| 
0
 | 
     1  | 
(*  Title: 	ZF/fixedpt.ML
  | 
| 
 | 
     2  | 
    ID:         $Id$
  | 
| 
 | 
     3  | 
    Author: 	Lawrence C Paulson, Cambridge University Computer Laboratory
  | 
| 
 | 
     4  | 
    Copyright   1992  University of Cambridge
  | 
| 
 | 
     5  | 
  | 
| 
 | 
     6  | 
For fixedpt.thy.  Least and greatest fixed points; the Knaster-Tarski Theorem
  | 
| 
 | 
     7  | 
  | 
| 
 | 
     8  | 
Proved in the lattice of subsets of D, namely Pow(D), with Inter as glb
  | 
| 
 | 
     9  | 
*)
  | 
| 
 | 
    10  | 
  | 
| 
 | 
    11  | 
open Fixedpt;
  | 
| 
 | 
    12  | 
  | 
| 
 | 
    13  | 
(*** Monotone operators ***)
  | 
| 
 | 
    14  | 
  | 
| 
 | 
    15  | 
val prems = goalw Fixedpt.thy [bnd_mono_def]
  | 
| 
 | 
    16  | 
    "[| h(D)<=D;  \
  | 
| 
 | 
    17  | 
\       !!W X. [| W<=D;  X<=D;  W<=X |] ==> h(W) <= h(X)  \
  | 
| 
 | 
    18  | 
\    |] ==> bnd_mono(D,h)";  
  | 
| 
 | 
    19  | 
by (REPEAT (ares_tac (prems@[conjI,allI,impI]) 1
  | 
| 
 | 
    20  | 
     ORELSE etac subset_trans 1));
  | 
| 
 | 
    21  | 
val bnd_monoI = result();
  | 
| 
 | 
    22  | 
  | 
| 
 | 
    23  | 
val [major] = goalw Fixedpt.thy [bnd_mono_def] "bnd_mono(D,h) ==> h(D) <= D";
  | 
| 
 | 
    24  | 
by (rtac (major RS conjunct1) 1);
  | 
| 
 | 
    25  | 
val bnd_monoD1 = result();
  | 
| 
 | 
    26  | 
  | 
| 
 | 
    27  | 
val major::prems = goalw Fixedpt.thy [bnd_mono_def]
  | 
| 
 | 
    28  | 
    "[| bnd_mono(D,h);  W<=X;  X<=D |] ==> h(W) <= h(X)";
  | 
| 
 | 
    29  | 
by (rtac (major RS conjunct2 RS spec RS spec RS mp RS mp) 1);
  | 
| 
 | 
    30  | 
by (REPEAT (resolve_tac prems 1));
  | 
| 
 | 
    31  | 
val bnd_monoD2 = result();
  | 
| 
 | 
    32  | 
  | 
| 
 | 
    33  | 
val [major,minor] = goal Fixedpt.thy
  | 
| 
 | 
    34  | 
    "[| bnd_mono(D,h);  X<=D |] ==> h(X) <= D";
  | 
| 
 | 
    35  | 
by (rtac (major RS bnd_monoD2 RS subset_trans) 1);
  | 
| 
 | 
    36  | 
by (rtac (major RS bnd_monoD1) 3);
  | 
| 
 | 
    37  | 
by (rtac minor 1);
  | 
| 
 | 
    38  | 
by (rtac subset_refl 1);
  | 
| 
 | 
    39  | 
val bnd_mono_subset = result();
  | 
| 
 | 
    40  | 
  | 
| 
 | 
    41  | 
goal Fixedpt.thy "!!A B. [| bnd_mono(D,h);  A <= D;  B <= D |] ==> \
  | 
| 
 | 
    42  | 
\                         h(A) Un h(B) <= h(A Un B)";
  | 
| 
 | 
    43  | 
by (REPEAT (ares_tac [Un_upper1, Un_upper2, Un_least] 1
  | 
| 
 | 
    44  | 
     ORELSE etac bnd_monoD2 1));
  | 
| 
 | 
    45  | 
val bnd_mono_Un = result();
  | 
| 
 | 
    46  | 
  | 
| 
 | 
    47  | 
(*Useful??*)
  | 
| 
 | 
    48  | 
