| 
62479
 | 
     1  | 
(*  Title:      HOL/Nonstandard_Analysis/NatStar.thy
  | 
| 
 | 
     2  | 
    Author:     Jacques D. Fleuriot
  | 
| 
 | 
     3  | 
    Copyright:  1998  University of Cambridge
  | 
| 
27468
 | 
     4  | 
  | 
| 
 | 
     5  | 
Converted to Isar and polished by lcp
  | 
| 
 | 
     6  | 
*)
  | 
| 
 | 
     7  | 
  | 
| 
64435
 | 
     8  | 
section \<open>Star-transforms for the Hypernaturals\<close>
  | 
| 
27468
 | 
     9  | 
  | 
| 
 | 
    10  | 
theory NatStar
  | 
| 
64435
 | 
    11  | 
  imports Star
  | 
| 
27468
 | 
    12  | 
begin
  | 
| 
 | 
    13  | 
  | 
| 
 | 
    14  | 
lemma star_n_eq_starfun_whn: "star_n X = ( *f* X) whn"
  | 
| 
64435
 | 
    15  | 
  by (simp add: hypnat_omega_def starfun_def star_of_def Ifun_star_n)
  | 
| 
27468
 | 
    16  | 
  | 
| 
64435
 | 
    17  | 
lemma starset_n_Un: "*sn* (\<lambda>n. (A n) \<union> (B n)) = *sn* A \<union> *sn* B"
  | 
| 
70219
 | 
    18  | 
proof -
  | 
| 
 | 
    19  | 
  have "\<And>N. Iset ((*f* (\<lambda>n. {x. x \<in> A n \<or> x \<in> B n})) N) =
 | 
| 
 | 
    20  | 
    {x. x \<in> Iset ((*f* A) N) \<or> x \<in> Iset ((*f* B) N)}"
 | 
| 
 | 
    21  | 
    by transfer simp
  | 
| 
 | 
    22  | 
  then show ?thesis
  | 
| 
 | 
    23  | 
    by (simp add: starset_n_def star_n_eq_starfun_whn Un_def)
  | 
| 
 | 
    24  | 
qed
  | 
| 
27468
 | 
    25  | 
  | 
| 
64435
 | 
    26  | 
lemma InternalSets_Un: "X \<in> InternalSets \<Longrightarrow> Y \<in> InternalSets \<Longrightarrow> X \<union> Y \<in> InternalSets"
  | 
| 
 | 
    27  | 
  by (auto simp add: InternalSets_def starset_n_Un [symmetric])
  | 
| 
27468
 | 
    28  | 
  | 
| 
64435
 | 
    29  | 
lemma starset_n_Int: "*sn* (\<lambda>n. A n \<inter> B n) = *sn* A \<inter> *sn* B"
  | 
| 
70219
 | 
    30  | 
proof -
  | 
| 
 | 
    31  | 
  have "\<And>N. Iset ((*f* (\<lambda>n. {x. x \<in> A n \<and> x \<in> B n})) N) =
 | 
| 
 | 
    32  | 
    {x. x \<in> Iset ((*f* A) N) \<and> x \<in> Iset ((*f* B) N)}"
 | 
| 
 | 
    33  | 
    by transfer simp
  | 
| 
 | 
    34  | 
  then show ?thesis
  | 
| 
 | 
    35  | 
    by (simp add: starset_n_def star_n_eq_starfun_whn Int_def)
  | 
| 
 | 
    36  | 
qed
  | 
| 
27468
 | 
    37  | 
  | 
| 
64435
 | 
    38  | 
lemma InternalSets_Int: "X \<in> InternalSets \<Longrightarrow> Y \<in> InternalSets \<Longrightarrow> X \<inter> Y \<in> InternalSets"
  | 
| 
 | 
    39  | 
  by (auto simp add: InternalSets_def starset_n_Int [symmetric])
  | 
| 
27468
 | 
    40  | 
  | 
| 
64435
 | 
    41  | 
lemma starset_n_Compl: "*sn* ((\<lambda>n. - A n)) = - ( *sn* A)"
  | 
| 
70219
 | 
    42  | 
proof -
  | 
| 
 | 
    43  | 
  have "\<And>N. Iset ((*f* (\<lambda>n. {x. x \<notin> A n})) N) =
 | 
| 
 | 
    44  | 
    {x. x \<notin> Iset ((*f* A) N)}"
 | 
| 
 | 
    45  | 
    by transfer simp
