| author | wenzelm | 
| Tue, 30 Mar 2010 00:12:42 +0200 | |
| changeset 36014 | c51a077680e4 | 
| parent 35938 | 93faaa15c3d5 | 
| child 36079 | fa0e354e6a39 | 
| permissions | -rw-r--r-- | 
| 35719 
99b6152aedf5
split off theory Big_Operators from theory Finite_Set
 haftmann parents: 
35577diff
changeset | 1 | (* Title: HOL/Big_Operators.thy | 
| 12396 | 2 | Author: Tobias Nipkow, Lawrence C Paulson and Markus Wenzel | 
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16760diff
changeset | 3 | with contributions by Jeremy Avigad | 
| 12396 | 4 | *) | 
| 5 | ||
| 35719 
99b6152aedf5
split off theory Big_Operators from theory Finite_Set
 haftmann parents: 
35577diff
changeset | 6 | header {* Big operators and finite (non-empty) sets *}
 | 
| 26041 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 7 | |
| 35719 
99b6152aedf5
split off theory Big_Operators from theory Finite_Set
 haftmann parents: 
35577diff
changeset | 8 | theory Big_Operators | 
| 35722 
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
 haftmann parents: 
35719diff
changeset | 9 | imports Plain | 
| 26041 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 10 | begin | 
| 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 11 | |
| 35816 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 12 | subsection {* Generic monoid operation over a set *}
 | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 13 | |
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 14 | no_notation times (infixl "*" 70) | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 15 | no_notation Groups.one ("1")
 | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 16 | |
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 17 | locale comm_monoid_big = comm_monoid + | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 18 |   fixes F :: "('b \<Rightarrow> 'a) \<Rightarrow> 'b set \<Rightarrow> 'a"
 | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 19 | assumes F_eq: "F g A = (if finite A then fold_image (op *) g 1 A else 1)" | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 20 | |
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 21 | sublocale comm_monoid_big < folding_image proof | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 22 | qed (simp add: F_eq) | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 23 | |
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 24 | context comm_monoid_big | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 25 | begin | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 26 | |
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 27 | lemma infinite [simp]: | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 28 | "\<not> finite A \<Longrightarrow> F g A = 1" | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 29 | by (simp add: F_eq) | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 30 | |
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 31 | end | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 32 | |
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 33 | text {* for ad-hoc proofs for @{const fold_image} *}
 | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 34 | |
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 35 | lemma (in comm_monoid_add) comm_monoid_mult: | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 36 | "comm_monoid_mult (op +) 0" | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 37 | proof qed (auto intro: add_assoc add_commute) | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 38 | |
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 39 | notation times (infixl "*" 70) | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 40 | notation Groups.one ("1")
 | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 41 | |
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 42 | |
| 15402 | 43 | subsection {* Generalized summation over a set *}
 | 
| 44 | ||
| 35816 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 45 | definition (in comm_monoid_add) setsum :: "('b \<Rightarrow> 'a) => 'b set => 'a" where
 | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 46 | "setsum f A = (if finite A then fold_image (op +) f 0 A else 0)" | 
| 26041 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 47 | |
| 35816 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 48 | sublocale comm_monoid_add < setsum!: comm_monoid_big "op +" 0 setsum proof | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 49 | qed (fact setsum_def) | 
| 15402 | 50 | |
| 19535 | 51 | abbreviation | 
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21249diff
changeset | 52 |   Setsum  ("\<Sum>_" [1000] 999) where
 | 
| 19535 | 53 | "\<Sum>A == setsum (%x. x) A" | 
| 54 | ||
| 15402 | 55 | text{* Now: lot's of fancy syntax. First, @{term "setsum (%x. e) A"} is
 | 
| 56 | written @{text"\<Sum>x\<in>A. e"}. *}
 | |
| 57 | ||
| 58 | syntax | |
| 17189 | 59 |   "_setsum" :: "pttrn => 'a set => 'b => 'b::comm_monoid_add"    ("(3SUM _:_. _)" [0, 51, 10] 10)
 | 
| 15402 | 60 | syntax (xsymbols) | 
| 17189 | 61 |   "_setsum" :: "pttrn => 'a set => 'b => 'b::comm_monoid_add"    ("(3\<Sum>_\<in>_. _)" [0, 51, 10] 10)
 | 
| 15402 | 62 | syntax (HTML output) | 
| 17189 | 63 |   "_setsum" :: "pttrn => 'a set => 'b => 'b::comm_monoid_add"    ("(3\<Sum>_\<in>_. _)" [0, 51, 10] 10)
 | 
| 15402 | 64 | |
| 65 | translations -- {* Beware of argument permutation! *}
 | |
| 28853 
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
 nipkow parents: 
28823diff
changeset | 66 | "SUM i:A. b" == "CONST setsum (%i. b) A" | 
| 
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
 nipkow parents: 
28823diff
changeset | 67 | "\<Sum>i\<in>A. b" == "CONST setsum (%i. b) A" | 
| 15402 | 68 | |
| 69 | text{* Instead of @{term"\<Sum>x\<in>{x. P}. e"} we introduce the shorter
 | |
| 70 |  @{text"\<Sum>x|P. e"}. *}
 | |
| 71 | ||
| 72 | syntax | |
| 17189 | 73 |   "_qsetsum" :: "pttrn \<Rightarrow> bool \<Rightarrow> 'a \<Rightarrow> 'a" ("(3SUM _ |/ _./ _)" [0,0,10] 10)
 | 
| 15402 | 74 | syntax (xsymbols) | 
| 17189 | 75 |   "_qsetsum" :: "pttrn \<Rightarrow> bool \<Rightarrow> 'a \<Rightarrow> 'a" ("(3\<Sum>_ | (_)./ _)" [0,0,10] 10)
 | 
| 15402 | 76 | syntax (HTML output) | 
| 17189 | 77 |   "_qsetsum" :: "pttrn \<Rightarrow> bool \<Rightarrow> 'a \<Rightarrow> 'a" ("(3\<Sum>_ | (_)./ _)" [0,0,10] 10)
 | 
| 15402 | 78 | |
| 79 | translations | |
| 28853 
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
 nipkow parents: 
28823diff
changeset | 80 |   "SUM x|P. t" => "CONST setsum (%x. t) {x. P}"
 | 
| 
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
 nipkow parents: 
28823diff
changeset | 81 |   "\<Sum>x|P. t" => "CONST setsum (%x. t) {x. P}"
 | 
| 15402 | 82 | |
| 83 | print_translation {*
 | |
| 84 | let | |
| 35115 | 85 |   fun setsum_tr' [Abs (x, Tx, t), Const (@{const_syntax Collect}, _) $ Abs (y, Ty, P)] =
 | 
| 86 | if x <> y then raise Match | |
| 87 | else | |
| 88 | let | |
| 89 | val x' = Syntax.mark_bound x; | |
| 90 | val t' = subst_bound (x', t); | |
| 91 | val P' = subst_bound (x', P); | |
| 92 |           in Syntax.const @{syntax_const "_qsetsum"} $ Syntax.mark_bound x $ P' $ t' end
 | |
| 93 | | setsum_tr' _ = raise Match; | |
| 94 | in [(@{const_syntax setsum}, setsum_tr')] end
 | |
| 15402 | 95 | *} | 
| 96 | ||
| 35816 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 97 | lemma setsum_empty: | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 98 |   "setsum f {} = 0"
 | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 99 | by (fact setsum.empty) | 
| 15402 | 100 | |
| 35816 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 101 | lemma setsum_insert: | 
| 28853 
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
 nipkow parents: 
28823diff
changeset | 102 | "finite F ==> a \<notin> F ==> setsum f (insert a F) = f a + setsum f F" | 
| 35816 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 103 | by (fact setsum.insert) | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 104 | |
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 105 | lemma setsum_infinite: | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 106 | "~ finite A ==> setsum f A = 0" | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 107 | by (fact setsum.infinite) | 
| 15402 | 108 | |
| 35816 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 109 | lemma (in comm_monoid_add) setsum_reindex: | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 110 | assumes "inj_on f B" shows "setsum h (f ` B) = setsum (h \<circ> f) B" | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 111 | proof - | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 112 | interpret comm_monoid_mult "op +" 0 by (fact comm_monoid_mult) | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 113 | from assms show ?thesis by (auto simp add: setsum_def fold_image_reindex dest!:finite_imageD) | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 114 | qed | 
| 15409 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 115 | |
| 35816 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 116 | lemma (in comm_monoid_add) setsum_reindex_id: | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 117 | "inj_on f B ==> setsum f B = setsum id (f ` B)" | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 118 | by (simp add: setsum_reindex) | 
| 15402 | 119 | |
| 35816 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 120 | lemma (in comm_monoid_add) setsum_reindex_nonzero: | 
| 29674 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 121 | assumes fS: "finite S" | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 122 | and nz: "\<And> x y. x \<in> S \<Longrightarrow> y \<in> S \<Longrightarrow> x \<noteq> y \<Longrightarrow> f x = f y \<Longrightarrow> h (f x) = 0" | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 123 | shows "setsum h (f ` S) = setsum (h o f) S" | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 124 | using nz | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 125 | proof(induct rule: finite_induct[OF fS]) | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 126 | case 1 thus ?case by simp | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 127 | next | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 128 | case (2 x F) | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 129 |   {assume fxF: "f x \<in> f ` F" hence "\<exists>y \<in> F . f y = f x" by auto
 | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 130 | then obtain y where y: "y \<in> F" "f x = f y" by auto | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 131 | from "2.hyps" y have xy: "x \<noteq> y" by auto | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 132 | |
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 133 | from "2.prems"[of x y] "2.hyps" xy y have h0: "h (f x) = 0" by simp | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 134 | have "setsum h (f ` insert x F) = setsum h (f ` F)" using fxF by auto | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 135 | also have "\<dots> = setsum (h o f) (insert x F)" | 
| 35816 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 136 | unfolding setsum.insert[OF `finite F` `x\<notin>F`] | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 137 | using h0 | 
| 29674 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 138 | apply simp | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 139 | apply (rule "2.hyps"(3)) | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 140 | apply (rule_tac y="y" in "2.prems") | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 141 | apply simp_all | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 142 | done | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 143 | finally have ?case .} | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 144 | moreover | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 145 |   {assume fxF: "f x \<notin> f ` F"
 | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 146 | have "setsum h (f ` insert x F) = h (f x) + setsum h (f ` F)" | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 147 | using fxF "2.hyps" by simp | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 148 | also have "\<dots> = setsum (h o f) (insert x F)" | 
| 35816 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 149 | unfolding setsum.insert[OF `finite F` `x\<notin>F`] | 
| 29674 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 150 | apply simp | 
| 35816 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 151 | apply (rule cong [OF refl [of "op + (h (f x))"]]) | 
| 29674 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 152 | apply (rule "2.hyps"(3)) | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 153 | apply (rule_tac y="y" in "2.prems") | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 154 | apply simp_all | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 155 | done | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 156 | finally have ?case .} | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 157 | ultimately show ?case by blast | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 158 | qed | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 159 | |
| 35816 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 160 | lemma (in comm_monoid_add) setsum_cong: | 
| 15402 | 161 | "A = B ==> (!!x. x:B ==> f x = g x) ==> setsum f A = setsum g B" | 
| 35816 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 162 | by (cases "finite A") (auto intro: setsum.cong) | 
| 15402 | 163 | |
| 35816 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 164 | lemma (in comm_monoid_add) strong_setsum_cong [cong]: | 
| 16733 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16632diff
changeset | 165 | "A = B ==> (!!x. x:B =simp=> f x = g x) | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16632diff
changeset | 166 | ==> setsum (%x. f x) A = setsum (%x. g x) B" | 
| 35816 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 167 | by (rule setsum_cong) (simp_all add: simp_implies_def) | 
| 16632 
ad2895beef79
Added strong_setsum_cong and strong_setprod_cong.
 berghofe parents: 
16550diff
changeset | 168 | |
| 35816 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 169 | lemma (in comm_monoid_add) setsum_cong2: "\<lbrakk>\<And>x. x \<in> A \<Longrightarrow> f x = g x\<rbrakk> \<Longrightarrow> setsum f A = setsum g A" | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 170 | by (auto intro: setsum_cong) | 
| 15554 | 171 | |
| 35816 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 172 | lemma (in comm_monoid_add) setsum_reindex_cong: | 
| 28853 
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
 nipkow parents: 
28823diff
changeset | 173 | "[|inj_on f A; B = f ` A; !!a. a:A \<Longrightarrow> g a = h (f a)|] | 
| 
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
 nipkow parents: 
28823diff
changeset | 174 | ==> setsum h B = setsum g A" | 
| 35816 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 175 | by (simp add: setsum_reindex cong: setsum_cong) | 
| 15402 | 176 | |
| 35816 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 177 | lemma (in comm_monoid_add) setsum_0[simp]: "setsum (%i. 0) A = 0" | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 178 | by (cases "finite A") (erule finite_induct, auto) | 
| 29674 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 179 | |
| 35816 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 180 | lemma (in comm_monoid_add) setsum_0': "ALL a:A. f a = 0 ==> setsum f A = 0" | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 181 | by (simp add:setsum_cong) | 
| 15402 | 182 | |
| 35816 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 183 | lemma (in comm_monoid_add) setsum_Un_Int: "finite A ==> finite B ==> | 
| 15402 | 184 | setsum g (A Un B) + setsum g (A Int B) = setsum g A + setsum g B" | 
| 185 |   -- {* The reversed orientation looks more natural, but LOOPS as a simprule! *}
 | |
| 35816 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 186 | by (fact setsum.union_inter) | 
| 15402 | 187 | |
| 35816 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 188 | lemma (in comm_monoid_add) setsum_Un_disjoint: "finite A ==> finite B | 
| 15402 | 189 |   ==> A Int B = {} ==> setsum g (A Un B) = setsum g A + setsum g B"
 | 
| 35816 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 190 | by (fact setsum.union_disjoint) | 
| 15402 | 191 | |
| 29674 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 192 | lemma setsum_mono_zero_left: | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 193 | assumes fT: "finite T" and ST: "S \<subseteq> T" | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 194 | and z: "\<forall>i \<in> T - S. f i = 0" | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 195 | shows "setsum f S = setsum f T" | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 196 | proof- | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 197 | have eq: "T = S \<union> (T - S)" using ST by blast | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 198 |   have d: "S \<inter> (T - S) = {}" using ST by blast
 | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 199 | from fT ST have f: "finite S" "finite (T - S)" by (auto intro: finite_subset) | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 200 | show ?thesis | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 201 | by (simp add: setsum_Un_disjoint[OF f d, unfolded eq[symmetric]] setsum_0'[OF z]) | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 202 | qed | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 203 | |
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 204 | lemma setsum_mono_zero_right: | 
| 30837 
3d4832d9f7e4
added strong_setprod_cong[cong] (in analogy with setsum)
 nipkow parents: 
30729diff
changeset | 205 | "finite T \<Longrightarrow> S \<subseteq> T \<Longrightarrow> \<forall>i \<in> T - S. f i = 0 \<Longrightarrow> setsum f T = setsum f S" | 
| 
3d4832d9f7e4
added strong_setprod_cong[cong] (in analogy with setsum)
 nipkow parents: 
30729diff
changeset | 206 | by(blast intro!: setsum_mono_zero_left[symmetric]) | 
| 29674 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 207 | |
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 208 | lemma setsum_mono_zero_cong_left: | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 209 | assumes fT: "finite T" and ST: "S \<subseteq> T" | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 210 | and z: "\<forall>i \<in> T - S. g i = 0" | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 211 | and fg: "\<And>x. x \<in> S \<Longrightarrow> f x = g x" | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 212 | shows "setsum f S = setsum g T" | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 213 | proof- | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 214 | have eq: "T = S \<union> (T - S)" using ST by blast | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 215 |   have d: "S \<inter> (T - S) = {}" using ST by blast
 | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 216 | from fT ST have f: "finite S" "finite (T - S)" by (auto intro: finite_subset) | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 217 | show ?thesis | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 218 | using fg by (simp add: setsum_Un_disjoint[OF f d, unfolded eq[symmetric]] setsum_0'[OF z]) | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 219 | qed | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 220 | |
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 221 | lemma setsum_mono_zero_cong_right: | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 222 | assumes fT: "finite T" and ST: "S \<subseteq> T" | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 223 | and z: "\<forall>i \<in> T - S. f i = 0" | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 224 | and fg: "\<And>x. x \<in> S \<Longrightarrow> f x = g x" | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 225 | shows "setsum f T = setsum g S" | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 226 | using setsum_mono_zero_cong_left[OF fT ST z] fg[symmetric] by auto | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 227 | |
