author | nipkow |
Mon, 16 Aug 2004 14:22:27 +0200 | |
changeset 15131 | c69542757a4d |
parent 14981 | e73f8140af78 |
child 15140 | 322485b816ac |
permissions | -rw-r--r-- |
5181
4ba3787d9709
New theory Datatype. Needed as an ancestor when defining datatypes.
berghofe
parents:
diff
changeset
|
1 |
(* Title: HOL/Datatype.thy |
4ba3787d9709
New theory Datatype. Needed as an ancestor when defining datatypes.
berghofe
parents:
diff
changeset
|
2 |
ID: $Id$ |
11954 | 3 |
Author: Stefan Berghofer and Markus Wenzel, TU Muenchen |
5181
4ba3787d9709
New theory Datatype. Needed as an ancestor when defining datatypes.
berghofe
parents:
diff
changeset
|
4 |
*) |
4ba3787d9709
New theory Datatype. Needed as an ancestor when defining datatypes.
berghofe
parents:
diff
changeset
|
5 |
|
12918 | 6 |
header {* Datatypes *} |
11954 | 7 |
|
15131 | 8 |
theory Datatype |
9 |
import Datatype_Universe |
|
10 |
begin |
|
11954 | 11 |
|
12 |
subsection {* Representing primitive types *} |
|
5181
4ba3787d9709
New theory Datatype. Needed as an ancestor when defining datatypes.
berghofe
parents:
diff
changeset
|
13 |
|
5759 | 14 |
rep_datatype bool |
11954 | 15 |
distinct True_not_False False_not_True |
16 |
induction bool_induct |
|
17 |
||
18 |
declare case_split [cases type: bool] |
|
19 |
-- "prefer plain propositional version" |
|
20 |
||
21 |
rep_datatype unit |
|
22 |
induction unit_induct |
|
5181
4ba3787d9709
New theory Datatype. Needed as an ancestor when defining datatypes.
berghofe
parents:
diff
changeset
|
23 |
|
4ba3787d9709
New theory Datatype. Needed as an ancestor when defining datatypes.
berghofe
parents:
diff
changeset
|
24 |
rep_datatype prod |
11954 | 25 |
inject Pair_eq |
26 |
induction prod_induct |
|
27 |
||
12918 | 28 |
rep_datatype sum |
29 |
distinct Inl_not_Inr Inr_not_Inl |
|
30 |
inject Inl_eq Inr_eq |
|
31 |
induction sum_induct |
|
32 |
||
33 |
ML {* |
|
34 |
val [sum_case_Inl, sum_case_Inr] = thms "sum.cases"; |
|
35 |
bind_thm ("sum_case_Inl", sum_case_Inl); |
|
36 |
bind_thm ("sum_case_Inr", sum_case_Inr); |
|
37 |
*} -- {* compatibility *} |
|
38 |
||
39 |
lemma surjective_sum: "sum_case (%x::'a. f (Inl x)) (%y::'b. f (Inr y)) s = f(s)" |
|
40 |
apply (rule_tac s = s in sumE) |
|
41 |
apply (erule ssubst) |
|
42 |
apply (rule sum_case_Inl) |
|
43 |
apply (erule ssubst) |
|
44 |
apply (rule sum_case_Inr) |
|
45 |
done |
|
46 |
||
47 |
lemma sum_case_weak_cong: "s = t ==> sum_case f g s = sum_case f g t" |
|
48 |
-- {* Prevents simplification of @{text f} and @{text g}: much faster. *} |
|
49 |
by (erule arg_cong) |
|
50 |
||
51 |
lemma sum_case_inject: |
|
52 |
"sum_case f1 f2 = sum_case g1 g2 ==> (f1 = g1 ==> f2 = g2 ==> P) ==> P" |
|
53 |
proof - |
|
54 |
assume a: "sum_case f1 f2 = sum_case g1 g2" |
|
55 |
assume r: "f1 = g1 ==> f2 = g2 ==> P" |
|
56 |
show P |
|
57 |
apply (rule r) |
|
58 |
apply (rule ext) |
|
14208 | 59 |
apply (cut_tac x = "Inl x" in a [THEN fun_cong], simp) |
12918 | 60 |
apply (rule ext) |
14208 | 61 |
apply (cut_tac x = "Inr x" in a [THEN fun_cong], simp) |
12918 | 62 |
done |
63 |
qed |
|
64 |
||
13635
c41e88151b54
Added functions Suml and Sumr which are useful for constructing
berghofe
parents:
12918
diff
changeset
|
65 |
constdefs |
c41e88151b54
Added functions Suml and Sumr which are useful for constructing
berghofe
parents:
12918
diff
changeset
|
66 |
Suml :: "('a => 'c) => 'a + 'b => 'c" |
c41e88151b54
Added functions Suml and Sumr which are useful for constructing