  | 
| 
 | 
    46  | 
  then show ?thesis
  | 
| 
 | 
    47  | 
    by (simp add: starset_n_def star_n_eq_starfun_whn Compl_eq)
  | 
| 
 | 
    48  | 
qed
  | 
| 
27468
 | 
    49  | 
  | 
| 
64435
 | 
    50  | 
lemma InternalSets_Compl: "X \<in> InternalSets \<Longrightarrow> - X \<in> InternalSets"
  | 
| 
 | 
    51  | 
  by (auto simp add: InternalSets_def starset_n_Compl [symmetric])
  | 
| 
27468
 | 
    52  | 
  | 
| 
64435
 | 
    53  | 
lemma starset_n_diff: "*sn* (\<lambda>n. (A n) - (B n)) = *sn* A - *sn* B"
  | 
| 
70219
 | 
    54  | 
proof -
  | 
| 
 | 
    55  | 
  have "\<And>N. Iset ((*f* (\<lambda>n. {x. x \<in> A n \<and> x \<notin> B n})) N) =
 | 
| 
 | 
    56  | 
    {x. x \<in> Iset ((*f* A) N) \<and> x \<notin> Iset ((*f* B) N)}"
 | 
| 
 | 
    57  | 
    by transfer simp
  | 
| 
 | 
    58  | 
  then show ?thesis
  | 
| 
 | 
    59  | 
    by (simp add: starset_n_def star_n_eq_starfun_whn set_diff_eq)
  | 
| 
 | 
    60  | 
qed
  | 
| 
27468
 | 
    61  | 
  | 
| 
64435
 | 
    62  | 
lemma InternalSets_diff: "X \<in> InternalSets \<Longrightarrow> Y \<in> InternalSets \<Longrightarrow> X - Y \<in> InternalSets"
  | 
| 
 | 
    63  | 
  by (auto simp add: InternalSets_def starset_n_diff [symmetric])
  | 
| 
27468
 | 
    64  | 
  | 
| 
 | 
    65  | 
lemma NatStar_SHNat_subset: "Nats \<le> *s* (UNIV:: nat set)"
  | 
| 
64435
 | 
    66  | 
  by simp
  | 
| 
27468
 | 
    67  | 
  | 
| 
64435
 | 
    68  | 
lemma NatStar_hypreal_of_real_Int: "*s* X Int Nats = hypnat_of_nat ` X"
  | 
| 
 | 
    69  | 
  by (auto simp add: SHNat_eq)
  | 
| 
27468
 | 
    70  | 
  | 
| 
64435
 | 
    71  | 
lemma starset_starset_n_eq: "*s* X = *sn* (\<lambda>n. X)"
  | 
| 
 | 
    72  | 
  by (simp add: starset_n_starset)
  | 
| 
27468
 | 
    73  | 
  | 
| 
 | 
    74  | 
lemma InternalSets_starset_n [simp]: "( *s* X) \<in> InternalSets"
  | 
| 
64435
 | 
    75  | 
  by (auto simp add: InternalSets_def starset_starset_n_eq)
  | 
| 
27468
 | 
    76  | 
  | 
| 
64435
 | 
    77  | 
lemma InternalSets_UNIV_diff: "X \<in> InternalSets \<Longrightarrow> UNIV - X \<in> InternalSets"
  | 
| 
70219
 | 
    78  | 
  by (simp add: InternalSets_Compl diff_eq)
  | 
| 
27468
 | 
    79  | 
  | 
| 
 | 
    80  | 
  | 
| 
64435
 | 
    81  | 
subsection \<open>Nonstandard Extensions of Functions\<close>
  | 
| 
27468
 | 
    82  | 
  | 
| 
64435
 | 
    83  | 
text \<open>Example of transfer of a property from reals to hyperreals
  | 
| 
 | 
    84  | 
  --- used for limit comparison of sequences.\<close>
  | 
| 
 | 
    85  | 
  | 
| 
 | 
    86  | 
lemma starfun_le_mono: "\<forall>n. N \<le> n \<longrightarrow> f n \<le> g n \<Longrightarrow>
  | 
| 
 | 
    87  | 
  \<forall>n. hypnat_of_nat N \<le> n \<longrightarrow> ( *f* f) n \<le> ( *f* g) n"
  | 
| 
 | 
    88  | 
  by transfer