goal Fixedpt.thy "!!A B. [| bnd_mono(D,h);  A <= D;  B <= D |] ==> \
  | 
| 
 | 
    49  | 
\                        h(A Int B) <= h(A) Int h(B)";
  | 
| 
 | 
    50  | 
by (REPEAT (ares_tac [Int_lower1, Int_lower2, Int_greatest] 1
  | 
| 
 | 
    51  | 
     ORELSE etac bnd_monoD2 1));
  | 
| 
 | 
    52  | 
val bnd_mono_Int = result();
  | 
| 
 | 
    53  | 
  | 
| 
 | 
    54  | 
(**** Proof of Knaster-Tarski Theorem for the lfp ****)
  | 
| 
 | 
    55  | 
  | 
| 
 | 
    56  | 
(*lfp is contained in each pre-fixedpoint*)
  | 
| 
 | 
    57  | 
val prems = goalw Fixedpt.thy [lfp_def]
  | 
| 
 | 
    58  | 
    "[| h(A) <= A;  A<=D |] ==> lfp(D,h) <= A";
  | 
| 
 | 
    59  | 
by (rtac (PowI RS CollectI RS Inter_lower) 1);
  | 
| 
 | 
    60  | 
by (REPEAT (resolve_tac prems 1));
  | 
| 
 | 
    61  | 
val lfp_lowerbound = result();
  | 
| 
 | 
    62  | 
  | 
| 
 | 
    63  | 
(*Unfolding the defn of Inter dispenses with the premise bnd_mono(D,h)!*)
  | 
| 
 | 
    64  | 
goalw Fixedpt.thy [lfp_def,Inter_def] "lfp(D,h) <= D";
  | 
| 
 | 
    65  | 
by (fast_tac ZF_cs 1);
  | 
| 
 | 
    66  | 
val lfp_subset = result();
  | 
| 
 | 
    67  | 
  | 
| 
 | 
    68  | 
(*Used in datatype package*)
  | 
| 
 | 
    69  | 
val [rew] = goal Fixedpt.thy "A==lfp(D,h) ==> A <= D";
  | 
| 
 | 
    70  | 
by (rewtac rew);
  | 
| 
 | 
    71  | 
by (rtac lfp_subset 1);
  | 
| 
 | 
    72  | 
val def_lfp_subset = result();
  | 
| 
 | 
    73  | 
  | 
| 
 | 
    74  | 
val subset0_cs = FOL_cs
  | 
| 
 | 
    75  | 
  addSIs [ballI, InterI, CollectI, PowI, empty_subsetI]
  | 
| 
 | 
    76  | 
  addIs [bexI, UnionI, ReplaceI, RepFunI]
  | 
| 
 | 
    77  | 
  addSEs [bexE, make_elim PowD, UnionE, ReplaceE, RepFunE,
  | 
| 
 | 
    78  | 
	  CollectE, emptyE]
  | 
| 
 | 
    79  | 
  addEs [rev_ballE, InterD, make_elim InterD, subsetD];
  | 
| 
 | 
    80  | 
  | 
| 
 | 
    81  | 
val subset_cs = subset0_cs 
  | 
| 
 | 
    82  | 
  addSIs [subset_refl,cons_subsetI,subset_consI,Union_least,UN_least,Un_least,
  | 
| 
 | 
    83  | 
	  Inter_greatest,Int_greatest,RepFun_subset]
  | 
| 
 | 
    84  | 
  addSIs [Un_upper1,Un_upper2,Int_lower1,Int_lower2]
  | 
| 
 | 
    85  | 
  addIs  [Union_upper,Inter_lower]
  | 
| 
 | 
    86  | 
  addSEs [cons_subsetE];
  | 
| 
 | 
    87  | 
  | 
| 
 | 
    88  | 
val prems = goalw Fixedpt.thy [lfp_def]
  | 
| 
 | 
    89  | 
    "[| h(D) <= D;  !!X. [| h(X) <= X;  X<=D |] ==> A<=X |] ==> \
  | 
| 
 | 
    90  | 
\    A <= lfp(D,h)";
  | 
| 
 | 
    91  | 
br (Pow_top RS CollectI RS Inter_greatest) 1;
  | 
| 
 | 
    92  | 