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 228 | lemma setsum_delta: | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 229 | assumes fS: "finite S" | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 230 | shows "setsum (\<lambda>k. if k=a then b k else 0) S = (if a \<in> S then b a else 0)" | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 231 | proof- | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 232 | let ?f = "(\<lambda>k. if k=a then b k else 0)" | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 233 |   {assume a: "a \<notin> S"
 | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 234 | hence "\<forall> k\<in> S. ?f k = 0" by simp | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 235 | hence ?thesis using a by simp} | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 236 | moreover | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 237 |   {assume a: "a \<in> S"
 | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 238 |     let ?A = "S - {a}"
 | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 239 |     let ?B = "{a}"
 | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 240 | have eq: "S = ?A \<union> ?B" using a by blast | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 241 |     have dj: "?A \<inter> ?B = {}" by simp
 | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 242 | from fS have fAB: "finite ?A" "finite ?B" by auto | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 243 | have "setsum ?f S = setsum ?f ?A + setsum ?f ?B" | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 244 | using setsum_Un_disjoint[OF fAB dj, of ?f, unfolded eq[symmetric]] | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 245 | by simp | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 246 | then have ?thesis using a by simp} | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 247 | ultimately show ?thesis by blast | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 248 | qed | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 249 | lemma setsum_delta': | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 250 | assumes fS: "finite S" shows | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 251 | "setsum (\<lambda>k. if a = k then b k else 0) S = | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 252 | (if a\<in> S then b a else 0)" | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 253 | using setsum_delta[OF fS, of a b, symmetric] | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 254 | by (auto intro: setsum_cong) | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 255 | |
| 30260 
be39acd3ac85
Added general theorems for fold_image, setsum and set_prod
 chaieb parents: 
29966diff
changeset | 256 | lemma setsum_restrict_set: | 
| 
be39acd3ac85
Added general theorems for fold_image, setsum and set_prod
 chaieb parents: 
29966diff
changeset | 257 | assumes fA: "finite A" | 
| 
be39acd3ac85
Added general theorems for fold_image, setsum and set_prod
 chaieb parents: 
29966diff
changeset | 258 | shows "setsum f (A \<inter> B) = setsum (\<lambda>x. if x \<in> B then f x else 0) A" | 
| 
be39acd3ac85
Added general theorems for fold_image, setsum and set_prod
 chaieb parents: 
29966diff
changeset | 259 | proof- | 
| 
be39acd3ac85
Added general theorems for fold_image, setsum and set_prod
 chaieb parents: 
29966diff
changeset | 260 | from fA have fab: "finite (A \<inter> B)" by auto | 
| 
be39acd3ac85
Added general theorems for fold_image, setsum and set_prod
 chaieb parents: 
29966diff
changeset | 261 | have aba: "A \<inter> B \<subseteq> A" by blast | 
| 
be39acd3ac85
Added general theorems for fold_image, setsum and set_prod
 chaieb parents: 
29966diff
changeset | 262 | let ?g = "\<lambda>x. if x \<in> A\<inter>B then f x else 0" | 
| 
be39acd3ac85
Added general theorems for fold_image, setsum and set_prod
 chaieb parents: 
29966diff
changeset | 263 | from setsum_mono_zero_left[OF fA aba, of ?g] | 
| 
be39acd3ac85
Added general theorems for fold_image, setsum and set_prod
 chaieb parents: 
29966diff
changeset | 264 | show ?thesis by simp | 
| 
be39acd3ac85
Added general theorems for fold_image, setsum and set_prod
 chaieb parents: 
29966diff
changeset | 265 | qed | 
| 
be39acd3ac85
Added general theorems for fold_image, setsum and set_prod
 chaieb parents: 
29966diff
changeset | 266 | |
| 
be39acd3ac85
Added general theorems for fold_image, setsum and set_prod
 chaieb parents: 
29966diff
changeset | 267 | lemma setsum_cases: | 
| 
be39acd3ac85
Added general theorems for fold_image, setsum and set_prod
 chaieb parents: 
29966diff
changeset | 268 | assumes fA: "finite A" | 
| 35577 | 269 | shows "setsum (\<lambda>x. if P x then f x else g x) A = | 
| 270 |          setsum f (A \<inter> {x. P x}) + setsum g (A \<inter> - {x. P x})"
 | |
| 30260 
be39acd3ac85
Added general theorems for fold_image, setsum and set_prod
 chaieb parents: 
29966diff
changeset | 271 | proof- | 
| 35577 | 272 |   have a: "A = A \<inter> {x. P x} \<union> A \<inter> -{x. P x}" 
 | 
| 273 |           "(A \<inter> {x. P x}) \<inter> (A \<inter> -{x. P x}) = {}" 
 | |
| 30260 
be39acd3ac85
Added general theorems for fold_image, setsum and set_prod
 chaieb parents: 
29966diff
changeset | 274 | by blast+ | 
| 
be39acd3ac85
Added general theorems for fold_image, setsum and set_prod
 chaieb parents: 
29966diff
changeset | 275 | from fA | 
| 35577 | 276 |   have f: "finite (A \<inter> {x. P x})" "finite (A \<inter> -{x. P x})" by auto
 | 
| 277 | let ?g = "\<lambda>x. if P x then f x else g x" | |
| 30260 
be39acd3ac85
Added general theorems for fold_image, setsum and set_prod
 chaieb parents: 
29966diff
changeset | 278 | from setsum_Un_disjoint[OF f a(2), of ?g] a(1) | 
| 
be39acd3ac85
Added general theorems for fold_image, setsum and set_prod
 chaieb parents: 
29966diff
changeset | 279 | show ?thesis by simp | 
| 
be39acd3ac85
Added general theorems for fold_image, setsum and set_prod
 chaieb parents: 
29966diff
changeset | 280 | qed | 
| 
be39acd3ac85
Added general theorems for fold_image, setsum and set_prod
 chaieb parents: 
29966diff
changeset | 281 | |
| 29674 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 282 | |
| 15409 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 283 | (*But we can't get rid of finite I. If infinite, although the rhs is 0, | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 284 | the lhs need not be, since UNION I A could still be finite.*) | 
| 35816 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 285 | lemma (in comm_monoid_add) setsum_UN_disjoint: | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 286 | assumes "finite I" and "ALL i:I. finite (A i)" | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 287 |     and "ALL i:I. ALL j:I. i \<noteq> j --> A i Int A j = {}"
 | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 288 | shows "setsum f (UNION I A) = (\<Sum>i\<in>I. setsum f (A i))" | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 289 | proof - | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 290 | interpret comm_monoid_mult "op +" 0 by (fact comm_monoid_mult) | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 291 | from assms show ?thesis by (simp add: setsum_def fold_image_UN_disjoint cong: setsum_cong) | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 292 | qed | 
| 15402 | 293 | |
| 15409 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 294 | text{*No need to assume that @{term C} is finite.  If infinite, the rhs is
 | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 295 | directly 0, and @{term "Union C"} is also infinite, hence the lhs is also 0.*}
 | 
| 15402 | 296 | lemma setsum_Union_disjoint: | 
| 15409 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 297 | "[| (ALL A:C. finite A); | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 298 |       (ALL A:C. ALL B:C. A \<noteq> B --> A Int B = {}) |]
 | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 299 | ==> setsum f (Union C) = setsum (setsum f) C" | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 300 | apply (cases "finite C") | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 301 | prefer 2 apply (force dest: finite_UnionD simp add: setsum_def) | 
| 15402 | 302 | apply (frule setsum_UN_disjoint [of C id f]) | 
| 15409 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 303 | apply (unfold Union_def id_def, assumption+) | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 304 | done | 
| 15402 | 305 | |
| 15409 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 306 | (*But we can't get rid of finite A. If infinite, although the lhs is 0, | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 307 | the rhs need not be, since SIGMA A B could still be finite.*) | 
| 35816 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 308 | lemma (in comm_monoid_add) setsum_Sigma: | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 309 | assumes "finite A" and "ALL x:A. finite (B x)" | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 310 | shows "(\<Sum>x\<in>A. (\<Sum>y\<in>B x. f x y)) = (\<Sum>(x,y)\<in>(SIGMA x:A. B x). f x y)" | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 311 | proof - | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 312 | interpret comm_monoid_mult "op +" 0 by (fact comm_monoid_mult) | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 313 | from assms show ?thesis by (simp add: setsum_def fold_image_Sigma split_def cong: setsum_cong) | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 314 | qed | 
| 15402 | 315 | |
| 15409 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 316 | text{*Here we can eliminate the finiteness assumptions, by cases.*}
 | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 317 | lemma setsum_cartesian_product: | 
| 17189 | 318 | "(\<Sum>x\<in>A. (\<Sum>y\<in>B. f x y)) = (\<Sum>(x,y) \<in> A <*> B. f x y)" | 
| 15409 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 319 | apply (cases "finite A") | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 320 | apply (cases "finite B") | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 321 | apply (simp add: setsum_Sigma) | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 322 |  apply (cases "A={}", simp)
 | 
| 15543 | 323 | apply (simp) | 
| 15409 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 324 | apply (auto simp add: setsum_def | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 325 | dest: finite_cartesian_productD1 finite_cartesian_productD2) | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 326 | done | 
| 15402 | 327 | |
| 35816 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 328 | lemma (in comm_monoid_add) setsum_addf: "setsum (%x. f x + g x) A = (setsum f A + setsum g A)" | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 329 | by (cases "finite A") (simp_all add: setsum.distrib) | 
| 15402 | 330 | |
| 331 | ||
| 332 | subsubsection {* Properties in more restricted classes of structures *}
 | |
| 333 | ||
| 334 | lemma setsum_SucD: "setsum f A = Suc n ==> EX a:A. 0 < f a" | |
| 28853 
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
 nipkow parents: 
28823diff
changeset | 335 | apply (case_tac "finite A") | 
| 
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
 nipkow parents: 
28823diff
changeset | 336 | prefer 2 apply (simp add: setsum_def) | 
| 
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
 nipkow parents: 
28823diff
changeset | 337 | apply (erule rev_mp) | 
| 
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
 nipkow parents: 
28823diff
changeset | 338 | apply (erule finite_induct, auto) | 
| 
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
 nipkow parents: 
28823diff
changeset | 339 | done | 
| 15402 | 340 | |
| 341 | lemma setsum_eq_0_iff [simp]: | |
| 342 | "finite F ==> (setsum f F = 0) = (ALL a:F. f a = (0::nat))" | |
| 28853 
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
 nipkow parents: 
28823diff
changeset | 343 | by (induct set: finite) auto | 
| 15402 | 344 | |
| 30859 | 345 | lemma setsum_eq_Suc0_iff: "finite A \<Longrightarrow> | 
| 346 | (setsum f A = Suc 0) = (EX a:A. f a = Suc 0 & (ALL b:A. a\<noteq>b \<longrightarrow> f b = 0))" | |
| 347 | apply(erule finite_induct) | |
| 348 | apply (auto simp add:add_is_1) | |
| 349 | done | |
| 350 | ||
| 351 | lemmas setsum_eq_1_iff = setsum_eq_Suc0_iff[simplified One_nat_def[symmetric]] | |
| 352 | ||
| 15402 | 353 | lemma setsum_Un_nat: "finite A ==> finite B ==> | 
| 28853 
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
 nipkow parents: 
28823diff
changeset | 354 | (setsum f (A Un B) :: nat) = setsum f A + setsum f B - setsum f (A Int B)" | 
| 15402 | 355 |   -- {* For the natural numbers, we have subtraction. *}
 | 
| 29667 | 356 | by (subst setsum_Un_Int [symmetric], auto simp add: algebra_simps) | 
| 15402 | 357 | |
| 358 | lemma setsum_Un: "finite A ==> finite B ==> | |
| 28853 
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
 nipkow parents: 
28823diff
changeset | 359 | (setsum f (A Un B) :: 'a :: ab_group_add) = | 
| 
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
 nipkow parents: 
28823diff
changeset | 360 | setsum f A + setsum f B - setsum f (A Int B)" | 
| 29667 | 361 | by (subst setsum_Un_Int [symmetric], auto simp add: algebra_simps) | 
| 15402 | 362 | |
| 35816 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 363 | lemma (in comm_monoid_add) setsum_eq_general_reverses: | 
| 30260 
be39acd3ac85
Added general theorems for fold_image, setsum and set_prod
 chaieb parents: 
29966diff
changeset | 364 | assumes fS: "finite S" and fT: "finite T" | 
| 
be39acd3ac85
Added general theorems for fold_image, setsum and set_prod
 chaieb parents: 
29966diff
changeset | 365 | and kh: "\<And>y. y \<in> T \<Longrightarrow> k y \<in> S \<and> h (k y) = y" | 
| 
be39acd3ac85
Added general theorems for fold_image, setsum and set_prod
 chaieb parents: 
29966diff
changeset | 366 | and hk: "\<And>x. x \<in> S \<Longrightarrow> h x \<in> T \<and> k (h x) = x \<and> g (h x) = f x" | 
| 
be39acd3ac85
Added general theorems for fold_image, setsum and set_prod
 chaieb parents: 
29966diff
changeset | 367 | shows "setsum f S = setsum g T" | 
| 35816 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 368 | proof - | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 369 | interpret comm_monoid_mult "op +" 0 by (fact comm_monoid_mult) | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 370 | show ?thesis | 
| 30260 
be39acd3ac85
Added general theorems for fold_image, setsum and set_prod
 chaieb parents: 
29966diff
changeset | 371 | apply (simp add: setsum_def fS fT) | 
| 35816 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 372 | apply (rule fold_image_eq_general_inverses) | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 373 | apply (rule fS) | 
| 30260 
be39acd3ac85
Added general theorems for fold_image, setsum and set_prod
 chaieb parents: 
29966diff
changeset | 374 | apply (erule kh) | 
| 
be39acd3ac85
Added general theorems for fold_image, setsum and set_prod
 chaieb parents: 
29966diff
changeset | 375 | apply (erule hk) | 
| 
be39acd3ac85
Added general theorems for fold_image, setsum and set_prod
 chaieb parents: 
29966diff
changeset | 376 | done | 
| 35816 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 377 | qed | 
| 30260 
be39acd3ac85
Added general theorems for fold_image, setsum and set_prod
 chaieb parents: 
29966diff
changeset | 378 | |
| 35816 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 379 | lemma (in comm_monoid_add) setsum_Un_zero: | 
| 30260 
be39acd3ac85
Added general theorems for fold_image, setsum and set_prod
 chaieb parents: 
29966diff
changeset | 380 | assumes fS: "finite S" and fT: "finite T" | 
| 
be39acd3ac85
Added general theorems for fold_image, setsum and set_prod
 chaieb parents: 
29966diff
changeset | 381 | and I0: "\<forall>x \<in> S\<inter>T. f x = 0" | 
| 
be39acd3ac85
Added general theorems for fold_image, setsum and set_prod
 chaieb parents: 
29966diff
changeset | 382 | shows "setsum f (S \<union> T) = setsum f S + setsum f T" | 
| 35816 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 383 | proof - | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 384 | interpret comm_monoid_mult "op +" 0 by (fact comm_monoid_mult) | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 385 | show ?thesis | 
| 30260 
be39acd3ac85
Added general theorems for fold_image, setsum and set_prod
 chaieb parents: 
29966diff
changeset | 386 | using fS fT | 
| 
be39acd3ac85
Added general theorems for fold_image, setsum and set_prod
 chaieb parents: 
29966diff
changeset | 387 | apply (simp add: setsum_def) | 
| 35816 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 388 | apply (rule fold_image_Un_one) | 
| 30260 
be39acd3ac85
Added general theorems for fold_image, setsum and set_prod
 chaieb parents: 
29966diff
changeset | 389 | using I0 by auto | 
| 35816 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 390 | qed | 
| 30260 
be39acd3ac85
Added general theorems for fold_image, setsum and set_prod
 chaieb parents: 
29966diff
changeset | 391 | |
| 
be39acd3ac85
Added general theorems for fold_image, setsum and set_prod
 chaieb parents: 
29966diff
changeset | 392 | lemma setsum_UNION_zero: | 
| 
be39acd3ac85
Added general theorems for fold_image, setsum and set_prod
 chaieb parents: 
29966diff
changeset | 393 | assumes fS: "finite S" and fSS: "\<forall>T \<in> S. finite T" | 
| 
be39acd3ac85
Added general theorems for fold_image, setsum and set_prod
 chaieb parents: 
29966diff
changeset | 394 | and f0: "\<And>T1 T2 x. T1\<in>S \<Longrightarrow> T2\<in>S \<Longrightarrow> T1 \<noteq> T2 \<Longrightarrow> x \<in> T1 \<Longrightarrow> x \<in> T2 \<Longrightarrow> f x = 0" | 
| 
be39acd3ac85
Added general theorems for fold_image, setsum and set_prod
 chaieb parents: 
29966diff
changeset | 395 | shows "setsum f (\<Union>S) = setsum (\<lambda>T. setsum f T) S" | 
| 
be39acd3ac85
Added general theorems for fold_image, setsum and set_prod
 chaieb parents: 
29966diff
changeset | 396 | using fSS f0 | 
| 
be39acd3ac85
Added general theorems for fold_image, setsum and set_prod
 chaieb parents: 
29966diff
changeset | 397 | proof(induct rule: finite_induct[OF fS]) | 
| 
be39acd3ac85
Added general theorems for fold_image, setsum and set_prod
 chaieb parents: 
29966diff
changeset | 398 | case 1 thus ?case by simp | 
| 
be39acd3ac85
Added general theorems for fold_image, setsum and set_prod
 chaieb parents: 
29966diff
changeset | 399 | next | 
| 
be39acd3ac85
Added general theorems for fold_image, setsum and set_prod
 chaieb parents: 
29966diff
changeset | 400 | case (2 T F) | 
| 
be39acd3ac85
Added general theorems for fold_image, setsum and set_prod
 chaieb parents: 
29966diff
changeset | 401 | then have fTF: "finite T" "\<forall>T\<in>F. finite T" "finite F" and TF: "T \<notin> F" | 
| 35216 | 402 | and H: "setsum f (\<Union> F) = setsum (setsum f) F" by auto | 
| 403 | from fTF have fUF: "finite (\<Union>F)" by auto | |
| 30260 
be39acd3ac85
Added general theorems for fold_image, setsum and set_prod
 chaieb parents: 
29966diff
changeset | 404 | from "2.prems" TF fTF | 
| 
be39acd3ac85
Added general theorems for fold_image, setsum and set_prod
 chaieb parents: 
29966diff
changeset | 405 | show ?case | 
| 
be39acd3ac85
Added general theorems for fold_image, setsum and set_prod
 chaieb parents: 
29966diff
changeset | 406 | by (auto simp add: H[symmetric] intro: setsum_Un_zero[OF fTF(1) fUF, of f]) | 
| 
be39acd3ac85
Added general theorems for fold_image, setsum and set_prod
 chaieb parents: 
29966diff
changeset | 407 | qed | 
| 
be39acd3ac85
Added general theorems for fold_image, setsum and set_prod
 chaieb parents: 
29966diff
changeset | 408 | |
| 15402 | 409 | lemma setsum_diff1_nat: "(setsum f (A - {a}) :: nat) =
 | 
| 28853 
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
 nipkow parents: 
28823diff
changeset | 410 | (if a:A then setsum f A - f a else setsum f A)" | 
| 
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
 nipkow parents: 
28823diff
changeset | 411 | apply (case_tac "finite A") | 
| 
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
 nipkow parents: 
28823diff
changeset | 412 | prefer 2 apply (simp add: setsum_def) | 
| 
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
 nipkow parents: 
28823diff
changeset | 413 | apply (erule finite_induct) | 
| 
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
 nipkow parents: 
28823diff
changeset | 414 | apply (auto simp add: insert_Diff_if) | 
| 
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
 nipkow parents: 
28823diff
changeset | 415 | apply (drule_tac a = a in mk_disjoint_insert, auto) | 