  | 
| 
27468
 | 
    89  | 
  | 
| 
64435
 | 
    90  | 
text \<open>And another:\<close>
  | 
| 
27468
 | 
    91  | 
lemma starfun_less_mono:
  | 
| 
64435
 | 
    92  | 
  "\<forall>n. N \<le> n \<longrightarrow> f n < g n \<Longrightarrow> \<forall>n. hypnat_of_nat N \<le> n \<longrightarrow> ( *f* f) n < ( *f* g) n"
  | 
| 
 | 
    93  | 
  by transfer
  | 
| 
27468
 | 
    94  | 
  | 
| 
64435
 | 
    95  | 
text \<open>Nonstandard extension when we increment the argument by one.\<close>
  | 
| 
27468
 | 
    96  | 
  | 
| 
64435
 | 
    97  | 
lemma starfun_shift_one: "\<And>N. ( *f* (\<lambda>n. f (Suc n))) N = ( *f* f) (N + (1::hypnat))"
  | 
| 
 | 
    98  | 
  by transfer simp
  | 
| 
27468
 | 
    99  | 
  | 
| 
64435
 | 
   100  | 
text \<open>Nonstandard extension with absolute value.\<close>
  | 
| 
 | 
   101  | 
lemma starfun_abs: "\<And>N. ( *f* (\<lambda>n. \<bar>f n\<bar>)) N = \<bar>( *f* f) N\<bar>"
  | 
| 
 | 
   102  | 
  by transfer (rule refl)
  | 
| 
27468
 | 
   103  | 
  | 
| 
64435
 | 
   104  | 
text \<open>The \<open>hyperpow\<close> function as a nonstandard extension of \<open>realpow\<close>.\<close>
  | 
| 
 | 
   105  | 
lemma starfun_pow: "\<And>N. ( *f* (\<lambda>n. r ^ n)) N = hypreal_of_real r pow N"
  | 
| 
 | 
   106  | 
  by transfer (rule refl)
  | 
| 
27468
 | 
   107  | 
  | 
| 
64435
 | 
   108  | 
lemma starfun_pow2: "\<And>N. ( *f* (\<lambda>n. X n ^ m)) N = ( *f* X) N pow hypnat_of_nat m"
  | 
| 
 | 
   109  | 
  by transfer (rule refl)
  | 
| 
27468
 | 
   110  | 
  | 
| 
64435
 | 
   111  | 
lemma starfun_pow3: "\<And>R. ( *f* (\<lambda>r. r ^ n)) R = R pow hypnat_of_nat n"
  | 
| 
 | 
   112  | 
  by transfer (rule refl)
  | 
| 
27468
 | 
   113  | 
  | 
| 
69597
 | 
   114  | 
text \<open>The \<^term>\<open>hypreal_of_hypnat\<close> function as a nonstandard extension of
  | 
| 
 | 
   115  | 
  \<^term>\<open>real_of_nat\<close>.\<close>
  | 
| 
27468
 | 
   116  | 
lemma starfunNat_real_of_nat: "( *f* real) = hypreal_of_hypnat"
  | 
| 
64435
 | 
   117  | 
  by transfer (simp add: fun_eq_iff)
  | 
| 
27468
 | 
   118  | 
  | 
| 
 | 
   119  | 
lemma starfun_inverse_real_of_nat_eq:
  | 
| 
64435
 | 
   120  | 
  "N \<in> HNatInfinite \<Longrightarrow> ( *f* (\<lambda>x::nat. inverse (real x))) N = inverse (hypreal_of_hypnat N)"
  | 
| 
70219
 | 
   121  | 
  by (metis of_hypnat_def starfun_inverse2)
  | 
| 
27468
 | 
   122  | 
  | 
| 
64435
 | 
   123  | 
text \<open>Internal functions -- some redundancy with \<open>*f*\<close> now.\<close>
  | 
| 
27468
 | 
   124  | 
  | 
| 
64435
 | 
   125  | 
lemma starfun_n: "( *fn* f) (star_n X) = star_n (\<lambda>n. f n (X n))"
  | 
| 
 | 
   126  | 
  by (simp add: starfun_n_def Ifun_star_n)
  | 
| 
27468
 | 
   127  | 
  | 
| 
64435
 | 
   128  | 