by (REPEAT (ares_tac prems 1 ORELSE eresolve_tac [CollectE,PowD] 1));
  | 
| 
 | 
    93  | 
val lfp_greatest = result();
  | 
| 
 | 
    94  | 
  | 
| 
 | 
    95  | 
val hmono::prems = goal Fixedpt.thy
  | 
| 
 | 
    96  | 
    "[| bnd_mono(D,h);  h(A)<=A;  A<=D |] ==> h(lfp(D,h)) <= A";
  | 
| 
 | 
    97  | 
by (rtac (hmono RS bnd_monoD2 RS subset_trans) 1);
  | 
| 
 | 
    98  | 
by (rtac lfp_lowerbound 1);
  | 
| 
 | 
    99  | 
by (REPEAT (resolve_tac prems 1));
  | 
| 
 | 
   100  | 
val lfp_lemma1 = result();
  | 
| 
 | 
   101  | 
  | 
| 
 | 
   102  | 
val [hmono] = goal Fixedpt.thy
  | 
| 
 | 
   103  | 
    "bnd_mono(D,h) ==> h(lfp(D,h)) <= lfp(D,h)";
  | 
| 
 | 
   104  | 
by (rtac (bnd_monoD1 RS lfp_greatest) 1);
  | 
| 
 | 
   105  | 
by (rtac lfp_lemma1 2);
  | 
| 
 | 
   106  | 
by (REPEAT (ares_tac [hmono] 1));
  | 
| 
 | 
   107  | 
val lfp_lemma2 = result();
  | 
| 
 | 
   108  | 
  | 
| 
 | 
   109  | 
val [hmono] = goal Fixedpt.thy
  | 
| 
 | 
   110  | 
    "bnd_mono(D,h) ==> lfp(D,h) <= h(lfp(D,h))";
  | 
| 
 | 
   111  | 
by (rtac lfp_lowerbound 1);
  | 
| 
 | 
   112  | 
by (rtac (hmono RS bnd_monoD2) 1);
  | 
| 
 | 
   113  | 
by (rtac (hmono RS lfp_lemma2) 1);
  | 
| 
 | 
   114  | 
by (rtac (hmono RS bnd_mono_subset) 2);
  | 
| 
 | 
   115  | 
by (REPEAT (rtac lfp_subset 1));
  | 
| 
 | 
   116  | 
val lfp_lemma3 = result();
  | 
| 
 | 
   117  | 
  | 
| 
 | 
   118  | 
val prems = goal Fixedpt.thy
  | 
| 
 | 
   119  | 
    "bnd_mono(D,h) ==> lfp(D,h) = h(lfp(D,h))";
  | 
| 
 | 
   120  | 
by (REPEAT (resolve_tac (prems@[equalityI,lfp_lemma2,lfp_lemma3]) 1));
  | 
| 
 | 
   121  | 
val lfp_Tarski = result();
  | 
| 
 | 
   122  | 
  | 
| 
 | 
   123  | 
(*Definition form, to control unfolding*)
  | 
| 
 | 
   124  | 
val [rew,mono] = goal Fixedpt.thy
  | 
| 
 | 
   125  | 
    "[| A==lfp(D,h);  bnd_mono(D,h) |] ==> A = h(A)";
  | 
| 
 | 
   126  | 
by (rewtac rew);
  | 
| 
 | 
   127  | 
by (rtac (mono RS lfp_Tarski) 1);
  | 
| 
 | 
   128  | 
val def_lfp_Tarski = result();
  | 
| 
 | 
   129  | 
  | 
| 
 | 
   130  | 
(*** General induction rule for least fixedpoints ***)
  | 
| 
 | 
   131  | 
  | 
| 
 | 
   132  | 
val [hmono,indstep] = goal Fixedpt.thy
  | 
| 
 | 
   133  | 
    "[| bnd_mono(D,h);  !!x. x : h(Collect(lfp(D,h),P)) ==> P(x) \
  | 
| 
 | 
   134  | 
\    |] ==> h(Collect(lfp(D,h),P)) <= Collect(lfp(D,h),P)";
  | 
| 
 | 
   135  | 
by (rtac subsetI 1);
  | 
| 
 | 
   136  | 
by (rtac CollectI 1);
  | 
| 
 | 
   137  | 
by (etac indstep 2);
  | 
| 
 | 
   138  | 
by (rtac (hmono RS lfp_lemma2 RS subsetD) 1);
  | 
| 
 | 
   139  | 