| 
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
 nipkow parents: 
28823diff
changeset | 416 | done | 
| 15402 | 417 | |
| 418 | lemma setsum_diff1: "finite A \<Longrightarrow> | |
| 419 |   (setsum f (A - {a}) :: ('a::ab_group_add)) =
 | |
| 420 | (if a:A then setsum f A - f a else setsum f A)" | |
| 28853 
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
 nipkow parents: 
28823diff
changeset | 421 | by (erule finite_induct) (auto simp add: insert_Diff_if) | 
| 
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
 nipkow parents: 
28823diff
changeset | 422 | |
| 
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
 nipkow parents: 
28823diff
changeset | 423 | lemma setsum_diff1'[rule_format]: | 
| 
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
 nipkow parents: 
28823diff
changeset | 424 |   "finite A \<Longrightarrow> a \<in> A \<longrightarrow> (\<Sum> x \<in> A. f x) = f a + (\<Sum> x \<in> (A - {a}). f x)"
 | 
| 
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
 nipkow parents: 
28823diff
changeset | 425 | apply (erule finite_induct[where F=A and P="% A. (a \<in> A \<longrightarrow> (\<Sum> x \<in> A. f x) = f a + (\<Sum> x \<in> (A - {a}). f x))"])
 | 
| 
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
 nipkow parents: 
28823diff
changeset | 426 | apply (auto simp add: insert_Diff_if add_ac) | 
| 
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
 nipkow parents: 
28823diff
changeset | 427 | done | 
| 15552 
8ab8e425410b
added setsum_diff1' which holds in more general cases than setsum_diff1
 obua parents: 
15543diff
changeset | 428 | |
| 31438 | 429 | lemma setsum_diff1_ring: assumes "finite A" "a \<in> A" | 
| 430 |   shows "setsum f (A - {a}) = setsum f A - (f a::'a::ring)"
 | |
| 431 | unfolding setsum_diff1'[OF assms] by auto | |
| 432 | ||
| 15402 | 433 | (* By Jeremy Siek: *) | 
| 434 | ||
| 435 | lemma setsum_diff_nat: | |
| 28853 
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
 nipkow parents: 
28823diff
changeset | 436 | assumes "finite B" and "B \<subseteq> A" | 
| 
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
 nipkow parents: 
28823diff
changeset | 437 | shows "(setsum f (A - B) :: nat) = (setsum f A) - (setsum f B)" | 
| 
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
 nipkow parents: 
28823diff
changeset | 438 | using assms | 
| 19535 | 439 | proof induct | 
| 15402 | 440 |   show "setsum f (A - {}) = (setsum f A) - (setsum f {})" by simp
 | 
| 441 | next | |
| 442 | fix F x assume finF: "finite F" and xnotinF: "x \<notin> F" | |
| 443 | and xFinA: "insert x F \<subseteq> A" | |
| 444 | and IH: "F \<subseteq> A \<Longrightarrow> setsum f (A - F) = setsum f A - setsum f F" | |
| 445 | from xnotinF xFinA have xinAF: "x \<in> (A - F)" by simp | |
| 446 |   from xinAF have A: "setsum f ((A - F) - {x}) = setsum f (A - F) - f x"
 | |
| 447 | by (simp add: setsum_diff1_nat) | |
| 448 | from xFinA have "F \<subseteq> A" by simp | |
| 449 | with IH have "setsum f (A - F) = setsum f A - setsum f F" by simp | |
| 450 |   with A have B: "setsum f ((A - F) - {x}) = setsum f A - setsum f F - f x"
 | |
| 451 | by simp | |
| 452 |   from xnotinF have "A - insert x F = (A - F) - {x}" by auto
 | |
| 453 | with B have C: "setsum f (A - insert x F) = setsum f A - setsum f F - f x" | |
| 454 | by simp | |
| 455 | from finF xnotinF have "setsum f (insert x F) = setsum f F + f x" by simp | |
| 456 | with C have "setsum f (A - insert x F) = setsum f A - setsum f (insert x F)" | |
| 457 | by simp | |
| 458 | thus "setsum f (A - insert x F) = setsum f A - setsum f (insert x F)" by simp | |
| 459 | qed | |
| 460 | ||
| 461 | lemma setsum_diff: | |
| 462 | assumes le: "finite A" "B \<subseteq> A" | |
| 463 |   shows "setsum f (A - B) = setsum f A - ((setsum f B)::('a::ab_group_add))"
 | |
| 464 | proof - | |
| 465 | from le have finiteB: "finite B" using finite_subset by auto | |
| 466 | show ?thesis using finiteB le | |
| 21575 | 467 | proof induct | 
| 19535 | 468 | case empty | 
| 469 | thus ?case by auto | |
| 470 | next | |
| 471 | case (insert x F) | |
| 472 | thus ?case using le finiteB | |
| 473 | by (simp add: Diff_insert[where a=x and B=F] setsum_diff1 insert_absorb) | |
| 15402 | 474 | qed | 
| 19535 | 475 | qed | 
| 15402 | 476 | |
| 477 | lemma setsum_mono: | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34223diff
changeset | 478 |   assumes le: "\<And>i. i\<in>K \<Longrightarrow> f (i::'a) \<le> ((g i)::('b::{comm_monoid_add, ordered_ab_semigroup_add}))"
 | 
| 15402 | 479 | shows "(\<Sum>i\<in>K. f i) \<le> (\<Sum>i\<in>K. g i)" | 
| 480 | proof (cases "finite K") | |
| 481 | case True | |
| 482 | thus ?thesis using le | |
| 19535 | 483 | proof induct | 
| 15402 | 484 | case empty | 
| 485 | thus ?case by simp | |
| 486 | next | |
| 487 | case insert | |
| 19535 | 488 | thus ?case using add_mono by fastsimp | 
| 15402 | 489 | qed | 
| 490 | next | |
| 491 | case False | |
| 492 | thus ?thesis | |
| 493 | by (simp add: setsum_def) | |
| 494 | qed | |
| 495 | ||
| 15554 | 496 | lemma setsum_strict_mono: | 
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34223diff
changeset | 497 |   fixes f :: "'a \<Rightarrow> 'b::{ordered_cancel_ab_semigroup_add,comm_monoid_add}"
 | 
| 19535 | 498 |   assumes "finite A"  "A \<noteq> {}"
 | 
| 499 | and "!!x. x:A \<Longrightarrow> f x < g x" | |
| 500 | shows "setsum f A < setsum g A" | |
| 501 | using prems | |
| 15554 | 502 | proof (induct rule: finite_ne_induct) | 
| 503 | case singleton thus ?case by simp | |
| 504 | next | |
| 505 | case insert thus ?case by (auto simp: add_strict_mono) | |
| 506 | qed | |
| 507 | ||
| 15535 | 508 | lemma setsum_negf: | 
| 19535 | 509 | "setsum (%x. - (f x)::'a::ab_group_add) A = - setsum f A" | 
| 15535 | 510 | proof (cases "finite A") | 
| 22262 | 511 | case True thus ?thesis by (induct set: finite) auto | 
| 15535 | 512 | next | 
| 513 | case False thus ?thesis by (simp add: setsum_def) | |
| 514 | qed | |
| 15402 | 515 | |
| 15535 | 516 | lemma setsum_subtractf: | 
| 19535 | 517 | "setsum (%x. ((f x)::'a::ab_group_add) - g x) A = | 
| 518 | setsum f A - setsum g A" | |
| 15535 | 519 | proof (cases "finite A") | 
| 520 | case True thus ?thesis by (simp add: diff_minus setsum_addf setsum_negf) | |
| 521 | next | |
| 522 | case False thus ?thesis by (simp add: setsum_def) | |
| 523 | qed | |
| 15402 | 524 | |
| 15535 | 525 | lemma setsum_nonneg: | 
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34223diff
changeset | 526 |   assumes nn: "\<forall>x\<in>A. (0::'a::{ordered_ab_semigroup_add,comm_monoid_add}) \<le> f x"
 | 
| 19535 | 527 | shows "0 \<le> setsum f A" | 
| 15535 | 528 | proof (cases "finite A") | 
| 529 | case True thus ?thesis using nn | |
| 21575 | 530 | proof induct | 
| 19535 | 531 | case empty then show ?case by simp | 
| 532 | next | |
| 533 | case (insert x F) | |
| 534 | then have "0 + 0 \<le> f x + setsum f F" by (blast intro: add_mono) | |
| 535 | with insert show ?case by simp | |
| 536 | qed | |
| 15535 | 537 | next | 
| 538 | case False thus ?thesis by (simp add: setsum_def) | |
| 539 | qed | |
| 15402 | 540 | |
| 15535 | 541 | lemma setsum_nonpos: | 
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34223diff
changeset | 542 |   assumes np: "\<forall>x\<in>A. f x \<le> (0::'a::{ordered_ab_semigroup_add,comm_monoid_add})"
 | 
| 19535 | 543 | shows "setsum f A \<le> 0" | 
| 15535 | 544 | proof (cases "finite A") | 
| 545 | case True thus ?thesis using np | |
| 21575 | 546 | proof induct | 
| 19535 | 547 | case empty then show ?case by simp | 
| 548 | next | |
| 549 | case (insert x F) | |
| 550 | then have "f x + setsum f F \<le> 0 + 0" by (blast intro: add_mono) | |
| 551 | with insert show ?case by simp | |
| 552 | qed | |
| 15535 | 553 | next | 
| 554 | case False thus ?thesis by (simp add: setsum_def) | |
| 555 | qed | |
| 15402 | 556 | |
| 15539 | 557 | lemma setsum_mono2: | 
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34223diff
changeset | 558 | fixes f :: "'a \<Rightarrow> 'b :: {ordered_ab_semigroup_add_imp_le,comm_monoid_add}"
 | 
| 15539 | 559 | assumes fin: "finite B" and sub: "A \<subseteq> B" and nn: "\<And>b. b \<in> B-A \<Longrightarrow> 0 \<le> f b" | 
| 560 | shows "setsum f A \<le> setsum f B" | |
| 561 | proof - | |
| 562 | have "setsum f A \<le> setsum f A + setsum f (B-A)" | |
| 563 | by(simp add: add_increasing2[OF setsum_nonneg] nn Ball_def) | |
| 564 | also have "\<dots> = setsum f (A \<union> (B-A))" using fin finite_subset[OF sub fin] | |
| 565 | by (simp add:setsum_Un_disjoint del:Un_Diff_cancel) | |
| 566 | also have "A \<union> (B-A) = B" using sub by blast | |
| 567 | finally show ?thesis . | |
| 568 | qed | |
| 15542 | 569 | |
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16760diff
changeset | 570 | lemma setsum_mono3: "finite B ==> A <= B ==> | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16760diff
changeset | 571 | ALL x: B - A. | 
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34223diff
changeset | 572 |       0 <= ((f x)::'a::{comm_monoid_add,ordered_ab_semigroup_add}) ==>
 | 
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16760diff
changeset | 573 | setsum f A <= setsum f B" | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16760diff
changeset | 574 | apply (subgoal_tac "setsum f B = setsum f A + setsum f (B - A)") | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16760diff
changeset | 575 | apply (erule ssubst) | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16760diff
changeset | 576 | apply (subgoal_tac "setsum f A + 0 <= setsum f A + setsum f (B - A)") | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16760diff
changeset | 577 | apply simp | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16760diff
changeset | 578 | apply (rule add_left_mono) | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16760diff
changeset | 579 | apply (erule setsum_nonneg) | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16760diff
changeset | 580 | apply (subst setsum_Un_disjoint [THEN sym]) | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16760diff
changeset | 581 | apply (erule finite_subset, assumption) | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16760diff
changeset | 582 | apply (rule finite_subset) | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16760diff
changeset | 583 | prefer 2 | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16760diff
changeset | 584 | apply assumption | 
| 32698 
be4b248616c0
inf/sup_absorb are no default simp rules any longer
 haftmann parents: 
32697diff
changeset | 585 | apply (auto simp add: sup_absorb2) | 
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16760diff
changeset | 586 | done | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16760diff
changeset | 587 | |
| 19279 | 588 | lemma setsum_right_distrib: | 
| 22934 
64ecb3d6790a
generalize setsum lemmas from semiring_0_cancel to semiring_0
 huffman parents: 
22917diff
changeset | 589 |   fixes f :: "'a => ('b::semiring_0)"
 | 
| 15402 | 590 | shows "r * setsum f A = setsum (%n. r * f n) A" | 
| 591 | proof (cases "finite A") | |
| 592 | case True | |
| 593 | thus ?thesis | |
| 21575 | 594 | proof induct | 
| 15402 | 595 | case empty thus ?case by simp | 
| 596 | next | |
| 597 | case (insert x A) thus ?case by (simp add: right_distrib) | |
| 598 | qed | |
| 599 | next | |
| 600 | case False thus ?thesis by (simp add: setsum_def) | |
| 601 | qed | |
| 602 | ||
| 17149 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 603 | lemma setsum_left_distrib: | 
| 22934 
64ecb3d6790a
generalize setsum lemmas from semiring_0_cancel to semiring_0
 huffman parents: 
22917diff
changeset | 604 | "setsum f A * (r::'a::semiring_0) = (\<Sum>n\<in>A. f n * r)" | 
| 17149 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 605 | proof (cases "finite A") | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 606 | case True | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 607 | then show ?thesis | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 608 | proof induct | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 609 | case empty thus ?case by simp | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 610 | next | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 611 | case (insert x A) thus ?case by (simp add: left_distrib) | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 612 | qed | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 613 | next | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 614 | case False thus ?thesis by (simp add: setsum_def) | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 615 | qed | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 616 | |
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 617 | lemma setsum_divide_distrib: | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 618 | "setsum f A / (r::'a::field) = (\<Sum>n\<in>A. f n / r)" | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 619 | proof (cases "finite A") | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 620 | case True | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 621 | then show ?thesis | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 622 | proof induct | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 623 | case empty thus ?case by simp | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 624 | next | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 625 | case (insert x A) thus ?case by (simp add: add_divide_distrib) | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 626 | qed | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 627 | next | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 628 | case False thus ?thesis by (simp add: setsum_def) | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 629 | qed | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 630 | |
| 15535 | 631 | lemma setsum_abs[iff]: | 
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34223diff
changeset | 632 |   fixes f :: "'a => ('b::ordered_ab_group_add_abs)"
 | 
| 15402 | 633 | shows "abs (setsum f A) \<le> setsum (%i. abs(f i)) A" | 
| 15535 | 634 | proof (cases "finite A") | 
| 635 | case True | |
| 636 | thus ?thesis | |
| 21575 | 637 | proof induct | 
| 15535 | 638 | case empty thus ?case by simp | 
| 639 | next | |
| 640 | case (insert x A) | |
| 641 | thus ?case by (auto intro: abs_triangle_ineq order_trans) | |
| 642 | qed | |
| 15402 | 643 | next | 
| 15535 | 644 | case False thus ?thesis by (simp add: setsum_def) | 
| 15402 | 645 | qed | 
| 646 | ||
| 15535 | 647 | lemma setsum_abs_ge_zero[iff]: | 
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34223diff
changeset | 648 |   fixes f :: "'a => ('b::ordered_ab_group_add_abs)"
 | 
| 15402 | 649 | shows "0 \<le> setsum (%i. abs(f i)) A" | 
| 15535 | 650 | proof (cases "finite A") | 
| 651 | case True | |
| 652 | thus ?thesis | |
| 21575 | 653 | proof induct | 
| 15535 | 654 | case empty thus ?case by simp | 
| 655 | next | |
| 21733 | 656 | case (insert x A) thus ?case by (auto simp: add_nonneg_nonneg) | 
| 15535 | 657 | qed | 
| 15402 | 658 | next | 
| 15535 | 659 | case False thus ?thesis by (simp add: setsum_def) | 
| 15402 | 660 | qed | 
| 661 | ||
| 15539 | 662 | lemma abs_setsum_abs[simp]: | 
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34223diff
changeset | 663 |   fixes f :: "'a => ('b::ordered_ab_group_add_abs)"
 | 
| 15539 | 664 | shows "abs (\<Sum>a\<in>A. abs(f a)) = (\<Sum>a\<in>A. abs(f a))" | 
| 665 | proof (cases "finite A") | |
| 666 | case True | |
| 667 | thus ?thesis | |
| 21575 | 668 | proof induct | 
| 15539 | 669 | case empty thus ?case by simp | 
| 670 | next | |
| 671 | case (insert a A) | |
| 672 | hence "\<bar>\<Sum>a\<in>insert a A. \<bar>f a\<bar>\<bar> = \<bar>\<bar>f a\<bar> + (\<Sum>a\<in>A. \<bar>f a\<bar>)\<bar>" by simp | |
| 673 | also have "\<dots> = \<bar>\<bar>f a\<bar> + \<bar>\<Sum>a\<in>A. \<bar>f a\<bar>\<bar>\<bar>" using insert by simp | |
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16760diff
changeset | 674 | also have "\<dots> = \<bar>f a\<bar> + \<bar>\<Sum>a\<in>A. \<bar>f a\<bar>\<bar>" | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16760diff
changeset | 675 | by (simp del: abs_of_nonneg) | 
| 15539 | 676 | also have "\<dots> = (\<Sum>a\<in>insert a A. \<bar>f a\<bar>)" using insert by simp | 
| 677 | finally show ?case . | |
| 678 | qed | |
| 679 | next | |
| 680 | case False thus ?thesis by (simp add: setsum_def) | |
| 681 | qed | |
| 682 | ||
| 31080 | 683 | lemma setsum_Plus: | 
| 684 | fixes A :: "'a set" and B :: "'b set" | |
| 685 | assumes fin: "finite A" "finite B" | |
| 686 | shows "setsum f (A <+> B) = setsum (f \<circ> Inl) A + setsum (f \<circ> Inr) B" | |
| 687 | proof - | |
| 688 | have "A <+> B = Inl ` A \<union> Inr ` B" by auto | |
| 689 |   moreover from fin have "finite (Inl ` A :: ('a + 'b) set)" "finite (Inr ` B :: ('a + 'b) set)"
 | |
| 690 | by(auto intro: finite_imageI) | |
| 691 |   moreover have "Inl ` A \<inter> Inr ` B = ({} :: ('a + 'b) set)" by auto
 | |
| 692 | moreover have "inj_on (Inl :: 'a \<Rightarrow> 'a + 'b) A" "inj_on (Inr :: 'b \<Rightarrow> 'a + 'b) B" by(auto intro: inj_onI) | |
| 693 | ultimately show ?thesis using fin by(simp add: setsum_Un_disjoint setsum_reindex) | |
| 694 | qed | |
| 695 | ||
| 696 | ||
| 17149 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 697 | text {* Commuting outer and inner summation *}
 | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 698 | |
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 699 | lemma setsum_commute: | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 700 | "(\<Sum>i\<in>A. \<Sum>j\<in>B. f i j) = (\<Sum>j\<in>B. \<Sum>i\<in>A. f i j)" | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 701 | proof (simp add: setsum_cartesian_product) | 
| 17189 | 702 | have "(\<Sum>(x,y) \<in> A <*> B. f x y) = | 
| 703 | (\<Sum>(y,x) \<in> (%(i, j). (j, i)) ` (A \<times> B). f x y)" | |
| 17149 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 704 | (is "?s = _") | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 705 | apply (simp add: setsum_reindex [where f = "%(i, j). (j, i)"] swap_inj_on) | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 706 | apply (simp add: split_def) | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 707 | done | 
| 17189 | 708 | also have "... = (\<Sum>(y,x)\<in>B \<times> A. f x y)" | 
| 17149 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 709 | (is "_ = ?t") | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 710 | apply (simp add: swap_product) | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 711 | done | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 712 | finally show "?s = ?t" . | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 713 | qed | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 714 | |
| 19279 | 715 | lemma setsum_product: | 
| 22934 
64ecb3d6790a
generalize setsum lemmas from semiring_0_cancel to semiring_0
 huffman parents: 
22917diff
changeset | 716 |   fixes f :: "'a => ('b::semiring_0)"
 | 
| 19279 | 717 | shows "setsum f A * setsum g B = (\<Sum>i\<in>A. \<Sum>j\<in>B. f i * g j)" | 
| 718 | by (simp add: setsum_right_distrib setsum_left_distrib) (rule setsum_commute) | |
| 719 | ||
| 34223 | 720 | lemma setsum_mult_setsum_if_inj: | 
| 721 | fixes f :: "'a => ('b::semiring_0)"
 | |
| 722 | shows "inj_on (%(a,b). f a * g b) (A \<times> B) ==> | |
| 723 |   setsum f A * setsum g B = setsum id {f a * g b|a b. a:A & b:B}"
 | |
| 724 | by(auto simp: setsum_product setsum_cartesian_product | |
| 725 | intro!: setsum_reindex_cong[symmetric]) | |
| 726 | ||
| 35722 
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
 haftmann parents: 
35719diff
changeset | 727 | lemma setsum_constant [simp]: "(\<Sum>x \<in> A. y) = of_nat(card A) * y" | 
| 
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
 haftmann parents: 
35719diff
changeset | 728 | apply (cases "finite A") | 
| 
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
 haftmann parents: 
35719diff
changeset | 729 | apply (erule finite_induct) | 
| 
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
 haftmann parents: 
35719diff
changeset | 730 | apply (auto simp add: algebra_simps) | 
| 
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
 haftmann parents: 
35719diff
changeset | 731 | done | 
| 
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
 haftmann parents: 
