f \<Colon> 'a\<Colon>eq)" by normalization rule+ | 
| 115 | lemma "f x = (f x \<Colon> 'a\<Colon>eq)" by normalization rule+ | |
| 116 | lemma "(f o g) x = (f (g x) \<Colon> 'a\<Colon>eq)" by normalization rule+ | |
| 117 | lemma "(f o id) x = (f x \<Colon> 'a\<Colon>eq)" by normalization rule+ | |
| 25934 | 118 | normal_form "(\<lambda>x. x)" | 
| 21987 | 119 | |
| 23396 | 120 | (* Church numerals: *) | 
| 121 | ||
| 122 | normal_form "(%m n f x. m f (n f x)) (%f x. f(f(f(x)))) (%f x. f(f(f(x))))" | |
| 123 | normal_form "(%m n f x. m (n f) x) (%f x. f(f(f(x)))) (%f x. f(f(f(x))))" | |
| 124 | normal_form "(%m n. n m) (%f x. f(f(f(x)))) (%f x. f(f(f(x))))" | |
| 125 | ||
| 19829 | 126 | end |