by (rtac (hmono RS bnd_monoD2 RS subsetD) 1);
  | 
| 
 | 
   140  | 
by (REPEAT (ares_tac [Collect_subset, lfp_subset] 1));
  | 
| 
 | 
   141  | 
val Collect_is_pre_fixedpt = result();
  | 
| 
 | 
   142  | 
  | 
| 
 | 
   143  | 
(*This rule yields an induction hypothesis in which the components of a
  | 
| 
 | 
   144  | 
  data structure may be assumed to be elements of lfp(D,h)*)
  | 
| 
 | 
   145  | 
val prems = goal Fixedpt.thy
  | 
| 
 | 
   146  | 
    "[| bnd_mono(D,h);  a : lfp(D,h);   		\
  | 
| 
 | 
   147  | 
\       !!x. x : h(Collect(lfp(D,h),P)) ==> P(x) 	\
  | 
| 
 | 
   148  | 
\    |] ==> P(a)";
  | 
| 
 | 
   149  | 
by (rtac (Collect_is_pre_fixedpt RS lfp_lowerbound RS subsetD RS CollectD2) 1);
  | 
| 
 | 
   150  | 
by (rtac (lfp_subset RS (Collect_subset RS subset_trans)) 3);
  | 
| 
 | 
   151  | 
by (REPEAT (ares_tac prems 1));
  | 
| 
 | 
   152  | 
val induct = result();
  | 
| 
 | 
   153  | 
  | 
| 
 | 
   154  | 
(*Definition form, to control unfolding*)
  | 
| 
 | 
   155  | 
val rew::prems = goal Fixedpt.thy
  | 
| 
 | 
   156  | 
    "[| A == lfp(D,h);  bnd_mono(D,h);  a:A;   \
  | 
| 
 | 
   157  | 
\       !!x. x : h(Collect(A,P)) ==> P(x) \
  | 
| 
 | 
   158  | 
\    |] ==> P(a)";
  | 
| 
 | 
   159  | 
by (rtac induct 1);
  | 
| 
 | 
   160  | 
by (REPEAT (ares_tac (map (rewrite_rule [rew]) prems) 1));
  | 
| 
 | 
   161  | 
val def_induct = result();
  | 
| 
 | 
   162  | 
  | 
| 
 | 
   163  | 
(*This version is useful when "A" is not a subset of D;
  | 
| 
 | 
   164  | 
  second premise could simply be h(D Int A) <= D or !!X. X<=D ==> h(X)<=D *)
  | 
| 
 | 
   165  | 
val [hsub,hmono] = goal Fixedpt.thy
  | 
| 
 | 
   166  | 
    "[| h(D Int A) <= A;  bnd_mono(D,h) |] ==> lfp(D,h) <= A";
  | 
| 
 | 
   167  | 
by (rtac (lfp_lowerbound RS subset_trans) 1);
  | 
| 
 | 
   168  | 
by (rtac (hmono RS bnd_mono_subset RS Int_greatest) 1);
  | 
| 
 | 
   169  | 
by (REPEAT (resolve_tac [hsub,Int_lower1,Int_lower2] 1));
  | 
| 
 | 
   170  | 
val lfp_Int_lowerbound = result();
  | 
| 
 | 
   171  | 
  | 
| 
 | 
   172  | 
(*Monotonicity of lfp, where h precedes i under a domain-like partial order
  | 
| 
 | 
   173  | 
  monotonicity of h is not strictly necessary; h must be bounded by D*)
  | 
| 
 | 
   174  | 
val [hmono,imono,subhi] = goal Fixedpt.thy
  | 
| 
 | 
   175  | 
    "[| bnd_mono(D,h);  bnd_mono(E,i); 		\
  | 
| 
 | 
   176  | 
\       !!X. X<=D ==> h(X) <= i(X)  |] ==> lfp(D,h) <= lfp(E,i)";
  | 
| 
 | 
   177  | 
br (bnd_monoD1 RS lfp_greatest) 1;
  | 
| 
 | 
   178  | 
br imono 1;
  | 
| 
 | 
   179  | 