35719diff
changeset | 732 | |
| 
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
 haftmann parents: 
35719diff
changeset | 733 | lemma setsum_bounded: | 
| 
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
 haftmann parents: 
35719diff
changeset | 734 |   assumes le: "\<And>i. i\<in>A \<Longrightarrow> f i \<le> (K::'a::{semiring_1, ordered_ab_semigroup_add})"
 | 
| 
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
 haftmann parents: 
35719diff
changeset | 735 | shows "setsum f A \<le> of_nat(card A) * K" | 
| 
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
 haftmann parents: 
35719diff
changeset | 736 | proof (cases "finite A") | 
| 
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
 haftmann parents: 
35719diff
changeset | 737 | case True | 
| 
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
 haftmann parents: 
35719diff
changeset | 738 | thus ?thesis using le setsum_mono[where K=A and g = "%x. K"] by simp | 
| 
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
 haftmann parents: 
35719diff
changeset | 739 | next | 
| 
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
 haftmann parents: 
35719diff
changeset | 740 | case False thus ?thesis by (simp add: setsum_def) | 
| 
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
 haftmann parents: 
35719diff
changeset | 741 | qed | 
| 
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
 haftmann parents: 
35719diff
changeset | 742 | |
| 
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
 haftmann parents: 
35719diff
changeset | 743 | |
| 
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
 haftmann parents: 
35719diff
changeset | 744 | subsubsection {* Cardinality as special case of @{const setsum} *}
 | 
| 
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
 haftmann parents: 
35719diff
changeset | 745 | |
| 
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
 haftmann parents: 
35719diff
changeset | 746 | lemma card_eq_setsum: | 
| 
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
 haftmann parents: 
35719diff
changeset | 747 | "card A = setsum (\<lambda>x. 1) A" | 
| 
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
 haftmann parents: 
35719diff
changeset | 748 | by (simp only: card_def setsum_def) | 
| 
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
 haftmann parents: 
35719diff
changeset | 749 | |
| 
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
 haftmann parents: 
35719diff
changeset | 750 | lemma card_UN_disjoint: | 
| 
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
 haftmann parents: 
35719diff
changeset | 751 | "finite I ==> (ALL i:I. finite (A i)) ==> | 
| 
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
 haftmann parents: 
35719diff
changeset | 752 |    (ALL i:I. ALL j:I. i \<noteq> j --> A i Int A j = {})
 | 
| 
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
 haftmann parents: 
35719diff
changeset | 753 | ==> card (UNION I A) = (\<Sum>i\<in>I. card(A i))" | 
| 
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
 haftmann parents: 
35719diff
changeset | 754 | apply (simp add: card_eq_setsum del: setsum_constant) | 
| 
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
 haftmann parents: 
35719diff
changeset | 755 | apply (subgoal_tac | 
| 
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
 haftmann parents: 
35719diff
changeset | 756 | "setsum (%i. card (A i)) I = setsum (%i. (setsum (%x. 1) (A i))) I") | 
| 
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
 haftmann parents: 
35719diff
changeset | 757 | apply (simp add: setsum_UN_disjoint del: setsum_constant) | 
| 
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
 haftmann parents: 
35719diff
changeset | 758 | apply (simp cong: setsum_cong) | 
| 
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
 haftmann parents: 
35719diff
changeset | 759 | done | 
| 
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
 haftmann parents: 
35719diff
changeset | 760 | |
| 
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
 haftmann parents: 
35719diff
changeset | 761 | lemma card_Union_disjoint: | 
| 
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
 haftmann parents: 
35719diff
changeset | 762 | "finite C ==> (ALL A:C. finite A) ==> | 
| 
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
 haftmann parents: 
35719diff
changeset | 763 |    (ALL A:C. ALL B:C. A \<noteq> B --> A Int B = {})
 | 
| 
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
 haftmann parents: 
35719diff
changeset | 764 | ==> card (Union C) = setsum card C" | 
| 
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
 haftmann parents: 
35719diff
changeset | 765 | apply (frule card_UN_disjoint [of C id]) | 
| 
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
 haftmann parents: 
35719diff
changeset | 766 | apply (unfold Union_def id_def, assumption+) | 
| 
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
 haftmann parents: 
35719diff
changeset | 767 | done | 
| 
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
 haftmann parents: 
35719diff
changeset | 768 | |
| 
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
 haftmann parents: 
35719diff
changeset | 769 | text{*The image of a finite set can be expressed using @{term fold_image}.*}
 | 
| 
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
 haftmann parents: 
35719diff
changeset | 770 | lemma image_eq_fold_image: | 
| 
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
 haftmann parents: 
35719diff
changeset | 771 |   "finite A ==> f ` A = fold_image (op Un) (%x. {f x}) {} A"
 | 
| 
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
 haftmann parents: 
35719diff
changeset | 772 | proof (induct rule: finite_induct) | 
| 
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
 haftmann parents: 
35719diff
changeset | 773 | case empty then show ?case by simp | 
| 
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
 haftmann parents: 
35719diff
changeset | 774 | next | 
| 
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
 haftmann parents: 
35719diff
changeset | 775 | interpret ab_semigroup_mult "op Un" | 
| 
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
 haftmann parents: 
35719diff
changeset | 776 | proof qed auto | 
| 
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
 haftmann parents: 
35719diff
changeset | 777 | case insert | 
| 
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
 haftmann parents: 
35719diff
changeset | 778 | then show ?case by simp | 
| 
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
 haftmann parents: 
35719diff
changeset | 779 | qed | 
| 
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
 haftmann parents: 
35719diff
changeset | 780 | |
| 
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
 haftmann parents: 
35719diff
changeset | 781 | subsubsection {* Cardinality of products *}
 | 
| 
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
 haftmann parents: 
35719diff
changeset | 782 | |
| 
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
 haftmann parents: 
35719diff
changeset | 783 | lemma card_SigmaI [simp]: | 
| 
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
 haftmann parents: 
35719diff
changeset | 784 | "\<lbrakk> finite A; ALL a:A. finite (B a) \<rbrakk> | 
| 
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
 haftmann parents: 
35719diff
changeset | 785 | \<Longrightarrow> card (SIGMA x: A. B x) = (\<Sum>a\<in>A. card (B a))" | 
| 
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
 haftmann parents: 
35719diff
changeset | 786 | by(simp add: card_eq_setsum setsum_Sigma del:setsum_constant) | 
| 
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
 haftmann parents: 
35719diff
changeset | 787 | |
| 
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
 haftmann parents: 
35719diff
changeset | 788 | (* | 
| 
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
 haftmann parents: 
35719diff
changeset | 789 | lemma SigmaI_insert: "y \<notin> A ==> | 
| 
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
 haftmann parents: 
35719diff
changeset | 790 |   (SIGMA x:(insert y A). B x) = (({y} <*> (B y)) \<union> (SIGMA x: A. B x))"
 | 
| 
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
 haftmann parents: 
35719diff
changeset | 791 | by auto | 
| 
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
 haftmann parents: 
35719diff
changeset | 792 | *) | 
| 
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
 haftmann parents: 
35719diff
changeset | 793 | |
| 
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
 haftmann parents: 
35719diff
changeset | 794 | lemma card_cartesian_product: "card (A <*> B) = card(A) * card(B)" | 
| 
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
 haftmann parents: 
35719diff
changeset | 795 | by (cases "finite A \<and> finite B") | 
| 
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
 haftmann parents: 
35719diff
changeset | 796 | (auto simp add: card_eq_0_iff dest: finite_cartesian_productD1 finite_cartesian_productD2) | 
| 
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
 haftmann parents: 
35719diff
changeset | 797 | |
| 
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
 haftmann parents: 
35719diff
changeset | 798 | lemma card_cartesian_product_singleton:  "card({x} <*> A) = card(A)"
 | 
| 
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
 haftmann parents: 
35719diff
changeset | 799 | by (simp add: card_cartesian_product) | 
| 
69419a09a7ff
moved cardinality to Finite_Set as far as appropriate; added locales for fold_image
 haftmann parents: 
35719diff
changeset | 800 | |
| 17149 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 801 | |
| 15402 | 802 | subsection {* Generalized product over a set *}
 | 
| 803 | ||
| 35816 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 804 | definition (in comm_monoid_mult) setprod :: "('b \<Rightarrow> 'a) => 'b set => 'a" where
 | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 805 | "setprod f A = (if finite A then fold_image (op *) f 1 A else 1)" | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 806 | |
| 35938 
93faaa15c3d5
sublocale comm_monoid_add < setprod --> sublocale comm_monoid_mult < setprod
 huffman parents: 
35831diff
changeset | 807 | sublocale comm_monoid_mult < setprod!: comm_monoid_big "op *" 1 setprod proof | 
| 35816 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 808 | qed (fact setprod_def) | 
| 15402 | 809 | |
| 19535 | 810 | abbreviation | 
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21249diff
changeset | 811 |   Setprod  ("\<Prod>_" [1000] 999) where
 | 
| 19535 | 812 | "\<Prod>A == setprod (%x. x) A" | 
| 813 | ||
| 15402 | 814 | syntax | 
| 17189 | 815 |   "_setprod" :: "pttrn => 'a set => 'b => 'b::comm_monoid_mult"  ("(3PROD _:_. _)" [0, 51, 10] 10)
 | 
| 15402 | 816 | syntax (xsymbols) | 
| 17189 | 817 |   "_setprod" :: "pttrn => 'a set => 'b => 'b::comm_monoid_mult"  ("(3\<Prod>_\<in>_. _)" [0, 51, 10] 10)
 | 
| 15402 | 818 | syntax (HTML output) | 
| 17189 | 819 |   "_setprod" :: "pttrn => 'a set => 'b => 'b::comm_monoid_mult"  ("(3\<Prod>_\<in>_. _)" [0, 51, 10] 10)
 | 
| 16550 | 820 | |
| 821 | translations -- {* Beware of argument permutation! *}
 | |
| 28853 
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
 nipkow parents: 
28823diff
changeset | 822 | "PROD i:A. b" == "CONST setprod (%i. b) A" | 
| 
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
 nipkow parents: 
28823diff
changeset | 823 | "\<Prod>i\<in>A. b" == "CONST setprod (%i. b) A" | 
| 16550 | 824 | |
| 825 | text{* Instead of @{term"\<Prod>x\<in>{x. P}. e"} we introduce the shorter
 | |
| 826 |  @{text"\<Prod>x|P. e"}. *}
 | |
| 827 | ||
| 828 | syntax | |
| 17189 | 829 |   "_qsetprod" :: "pttrn \<Rightarrow> bool \<Rightarrow> 'a \<Rightarrow> 'a" ("(3PROD _ |/ _./ _)" [0,0,10] 10)
 | 
| 16550 | 830 | syntax (xsymbols) | 
| 17189 | 831 |   "_qsetprod" :: "pttrn \<Rightarrow> bool \<Rightarrow> 'a \<Rightarrow> 'a" ("(3\<Prod>_ | (_)./ _)" [0,0,10] 10)
 | 
| 16550 | 832 | syntax (HTML output) | 
| 17189 | 833 |   "_qsetprod" :: "pttrn \<Rightarrow> bool \<Rightarrow> 'a \<Rightarrow> 'a" ("(3\<Prod>_ | (_)./ _)" [0,0,10] 10)
 | 
| 16550 | 834 | |
| 15402 | 835 | translations | 
| 28853 
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
 nipkow parents: 
28823diff
changeset | 836 |   "PROD x|P. t" => "CONST setprod (%x. t) {x. P}"
 | 
| 
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
 nipkow parents: 
28823diff
changeset | 837 |   "\<Prod>x|P. t" => "CONST setprod (%x. t) {x. P}"
 | 
| 16550 | 838 | |
| 35816 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 839 | lemma setprod_empty: "setprod f {} = 1"
 | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 840 | by (fact setprod.empty) | 
| 15402 | 841 | |
| 35816 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 842 | lemma setprod_insert: "[| finite A; a \<notin> A |] ==> | 
| 15402 | 843 | setprod f (insert a A) = f a * setprod f A" | 
| 35816 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 844 | by (fact setprod.insert) | 
| 15402 | 845 | |
| 35816 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 846 | lemma setprod_infinite: "~ finite A ==> setprod f A = 1" | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 847 | by (fact setprod.infinite) | 
| 15409 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 848 | |
| 15402 | 849 | lemma setprod_reindex: | 
| 28853 
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
 nipkow parents: 
28823diff
changeset | 850 | "inj_on f B ==> setprod h (f ` B) = setprod (h \<circ> f) B" | 
| 
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
 nipkow parents: 
28823diff
changeset | 851 | by(auto simp: setprod_def fold_image_reindex dest!:finite_imageD) | 
| 15402 | 852 | |
| 853 | lemma setprod_reindex_id: "inj_on f B ==> setprod f B = setprod id (f ` B)" | |
| 854 | by (auto simp add: setprod_reindex) | |
| 855 | ||
| 856 | lemma setprod_cong: | |
| 857 | "A = B ==> (!!x. x:B ==> f x = g x) ==> setprod f A = setprod g B" | |
| 28853 
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
 nipkow parents: 
28823diff
changeset | 858 | by(fastsimp simp: setprod_def intro: fold_image_cong) | 
| 15402 | 859 | |
| 30837 
3d4832d9f7e4
added strong_setprod_cong[cong] (in analogy with setsum)
 nipkow parents: 
30729diff
changeset | 860 | lemma strong_setprod_cong[cong]: | 
| 16632 
ad2895beef79
Added strong_setsum_cong and strong_setprod_cong.
 berghofe parents: 
16550diff
changeset | 861 | "A = B ==> (!!x. x:B =simp=> f x = g x) ==> setprod f A = setprod g B" | 
| 28853 
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
 nipkow parents: 
28823diff
changeset | 862 | by(fastsimp simp: simp_implies_def setprod_def intro: fold_image_cong) | 
| 16632 
ad2895beef79
Added strong_setsum_cong and strong_setprod_cong.
 berghofe parents: 
16550diff
changeset | 863 | |
| 15402 | 864 | lemma setprod_reindex_cong: "inj_on f A ==> | 
| 865 | B = f ` A ==> g = h \<circ> f ==> setprod h B = setprod g A" | |
| 28853 
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
 nipkow parents: 
28823diff
changeset | 866 | by (frule setprod_reindex, simp) | 
| 15402 | 867 | |
| 29674 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 868 | lemma strong_setprod_reindex_cong: assumes i: "inj_on f A" | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 869 | and B: "B = f ` A" and eq: "\<And>x. x \<in> A \<Longrightarrow> g x = (h \<circ> f) x" | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 870 | shows "setprod h B = setprod g A" | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 871 | proof- | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 872 | have "setprod h B = setprod (h o f) A" | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 873 | by (simp add: B setprod_reindex[OF i, of h]) | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 874 | then show ?thesis apply simp | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 875 | apply (rule setprod_cong) | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 876 | apply simp | 
| 30837 
3d4832d9f7e4
added strong_setprod_cong[cong] (in analogy with setsum)
 nipkow parents: 
30729diff
changeset | 877 | by (simp add: eq) | 
| 29674 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 878 | qed | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 879 | |
| 30260 
be39acd3ac85
Added general theorems for fold_image, setsum and set_prod
 chaieb parents: 
29966diff
changeset | 880 | lemma setprod_Un_one: | 
| 
be39acd3ac85
Added general theorems for fold_image, setsum and set_prod
 chaieb parents: 
29966diff
changeset | 881 | assumes fS: "finite S" and fT: "finite T" | 
| 
be39acd3ac85
Added general theorems for fold_image, setsum and set_prod
 chaieb parents: 
29966diff
changeset | 882 | and I0: "\<forall>x \<in> S\<inter>T. f x = 1" | 
| 
be39acd3ac85
Added general theorems for fold_image, setsum and set_prod
 chaieb parents: 
29966diff
changeset | 883 | shows "setprod f (S \<union> T) = setprod f S * setprod f T" | 
| 
be39acd3ac85
Added general theorems for fold_image, setsum and set_prod
 chaieb parents: 
29966diff
changeset | 884 | using fS fT | 
| 
be39acd3ac85
Added general theorems for fold_image, setsum and set_prod
 chaieb parents: 
29966diff
changeset | 885 | apply (simp add: setprod_def) | 
| 
be39acd3ac85
Added general theorems for fold_image, setsum and set_prod
 chaieb parents: 
29966diff
changeset | 886 | apply (rule fold_image_Un_one) | 
| 
be39acd3ac85
Added general theorems for fold_image, setsum and set_prod
 chaieb parents: 
29966diff
changeset | 887 | using I0 by auto | 
| 
be39acd3ac85
Added general theorems for fold_image, setsum and set_prod
 chaieb parents: 
29966diff
changeset | 888 | |
| 15402 | 889 | |
| 890 | lemma setprod_1: "setprod (%i. 1) A = 1" | |
| 28853 
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
 nipkow parents: 
28823diff
changeset | 891 | apply (case_tac "finite A") | 
| 
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
 nipkow parents: 
28823diff
changeset | 892 | apply (erule finite_induct, auto simp add: mult_ac) | 
| 
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
 nipkow parents: 
28823diff
changeset | 893 | done | 
| 15402 | 894 | |
| 895 | lemma setprod_1': "ALL a:F. f a = 1 ==> setprod f F = 1" | |
| 28853 
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
 nipkow parents: 
28823diff
changeset | 896 | apply (subgoal_tac "setprod f F = setprod (%x. 1) F") | 
| 
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
 nipkow parents: 
28823diff
changeset | 897 | apply (erule ssubst, rule setprod_1) | 
| 
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
 nipkow parents: 
28823diff
changeset | 898 | apply (rule setprod_cong, auto) | 
| 
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
 nipkow parents: 
28823diff
changeset | 899 | done | 
| 15402 | 900 | |
| 901 | lemma setprod_Un_Int: "finite A ==> finite B | |
| 902 | ==> setprod g (A Un B) * setprod g (A Int B) = setprod g A * setprod g B" | |
| 28853 
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
 nipkow parents: 
28823diff
changeset | 903 | by(simp add: setprod_def fold_image_Un_Int[symmetric]) | 
| 15402 | 904 | |
| 905 | lemma setprod_Un_disjoint: "finite A ==> finite B | |
| 906 |   ==> A Int B = {} ==> setprod g (A Un B) = setprod g A * setprod g B"
 | |
| 907 | by (subst setprod_Un_Int [symmetric], auto) | |
| 908 | ||
| 30837 
3d4832d9f7e4
added strong_setprod_cong[cong] (in analogy with setsum)
 nipkow parents: 
30729diff
changeset | 909 | lemma setprod_mono_one_left: | 
| 
3d4832d9f7e4
added strong_setprod_cong[cong] (in analogy with setsum)
 nipkow parents: 
30729diff
changeset | 910 | assumes fT: "finite T" and ST: "S \<subseteq> T" | 
| 
3d4832d9f7e4
added strong_setprod_cong[cong] (in analogy with setsum)
 nipkow parents: 
30729diff
changeset | 911 | and z: "\<forall>i \<in> T - S. f i = 1" | 
| 
3d4832d9f7e4
added strong_setprod_cong[cong] (in analogy with setsum)
 nipkow parents: 
30729diff
changeset | 912 | shows "setprod f S = setprod f T" | 
| 
3d4832d9f7e4
added strong_setprod_cong[cong] (in analogy with setsum)
 nipkow parents: 
30729diff
changeset | 913 | proof- | 
| 
3d4832d9f7e4
added strong_setprod_cong[cong] (in analogy with setsum)
 nipkow parents: 
30729diff
changeset | 914 | have eq: "T = S \<union> (T - S)" using ST by blast | 
| 
3d4832d9f7e4
added strong_setprod_cong[cong] (in analogy with setsum)
 nipkow parents: 
30729diff