text \<open>Multiplication: \<open>( *fn) x ( *gn) = *(fn x gn)\<close>\<close>
  | 
| 
27468
 | 
   129  | 
  | 
| 
64435
 | 
   130  | 
lemma starfun_n_mult: "( *fn* f) z * ( *fn* g) z = ( *fn* (\<lambda>i x. f i x * g i x)) z"
  | 
| 
 | 
   131  | 
  by (cases z) (simp add: starfun_n star_n_mult)
  | 
| 
27468
 | 
   132  | 
  | 
| 
64435
 | 
   133  | 
text \<open>Addition: \<open>( *fn) + ( *gn) = *(fn + gn)\<close>\<close>
  | 
| 
 | 
   134  | 
lemma starfun_n_add: "( *fn* f) z + ( *fn* g) z = ( *fn* (\<lambda>i x. f i x + g i x)) z"
  | 
| 
 | 
   135  | 
  by (cases z) (simp add: starfun_n star_n_add)
  | 
| 
27468
 | 
   136  | 
  | 
| 
64435
 | 
   137  | 
text \<open>Subtraction: \<open>( *fn) - ( *gn) = *(fn + - gn)\<close>\<close>
  | 
| 
 | 
   138  | 
lemma starfun_n_add_minus: "( *fn* f) z + -( *fn* g) z = ( *fn* (\<lambda>i x. f i x + -g i x)) z"
  | 
| 
 | 
   139  | 
  by (cases z) (simp add: starfun_n star_n_minus star_n_add)
  | 
| 
27468
 | 
   140  | 
  | 
| 
 | 
   141  | 
  | 
| 
64435
 | 
   142  | 
text \<open>Composition: \<open>( *fn) \<circ> ( *gn) = *(fn \<circ> gn)\<close>\<close>
  | 
| 
27468
 | 
   143  | 
  | 
| 
64435
 | 
   144  | 
lemma starfun_n_const_fun [simp]: "( *fn* (\<lambda>i x. k)) z = star_of k"
  | 
| 
 | 
   145  | 
  by (cases z) (simp add: starfun_n star_of_def)
  | 
| 
27468
 | 
   146  | 
  | 
| 
64435
 | 
   147  | 
lemma starfun_n_minus: "- ( *fn* f) x = ( *fn* (\<lambda>i x. - (f i) x)) x"
  | 
| 
 | 
   148  | 
  by (cases x) (simp add: starfun_n star_n_minus)
  | 
| 
27468
 | 
   149  | 
  | 
| 
64435
 | 
   150  | 
lemma starfun_n_eq [simp]: "( *fn* f) (star_of n) = star_n (\<lambda>i. f i n)"
  | 
| 
 | 
   151  | 
  by (simp add: starfun_n star_of_def)
  | 
| 
27468
 | 
   152  | 
  | 
| 
64435
 | 
   153  | 
lemma starfun_eq_iff: "(( *f* f) = ( *f* g)) \<longleftrightarrow> f = g"
  | 
| 
 | 
   154  | 
  by transfer (rule refl)
  | 
| 
27468
 | 
   155  | 
  | 
| 
 | 
   156  | 
lemma starfunNat_inverse_real_of_nat_Infinitesimal [simp]:
  | 
| 
67091
 | 
   157  | 
  "N \<in> HNatInfinite \<Longrightarrow> ( *f* (\<lambda>x. inverse (real x))) N \<in> Infinitesimal"
  | 
| 
70219
 | 
   158  | 
  using starfun_inverse_real_of_nat_eq by auto
  | 
| 
27468
 | 
   159  | 
  | 
| 
 | 
   160  | 
  | 
| 
64435
 | 
   161  | 
subsection \<open>Nonstandard Characterization of Induction\<close>
  | 
| 
27468
 | 
   162  | 
  | 
| 
 | 
   163  | 
lemma hypnat_induct_obj:
  | 
| 
64435
 | 
   164  | 
  "\<And>n. (( *p* P) (0::hypnat) \<and> (\<forall>n. ( *p* P) n \<longrightarrow> ( *p* P) (n + 1))) \<longrightarrow> ( *p* P) n"
  | 
| 
 | 
   165  | 
  by transfer (induct_tac n, auto)
  | 
| 
27468
 | 
   166  | 
  | 
| 
 | 
   167  | 
lemma hypnat_induct:
  | 
| 
64435
 | 
   168  | 
  "\<And>n. ( *p* P) (0::hypnat) \<Longrightarrow> (\<And>n. ( *p* P) n \<Longrightarrow> ( *p* P) (n + 1)) \<Longrightarrow> ( *p* P) n"