berghofe
parents:
12918
diff
changeset
|
67 |
"Suml == (%f. sum_case f arbitrary)" |
c41e88151b54
Added functions Suml and Sumr which are useful for constructing
berghofe
parents:
12918
diff
changeset
|
68 |
|
c41e88151b54
Added functions Suml and Sumr which are useful for constructing
berghofe
parents:
12918
diff
changeset
|
69 |
Sumr :: "('b => 'c) => 'a + 'b => 'c" |
c41e88151b54
Added functions Suml and Sumr which are useful for constructing
berghofe
parents:
12918
diff
changeset
|
70 |
"Sumr == sum_case arbitrary" |
c41e88151b54
Added functions Suml and Sumr which are useful for constructing
berghofe
parents:
12918
diff
changeset
|
71 |
|
c41e88151b54
Added functions Suml and Sumr which are useful for constructing
berghofe
parents:
12918
diff
changeset
|
72 |
lemma Suml_inject: "Suml f = Suml g ==> f = g" |
c41e88151b54
Added functions Suml and Sumr which are useful for constructing
berghofe
parents:
12918
diff
changeset
|
73 |
by (unfold Suml_def) (erule sum_case_inject) |
c41e88151b54
Added functions Suml and Sumr which are useful for constructing
berghofe
parents:
12918
diff
changeset
|
74 |
|
c41e88151b54
Added functions Suml and Sumr which are useful for constructing
berghofe
parents:
12918
diff
changeset
|
75 |
lemma Sumr_inject: "Sumr f = Sumr g ==> f = g" |
c41e88151b54
Added functions Suml and Sumr which are useful for constructing
berghofe
parents:
12918
diff
changeset
|
76 |
by (unfold Sumr_def) (erule sum_case_inject) |
c41e88151b54
Added functions Suml and Sumr which are useful for constructing
berghofe
parents:
12918
diff
changeset
|
77 |
|
c41e88151b54
Added functions Suml and Sumr which are useful for constructing
berghofe
parents:
12918
diff
changeset
|
78 |
|
c41e88151b54
Added functions Suml and Sumr which are useful for constructing
berghofe
parents:
12918
diff
changeset
|
79 |
subsection {* Finishing the datatype package setup *} |
c41e88151b54
Added functions Suml and Sumr which are useful for constructing
berghofe
parents:
12918
diff
changeset
|
80 |
|
c41e88151b54
Added functions Suml and Sumr which are useful for constructing
berghofe
parents:
12918
diff
changeset
|
81 |
text {* Belongs to theory @{text Datatype_Universe}; hides popular names. *} |
14274 | 82 |
hide const Push Node Atom Leaf Numb Lim Split Case Suml Sumr |
13635
c41e88151b54
Added functions Suml and Sumr which are useful for constructing
berghofe
parents:
12918
diff
changeset
|
83 |
hide type node item |
c41e88151b54
Added functions Suml and Sumr which are useful for constructing
berghofe
parents:
12918
diff
changeset
|
84 |
|
12918 | 85 |
|
86 |
subsection {* Further cases/induct rules for tuples *} |
|
11954 | 87 |
|
88 |
lemma prod_cases3 [case_names fields, cases type]: |
|
89 |
"(!!a b c. y = (a, b, c) ==> P) ==> P" |
|
90 |
apply (cases y) |
|
14208 | 91 |
apply (case_tac b, blast) |
11954 | 92 |
done |
93 |
||
94 |
lemma prod_induct3 [case_names fields, induct type]: |
|
95 |
"(!!a b c. P (a, b, c)) ==> P x" |
|
96 |
by (cases x) blast |
|
97 |
||
98 |
lemma prod_cases4 [case_names fields, cases type]: |
|
99 |
"(!!a b c d. y = (a, b, c, d) ==> P) ==> P" |
|
100 |
apply (cases y) |
|
14208 | 101 |
apply (case_tac c, blast) |
11954 | 102 |
done |
103 |
||
104 |
lemma prod_induct4 [case_names fields, induct type]: |
|
105 |
"(!!a b c d. P (a, b, c, d)) ==> P x" |
|
106 |
by (cases x) blast |
|
5181
4ba3787d9709
New theory Datatype. Needed as an ancestor when defining datatypes.