changeset | 915 |   have d: "S \<inter> (T - S) = {}" using ST by blast
 | 
| 
3d4832d9f7e4
added strong_setprod_cong[cong] (in analogy with setsum)
 nipkow parents: 
30729diff
changeset | 916 | from fT ST have f: "finite S" "finite (T - S)" by (auto intro: finite_subset) | 
| 
3d4832d9f7e4
added strong_setprod_cong[cong] (in analogy with setsum)
 nipkow parents: 
30729diff
changeset | 917 | show ?thesis | 
| 
3d4832d9f7e4
added strong_setprod_cong[cong] (in analogy with setsum)
 nipkow parents: 
30729diff
changeset | 918 | by (simp add: setprod_Un_disjoint[OF f d, unfolded eq[symmetric]] setprod_1'[OF z]) | 
| 
3d4832d9f7e4
added strong_setprod_cong[cong] (in analogy with setsum)
 nipkow parents: 
30729diff
changeset | 919 | qed | 
| 
3d4832d9f7e4
added strong_setprod_cong[cong] (in analogy with setsum)
 nipkow parents: 
30729diff
changeset | 920 | |
| 
3d4832d9f7e4
added strong_setprod_cong[cong] (in analogy with setsum)
 nipkow parents: 
30729diff
changeset | 921 | lemmas setprod_mono_one_right = setprod_mono_one_left [THEN sym] | 
| 
3d4832d9f7e4
added strong_setprod_cong[cong] (in analogy with setsum)
 nipkow parents: 
30729diff
changeset | 922 | |
| 29674 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 923 | lemma setprod_delta: | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 924 | assumes fS: "finite S" | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 925 | shows "setprod (\<lambda>k. if k=a then b k else 1) S = (if a \<in> S then b a else 1)" | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 926 | proof- | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 927 | let ?f = "(\<lambda>k. if k=a then b k else 1)" | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 928 |   {assume a: "a \<notin> S"
 | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 929 | hence "\<forall> k\<in> S. ?f k = 1" by simp | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 930 | hence ?thesis using a by (simp add: setprod_1 cong add: setprod_cong) } | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 931 | moreover | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 932 |   {assume a: "a \<in> S"
 | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 933 |     let ?A = "S - {a}"
 | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 934 |     let ?B = "{a}"
 | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 935 | have eq: "S = ?A \<union> ?B" using a by blast | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 936 |     have dj: "?A \<inter> ?B = {}" by simp
 | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 937 | from fS have fAB: "finite ?A" "finite ?B" by auto | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 938 | have fA1: "setprod ?f ?A = 1" apply (rule setprod_1') by auto | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 939 | have "setprod ?f ?A * setprod ?f ?B = setprod ?f S" | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 940 | using setprod_Un_disjoint[OF fAB dj, of ?f, unfolded eq[symmetric]] | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 941 | by simp | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 942 | then have ?thesis using a by (simp add: fA1 cong add: setprod_cong cong del: if_weak_cong)} | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 943 | ultimately show ?thesis by blast | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 944 | qed | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 945 | |
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 946 | lemma setprod_delta': | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 947 | assumes fS: "finite S" shows | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 948 | "setprod (\<lambda>k. if a = k then b k else 1) S = | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 949 | (if a\<in> S then b a else 1)" | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 950 | using setprod_delta[OF fS, of a b, symmetric] | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 951 | by (auto intro: setprod_cong) | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 952 | |
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 953 | |
| 15402 | 954 | lemma setprod_UN_disjoint: | 
| 955 | "finite I ==> (ALL i:I. finite (A i)) ==> | |
| 956 |         (ALL i:I. ALL j:I. i \<noteq> j --> A i Int A j = {}) ==>
 | |
| 957 | setprod f (UNION I A) = setprod (%i. setprod f (A i)) I" | |
| 28853 
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
 nipkow parents: 
28823diff
changeset | 958 | by(simp add: setprod_def fold_image_UN_disjoint cong: setprod_cong) | 
| 15402 | 959 | |
| 960 | lemma setprod_Union_disjoint: | |
| 15409 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 961 | "[| (ALL A:C. finite A); | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 962 |       (ALL A:C. ALL B:C. A \<noteq> B --> A Int B = {}) |] 
 | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 963 | ==> setprod f (Union C) = setprod (setprod f) C" | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 964 | apply (cases "finite C") | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 965 | prefer 2 apply (force dest: finite_UnionD simp add: setprod_def) | 
| 15402 | 966 | apply (frule setprod_UN_disjoint [of C id f]) | 
| 15409 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 967 | apply (unfold Union_def id_def, assumption+) | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 968 | done | 
| 15402 | 969 | |
| 970 | lemma setprod_Sigma: "finite A ==> ALL x:A. finite (B x) ==> | |
| 16550 | 971 | (\<Prod>x\<in>A. (\<Prod>y\<in> B x. f x y)) = | 
| 17189 | 972 | (\<Prod>(x,y)\<in>(SIGMA x:A. B x). f x y)" | 
| 28853 
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
 nipkow parents: 
28823diff
changeset | 973 | by(simp add:setprod_def fold_image_Sigma split_def cong:setprod_cong) | 
| 15402 | 974 | |
| 15409 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 975 | text{*Here we can eliminate the finiteness assumptions, by cases.*}
 | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 976 | lemma setprod_cartesian_product: | 
| 17189 | 977 | "(\<Prod>x\<in>A. (\<Prod>y\<in> B. f x y)) = (\<Prod>(x,y)\<in>(A <*> B). f x y)" | 
| 15409 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 978 | apply (cases "finite A") | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 979 | apply (cases "finite B") | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 980 | apply (simp add: setprod_Sigma) | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 981 |  apply (cases "A={}", simp)
 | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 982 | apply (simp add: setprod_1) | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 983 | apply (auto simp add: setprod_def | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 984 | dest: finite_cartesian_productD1 finite_cartesian_productD2) | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 985 | done | 
| 15402 | 986 | |
| 987 | lemma setprod_timesf: | |
| 15409 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 988 | "setprod (%x. f x * g x) A = (setprod f A * setprod g A)" | 
| 28853 
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
 nipkow parents: 
28823diff
changeset | 989 | by(simp add:setprod_def fold_image_distrib) | 
| 15402 | 990 | |
| 991 | ||
| 992 | subsubsection {* Properties in more restricted classes of structures *}
 | |
| 993 | ||
| 994 | lemma setprod_eq_1_iff [simp]: | |
| 28853 
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
 nipkow parents: 
28823diff
changeset | 995 | "finite F ==> (setprod f F = 1) = (ALL a:F. f a = (1::nat))" | 
| 
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
 nipkow parents: 
28823diff
changeset | 996 | by (induct set: finite) auto | 
| 15402 | 997 | |
| 998 | lemma setprod_zero: | |
| 23277 | 999 | "finite A ==> EX x: A. f x = (0::'a::comm_semiring_1) ==> setprod f A = 0" | 
| 28853 
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
 nipkow parents: 
28823diff
changeset | 1000 | apply (induct set: finite, force, clarsimp) | 
| 
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
 nipkow parents: 
28823diff
changeset | 1001 | apply (erule disjE, auto) | 
| 
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
 nipkow parents: 
28823diff
changeset | 1002 | done | 
| 15402 | 1003 | |
| 1004 | lemma setprod_nonneg [rule_format]: | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34223diff
changeset | 1005 | "(ALL x: A. (0::'a::linordered_semidom) \<le> f x) --> 0 \<le> setprod f A" | 
| 30841 
0813afc97522
generalized setprod_nonneg and setprod_pos to ordered_semidom, simplified proofs
 huffman parents: 
30729diff
changeset | 1006 | by (cases "finite A", induct set: finite, simp_all add: mult_nonneg_nonneg) | 
| 
0813afc97522
generalized setprod_nonneg and setprod_pos to ordered_semidom, simplified proofs
 huffman parents: 
30729diff
changeset | 1007 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34223diff
changeset | 1008 | lemma setprod_pos [rule_format]: "(ALL x: A. (0::'a::linordered_semidom) < f x) | 
| 28853 
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
 nipkow parents: 
28823diff
changeset | 1009 | --> 0 < setprod f A" | 
| 30841 
0813afc97522
generalized setprod_nonneg and setprod_pos to ordered_semidom, simplified proofs
 huffman parents: 
30729diff
changeset | 1010 | by (cases "finite A", induct set: finite, simp_all add: mult_pos_pos) | 
| 15402 | 1011 | |
| 30843 | 1012 | lemma setprod_zero_iff[simp]: "finite A ==> | 
| 1013 |   (setprod f A = (0::'a::{comm_semiring_1,no_zero_divisors})) =
 | |
| 1014 | (EX x: A. f x = 0)" | |
| 1015 | by (erule finite_induct, auto simp:no_zero_divisors) | |
| 1016 | ||
| 1017 | lemma setprod_pos_nat: | |
| 1018 | "finite S ==> (ALL x : S. f x > (0::nat)) ==> setprod f S > 0" | |
| 1019 | using setprod_zero_iff by(simp del:neq0_conv add:neq0_conv[symmetric]) | |
| 15402 | 1020 | |
| 30863 | 1021 | lemma setprod_pos_nat_iff[simp]: | 
| 1022 | "finite S ==> (setprod f S > 0) = (ALL x : S. f x > (0::nat))" | |
| 1023 | using setprod_zero_iff by(simp del:neq0_conv add:neq0_conv[symmetric]) | |
| 1024 | ||
| 15402 | 1025 | lemma setprod_Un: "finite A ==> finite B ==> (ALL x: A Int B. f x \<noteq> 0) ==> | 
| 28853 
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
 nipkow parents: 
28823diff
changeset | 1026 |   (setprod f (A Un B) :: 'a ::{field})
 | 
| 
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
 nipkow parents: 
28823diff
changeset | 1027 | = setprod f A * setprod f B / setprod f (A Int B)" | 
| 30843 | 1028 | by (subst setprod_Un_Int [symmetric], auto) | 
| 15402 | 1029 | |
| 1030 | lemma setprod_diff1: "finite A ==> f a \<noteq> 0 ==> | |
| 28853 
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
 nipkow parents: 
28823diff
changeset | 1031 |   (setprod f (A - {a}) :: 'a :: {field}) =
 | 
| 
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
 nipkow parents: 
28823diff
changeset | 1032 | (if a:A then setprod f A / f a else setprod f A)" | 
| 23413 
5caa2710dd5b
tuned laws for cancellation in divisions for fields.
 nipkow parents: 
23398diff
changeset | 1033 | by (erule finite_induct) (auto simp add: insert_Diff_if) | 
| 15402 | 1034 | |
| 31906 
b41d61c768e2
Removed unnecessary conditions concerning nonzero divisors
 paulson parents: 
31465diff
changeset | 1035 | lemma setprod_inversef: | 
| 
b41d61c768e2
Removed unnecessary conditions concerning nonzero divisors
 paulson parents: 
31465diff
changeset | 1036 |   fixes f :: "'b \<Rightarrow> 'a::{field,division_by_zero}"
 | 
| 
b41d61c768e2
Removed unnecessary conditions concerning nonzero divisors
 paulson parents: 
31465diff
changeset | 1037 | shows "finite A ==> setprod (inverse \<circ> f) A = inverse (setprod f A)" | 
| 28853 
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
 nipkow parents: 
28823diff
changeset | 1038 | by (erule finite_induct) auto | 
| 15402 | 1039 | |
| 1040 | lemma setprod_dividef: | |
| 31906 
b41d61c768e2
Removed unnecessary conditions concerning nonzero divisors
 paulson parents: 
31465diff
changeset | 1041 |   fixes f :: "'b \<Rightarrow> 'a::{field,division_by_zero}"
 | 
| 31916 
f3227bb306a4
recovered subscripts, which were lost in b41d61c768e2 (due to Emacs accident?);
 wenzelm parents: 
31907diff
changeset | 1042 | shows "finite A | 
| 28853 
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
 nipkow parents: 
28823diff
changeset | 1043 | ==> setprod (%x. f x / g x) A = setprod f A / setprod g A" | 
| 
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
 nipkow parents: 
28823diff
changeset | 1044 | apply (subgoal_tac | 
| 15402 | 1045 | "setprod (%x. f x / g x) A = setprod (%x. f x * (inverse \<circ> g) x) A") | 
| 28853 
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
 nipkow parents: 
28823diff
changeset | 1046 | apply (erule ssubst) | 
| 
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
 nipkow parents: 
28823diff
changeset | 1047 | apply (subst divide_inverse) | 
| 
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
 nipkow parents: 
28823diff
changeset | 1048 | apply (subst setprod_timesf) | 
| 
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
 nipkow parents: 
28823diff
changeset | 1049 | apply (subst setprod_inversef, assumption+, rule refl) | 
| 
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
 nipkow parents: 
28823diff
changeset | 1050 | apply (rule setprod_cong, rule refl) | 
| 
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
 nipkow parents: 
28823diff
changeset | 1051 | apply (subst divide_inverse, auto) | 
| 
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
 nipkow parents: 
28823diff
changeset | 1052 | done | 
| 
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
 nipkow parents: 
28823diff
changeset | 1053 | |
| 29925 | 1054 | lemma setprod_dvd_setprod [rule_format]: | 
| 1055 | "(ALL x : A. f x dvd g x) \<longrightarrow> setprod f A dvd setprod g A" | |
| 1056 | apply (cases "finite A") | |
| 1057 | apply (induct set: finite) | |
| 1058 | apply (auto simp add: dvd_def) | |
| 1059 | apply (rule_tac x = "k * ka" in exI) | |
| 1060 | apply (simp add: algebra_simps) | |
| 1061 | done | |
| 1062 | ||
| 1063 | lemma setprod_dvd_setprod_subset: | |
| 1064 | "finite B \<Longrightarrow> A <= B \<Longrightarrow> setprod f A dvd setprod f B" | |
| 1065 | apply (subgoal_tac "setprod f B = setprod f A * setprod f (B - A)") | |
| 1066 | apply (unfold dvd_def, blast) | |
| 1067 | apply (subst setprod_Un_disjoint [symmetric]) | |
| 1068 | apply (auto elim: finite_subset intro: setprod_cong) | |
| 1069 | done | |
| 1070 | ||
| 1071 | lemma setprod_dvd_setprod_subset2: | |
| 1072 | "finite B \<Longrightarrow> A <= B \<Longrightarrow> ALL x : A. (f x::'a::comm_semiring_1) dvd g x \<Longrightarrow> | |
| 1073 | setprod f A dvd setprod g B" | |
| 1074 | apply (rule dvd_trans) | |
| 1075 | apply (rule setprod_dvd_setprod, erule (1) bspec) | |
| 1076 | apply (erule (1) setprod_dvd_setprod_subset) | |
| 1077 | done | |
| 1078 | ||
| 1079 | lemma dvd_setprod: "finite A \<Longrightarrow> i:A \<Longrightarrow> | |
| 1080 | (f i ::'a::comm_semiring_1) dvd setprod f A" | |
| 1081 | by (induct set: finite) (auto intro: dvd_mult) | |
| 1082 | ||
| 1083 | lemma dvd_setsum [rule_format]: "(ALL i : A. d dvd f i) \<longrightarrow> | |
| 1084 | (d::'a::comm_semiring_1) dvd (SUM x : A. f x)" | |
| 1085 | apply (cases "finite A") | |
| 1086 | apply (induct set: finite) | |
| 1087 | apply auto | |
| 1088 | done | |
| 1089 | ||
| 35171 
28f824c7addc
Moved setprod_mono, abs_setprod and setsum_le_included to the Main image. Is used in Multivariate_Analysis.
 hoelzl parents: 
35115diff
changeset | 1090 | lemma setprod_mono: | 
| 
28f824c7addc
Moved setprod_mono, abs_setprod and setsum_le_included to the Main image. Is used in Multivariate_Analysis.
 hoelzl parents: 
35115diff
changeset | 1091 | fixes f :: "'a \<Rightarrow> 'b\<Colon>linordered_semidom" | 
| 
28f824c7addc
Moved setprod_mono, abs_setprod and setsum_le_included to the Main image. Is used in Multivariate_Analysis.
 hoelzl parents: 
35115diff
changeset | 1092 | assumes "\<forall>i\<in>A. 0 \<le> f i \<and> f i \<le> g i" | 
| 
28f824c7addc
Moved setprod_mono, abs_setprod and setsum_le_included to the Main image. Is used in Multivariate_Analysis.
 hoelzl parents: 
35115diff
changeset | 1093 | shows "setprod f A \<le> setprod g A" | 
| 
28f824c7addc
Moved setprod_mono, abs_setprod and setsum_le_included to the Main image. Is used in Multivariate_Analysis.
 hoelzl parents: 
35115diff
changeset | 1094 | proof (cases "finite A") | 
| 
28f824c7addc
Moved setprod_mono, abs_setprod and setsum_le_included to the Main image. Is used in Multivariate_Analysis.
 hoelzl parents: 
35115diff
changeset | 1095 | case True | 
| 
28f824c7addc
Moved setprod_mono, abs_setprod and setsum_le_included to the Main image. Is used in Multivariate_Analysis.
 hoelzl parents: 
35115diff
changeset | 1096 | hence ?thesis "setprod f A \<ge> 0" using subset_refl[of A] | 
| 
28f824c7addc
Moved setprod_mono, abs_setprod and setsum_le_included to the Main image. Is used in Multivariate_Analysis.
 hoelzl parents: 
35115diff
changeset | 1097 | proof (induct A rule: finite_subset_induct) | 
| 
28f824c7addc
Moved setprod_mono, abs_setprod and setsum_le_included to the Main image. Is used in Multivariate_Analysis.
 hoelzl parents: 
35115diff
changeset | 1098 | case (insert a F) | 
| 
28f824c7addc
Moved setprod_mono, abs_setprod and setsum_le_included to the Main image. Is used in Multivariate_Analysis.
 hoelzl parents: 
35115diff
changeset | 1099 | thus "setprod f (insert a F) \<le> setprod g (insert a F)" "0 \<le> setprod f (insert a F)" | 
| 
28f824c7addc
Moved setprod_mono, abs_setprod and setsum_le_included to the Main image. Is used in Multivariate_Analysis.
 hoelzl parents: 
35115diff
changeset | 1100 | unfolding setprod_insert[OF insert(1,3)] | 
| 
28f824c7addc
Moved setprod_mono, abs_setprod and setsum_le_included to the Main image. Is used in Multivariate_Analysis.
 hoelzl parents: 
35115diff
changeset | 1101 | using assms[rule_format,OF insert(2)] insert | 
| 
28f824c7addc
Moved setprod_mono, abs_setprod and setsum_le_included to the Main image. Is used in Multivariate_Analysis.
 hoelzl parents: 
35115diff
changeset | 1102 | by (auto intro: mult_mono mult_nonneg_nonneg) | 
| 
28f824c7addc
Moved setprod_mono, abs_setprod and setsum_le_included to the Main image. Is used in Multivariate_Analysis.
 hoelzl parents: 
35115diff
changeset | 1103 | qed auto | 
| 
28f824c7addc
Moved setprod_mono, abs_setprod and setsum_le_included to the Main image. Is used in Multivariate_Analysis.
 hoelzl parents: 
35115diff
changeset | 1104 | thus ?thesis by simp | 
| 
28f824c7addc
Moved setprod_mono, abs_setprod and setsum_le_included to the Main image. Is used in Multivariate_Analysis.
 hoelzl parents: 
35115diff
changeset | 1105 | qed auto | 
| 
28f824c7addc
Moved setprod_mono, abs_setprod and setsum_le_included to the Main image. Is used in Multivariate_Analysis.
 hoelzl parents: 
35115diff
changeset | 1106 | |
| 
28f824c7addc
Moved setprod_mono, abs_setprod and setsum_le_included to the Main image. Is used in Multivariate_Analysis.
 hoelzl parents: 
35115diff
changeset | 1107 | lemma abs_setprod: | 
| 
28f824c7addc
Moved setprod_mono, abs_setprod and setsum_le_included to the Main image. Is used in Multivariate_Analysis.
 hoelzl parents: 
35115diff
changeset | 1108 |   fixes f :: "'a \<Rightarrow> 'b\<Colon>{linordered_field,abs}"
 | 
| 
28f824c7addc
Moved setprod_mono, abs_setprod and setsum_le_included to the Main image. Is used in Multivariate_Analysis.
 hoelzl parents: 
35115diff
changeset | 1109 | shows "abs (setprod f A) = setprod (\<lambda>x. abs (f x)) A" | 
| 
28f824c7addc
Moved setprod_mono, abs_setprod and setsum_le_included to the Main image. Is used in Multivariate_Analysis.
 hoelzl parents: 
35115diff
changeset | 1110 | proof (cases "finite A") | 
| 
28f824c7addc
Moved setprod_mono, abs_setprod and setsum_le_included to the Main image. Is used in Multivariate_Analysis.
 hoelzl parents: 
35115diff
changeset | 1111 | case True thus ?thesis | 
| 35216 | 1112 | by induct (auto simp add: field_simps abs_mult) | 
| 35171 
28f824c7addc
Moved setprod_mono, abs_setprod and setsum_le_included to the Main image. Is used in Multivariate_Analysis.
 hoelzl parents: 
35115diff
changeset | 1113 | qed auto | 
| 
28f824c7addc
Moved setprod_mono, abs_setprod and setsum_le_included to the Main image. Is used in Multivariate_Analysis.