  | 
| 
 | 
   169  | 
  by transfer (induct_tac n, auto)
  | 
| 
27468
 | 
   170  | 
  | 
| 
67399
 | 
   171  | 
lemma starP2_eq_iff: "( *p2* (=)) = (=)"
  | 
| 
64435
 | 
   172  | 
  by transfer (rule refl)
  | 
| 
27468
 | 
   173  | 
  | 
| 
64435
 | 
   174  | 
lemma starP2_eq_iff2: "( *p2* (\<lambda>x y. x = y)) X Y \<longleftrightarrow> X = Y"
  | 
| 
 | 
   175  | 
  by (simp add: starP2_eq_iff)
  | 
| 
27468
 | 
   176  | 
  | 
| 
70219
 | 
   177  | 
lemma nonempty_set_star_has_least_lemma:
  | 
| 
 | 
   178  | 
  "\<exists>n\<in>S. \<forall>m\<in>S. n \<le> m" if "S \<noteq> {}" for S :: "nat set"
 | 
| 
 | 
   179  | 
proof
  | 
| 
 | 
   180  | 
  show "\<forall>m\<in>S. (LEAST n. n \<in> S) \<le> m"
  | 
| 
 | 
   181  | 
    by (simp add: Least_le)
  | 
| 
 | 
   182  | 
  show "(LEAST n. n \<in> S) \<in> S"
  | 
| 
 | 
   183  | 
    by (meson that LeastI_ex equals0I)
  | 
| 
 | 
   184  | 
qed
  | 
| 
27468
 | 
   185  | 
  | 
| 
 | 
   186  | 
lemma nonempty_set_star_has_least:
  | 
| 
64435
 | 
   187  | 
  "\<And>S::nat set star. Iset S \<noteq> {} \<Longrightarrow> \<exists>n \<in> Iset S. \<forall>m \<in> Iset S. n \<le> m"
 | 
| 
70219
 | 
   188  | 
  using nonempty_set_star_has_least_lemma by (transfer empty_def)
  | 
| 
27468
 | 
   189  | 
  | 
| 
64435
 | 
   190  | 
lemma nonempty_InternalNatSet_has_least: "S \<in> InternalSets \<Longrightarrow> S \<noteq> {} \<Longrightarrow> \<exists>n \<in> S. \<forall>m \<in> S. n \<le> m"
 | 
| 
 | 
   191  | 
  for S :: "hypnat set"
  | 
| 
70219
 | 
   192  | 
  by (force simp add: InternalSets_def starset_n_def dest!: nonempty_set_star_has_least)
  | 
| 
27468
 | 
   193  | 
  | 
| 
64435
 | 
   194  | 
text \<open>Goldblatt, page 129 Thm 11.3.2.\<close>
  | 
| 
27468
 | 
   195  | 
lemma internal_induct_lemma:
  | 
| 
64435
 | 
   196  | 
  "\<And>X::nat set star.
  | 
| 
 | 
   197  | 
    (0::hypnat) \<in> Iset X \<Longrightarrow> \<forall>n. n \<in> Iset X \<longrightarrow> n + 1 \<in> Iset X \<Longrightarrow> Iset X = (UNIV:: hypnat set)"
  | 
| 
 | 
   198  | 
  apply (transfer UNIV_def)
  | 
| 
 | 
   199  | 
  apply (rule equalityI [OF subset_UNIV subsetI])
  | 
| 
 | 
   200  | 
  apply (induct_tac x, auto)
  | 
| 
 | 
   201  | 
  done
  | 
| 
27468
 | 
   202  | 
  | 
| 
 | 
   203  | 
lemma internal_induct:
  | 
| 
64435
 | 
   204  | 
  "X \<in> InternalSets \<Longrightarrow> (0::hypnat) \<in> X \<Longrightarrow> \<forall>n. n \<in> X \<longrightarrow> n + 1 \<in> X \<Longrightarrow> X = (UNIV:: hypnat set)"
  | 
| 
 | 
   205  | 
  apply (clarsimp simp add: InternalSets_def starset_n_def)
  | 
| 
 | 
   206  | 
  apply (erule (1) internal_induct_lemma)
  | 
| 
 | 
   207  | 
  done
  | 
| 
27468
 | 
   208  | 
  | 
| 
 | 
   209  | 
end
  |