berghofe
parents:
diff
changeset
|
107 |
|
11954 | 108 |
lemma prod_cases5 [case_names fields, cases type]: |
109 |
"(!!a b c d e. y = (a, b, c, d, e) ==> P) ==> P" |
|
110 |
apply (cases y) |
|
14208 | 111 |
apply (case_tac d, blast) |
11954 | 112 |
done |
113 |
||
114 |
lemma prod_induct5 [case_names fields, induct type]: |
|
115 |
"(!!a b c d e. P (a, b, c, d, e)) ==> P x" |
|
116 |
by (cases x) blast |
|
117 |
||
118 |
lemma prod_cases6 [case_names fields, cases type]: |
|
119 |
"(!!a b c d e f. y = (a, b, c, d, e, f) ==> P) ==> P" |
|
120 |
apply (cases y) |
|
14208 | 121 |
apply (case_tac e, blast) |
11954 | 122 |
done |
123 |
||
124 |
lemma prod_induct6 [case_names fields, induct type]: |
|
125 |
"(!!a b c d e f. P (a, b, c, d, e, f)) ==> P x" |
|
126 |
by (cases x) blast |
|
127 |
||
128 |
lemma prod_cases7 [case_names fields, cases type]: |
|
129 |
"(!!a b c d e f g. y = (a, b, c, d, e, f, g) ==> P) ==> P" |
|
130 |
apply (cases y) |
|
14208 | 131 |
apply (case_tac f, blast) |
11954 | 132 |
done |
133 |
||
134 |
lemma prod_induct7 [case_names fields, induct type]: |
|
135 |
"(!!a b c d e f g. P (a, b, c, d, e, f, g)) ==> P x" |
|
136 |
by (cases x) blast |
|
5759 | 137 |
|
12918 | 138 |
|
139 |
subsection {* The option type *} |
|
140 |
||
141 |
datatype 'a option = None | Some 'a |
|
142 |
||
143 |
lemma not_None_eq [iff]: "(x ~= None) = (EX y. x = Some y)" |
|
144 |
by (induct x) auto |
|
145 |
||
146 |
lemma not_Some_eq [iff]: "(ALL y. x ~= Some y) = (x = None)" |
|
147 |
by (induct x) auto |
|
148 |
||
149 |
lemma option_caseE: |
|
150 |
"(case x of None => P | Some y => Q y) ==> |
|
151 |
(x = None ==> P ==> R) ==> |
|
152 |
(!!y. x = Some y ==> Q y ==> R) ==> R" |
|
153 |
by (cases x) simp_all |
|
154 |
||
155 |
||
156 |
subsubsection {* Operations *} |
|
157 |
||
158 |
consts |
|
159 |
the :: "'a option => 'a" |
|
160 |
primrec |
|
161 |
"the (Some x) = x" |
|
162 |
||
163 |
consts |
|
164 |
o2s :: "'a option => 'a set" |
|
165 |
primrec |
|
166 |
"o2s None = {}" |
|
167 |
"o2s (Some x) = {x}" |
|
168 |
||
169 |
lemma ospec [dest]: "(ALL x:o2s A. P x) ==> A = Some x ==> P x" |
|
170 |
by simp |
|
171 |
||
172 |
ML_setup {* claset_ref() := claset() addSD2 ("ospec", thm "ospec") *} |
|
173 |
||
174 |
lemma elem_o2s [iff]: "(x : o2s xo) = (xo = Some x)" |
|
175 |
by (cases xo) auto |
|
176 |
||
177 |
lemma o2s_empty_eq [simp]: "(o2s xo = {}) = (xo = None)" |
|
178 |
by (cases xo) auto |
|
179 |
||
180 |
||
181 |
constdefs |
|
182 |
option_map :: "('a => 'b) => ('a option => 'b option)" |
|
183 |
"option_map == %f y. case y of None => None | Some x => Some (f x)" |
|
184 |
||
185 |
lemma option_map_None [simp]: "option_map f None = None" |
|
186 |
by (simp add: option_map_def) |
|
187 |
||
188 |
lemma option_map_Some [simp]: "option_map f (Some x) = Some (f x)" |
|
189 |
by (simp add: option_map_def) |
|
190 |
||
14187 | 191 |
lemma option_map_is_None[iff]: |
192 |
"(option_map f opt = None) = (opt = None)" |
|
193 |
by (simp add: option_map_def split add: option.split) |
|
194 |
||
12918 | 195 |
lemma option_map_eq_Some [iff]: |
196 |
"(option_map f xo = Some y) = (EX z. xo = Some z & f z = y)" |
|
14187 | 197 |
by (simp add: option_map_def split add: option.split) |
198 |
||
199 |
lemma option_map_comp: |
|
200 |
"option_map f (option_map g opt) = option_map (f o g) opt" |
|
201 |
by (simp add: option_map_def split add: option.split) |
|
12918 | 202 |
|
203 |
lemma option_map_o_sum_case [simp]: |
|
204 |
"option_map f o sum_case g h = sum_case (option_map f o g) (option_map f o h)" |
|
205 |
apply (rule ext) |
|
206 |
apply (simp split add: sum.split) |
|
207 |
done |
|
208 |
||
5181
4ba3787d9709
New theory Datatype. Needed as an ancestor when defining datatypes.
berghofe
parents:
diff
changeset
|
209 |
end |