 hoelzl parents: 
35115diff
changeset | 1114 | |
| 31017 | 1115 | lemma setprod_constant: "finite A ==> (\<Prod>x\<in> A. (y::'a::{comm_monoid_mult})) = y^(card A)"
 | 
| 28853 
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
 nipkow parents: 
28823diff
changeset | 1116 | apply (erule finite_induct) | 
| 35216 | 1117 | apply auto | 
| 28853 
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
 nipkow parents: 
28823diff
changeset | 1118 | done | 
| 15402 | 1119 | |
| 29674 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 1120 | lemma setprod_gen_delta: | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 1121 | assumes fS: "finite S" | 
| 31017 | 1122 |   shows "setprod (\<lambda>k. if k=a then b k else c) S = (if a \<in> S then (b a ::'a::{comm_monoid_mult}) * c^ (card S - 1) else c^ card S)"
 | 
| 29674 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 1123 | proof- | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 1124 | let ?f = "(\<lambda>k. if k=a then b k else c)" | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 1125 |   {assume a: "a \<notin> S"
 | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 1126 | hence "\<forall> k\<in> S. ?f k = c" by simp | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 1127 | hence ?thesis using a setprod_constant[OF fS, of c] by (simp add: setprod_1 cong add: setprod_cong) } | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 1128 | moreover | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 1129 |   {assume a: "a \<in> S"
 | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 1130 |     let ?A = "S - {a}"
 | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 1131 |     let ?B = "{a}"
 | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 1132 | have eq: "S = ?A \<union> ?B" using a by blast | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 1133 |     have dj: "?A \<inter> ?B = {}" by simp
 | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 1134 | from fS have fAB: "finite ?A" "finite ?B" by auto | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 1135 | have fA0:"setprod ?f ?A = setprod (\<lambda>i. c) ?A" | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 1136 | apply (rule setprod_cong) by auto | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 1137 | have cA: "card ?A = card S - 1" using fS a by auto | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 1138 | have fA1: "setprod ?f ?A = c ^ card ?A" unfolding fA0 apply (rule setprod_constant) using fS by auto | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 1139 | have "setprod ?f ?A * setprod ?f ?B = setprod ?f S" | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 1140 | using setprod_Un_disjoint[OF fAB dj, of ?f, unfolded eq[symmetric]] | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 1141 | by simp | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 1142 | then have ?thesis using a cA | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 1143 | by (simp add: fA1 ring_simps cong add: setprod_cong cong del: if_weak_cong)} | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 1144 | ultimately show ?thesis by blast | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 1145 | qed | 
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 1146 | |
| 
3857d7eba390
Added theorems setsum_reindex_nonzero, setsum_mono_zero_left, setsum_mono_zero_right, setsum_mono_zero_cong_left, setsum_mono_zero_cong_right, setsum_delta, strong_setprod_reindex_cong, setprod_delta
 chaieb parents: 
29609diff
changeset | 1147 | |
| 35816 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1148 | subsection {* Versions of @{const inf} and @{const sup} on non-empty sets *}
 | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1149 | |
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1150 | no_notation times (infixl "*" 70) | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1151 | no_notation Groups.one ("1")
 | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1152 | |
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1153 | locale semilattice_big = semilattice + | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1154 | fixes F :: "'a set \<Rightarrow> 'a" | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1155 | assumes F_eq: "finite A \<Longrightarrow> F A = fold1 (op *) A" | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1156 | |
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1157 | sublocale semilattice_big < folding_one_idem proof | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1158 | qed (simp_all add: F_eq) | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1159 | |
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1160 | notation times (infixl "*" 70) | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1161 | notation Groups.one ("1")
 | 
| 22917 | 1162 | |
| 35816 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1163 | context lattice | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1164 | begin | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1165 | |
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1166 | definition Inf_fin :: "'a set \<Rightarrow> 'a" ("\<Sqinter>\<^bsub>fin\<^esub>_" [900] 900) where
 | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1167 | "Inf_fin = fold1 inf" | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1168 | |
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1169 | definition Sup_fin :: "'a set \<Rightarrow> 'a" ("\<Squnion>\<^bsub>fin\<^esub>_" [900] 900) where
 | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1170 | "Sup_fin = fold1 sup" | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1171 | |
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1172 | end | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1173 | |
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1174 | sublocale lattice < Inf_fin!: semilattice_big inf Inf_fin proof | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1175 | qed (simp add: Inf_fin_def) | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1176 | |
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1177 | sublocale lattice < Sup_fin!: semilattice_big sup Sup_fin proof | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1178 | qed (simp add: Sup_fin_def) | 
| 22917 | 1179 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34223diff
changeset | 1180 | context semilattice_inf | 
| 26041 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1181 | begin | 
| 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1182 | |
| 35816 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1183 | lemma ab_semigroup_idem_mult_inf: "ab_semigroup_idem_mult inf" | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1184 | proof qed (rule inf_assoc inf_commute inf_idem)+ | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1185 | |
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1186 | lemma fold_inf_insert[simp]: "finite A \<Longrightarrow> fold inf b (insert a A) = inf a (fold inf b A)" | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1187 | by(rule fun_left_comm_idem.fold_insert_idem[OF ab_semigroup_idem_mult.fun_left_comm_idem[OF ab_semigroup_idem_mult_inf]]) | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1188 | |
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1189 | lemma inf_le_fold_inf: "finite A \<Longrightarrow> ALL a:A. b \<le> a \<Longrightarrow> inf b c \<le> fold inf c A" | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1190 | by (induct pred: finite) (auto intro: le_infI1) | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1191 | |
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1192 | lemma fold_inf_le_inf: "finite A \<Longrightarrow> a \<in> A \<Longrightarrow> fold inf b A \<le> inf a b" | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1193 | proof(induct arbitrary: a pred:finite) | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1194 | case empty thus ?case by simp | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1195 | next | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1196 | case (insert x A) | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1197 | show ?case | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1198 | proof cases | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1199 |     assume "A = {}" thus ?thesis using insert by simp
 | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1200 | next | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1201 |     assume "A \<noteq> {}" thus ?thesis using insert by (auto intro: le_infI2)
 | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1202 | qed | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1203 | qed | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1204 | |
| 26041 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1205 | lemma below_fold1_iff: | 
| 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1206 |   assumes "finite A" "A \<noteq> {}"
 | 
| 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1207 | shows "x \<le> fold1 inf A \<longleftrightarrow> (\<forall>a\<in>A. x \<le> a)" | 
| 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1208 | proof - | 
| 29509 
1ff0f3f08a7b
migrated class package to new locale implementation
 haftmann parents: 
29223diff
changeset | 1209 | interpret ab_semigroup_idem_mult inf | 
| 26041 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1210 | by (rule ab_semigroup_idem_mult_inf) | 
| 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1211 | show ?thesis using assms by (induct rule: finite_ne_induct) simp_all | 
| 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1212 | qed | 
| 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1213 | |
| 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1214 | lemma fold1_belowI: | 
| 26757 
e775accff967
thms Max_ge, Min_le: dropped superfluous premise
 haftmann parents: 
26748diff
changeset | 1215 | assumes "finite A" | 
| 26041 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1216 | and "a \<in> A" | 
| 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1217 | shows "fold1 inf A \<le> a" | 
| 26757 
e775accff967
thms Max_ge, Min_le: dropped superfluous premise
 haftmann parents: 
26748diff
changeset | 1218 | proof - | 
| 
e775accff967
thms Max_ge, Min_le: dropped superfluous premise
 haftmann parents: 
26748diff
changeset | 1219 |   from assms have "A \<noteq> {}" by auto
 | 
| 
e775accff967
thms Max_ge, Min_le: dropped superfluous premise
 haftmann parents: 
26748diff
changeset | 1220 |   from `finite A` `A \<noteq> {}` `a \<in> A` show ?thesis
 | 
| 
e775accff967
thms Max_ge, Min_le: dropped superfluous premise
 haftmann parents: 
26748diff
changeset | 1221 | proof (induct rule: finite_ne_induct) | 
| 
e775accff967
thms Max_ge, Min_le: dropped superfluous premise
 haftmann parents: 
26748diff
changeset | 1222 | case singleton thus ?case by simp | 
| 26041 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1223 | next | 
| 29509 
1ff0f3f08a7b
migrated class package to new locale implementation
 haftmann parents: 
29223diff
changeset | 1224 | interpret ab_semigroup_idem_mult inf | 
| 26757 
e775accff967
thms Max_ge, Min_le: dropped superfluous premise
 haftmann parents: 
26748diff
changeset | 1225 | by (rule ab_semigroup_idem_mult_inf) | 
| 
e775accff967
thms Max_ge, Min_le: dropped superfluous premise
 haftmann parents: 
26748diff
changeset | 1226 | case (insert x F) | 
| 
e775accff967
thms Max_ge, Min_le: dropped superfluous premise
 haftmann parents: 
26748diff
changeset | 1227 | from insert(5) have "a = x \<or> a \<in> F" by simp | 
| 
e775accff967
thms Max_ge, Min_le: dropped superfluous premise
 haftmann parents: 
26748diff
changeset | 1228 | thus ?case | 
| 
e775accff967
thms Max_ge, Min_le: dropped superfluous premise
 haftmann parents: 
26748diff
changeset | 1229 | proof | 
| 
e775accff967
thms Max_ge, Min_le: dropped superfluous premise
 haftmann parents: 
26748diff
changeset | 1230 | assume "a = x" thus ?thesis using insert | 
| 29667 | 1231 | by (simp add: mult_ac) | 
| 26757 
e775accff967
thms Max_ge, Min_le: dropped superfluous premise
 haftmann parents: 
26748diff
changeset | 1232 | next | 
| 
e775accff967
thms Max_ge, Min_le: dropped superfluous premise
 haftmann parents: 
26748diff
changeset | 1233 | assume "a \<in> F" | 
| 
e775accff967
thms Max_ge, Min_le: dropped superfluous premise
 haftmann parents: 
26748diff
changeset | 1234 | hence bel: "fold1 inf F \<le> a" by (rule insert) | 
| 
e775accff967
thms Max_ge, Min_le: dropped superfluous premise
 haftmann parents: 
26748diff
changeset | 1235 | have "inf (fold1 inf (insert x F)) a = inf x (inf (fold1 inf F) a)" | 
| 29667 | 1236 | using insert by (simp add: mult_ac) | 
| 26757 
e775accff967
thms Max_ge, Min_le: dropped superfluous premise
 haftmann parents: 
26748diff
changeset | 1237 | also have "inf (fold1 inf F) a = fold1 inf F" | 
| 
e775accff967
thms Max_ge, Min_le: dropped superfluous premise
 haftmann parents: 
26748diff
changeset | 1238 | using bel by (auto intro: antisym) | 
| 
e775accff967
thms Max_ge, Min_le: dropped superfluous premise
 haftmann parents: 
26748diff
changeset | 1239 | also have "inf x \<dots> = fold1 inf (insert x F)" | 
| 29667 | 1240 | using insert by (simp add: mult_ac) | 
| 26757 
e775accff967
thms Max_ge, Min_le: dropped superfluous premise
 haftmann parents: 
26748diff
changeset | 1241 | finally have aux: "inf (fold1 inf (insert x F)) a = fold1 inf (insert x F)" . | 
| 
e775accff967
thms Max_ge, Min_le: dropped superfluous premise
 haftmann parents: 
26748diff
changeset | 1242 | moreover have "inf (fold1 inf (insert x F)) a \<le> a" by simp | 
| 
e775accff967
thms Max_ge, Min_le: dropped superfluous premise
 haftmann parents: 
26748diff
changeset | 1243 | ultimately show ?thesis by simp | 
| 
e775accff967
thms Max_ge, Min_le: dropped superfluous premise
 haftmann parents: 
26748diff
changeset | 1244 | qed | 
| 26041 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1245 | qed | 
| 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1246 | qed | 
| 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1247 | |
| 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1248 | end | 
| 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1249 | |
| 35816 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1250 | context semilattice_sup | 
| 22917 | 1251 | begin | 
| 1252 | ||
| 35816 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1253 | lemma ab_semigroup_idem_mult_sup: "ab_semigroup_idem_mult sup" | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1254 | by (rule semilattice_inf.ab_semigroup_idem_mult_inf)(rule dual_semilattice) | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1255 | |
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1256 | lemma fold_sup_insert[simp]: "finite A \<Longrightarrow> fold sup b (insert a A) = sup a (fold sup b A)" | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1257 | by(rule semilattice_inf.fold_inf_insert)(rule dual_semilattice) | 
| 22917 | 1258 | |
| 35816 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1259 | lemma fold_sup_le_sup: "finite A \<Longrightarrow> ALL a:A. a \<le> b \<Longrightarrow> fold sup c A \<le> sup b c" | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1260 | by(rule semilattice_inf.inf_le_fold_inf)(rule dual_semilattice) | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1261 | |
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1262 | lemma sup_le_fold_sup: "finite A \<Longrightarrow> a \<in> A \<Longrightarrow> sup a b \<le> fold sup b A" | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1263 | by(rule semilattice_inf.fold_inf_le_inf)(rule dual_semilattice) | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1264 | |
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1265 | end | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1266 | |
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1267 | context lattice | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1268 | begin | 
| 25062 | 1269 | |
| 31916 
f3227bb306a4
recovered subscripts, which were lost in b41d61c768e2 (due to Emacs accident?);
 wenzelm parents: 
31907diff
changeset | 1270 | lemma Inf_le_Sup [simp]: "\<lbrakk> finite A; A \<noteq> {} \<rbrakk> \<Longrightarrow> \<Sqinter>\<^bsub>fin\<^esub>A \<le> \<Squnion>\<^bsub>fin\<^esub>A"
 | 
| 24342 | 1271 | apply(unfold Sup_fin_def Inf_fin_def) | 
| 15500 | 1272 | apply(subgoal_tac "EX a. a:A") | 
| 1273 | prefer 2 apply blast | |
| 1274 | apply(erule exE) | |
| 22388 | 1275 | apply(rule order_trans) | 
| 26757 
e775accff967
thms Max_ge, Min_le: dropped superfluous premise
 haftmann parents: 
26748diff
changeset | 1276 | apply(erule (1) fold1_belowI) | 
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34223diff
changeset | 1277 | apply(erule (1) semilattice_inf.fold1_belowI [OF dual_semilattice]) | 
| 15500 | 1278 | done | 
| 1279 | ||
| 24342 | 1280 | lemma sup_Inf_absorb [simp]: | 
| 31916 
f3227bb306a4
recovered subscripts, which were lost in b41d61c768e2 (due to Emacs accident?);
 wenzelm parents: 
31907diff
changeset | 1281 | "finite A \<Longrightarrow> a \<in> A \<Longrightarrow> sup a (\<Sqinter>\<^bsub>fin\<^esub>A) = a" | 
| 15512 
ed1fa4617f52
Extracted generic lattice stuff to new Lattice_Locales.thy
 nipkow parents: 
15510diff
changeset | 1282 | apply(subst sup_commute) | 
| 26041 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1283 | apply(simp add: Inf_fin_def sup_absorb2 fold1_belowI) | 
| 15504 | 1284 | done | 
| 1285 | ||
| 24342 | 1286 | lemma inf_Sup_absorb [simp]: | 
| 31916 
f3227bb306a4
recovered subscripts, which were lost in b41d61c768e2 (due to Emacs accident?);
 wenzelm parents: 
31907diff
changeset | 1287 | "finite A \<Longrightarrow> a \<in> A \<Longrightarrow> inf a (\<Squnion>\<^bsub>fin\<^esub>A) = a" | 
| 26041 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1288 | by (simp add: Sup_fin_def inf_absorb1 | 
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34223diff
changeset | 1289 | semilattice_inf.fold1_belowI [OF dual_semilattice]) | 
| 24342 | 1290 | |
| 1291 | end | |
| 1292 | ||
| 1293 | context distrib_lattice | |
| 1294 | begin | |
| 1295 | ||
| 1296 | lemma sup_Inf1_distrib: | |
| 26041 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1297 | assumes "finite A" | 
| 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1298 |     and "A \<noteq> {}"
 | 
| 31916 
f3227bb306a4
recovered subscripts, which were lost in b41d61c768e2 (due to Emacs accident?);
 wenzelm parents: 
31907diff
changeset | 1299 |   shows "sup x (\<Sqinter>\<^bsub>fin\<^esub>A) = \<Sqinter>\<^bsub>fin\<^esub>{sup x a|a. a \<in> A}"
 | 
| 26041 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1300 | proof - | 
| 29509 
1ff0f3f08a7b
migrated class package to new locale implementation
 haftmann parents: 
29223diff
changeset | 1301 | interpret ab_semigroup_idem_mult inf | 
| 26041 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1302 | by (rule ab_semigroup_idem_mult_inf) | 
| 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1303 | from assms show ?thesis | 
| 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1304 | by (simp add: Inf_fin_def image_def | 
| 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1305 | hom_fold1_commute [where h="sup x", OF sup_inf_distrib1]) | 
| 26792 | 1306 | (rule arg_cong [where f="fold1 inf"], blast) | 
| 26041 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1307 | qed | 
| 18423 | 1308 | |
| 24342 | 1309 | lemma sup_Inf2_distrib: | 
| 1310 |   assumes A: "finite A" "A \<noteq> {}" and B: "finite B" "B \<noteq> {}"
 | |
| 31916 
f3227bb306a4
recovered subscripts, which were lost in b41d61c768e2 (due to Emacs accident?);
 wenzelm parents: 
31907diff
changeset | 1311 |   shows "sup (\<Sqinter>\<^bsub>fin\<^esub>A) (\<Sqinter>\<^bsub>fin\<^esub>B) = \<Sqinter>\<^bsub>fin\<^esub>{sup a b|a b. a \<in> A \<and> b \<in> B}"
 | 
| 24342 | 1312 | using A proof (induct rule: finite_ne_induct) | 
| 15500 | 1313 | case singleton thus ?case | 
| 24342 | 1314 | by (simp add: sup_Inf1_distrib [OF B] fold1_singleton_def [OF Inf_fin_def]) | 
| 15500 | 1315 | next | 
| 29509 
1ff0f3f08a7b
migrated class package to new locale implementation
 haftmann parents: 
29223diff
changeset | 1316 | interpret ab_semigroup_idem_mult inf | 
| 26041 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1317 | by (rule ab_semigroup_idem_mult_inf) | 
| 15500 | 1318 | case (insert x A) | 
| 25062 | 1319 |   have finB: "finite {sup x b |b. b \<in> B}"
 | 
| 1320 | by(rule finite_surj[where f = "sup x", OF B(1)], auto) | |
| 1321 |   have finAB: "finite {sup a b |a b. a \<in> A \<and> b \<in> B}"
 | |
| 15500 | 1322 | proof - | 
| 25062 | 1323 |     have "{sup a b |a b. a \<in> A \<and> b \<in> B} = (UN a:A. UN b:B. {sup a b})"
 | 
| 15500 | 1324 | by blast | 
| 15517 | 1325 | thus ?thesis by(simp add: insert(1) B(1)) | 
| 15500 | 1326 | qed | 
