| author | wenzelm | 
| Mon, 27 Feb 2012 19:54:50 +0100 | |
| changeset 46716 | c45a4427db39 | 
| parent 41550 | efa734d9b221 | 
| permissions | -rw-r--r-- | 
| 19453 | 1 | (* Title: HOL/Matrix/LP.thy | 
| 2 | Author: Steven Obua | |
| 3 | *) | |
| 4 | ||
| 5 | theory LP | |
| 41413 
64cd30d6b0b8
explicit file specifications -- avoid secondary load path;
 wenzelm parents: 
37884diff
changeset | 6 | imports Main "~~/src/HOL/Library/Lattice_Algebras" | 
| 19453 | 7 | begin | 
| 8 | ||
| 37884 
314a88278715
discontinued pretending that abel_cancel is logic-independent; cleaned up junk
 haftmann parents: 
35032diff
changeset | 9 | lemma le_add_right_mono: | 
| 
314a88278715
discontinued pretending that abel_cancel is logic-independent; cleaned up junk
 haftmann parents: 
35032diff
changeset | 10 | assumes | 
| 
314a88278715
discontinued pretending that abel_cancel is logic-independent; cleaned up junk
 haftmann parents: 
35032diff
changeset | 11 | "a <= b + (c::'a::ordered_ab_group_add)" | 
| 
314a88278715
discontinued pretending that abel_cancel is logic-independent; cleaned up junk
 haftmann parents: 
35032diff
changeset | 12 | "c <= d" | 
| 
314a88278715
discontinued pretending that abel_cancel is logic-independent; cleaned up junk
 haftmann parents: 
35032diff
changeset | 13 | shows "a <= b + d" | 
| 
314a88278715
discontinued pretending that abel_cancel is logic-independent; cleaned up junk
 haftmann parents: 
35032diff
changeset | 14 | apply (rule_tac order_trans[where y = "b+c"]) | 
| 41550 | 15 | apply (simp_all add: assms) | 
| 37884 
314a88278715
discontinued pretending that abel_cancel is logic-independent; cleaned up junk
 haftmann parents: 
35032diff
changeset | 16 | done | 
| 
314a88278715
discontinued pretending that abel_cancel is logic-independent; cleaned up junk
 haftmann parents: 
35032diff
changeset | 17 | |
| 19453 | 18 | lemma linprog_dual_estimate: | 
| 19 | assumes | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
32491diff
changeset | 20 | "A * x \<le> (b::'a::lattice_ring)" | 
| 19453 | 21 | "0 \<le> y" | 
| 22 | "abs (A - A') \<le> \<delta>A" | |
| 23 | "b \<le> b'" | |
| 24 | "abs (c - c') \<le> \<delta>c" | |
| 25 | "abs x \<le> r" | |
| 26 | shows | |
| 27 | "c * x \<le> y * b' + (y * \<delta>A + abs (y * A' - c') + \<delta>c) * r" | |
| 28 | proof - | |
| 41550 | 29 | from assms have 1: "y * b <= y * b'" by (simp add: mult_left_mono) | 
| 30 | from assms have 2: "y * (A * x) <= y * b" by (simp add: mult_left_mono) | |
| 29667 | 31 | have 3: "y * (A * x) = c * x + (y * (A - A') + (y * A' - c') + (c'-c)) * x" by (simp add: algebra_simps) | 
| 19453 | 32 | from 1 2 3 have 4: "c * x + (y * (A - A') + (y * A' - c') + (c'-c)) * x <= y * b'" by simp | 
| 33 | have 5: "c * x <= y * b' + abs((y * (A - A') + (y * A' - c') + (c'-c)) * x)" | |
| 34 | by (simp only: 4 estimate_by_abs) | |
| 35 | have 6: "abs((y * (A - A') + (y * A' - c') + (c'-c)) * x) <= abs (y * (A - A') + (y * A' - c') + (c'-c)) * abs x" | |
| 36 | by (simp add: abs_le_mult) | |
| 37 | have 7: "(abs (y * (A - A') + (y * A' - c') + (c'-c))) * abs x <= (abs (y * (A-A') + (y*A'-c')) + abs(c'-c)) * abs x" | |
| 38 | by(rule abs_triangle_ineq [THEN mult_right_mono]) simp | |
| 39 | have 8: " (abs (y * (A-A') + (y*A'-c')) + abs(c'-c)) * abs x <= (abs (y * (A-A')) + abs (y*A'-c') + abs(c'-c)) * abs x" | |