by (rtac (hmono RSN (2, lfp_Int_lowerbound)) 1);
  | 
| 
 | 
   180  | 
by (rtac (Int_lower1 RS subhi RS subset_trans) 1);
  | 
| 
 | 
   181  | 
by (rtac (imono RS bnd_monoD2 RS subset_trans) 1);
  | 
| 
 | 
   182  | 
by (REPEAT (ares_tac [Int_lower2] 1));
  | 
| 
 | 
   183  | 
val lfp_mono = result();
  | 
| 
 | 
   184  | 
  | 
| 
 | 
   185  | 
(*This (unused) version illustrates that monotonicity is not really needed,
  | 
| 
 | 
   186  | 
  but both lfp's must be over the SAME set D;  Inter is anti-monotonic!*)
  | 
| 
 | 
   187  | 
val [isubD,subhi] = goal Fixedpt.thy
  | 
| 
 | 
   188  | 
    "[| i(D) <= D;  !!X. X<=D ==> h(X) <= i(X)  |] ==> lfp(D,h) <= lfp(D,i)";
  | 
| 
 | 
   189  | 
br lfp_greatest 1;
  | 
| 
 | 
   190  | 
br isubD 1;
  | 
| 
 | 
   191  | 
by (rtac lfp_lowerbound 1);
  | 
| 
 | 
   192  | 
be (subhi RS subset_trans) 1;
  | 
| 
 | 
   193  | 
by (REPEAT (assume_tac 1));
  | 
| 
 | 
   194  | 
val lfp_mono2 = result();
  | 
| 
 | 
   195  | 
  | 
| 
 | 
   196  | 
  | 
| 
 | 
   197  | 
(**** Proof of Knaster-Tarski Theorem for the gfp ****)
  | 
| 
 | 
   198  | 
  | 
| 
 | 
   199  | 
(*gfp contains each post-fixedpoint that is contained in D*)
  | 
| 
 | 
   200  | 
val prems = goalw Fixedpt.thy [gfp_def]
  | 
| 
 | 
   201  | 
    "[| A <= h(A);  A<=D |] ==> A <= gfp(D,h)";
  | 
| 
 | 
   202  | 
by (rtac (PowI RS CollectI RS Union_upper) 1);
  | 
| 
 | 
   203  | 
by (REPEAT (resolve_tac prems 1));
  | 
| 
 | 
   204  | 
val gfp_upperbound = result();
  | 
| 
 | 
   205  | 
  | 
| 
 | 
   206  | 
goalw Fixedpt.thy [gfp_def] "gfp(D,h) <= D";
  | 
| 
 | 
   207  | 
by (fast_tac ZF_cs 1);
  | 
| 
 | 
   208  | 
val gfp_subset = result();
  | 
| 
 | 
   209  | 
  | 
| 
 | 
   210  | 
(*Used in datatype package*)
  | 
| 
 | 
   211  | 
val [rew] = goal Fixedpt.thy "A==gfp(D,h) ==> A <= D";
  | 
| 
 | 
   212  | 
by (rewtac rew);
  | 
| 
 | 
   213  | 
by (rtac gfp_subset 1);
  | 
| 
 | 
   214  | 
val def_gfp_subset = result();
  | 
| 
 | 
   215  | 
  | 
| 
 | 
   216  | 
val hmono::prems = goalw Fixedpt.thy [gfp_def]
  | 
| 
 | 
   217  | 
    "[| bnd_mono(D,h);  !!X. [| X <= h(X);  X<=D |] ==> X<=A |] ==> \
  | 
| 
 | 
   218  | 
\    gfp(D,h) <= A";
  | 
| 
 | 
   219  | 
by (fast_tac (subset_cs addIs ((hmono RS bnd_monoD1)::prems)) 1);
  | 
| 
 | 
   220  | 
val gfp_least = result();
  | 
| 
 | 
   221  | 
  | 
| 
 | 
   222  | 
val hmono::prems = goal Fixedpt.thy
  | 
| 
 | 
   223  | 
    "[| bnd_mono(D,h);  A<=h(A);  A<=D |] ==> A <= h(gfp(D,h))";
  | 
| 
 | 
   224  | 
by (rtac (hmono RS bnd_monoD2 RSN (2,subset_trans)) 1);
  | 
| 
 | 