| 25062 | 1327 |   have ne: "{sup a b |a b. a \<in> A \<and> b \<in> B} \<noteq> {}" using insert B by blast
 | 
| 31916 
f3227bb306a4
recovered subscripts, which were lost in b41d61c768e2 (due to Emacs accident?);
 wenzelm parents: 
31907diff
changeset | 1328 | have "sup (\<Sqinter>\<^bsub>fin\<^esub>(insert x A)) (\<Sqinter>\<^bsub>fin\<^esub>B) = sup (inf x (\<Sqinter>\<^bsub>fin\<^esub>A)) (\<Sqinter>\<^bsub>fin\<^esub>B)" | 
| 26041 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1329 | using insert by (simp add: fold1_insert_idem_def [OF Inf_fin_def]) | 
| 31916 
f3227bb306a4
recovered subscripts, which were lost in b41d61c768e2 (due to Emacs accident?);
 wenzelm parents: 
31907diff
changeset | 1330 | also have "\<dots> = inf (sup x (\<Sqinter>\<^bsub>fin\<^esub>B)) (sup (\<Sqinter>\<^bsub>fin\<^esub>A) (\<Sqinter>\<^bsub>fin\<^esub>B))" by(rule sup_inf_distrib2) | 
| 
f3227bb306a4
recovered subscripts, which were lost in b41d61c768e2 (due to Emacs accident?);
 wenzelm parents: 
31907diff
changeset | 1331 |   also have "\<dots> = inf (\<Sqinter>\<^bsub>fin\<^esub>{sup x b|b. b \<in> B}) (\<Sqinter>\<^bsub>fin\<^esub>{sup a b|a b. a \<in> A \<and> b \<in> B})"
 | 
| 15500 | 1332 | using insert by(simp add:sup_Inf1_distrib[OF B]) | 
| 31916 
f3227bb306a4
recovered subscripts, which were lost in b41d61c768e2 (due to Emacs accident?);
 wenzelm parents: 
31907diff
changeset | 1333 |   also have "\<dots> = \<Sqinter>\<^bsub>fin\<^esub>({sup x b |b. b \<in> B} \<union> {sup a b |a b. a \<in> A \<and> b \<in> B})"
 | 
| 
f3227bb306a4
recovered subscripts, which were lost in b41d61c768e2 (due to Emacs accident?);
 wenzelm parents: 
31907diff
changeset | 1334 | (is "_ = \<Sqinter>\<^bsub>fin\<^esub>?M") | 
| 15500 | 1335 | using B insert | 
| 26041 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1336 | by (simp add: Inf_fin_def fold1_Un2 [OF finB _ finAB ne]) | 
| 25062 | 1337 |   also have "?M = {sup a b |a b. a \<in> insert x A \<and> b \<in> B}"
 | 
| 15500 | 1338 | by blast | 
| 1339 | finally show ?case . | |
| 1340 | qed | |
| 1341 | ||
| 24342 | 1342 | lemma inf_Sup1_distrib: | 
| 26041 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1343 |   assumes "finite A" and "A \<noteq> {}"
 | 
| 31916 
f3227bb306a4
recovered subscripts, which were lost in b41d61c768e2 (due to Emacs accident?);
 wenzelm parents: 
31907diff
changeset | 1344 |   shows "inf x (\<Squnion>\<^bsub>fin\<^esub>A) = \<Squnion>\<^bsub>fin\<^esub>{inf x a|a. a \<in> A}"
 | 
| 26041 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1345 | proof - | 
| 29509 
1ff0f3f08a7b
migrated class package to new locale implementation
 haftmann parents: 
29223diff
changeset | 1346 | interpret ab_semigroup_idem_mult sup | 
| 26041 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1347 | by (rule ab_semigroup_idem_mult_sup) | 
| 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1348 | from assms show ?thesis | 
| 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1349 | by (simp add: Sup_fin_def image_def hom_fold1_commute [where h="inf x", OF inf_sup_distrib1]) | 
| 26792 | 1350 | (rule arg_cong [where f="fold1 sup"], blast) | 
| 26041 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1351 | qed | 
| 18423 | 1352 | |
| 24342 | 1353 | lemma inf_Sup2_distrib: | 
| 1354 |   assumes A: "finite A" "A \<noteq> {}" and B: "finite B" "B \<noteq> {}"
 | |
| 31916 
f3227bb306a4
recovered subscripts, which were lost in b41d61c768e2 (due to Emacs accident?);
 wenzelm parents: 
31907diff
changeset | 1355 |   shows "inf (\<Squnion>\<^bsub>fin\<^esub>A) (\<Squnion>\<^bsub>fin\<^esub>B) = \<Squnion>\<^bsub>fin\<^esub>{inf a b|a b. a \<in> A \<and> b \<in> B}"
 | 
| 24342 | 1356 | using A proof (induct rule: finite_ne_induct) | 
| 18423 | 1357 | case singleton thus ?case | 
| 24342 | 1358 | by(simp add: inf_Sup1_distrib [OF B] fold1_singleton_def [OF Sup_fin_def]) | 
| 18423 | 1359 | next | 
| 1360 | case (insert x A) | |
| 25062 | 1361 |   have finB: "finite {inf x b |b. b \<in> B}"
 | 
| 1362 | by(rule finite_surj[where f = "%b. inf x b", OF B(1)], auto) | |
| 1363 |   have finAB: "finite {inf a b |a b. a \<in> A \<and> b \<in> B}"
 | |
| 18423 | 1364 | proof - | 
| 25062 | 1365 |     have "{inf a b |a b. a \<in> A \<and> b \<in> B} = (UN a:A. UN b:B. {inf a b})"
 | 
| 18423 | 1366 | by blast | 
| 1367 | thus ?thesis by(simp add: insert(1) B(1)) | |
| 1368 | qed | |
| 25062 | 1369 |   have ne: "{inf a b |a b. a \<in> A \<and> b \<in> B} \<noteq> {}" using insert B by blast
 | 
| 29509 
1ff0f3f08a7b
migrated class package to new locale implementation
 haftmann parents: 
29223diff
changeset | 1370 | interpret ab_semigroup_idem_mult sup | 
| 26041 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1371 | by (rule ab_semigroup_idem_mult_sup) | 
| 31916 
f3227bb306a4
recovered subscripts, which were lost in b41d61c768e2 (due to Emacs accident?);
 wenzelm parents: 
31907diff
changeset | 1372 | have "inf (\<Squnion>\<^bsub>fin\<^esub>(insert x A)) (\<Squnion>\<^bsub>fin\<^esub>B) = inf (sup x (\<Squnion>\<^bsub>fin\<^esub>A)) (\<Squnion>\<^bsub>fin\<^esub>B)" | 
| 26041 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1373 | using insert by (simp add: fold1_insert_idem_def [OF Sup_fin_def]) | 
| 31916 
f3227bb306a4
recovered subscripts, which were lost in b41d61c768e2 (due to Emacs accident?);
 wenzelm parents: 
31907diff
changeset | 1374 | also have "\<dots> = sup (inf x (\<Squnion>\<^bsub>fin\<^esub>B)) (inf (\<Squnion>\<^bsub>fin\<^esub>A) (\<Squnion>\<^bsub>fin\<^esub>B))" by(rule inf_sup_distrib2) | 
| 
f3227bb306a4
recovered subscripts, which were lost in b41d61c768e2 (due to Emacs accident?);
 wenzelm parents: 
31907diff
changeset | 1375 |   also have "\<dots> = sup (\<Squnion>\<^bsub>fin\<^esub>{inf x b|b. b \<in> B}) (\<Squnion>\<^bsub>fin\<^esub>{inf a b|a b. a \<in> A \<and> b \<in> B})"
 | 
| 18423 | 1376 | using insert by(simp add:inf_Sup1_distrib[OF B]) | 
| 31916 
f3227bb306a4
recovered subscripts, which were lost in b41d61c768e2 (due to Emacs accident?);
 wenzelm parents: 
31907diff
changeset | 1377 |   also have "\<dots> = \<Squnion>\<^bsub>fin\<^esub>({inf x b |b. b \<in> B} \<union> {inf a b |a b. a \<in> A \<and> b \<in> B})"
 | 
| 
f3227bb306a4
recovered subscripts, which were lost in b41d61c768e2 (due to Emacs accident?);
 wenzelm parents: 
31907diff
changeset | 1378 | (is "_ = \<Squnion>\<^bsub>fin\<^esub>?M") | 
| 18423 | 1379 | using B insert | 
| 26041 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1380 | by (simp add: Sup_fin_def fold1_Un2 [OF finB _ finAB ne]) | 
| 25062 | 1381 |   also have "?M = {inf a b |a b. a \<in> insert x A \<and> b \<in> B}"
 | 
| 18423 | 1382 | by blast | 
| 1383 | finally show ?case . | |
| 1384 | qed | |
| 1385 | ||
| 24342 | 1386 | end | 
| 1387 | ||
| 35719 
99b6152aedf5
split off theory Big_Operators from theory Finite_Set
 haftmann parents: 
35577diff
changeset | 1388 | context complete_lattice | 
| 
99b6152aedf5
split off theory Big_Operators from theory Finite_Set
 haftmann parents: 
35577diff
changeset | 1389 | begin | 
| 
99b6152aedf5
split off theory Big_Operators from theory Finite_Set
 haftmann parents: 
35577diff
changeset | 1390 | |
| 
99b6152aedf5
split off theory Big_Operators from theory Finite_Set
 haftmann parents: 
35577diff
changeset | 1391 | lemma Inf_fin_Inf: | 
| 
99b6152aedf5
split off theory Big_Operators from theory Finite_Set
 haftmann parents: 
35577diff
changeset | 1392 |   assumes "finite A" and "A \<noteq> {}"
 | 
| 
99b6152aedf5
split off theory Big_Operators from theory Finite_Set
 haftmann parents: 
35577diff
changeset | 1393 | shows "\<Sqinter>\<^bsub>fin\<^esub>A = Inf A" | 
| 
99b6152aedf5
split off theory Big_Operators from theory Finite_Set
 haftmann parents: 
35577diff
changeset | 1394 | proof - | 
| 
99b6152aedf5
split off theory Big_Operators from theory Finite_Set
 haftmann parents: 
35577diff
changeset | 1395 | interpret ab_semigroup_idem_mult inf | 
| 
99b6152aedf5
split off theory Big_Operators from theory Finite_Set
 haftmann parents: 
35577diff
changeset | 1396 | by (rule ab_semigroup_idem_mult_inf) | 
| 
99b6152aedf5
split off theory Big_Operators from theory Finite_Set
 haftmann parents: 
35577diff
changeset | 1397 |   from `A \<noteq> {}` obtain b B where "A = insert b B" by auto
 | 
| 
99b6152aedf5
split off theory Big_Operators from theory Finite_Set
 haftmann parents: 
35577diff
changeset | 1398 | moreover with `finite A` have "finite B" by simp | 
| 
99b6152aedf5
split off theory Big_Operators from theory Finite_Set
 haftmann parents: 
35577diff
changeset | 1399 | ultimately show ?thesis | 
| 
99b6152aedf5
split off theory Big_Operators from theory Finite_Set
 haftmann parents: 
35577diff
changeset | 1400 | by (simp add: Inf_fin_def fold1_eq_fold_idem inf_Inf_fold_inf [symmetric]) | 
| 
99b6152aedf5
split off theory Big_Operators from theory Finite_Set
 haftmann parents: 
35577diff
changeset | 1401 | (simp add: Inf_fold_inf) | 
| 
99b6152aedf5
split off theory Big_Operators from theory Finite_Set
 haftmann parents: 
35577diff
changeset | 1402 | qed | 
| 
99b6152aedf5
split off theory Big_Operators from theory Finite_Set
 haftmann parents: 
35577diff
changeset | 1403 | |
| 
99b6152aedf5
split off theory Big_Operators from theory Finite_Set
 haftmann parents: 
35577diff
changeset | 1404 | lemma Sup_fin_Sup: | 
| 
99b6152aedf5
split off theory Big_Operators from theory Finite_Set
 haftmann parents: 
35577diff
changeset | 1405 |   assumes "finite A" and "A \<noteq> {}"
 | 
| 
99b6152aedf5
split off theory Big_Operators from theory Finite_Set
 haftmann parents: 
35577diff
changeset | 1406 | shows "\<Squnion>\<^bsub>fin\<^esub>A = Sup A" | 
| 
99b6152aedf5
split off theory Big_Operators from theory Finite_Set
 haftmann parents: 
35577diff
changeset | 1407 | proof - | 
| 
99b6152aedf5
split off theory Big_Operators from theory Finite_Set
 haftmann parents: 
35577diff
changeset | 1408 | interpret ab_semigroup_idem_mult sup | 
| 
99b6152aedf5
split off theory Big_Operators from theory Finite_Set
 haftmann parents: 
35577diff
changeset | 1409 | by (rule ab_semigroup_idem_mult_sup) | 
| 
99b6152aedf5
split off theory Big_Operators from theory Finite_Set
 haftmann parents: 
35577diff
changeset | 1410 |   from `A \<noteq> {}` obtain b B where "A = insert b B" by auto
 | 
| 
99b6152aedf5
split off theory Big_Operators from theory Finite_Set
 haftmann parents: 
35577diff
changeset | 1411 | moreover with `finite A` have "finite B" by simp | 
| 
99b6152aedf5
split off theory Big_Operators from theory Finite_Set
 haftmann parents: 
35577diff
changeset | 1412 | ultimately show ?thesis | 
| 
99b6152aedf5
split off theory Big_Operators from theory Finite_Set
 haftmann parents: 
35577diff
changeset | 1413 | by (simp add: Sup_fin_def fold1_eq_fold_idem sup_Sup_fold_sup [symmetric]) | 
| 
99b6152aedf5
split off theory Big_Operators from theory Finite_Set
 haftmann parents: 
35577diff
changeset | 1414 | (simp add: Sup_fold_sup) | 
| 
99b6152aedf5
split off theory Big_Operators from theory Finite_Set
 haftmann parents: 
35577diff
changeset | 1415 | qed | 
| 
99b6152aedf5
split off theory Big_Operators from theory Finite_Set
 haftmann parents: 
35577diff
changeset | 1416 | |
| 
99b6152aedf5
split off theory Big_Operators from theory Finite_Set
 haftmann parents: 
35577diff
changeset | 1417 | end | 
| 
99b6152aedf5
split off theory Big_Operators from theory Finite_Set
 haftmann parents: 
35577diff
changeset | 1418 | |
| 22917 | 1419 | |
| 35816 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1420 | subsection {* Versions of @{const min} and @{const max} on non-empty sets *}
 | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1421 | |
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1422 | definition (in linorder) Min :: "'a set \<Rightarrow> 'a" where | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1423 | "Min = fold1 min" | 
| 22917 | 1424 | |
| 35816 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1425 | definition (in linorder) Max :: "'a set \<Rightarrow> 'a" where | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1426 | "Max = fold1 max" | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1427 | |
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1428 | sublocale linorder < Min!: semilattice_big min Min proof | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1429 | qed (simp add: Min_def) | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1430 | |
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1431 | sublocale linorder < Max!: semilattice_big max Max proof | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1432 | qed (simp add: Max_def) | 
| 22917 | 1433 | |
| 24342 | 1434 | context linorder | 
| 22917 | 1435 | begin | 
| 1436 | ||
| 35816 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1437 | lemmas Min_singleton = Min.singleton | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1438 | lemmas Max_singleton = Max.singleton | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1439 | |
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1440 | lemma Min_insert: | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1441 |   assumes "finite A" and "A \<noteq> {}"
 | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1442 | shows "Min (insert x A) = min x (Min A)" | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1443 | using assms by simp | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1444 | |
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1445 | lemma Max_insert: | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1446 |   assumes "finite A" and "A \<noteq> {}"
 | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1447 | shows "Max (insert x A) = max x (Max A)" | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1448 | using assms by simp | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1449 | |
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1450 | lemma Min_Un: | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1451 |   assumes "finite A" and "A \<noteq> {}" and "finite B" and "B \<noteq> {}"
 | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1452 | shows "Min (A \<union> B) = min (Min A) (Min B)" | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1453 | using assms by (rule Min.union_idem) | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1454 | |
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1455 | lemma Max_Un: | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1456 |   assumes "finite A" and "A \<noteq> {}" and "finite B" and "B \<noteq> {}"
 | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1457 | shows "Max (A \<union> B) = max (Max A) (Max B)" | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1458 | using assms by (rule Max.union_idem) | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1459 | |
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1460 | lemma hom_Min_commute: | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1461 | assumes "\<And>x y. h (min x y) = min (h x) (h y)" | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1462 |     and "finite N" and "N \<noteq> {}"
 | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1463 | shows "h (Min N) = Min (h ` N)" | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1464 | using assms by (rule Min.hom_commute) | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1465 | |
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1466 | lemma hom_Max_commute: | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1467 | assumes "\<And>x y. h (max x y) = max (h x) (h y)" | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1468 |     and "finite N" and "N \<noteq> {}"
 | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1469 | shows "h (Max N) = Max (h ` N)" | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1470 | using assms by (rule Max.hom_commute) | 
| 
2449e026483d
generic locale for big operators in monoids; dropped odd interpretation of comm_monoid_mult into comm_monoid_add
 haftmann parents: 
35722diff
changeset | 1471 | |
| 26041 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1472 | lemma ab_semigroup_idem_mult_min: | 
| 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1473 | "ab_semigroup_idem_mult min" | 
| 28823 | 1474 | proof qed (auto simp add: min_def) | 
| 26041 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1475 | |
| 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1476 | lemma ab_semigroup_idem_mult_max: | 
| 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1477 | "ab_semigroup_idem_mult max" | 
| 28823 | 1478 | proof qed (auto simp add: max_def) | 
| 26041 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1479 | |
| 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1480 | lemma max_lattice: | 
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34223diff
changeset | 1481 | "semilattice_inf (op \<ge>) (op >) max" | 
| 32203 
992ac8942691
adapted to localized interpretation of min/max-lattice
 haftmann parents: 
32075diff
changeset | 1482 | by (fact min_max.dual_semilattice) | 
| 26041 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1483 | |
| 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1484 | lemma dual_max: | 
| 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1485 | "ord.max (op \<ge>) = min" | 
| 32642 
026e7c6a6d08
be more cautious wrt. simp rules: inf_absorb1, inf_absorb2, sup_absorb1, sup_absorb2 are no simp rules by default any longer
 haftmann parents: 
32437diff
changeset | 1486 | by (auto simp add: ord.max_def_raw min_def expand_fun_eq) | 
| 26041 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1487 | |
| 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1488 | lemma dual_min: | 
| 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1489 | "ord.min (op \<ge>) = max" | 
| 32642 
026e7c6a6d08
be more cautious wrt. simp rules: inf_absorb1, inf_absorb2, sup_absorb1, sup_absorb2 are no simp rules by default any longer
 haftmann parents: 
32437diff
changeset | 1490 | by (auto simp add: ord.min_def_raw max_def expand_fun_eq) | 
| 26041 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1491 | |
| 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1492 | lemma strict_below_fold1_iff: | 
| 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1493 |   assumes "finite A" and "A \<noteq> {}"
 | 
| 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1494 | shows "x < fold1 min A \<longleftrightarrow> (\<forall>a\<in>A. x < a)" | 
| 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1495 | proof - | 
| 29509 
1ff0f3f08a7b
migrated class package to new locale implementation
 haftmann parents: 
29223diff
changeset | 1496 | interpret ab_semigroup_idem_mult min | 
| 26041 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1497 | by (rule ab_semigroup_idem_mult_min) | 
| 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1498 | from assms show ?thesis | 
| 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1499 | by (induct rule: finite_ne_induct) | 
| 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1500 | (simp_all add: fold1_insert) | 
| 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1501 | qed | 
| 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1502 | |
| 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1503 | lemma fold1_below_iff: | 
| 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1504 |   assumes "finite A" and "A \<noteq> {}"
 | 
| 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1505 | shows "fold1 min A \<le> x \<longleftrightarrow> (\<exists>a\<in>A. a \<le> x)" | 
| 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1506 | proof - | 
| 29509 
1ff0f3f08a7b
migrated class package to new locale implementation
 haftmann parents: 
29223diff
changeset | 1507 | interpret ab_semigroup_idem_mult min | 
| 26041 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1508 | by (rule ab_semigroup_idem_mult_min) | 
| 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1509 | from assms show ?thesis | 
| 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1510 | by (induct rule: finite_ne_induct) | 
| 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1511 | (simp_all add: fold1_insert min_le_iff_disj) | 
| 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1512 | qed | 
| 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1513 | |
| 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1514 | lemma fold1_strict_below_iff: | 
| 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1515 |   assumes "finite A" and "A \<noteq> {}"
 | 
| 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1516 | shows "fold1 min A < x \<longleftrightarrow> (\<exists>a\<in>A. a < x)" | 
| 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1517 | proof - | 
| 29509 
1ff0f3f08a7b
migrated class package to new locale implementation
 haftmann parents: 
29223diff
changeset | 1518 | interpret ab_semigroup_idem_mult min | 