| 40 | by (simp add: abs_triangle_ineq mult_right_mono) | |
| 41 | have 9: "(abs (y * (A-A')) + abs (y*A'-c') + abs(c'-c)) * abs x <= (abs y * abs (A-A') + abs (y*A'-c') + abs (c'-c)) * abs x" | |
| 42 | by (simp add: abs_le_mult mult_right_mono) | |
| 29667 | 43 | have 10: "c'-c = -(c-c')" by (simp add: algebra_simps) | 
| 19453 | 44 | have 11: "abs (c'-c) = abs (c-c')" | 
| 45 | by (subst 10, subst abs_minus_cancel, simp) | |
| 46 | have 12: "(abs y * abs (A-A') + abs (y*A'-c') + abs (c'-c)) * abs x <= (abs y * abs (A-A') + abs (y*A'-c') + \<delta>c) * abs x" | |
| 41550 | 47 | by (simp add: 11 assms mult_right_mono) | 
| 19453 | 48 | have 13: "(abs y * abs (A-A') + abs (y*A'-c') + \<delta>c) * abs x <= (abs y * \<delta>A + abs (y*A'-c') + \<delta>c) * abs x" | 
| 41550 | 49 | by (simp add: assms mult_right_mono mult_left_mono) | 
| 19453 | 50 | have r: "(abs y * \<delta>A + abs (y*A'-c') + \<delta>c) * abs x <= (abs y * \<delta>A + abs (y*A'-c') + \<delta>c) * r" | 
| 51 | apply (rule mult_left_mono) | |
| 41550 | 52 | apply (simp add: assms) | 
| 19453 | 53 | apply (rule_tac add_mono[of "0::'a" _ "0", simplified])+ | 
| 54 | apply (rule mult_left_mono[of "0" "\<delta>A", simplified]) | |
| 55 | apply (simp_all) | |
| 41550 | 56 | apply (rule order_trans[where y="abs (A-A')"], simp_all add: assms) | 
| 57 | apply (rule order_trans[where y="abs (c-c')"], simp_all add: assms) | |
| 19453 | 58 | done | 
| 59 | from 6 7 8 9 12 13 r have 14:" abs((y * (A - A') + (y * A' - c') + (c'-c)) * x) <=(abs y * \<delta>A + abs (y*A'-c') + \<delta>c) * r" | |
| 60 | by (simp) | |
| 37884 
314a88278715
discontinued pretending that abel_cancel is logic-independent; cleaned up junk
 haftmann parents: 
35032diff
changeset | 61 | show ?thesis | 
| 
314a88278715
discontinued pretending that abel_cancel is logic-independent; cleaned up junk
 haftmann parents: 
35032diff
changeset | 62 | apply (rule le_add_right_mono[of _ _ "abs((y * (A - A') + (y * A' - c') + (c'-c)) * x)"]) | 
| 41550 | 63 | apply (simp_all only: 5 14[simplified abs_of_nonneg[of y, simplified assms]]) | 
| 19453 | 64 | done | 
| 65 | qed | |
| 66 | ||
| 67 | lemma le_ge_imp_abs_diff_1: | |
| 68 | assumes | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
32491diff
changeset | 69 | "A1 <= (A::'a::lattice_ring)" | 
| 19453 | 70 | "A <= A2" | 
| 71 | shows "abs (A-A1) <= A2-A1" | |
| 72 | proof - | |
| 73 | have "0 <= A - A1" | |
| 74 | proof - | |
| 75 | have 1: "A - A1 = A + (- A1)" by simp | |
| 41550 | 76 | show ?thesis by (simp only: 1 add_right_mono[of A1 A "-A1", simplified, simplified assms]) | 
| 19453 | 77 | qed | 
| 78 | then have "abs (A-A1) = A-A1" by (rule abs_of_nonneg) | |
| 41550 | 79 | with assms show "abs (A-A1) <= (A2-A1)" by simp | 
| 19453 | 80 | qed | 
| 81 | ||
| 82 | lemma mult_le_prts: | |
| 83 | assumes | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
32491diff
changeset | 84 | "a1 <= (a::'a::lattice_ring)" | 
| 19453 | 85 | "a <= a2" | 
| 86 | "b1 <= b" | |
| 87 | "b <= b2" | |
| 88 | shows | |
| 89 | "a * b <= pprt a2 * pprt b2 + pprt a1 * nprt b2 + nprt a2 * pprt b1 + nprt a1 * nprt b1" | |
| 90 | proof - | |
| 91 | have "a * b = (pprt a + nprt a) * (pprt b + nprt b)" | |
| 92 | apply (subst prts[symmetric])+ | |
| 93 | apply simp | |