   225  | 
by (rtac gfp_subset 3);
  | 
| 
 | 
   226  | 
by (rtac gfp_upperbound 2);
  | 
| 
 | 
   227  | 
by (REPEAT (resolve_tac prems 1));
  | 
| 
 | 
   228  | 
val gfp_lemma1 = result();
  | 
| 
 | 
   229  | 
  | 
| 
 | 
   230  | 
val [hmono] = goal Fixedpt.thy
  | 
| 
 | 
   231  | 
    "bnd_mono(D,h) ==> gfp(D,h) <= h(gfp(D,h))";
  | 
| 
 | 
   232  | 
by (rtac gfp_least 1);
  | 
| 
 | 
   233  | 
by (rtac gfp_lemma1 2);
  | 
| 
 | 
   234  | 
by (REPEAT (ares_tac [hmono] 1));
  | 
| 
 | 
   235  | 
val gfp_lemma2 = result();
  | 
| 
 | 
   236  | 
  | 
| 
 | 
   237  | 
val [hmono] = goal Fixedpt.thy
  | 
| 
 | 
   238  | 
    "bnd_mono(D,h) ==> h(gfp(D,h)) <= gfp(D,h)";
  | 
| 
 | 
   239  | 
by (rtac gfp_upperbound 1);
  | 
| 
 | 
   240  | 
by (rtac (hmono RS bnd_monoD2) 1);
  | 
| 
 | 
   241  | 
by (rtac (hmono RS gfp_lemma2) 1);
  | 
| 
 | 
   242  | 
by (REPEAT (rtac ([hmono, gfp_subset] MRS bnd_mono_subset) 1));
  | 
| 
 | 
   243  | 
val gfp_lemma3 = result();
  | 
| 
 | 
   244  | 
  | 
| 
 | 
   245  | 
val prems = goal Fixedpt.thy
  | 
| 
 | 
   246  | 
    "bnd_mono(D,h) ==> gfp(D,h) = h(gfp(D,h))";
  | 
| 
 | 
   247  | 
by (REPEAT (resolve_tac (prems@[equalityI,gfp_lemma2,gfp_lemma3]) 1));
  | 
| 
 | 
   248  | 
val gfp_Tarski = result();
  | 
| 
 | 
   249  | 
  | 
| 
 | 
   250  | 
(*Definition form, to control unfolding*)
  | 
| 
 | 
   251  | 
val [rew,mono] = goal Fixedpt.thy
  | 
| 
 | 
   252  | 
    "[| A==gfp(D,h);  bnd_mono(D,h) |] ==> A = h(A)";
  | 
| 
 | 
   253  | 
by (rewtac rew);
  | 
| 
 | 
   254  | 
by (rtac (mono RS gfp_Tarski) 1);
  | 
| 
 | 
   255  | 
val def_gfp_Tarski = result();
  | 
| 
 | 
   256  | 
  | 
| 
 | 
   257  | 
  | 
| 
 | 
   258  | 
(*** Coinduction rules for greatest fixed points ***)
  | 
| 
 | 
   259  | 
  | 
| 
 | 
   260  | 
(*weak version*)
  | 
| 
 | 
   261  | 
goal Fixedpt.thy "!!X h. [| a: X;  X <= h(X);  X <= D |] ==> a : gfp(D,h)";
  | 
| 
 | 
   262  | 
by (REPEAT (ares_tac [gfp_upperbound RS subsetD] 1));
  | 
| 
 | 
   263  | 
val weak_coinduct = result();
  | 
| 
 | 
   264  | 
  | 
| 
 | 
   265  | 
val [subs_h,subs_D,mono] = goal Fixedpt.thy
  | 
| 
 | 
   266  | 
    "[| X <= h(X Un gfp(D,h));  X <= D;  bnd_mono(D,h) |] ==>  \
  | 
| 
 | 
   267  | 
\    X Un gfp(D,h) <= h(X Un gfp(D,h))";
  | 
| 
 | 
   268  | 
by (rtac (subs_h RS Un_least) 1);
  | 
| 
 | 
   269  | 
by (rtac (mono RS gfp_lemma2 RS subset_trans) 1);
  | 
| 
 | 
   270  | 
by (rtac (Un_upper2 RS subset_trans) 1);
  | 
| 
 | 
   271  | 
by (rtac ([mono, subs_D, gfp_subset] MRS bnd_mono_Un) 1);
  | 
| 
 | 
   272  | 