| 26041 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1519 | by (rule ab_semigroup_idem_mult_min) | 
| 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1520 | from assms show ?thesis | 
| 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1521 | by (induct rule: finite_ne_induct) | 
| 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1522 | (simp_all add: fold1_insert min_less_iff_disj) | 
| 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1523 | qed | 
| 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1524 | |
| 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1525 | lemma fold1_antimono: | 
| 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1526 |   assumes "A \<noteq> {}" and "A \<subseteq> B" and "finite B"
 | 
| 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1527 | shows "fold1 min B \<le> fold1 min A" | 
| 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1528 | proof cases | 
| 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1529 | assume "A = B" thus ?thesis by simp | 
| 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1530 | next | 
| 29509 
1ff0f3f08a7b
migrated class package to new locale implementation
 haftmann parents: 
29223diff
changeset | 1531 | interpret ab_semigroup_idem_mult min | 
| 26041 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1532 | by (rule ab_semigroup_idem_mult_min) | 
| 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1533 | assume "A \<noteq> B" | 
| 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1534 | have B: "B = A \<union> (B-A)" using `A \<subseteq> B` by blast | 
| 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1535 | have "fold1 min B = fold1 min (A \<union> (B-A))" by(subst B)(rule refl) | 
| 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1536 | also have "\<dots> = min (fold1 min A) (fold1 min (B-A))" | 
| 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1537 | proof - | 
| 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1538 | have "finite A" by(rule finite_subset[OF `A \<subseteq> B` `finite B`]) | 
| 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1539 | moreover have "finite(B-A)" by(rule finite_Diff[OF `finite B`]) (* by(blast intro:finite_Diff prems) fails *) | 
| 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1540 |     moreover have "(B-A) \<noteq> {}" using prems by blast
 | 
| 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1541 |     moreover have "A Int (B-A) = {}" using prems by blast
 | 
| 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1542 |     ultimately show ?thesis using `A \<noteq> {}` by (rule_tac fold1_Un)
 | 
| 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1543 | qed | 
| 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1544 | also have "\<dots> \<le> fold1 min A" by (simp add: min_le_iff_disj) | 
| 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1545 | finally show ?thesis . | 
| 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1546 | qed | 
| 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1547 | |
| 24427 | 1548 | lemma Min_in [simp]: | 
| 26041 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1549 |   assumes "finite A" and "A \<noteq> {}"
 | 
| 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1550 | shows "Min A \<in> A" | 
| 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1551 | proof - | 
| 29509 
1ff0f3f08a7b
migrated class package to new locale implementation
 haftmann parents: 
29223diff
changeset | 1552 | interpret ab_semigroup_idem_mult min | 
| 26041 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1553 | by (rule ab_semigroup_idem_mult_min) | 
| 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1554 | from assms fold1_in show ?thesis by (fastsimp simp: Min_def min_def) | 
| 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1555 | qed | 
| 15392 | 1556 | |
| 24427 | 1557 | lemma Max_in [simp]: | 
| 26041 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1558 |   assumes "finite A" and "A \<noteq> {}"
 | 
| 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1559 | shows "Max A \<in> A" | 
| 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1560 | proof - | 
| 29509 
1ff0f3f08a7b
migrated class package to new locale implementation
 haftmann parents: 
29223diff
changeset | 1561 | interpret ab_semigroup_idem_mult max | 
| 26041 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1562 | by (rule ab_semigroup_idem_mult_max) | 
| 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1563 | from assms fold1_in [of A] show ?thesis by (fastsimp simp: Max_def max_def) | 
| 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1564 | qed | 
| 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1565 | |
| 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1566 | lemma Min_le [simp]: | 
| 26757 
e775accff967
thms Max_ge, Min_le: dropped superfluous premise
 haftmann parents: 
26748diff
changeset | 1567 | assumes "finite A" and "x \<in> A" | 
| 26041 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1568 | shows "Min A \<le> x" | 
| 32203 
992ac8942691
adapted to localized interpretation of min/max-lattice
 haftmann parents: 
32075diff
changeset | 1569 | using assms by (simp add: Min_def min_max.fold1_belowI) | 
| 26041 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1570 | |
| 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1571 | lemma Max_ge [simp]: | 
| 26757 
e775accff967
thms Max_ge, Min_le: dropped superfluous premise
 haftmann parents: 
26748diff
changeset | 1572 | assumes "finite A" and "x \<in> A" | 
| 26041 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1573 | shows "x \<le> Max A" | 
| 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1574 | proof - | 
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34223diff
changeset | 1575 | interpret semilattice_inf "op \<ge>" "op >" max | 
| 26041 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1576 | by (rule max_lattice) | 
| 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1577 | from assms show ?thesis by (simp add: Max_def fold1_belowI) | 
| 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1578 | qed | 
| 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1579 | |
| 35828 
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
 blanchet parents: 
35722diff
changeset | 1580 | lemma Min_ge_iff [simp, no_atp]: | 
| 26041 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1581 |   assumes "finite A" and "A \<noteq> {}"
 | 
| 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1582 | shows "x \<le> Min A \<longleftrightarrow> (\<forall>a\<in>A. x \<le> a)" | 
| 32203 
992ac8942691
adapted to localized interpretation of min/max-lattice
 haftmann parents: 
32075diff
changeset | 1583 | using assms by (simp add: Min_def min_max.below_fold1_iff) | 
| 26041 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1584 | |
| 35828 
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
 blanchet parents: 
35722diff
changeset | 1585 | lemma Max_le_iff [simp, no_atp]: | 
| 26041 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1586 |   assumes "finite A" and "A \<noteq> {}"
 | 
| 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1587 | shows "Max A \<le> x \<longleftrightarrow> (\<forall>a\<in>A. a \<le> x)" | 
| 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1588 | proof - | 
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34223diff
changeset | 1589 | interpret semilattice_inf "op \<ge>" "op >" max | 
| 26041 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1590 | by (rule max_lattice) | 
| 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1591 | from assms show ?thesis by (simp add: Max_def below_fold1_iff) | 
| 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1592 | qed | 
| 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1593 | |
| 35828 
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
 blanchet parents: 
35722diff
changeset | 1594 | lemma Min_gr_iff [simp, no_atp]: | 
| 26041 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1595 |   assumes "finite A" and "A \<noteq> {}"
 | 
| 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1596 | shows "x < Min A \<longleftrightarrow> (\<forall>a\<in>A. x < a)" | 
| 32203 
992ac8942691
adapted to localized interpretation of min/max-lattice
 haftmann parents: 
32075diff
changeset | 1597 | using assms by (simp add: Min_def strict_below_fold1_iff) | 
| 26041 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1598 | |
| 35828 
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
 blanchet parents: 
35722diff
changeset | 1599 | lemma Max_less_iff [simp, no_atp]: | 
| 26041 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1600 |   assumes "finite A" and "A \<noteq> {}"
 | 
| 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1601 | shows "Max A < x \<longleftrightarrow> (\<forall>a\<in>A. a < x)" | 
| 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1602 | proof - | 
| 32203 
992ac8942691
adapted to localized interpretation of min/max-lattice
 haftmann parents: 
32075diff
changeset | 1603 | interpret dual: linorder "op \<ge>" "op >" | 
| 26041 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1604 | by (rule dual_linorder) | 
| 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1605 | from assms show ?thesis | 
| 32203 
992ac8942691
adapted to localized interpretation of min/max-lattice
 haftmann parents: 
32075diff
changeset | 1606 | by (simp add: Max_def dual.strict_below_fold1_iff [folded dual.dual_max]) | 
| 26041 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1607 | qed | 
| 18493 | 1608 | |
| 35828 
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
 blanchet parents: 
35722diff
changeset | 1609 | lemma Min_le_iff [no_atp]: | 
| 26041 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1610 |   assumes "finite A" and "A \<noteq> {}"
 | 
| 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1611 | shows "Min A \<le> x \<longleftrightarrow> (\<exists>a\<in>A. a \<le> x)" | 
| 32203 
992ac8942691
adapted to localized interpretation of min/max-lattice
 haftmann parents: 
32075diff
changeset | 1612 | using assms by (simp add: Min_def fold1_below_iff) | 
| 15497 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 1613 | |
| 35828 
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
 blanchet parents: 
35722diff
changeset | 1614 | lemma Max_ge_iff [no_atp]: | 
| 26041 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1615 |   assumes "finite A" and "A \<noteq> {}"
 | 
| 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1616 | shows "x \<le> Max A \<longleftrightarrow> (\<exists>a\<in>A. x \<le> a)" | 
| 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1617 | proof - | 
| 32203 
992ac8942691
adapted to localized interpretation of min/max-lattice
 haftmann parents: 
32075diff
changeset | 1618 | interpret dual: linorder "op \<ge>" "op >" | 
| 26041 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1619 | by (rule dual_linorder) | 
| 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1620 | from assms show ?thesis | 
| 32203 
992ac8942691
adapted to localized interpretation of min/max-lattice
 haftmann parents: 
32075diff
changeset | 1621 | by (simp add: Max_def dual.fold1_below_iff [folded dual.dual_max]) | 
| 26041 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1622 | qed | 
| 22917 | 1623 | |
| 35828 
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
 blanchet parents: 
35722diff
changeset | 1624 | lemma Min_less_iff [no_atp]: | 
| 26041 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1625 |   assumes "finite A" and "A \<noteq> {}"
 | 
| 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1626 | shows "Min A < x \<longleftrightarrow> (\<exists>a\<in>A. a < x)" | 
| 32203 
992ac8942691
adapted to localized interpretation of min/max-lattice
 haftmann parents: 
32075diff
changeset | 1627 | using assms by (simp add: Min_def fold1_strict_below_iff) | 
| 22917 | 1628 | |
| 35828 
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
 blanchet parents: 
35722diff
changeset | 1629 | lemma Max_gr_iff [no_atp]: | 
| 26041 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1630 |   assumes "finite A" and "A \<noteq> {}"
 | 
| 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1631 | shows "x < Max A \<longleftrightarrow> (\<exists>a\<in>A. x < a)" | 
| 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1632 | proof - | 
| 32203 
992ac8942691
adapted to localized interpretation of min/max-lattice
 haftmann parents: 
32075diff
changeset | 1633 | interpret dual: linorder "op \<ge>" "op >" | 
| 26041 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1634 | by (rule dual_linorder) | 
| 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1635 | from assms show ?thesis | 
| 32203 
992ac8942691
adapted to localized interpretation of min/max-lattice
 haftmann parents: 
32075diff
changeset | 1636 | by (simp add: Max_def dual.fold1_strict_below_iff [folded dual.dual_max]) | 
| 26041 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1637 | qed | 
| 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1638 | |
| 30325 | 1639 | lemma Min_eqI: | 
| 1640 | assumes "finite A" | |
| 1641 | assumes "\<And>y. y \<in> A \<Longrightarrow> y \<ge> x" | |
| 1642 | and "x \<in> A" | |
| 1643 | shows "Min A = x" | |
| 1644 | proof (rule antisym) | |
| 1645 |   from `x \<in> A` have "A \<noteq> {}" by auto
 | |
| 1646 | with assms show "Min A \<ge> x" by simp | |
| 1647 | next | |
| 1648 | from assms show "x \<ge> Min A" by simp | |
| 1649 | qed | |
| 1650 | ||
| 1651 | lemma Max_eqI: | |
| 1652 | assumes "finite A" | |
| 1653 | assumes "\<And>y. y \<in> A \<Longrightarrow> y \<le> x" | |
| 1654 | and "x \<in> A" | |
| 1655 | shows "Max A = x" | |
| 1656 | proof (rule antisym) | |
| 1657 |   from `x \<in> A` have "A \<noteq> {}" by auto
 | |
| 1658 | with assms show "Max A \<le> x" by simp | |
| 1659 | next | |
| 1660 | from assms show "x \<le> Max A" by simp | |
| 1661 | qed | |
| 1662 | ||
| 26041 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1663 | lemma Min_antimono: | 
| 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1664 |   assumes "M \<subseteq> N" and "M \<noteq> {}" and "finite N"
 | 
| 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1665 | shows "Min N \<le> Min M" | 
| 32203 
992ac8942691
adapted to localized interpretation of min/max-lattice
 haftmann parents: 
32075diff
changeset | 1666 | using assms by (simp add: Min_def fold1_antimono) | 
| 26041 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1667 | |
| 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1668 | lemma Max_mono: | 
| 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1669 |   assumes "M \<subseteq> N" and "M \<noteq> {}" and "finite N"
 | 
| 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1670 | shows "Max M \<le> Max N" | 
| 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1671 | proof - | 
| 32203 
992ac8942691
adapted to localized interpretation of min/max-lattice
 haftmann parents: 
32075diff
changeset | 1672 | interpret dual: linorder "op \<ge>" "op >" | 
| 26041 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1673 | by (rule dual_linorder) | 
| 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1674 | from assms show ?thesis | 
| 32203 
992ac8942691
adapted to localized interpretation of min/max-lattice
 haftmann parents: 
32075diff
changeset | 1675 | by (simp add: Max_def dual.fold1_antimono [folded dual.dual_max]) | 
| 26041 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25571diff
changeset | 1676 | qed | 
| 22917 | 1677 | |
| 32006 | 1678 | lemma finite_linorder_max_induct[consumes 1, case_names empty insert]: | 
| 26748 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26465diff
changeset | 1679 |  "finite A \<Longrightarrow> P {} \<Longrightarrow>
 | 
| 33434 | 1680 | (!!b A. finite A \<Longrightarrow> ALL a:A. a < b \<Longrightarrow> P A \<Longrightarrow> P(insert b A)) | 
| 26748 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26465diff
changeset | 1681 | \<Longrightarrow> P A" | 
| 32006 | 1682 | proof (induct rule: finite_psubset_induct) | 
| 26748 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26465diff
changeset | 1683 | fix A :: "'a set" | 
| 32006 | 1684 |   assume IH: "!! B. finite B \<Longrightarrow> B < A \<Longrightarrow> P {} \<Longrightarrow>
 | 
| 33434 | 1685 | (!!b A. finite A \<Longrightarrow> (\<forall>a\<in>A. a<b) \<Longrightarrow> P A \<Longrightarrow> P (insert b A)) | 
| 26748 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26465diff
changeset | 1686 | \<Longrightarrow> P B" | 
| 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26465diff
changeset | 1687 |   and "finite A" and "P {}"
 | 
| 33434 | 1688 | and step: "!!b A. \<lbrakk>finite A; \<forall>a\<in>A. a < b; P A\<rbrakk> \<Longrightarrow> P (insert b A)" | 
| 26748 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26465diff
changeset | 1689 | show "P A" | 
| 26757 
e775accff967
thms Max_ge, Min_le: dropped superfluous premise
 haftmann parents: 
26748diff
changeset | 1690 |   proof (cases "A = {}")
 | 
| 26748 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26465diff
changeset | 1691 |     assume "A = {}" thus "P A" using `P {}` by simp
 | 
| 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26465diff
changeset | 1692 | next | 
| 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26465diff
changeset | 1693 |     let ?B = "A - {Max A}" let ?A = "insert (Max A) ?B"
 | 
| 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26465diff
changeset | 1694 |     assume "A \<noteq> {}"
 | 
| 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26465diff
changeset | 1695 | with `finite A` have "Max A : A" by auto | 
| 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26465diff
changeset | 1696 | hence A: "?A = A" using insert_Diff_single insert_absorb by auto | 
| 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26465diff
changeset | 1697 | moreover have "finite ?B" using `finite A` by simp | 
| 33434 | 1698 |     ultimately have "P ?B" using `P {}` step IH[of ?B] by blast
 | 
| 32006 | 1699 | moreover have "\<forall>a\<in>?B. a < Max A" using Max_ge [OF `finite A`] by fastsimp | 
| 1700 | ultimately show "P A" using A insert_Diff_single step[OF `finite ?B`] by fastsimp | |
| 26748 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26465diff
changeset | 1701 | qed | 
| 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26465diff
changeset | 1702 | qed | 
| 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26465diff
changeset | 1703 | |
| 32006 | 1704 | lemma finite_linorder_min_induct[consumes 1, case_names empty insert]: | 
| 33434 | 1705 |  "\<lbrakk>finite A; P {}; \<And>b A. \<lbrakk>finite A; \<forall>a\<in>A. b < a; P A\<rbrakk> \<Longrightarrow> P (insert b A)\<rbrakk> \<Longrightarrow> P A"
 | 
| 32006 | 1706 | by(rule linorder.finite_linorder_max_induct[OF dual_linorder]) | 
| 1707 | ||
| 22917 | 1708 | end | 
| 1709 | ||
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34223diff
changeset | 1710 | context linordered_ab_semigroup_add | 
| 22917 | 1711 | begin | 
| 1712 | ||
| 1713 | lemma add_Min_commute: | |
| 1714 | fixes k | |
| 25062 | 1715 |   assumes "finite N" and "N \<noteq> {}"
 | 
| 1716 |   shows "k + Min N = Min {k + m | m. m \<in> N}"
 | |
| 1717 | proof - | |
| 1718 | have "\<And>x y. k + min x y = min (k + x) (k + y)" | |
| 1719 | by (simp add: min_def not_le) | |
| 1720 | (blast intro: antisym less_imp_le add_left_mono) | |
| 1721 | with assms show ?thesis | |
| 1722 | using hom_Min_commute [of "plus k" N] | |
| 1723 | by simp (blast intro: arg_cong [where f = Min]) | |
| 1724 | qed | |
| 22917 | 1725 | |
| 1726 | lemma add_Max_commute: | |
| 1727 | fixes k | |
| 25062 | 1728 |   assumes "finite N" and "N \<noteq> {}"
 | 
| 1729 |   shows "k + Max N = Max {k + m | m. m \<in> N}"
 | |
| 1730 | proof - | |
| 1731 | have "\<And>x y. k + max x y = max (k + x) (k + y)" | |
| 1732 | by (simp add: max_def not_le) | |
| 1733 | (blast intro: antisym less_imp_le add_left_mono) | |
| 1734 | with assms show ?thesis | |
| 1735 | using hom_Max_commute [of "plus k" N] | |
| 1736 | by simp (blast intro: arg_cong [where f = Max]) | |
| 1737 | qed | |
| 22917 | 1738 | |
| 1739 | end | |
| 1740 | ||
| 35034 | 1741 | context linordered_ab_group_add | 
| 1742 | begin | |
| 1743 | ||
| 1744 | lemma minus_Max_eq_Min [simp]: | |
| 1745 |   "finite S \<Longrightarrow> S \<noteq> {} \<Longrightarrow> - (Max S) = Min (uminus ` S)"
 | |
| 1746 | by (induct S rule: finite_ne_induct) (simp_all add: minus_max_eq_min) | |
| 1747 | ||
| 1748 | lemma minus_Min_eq_Max [simp]: | |
| 1749 |   "finite S \<Longrightarrow> S \<noteq> {} \<Longrightarrow> - (Min S) = Max (uminus ` S)"
 | |
| 1750 | by (induct S rule: finite_ne_induct) (simp_all add: minus_min_eq_max) | |
| 1751 | ||
| 1752 | end | |
| 1753 | ||
| 25571 
c9e39eafc7a0
instantiation target rather than legacy instance
 haftmann parents: 
25502diff
changeset | 1754 | end |