| 94 | done | |
| 95 | then have "a * b = pprt a * pprt b + pprt a * nprt b + nprt a * pprt b + nprt a * nprt b" | |
| 29667 | 96 | by (simp add: algebra_simps) | 
| 19453 | 97 | moreover have "pprt a * pprt b <= pprt a2 * pprt b2" | 
| 41550 | 98 | by (simp_all add: assms mult_mono) | 
| 19453 | 99 | moreover have "pprt a * nprt b <= pprt a1 * nprt b2" | 
| 100 | proof - | |
| 101 | have "pprt a * nprt b <= pprt a * nprt b2" | |
| 41550 | 102 | by (simp add: mult_left_mono assms) | 
| 19453 | 103 | moreover have "pprt a * nprt b2 <= pprt a1 * nprt b2" | 
| 41550 | 104 | by (simp add: mult_right_mono_neg assms) | 
| 19453 | 105 | ultimately show ?thesis | 
| 106 | by simp | |
| 107 | qed | |
| 108 | moreover have "nprt a * pprt b <= nprt a2 * pprt b1" | |
| 109 | proof - | |
| 110 | have "nprt a * pprt b <= nprt a2 * pprt b" | |
| 41550 | 111 | by (simp add: mult_right_mono assms) | 
| 19453 | 112 | moreover have "nprt a2 * pprt b <= nprt a2 * pprt b1" | 
| 41550 | 113 | by (simp add: mult_left_mono_neg assms) | 
| 19453 | 114 | ultimately show ?thesis | 
| 115 | by simp | |
| 116 | qed | |
| 117 | moreover have "nprt a * nprt b <= nprt a1 * nprt b1" | |
| 118 | proof - | |
| 119 | have "nprt a * nprt b <= nprt a * nprt b1" | |
| 41550 | 120 | by (simp add: mult_left_mono_neg assms) | 
| 19453 | 121 | moreover have "nprt a * nprt b1 <= nprt a1 * nprt b1" | 
| 41550 | 122 | by (simp add: mult_right_mono_neg assms) | 
| 19453 | 123 | ultimately show ?thesis | 
| 124 | by simp | |
| 125 | qed | |
| 126 | ultimately show ?thesis | |
| 127 | by - (rule add_mono | simp)+ | |
| 128 | qed | |
| 129 | ||
| 130 | lemma mult_le_dual_prts: | |
| 131 | assumes | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
32491diff
changeset | 132 | "A * x \<le> (b::'a::lattice_ring)" | 
| 19453 | 133 | "0 \<le> y" | 
| 134 | "A1 \<le> A" | |
| 135 | "A \<le> A2" | |
| 136 | "c1 \<le> c" | |
| 137 | "c \<le> c2" | |
| 138 | "r1 \<le> x" | |
| 139 | "x \<le> r2" | |
| 140 | shows | |
| 141 | "c * x \<le> y * b + (let s1 = c1 - y * A2; s2 = c2 - y * A1 in pprt s2 * pprt r2 + pprt s1 * nprt r2 + nprt s2 * pprt r1 + nprt s1 * nprt r1)" | |
| 142 | (is "_ <= _ + ?C") | |
| 143 | proof - | |
| 41550 | 144 | from assms have "y * (A * x) <= y * b" by (simp add: mult_left_mono) | 
| 29667 | 145 | moreover have "y * (A * x) = c * x + (y * A - c) * x" by (simp add: algebra_simps) | 
| 19453 | 146 | ultimately have "c * x + (y * A - c) * x <= y * b" by simp | 
| 147 | then have "c * x <= y * b - (y * A - c) * x" by (simp add: le_diff_eq) | |
| 29667 | 148 | then have cx: "c * x <= y * b + (c - y * A) * x" by (simp add: algebra_simps) | 
| 19453 | 149 | have s2: "c - y * A <= c2 - y * A1" | 
| 41550 | 150 | by (simp add: diff_minus assms add_mono mult_left_mono) | 
| 19453 | 151 | have s1: "c1 - y * A2 <= c - y * A" | 
| 41550 | 152 | by (simp add: diff_minus assms add_mono mult_left_mono) | 
| 19453 | 153 | have prts: "(c - y * A) * x <= ?C" | 
| 154 | apply (simp add: Let_def) | |
| 155 | apply (rule mult_le_prts) | |
| 41550 | 156 | apply (simp_all add: assms s1 s2) | 
| 19453 | 157 | done | 
| 158 | then have "y * b + (c - y * A) * x <= y * b + ?C" | |
| 159 | by simp | |
| 160 | with cx show ?thesis | |
| 161 | by(simp only:) | |
| 162 | qed | |
| 163 | ||
| 164 | end |