val coinduct_lemma = result();
  | 
| 
 | 
   273  | 
  | 
| 
 | 
   274  | 
(*strong version*)
  | 
| 
 | 
   275  | 
goal Fixedpt.thy
  | 
| 
 | 
   276  | 
    "!!X D. [| bnd_mono(D,h);  a: X;  X <= h(X Un gfp(D,h));  X <= D |] ==> \
  | 
| 
 | 
   277  | 
\           a : gfp(D,h)";
  | 
| 
 | 
   278  | 
by (rtac (coinduct_lemma RSN (2, weak_coinduct)) 1);
  | 
| 
 | 
   279  | 
by (REPEAT (ares_tac [gfp_subset, UnI1, Un_least] 1));
  | 
| 
 | 
   280  | 
val coinduct = result();
  | 
| 
 | 
   281  | 
  | 
| 
 | 
   282  | 
(*Definition form, to control unfolding*)
  | 
| 
 | 
   283  | 
val rew::prems = goal Fixedpt.thy
  | 
| 
 | 
   284  | 
    "[| A == gfp(D,h);  bnd_mono(D,h);  a: X;  X <= h(X Un A);  X <= D |] ==> \
  | 
| 
 | 
   285  | 
\    a : A";
  | 
| 
 | 
   286  | 
by (rewtac rew);
  | 
| 
 | 
   287  | 
by (rtac coinduct 1);
  | 
| 
 | 
   288  | 
by (REPEAT (ares_tac (map (rewrite_rule [rew]) prems) 1));
  | 
| 
 | 
   289  | 
val def_coinduct = result();
  | 
| 
 | 
   290  | 
  | 
| 
 | 
   291  | 
(*Lemma used immediately below!*)
  | 
| 
 | 
   292  | 
val [subsA,XimpP] = goal ZF.thy
  | 
| 
 | 
   293  | 
    "[| X <= A;  !!z. z:X ==> P(z) |] ==> X <= Collect(A,P)";
  | 
| 
 | 
   294  | 
by (rtac (subsA RS subsetD RS CollectI RS subsetI) 1);
  | 
| 
 | 
   295  | 
by (assume_tac 1);
  | 
| 
 | 
   296  | 
by (etac XimpP 1);
  | 
| 
 | 
   297  | 
val subset_Collect = result();
  | 
| 
 | 
   298  | 
  | 
| 
 | 
   299  | 
(*The version used in the induction/coinduction package*)
  | 
| 
 | 
   300  | 
val prems = goal Fixedpt.thy
  | 
| 
 | 
   301  | 
    "[| A == gfp(D, %w. Collect(D,P(w)));  bnd_mono(D, %w. Collect(D,P(w)));  \
  | 
| 
 | 
   302  | 
\       a: X;  X <= D;  !!z. z: X ==> P(X Un A, z) |] ==> \
  | 
| 
 | 
   303  | 
\    a : A";
  | 
| 
 | 
   304  | 
by (rtac def_coinduct 1);
  | 
| 
 | 
   305  | 
by (REPEAT (ares_tac (subset_Collect::prems) 1));
  | 
| 
 | 
   306  | 
val def_Collect_coinduct = result();
  | 
| 
 | 
   307  | 
  | 
| 
 | 
   308  | 
(*Monotonicity of gfp!*)
  | 
| 
 | 
   309  | 
val [hmono,subde,subhi] = goal Fixedpt.thy
  | 
| 
 | 
   310  | 
    "[| bnd_mono(D,h);  D <= E; 		\
  | 
| 
 | 
   311  | 
\       !!X. X<=D ==> h(X) <= i(X)  |] ==> gfp(D,h) <= gfp(E,i)";
  | 
| 
 | 
   312  | 
by (rtac gfp_upperbound 1);
  | 
| 
 | 
   313  | 
by (rtac (hmono RS gfp_lemma2 RS subset_trans) 1);
  | 
| 
 | 
   314  | 
by (rtac (gfp_subset RS subhi) 1);
  | 
| 
 | 
   315  | 
by (rtac ([gfp_subset, subde] MRS subset_trans) 1);
  | 
| 
 | 
   316  | 
val gfp_mono = result();
  | 
| 
 | 
   317  | 
  |