| author | bulwahn | 
| Fri, 11 Mar 2011 10:37:41 +0100 | |
| changeset 41911 | c6e66b32ce16 | 
| parent 36778 | 739a9379e29b | 
| child 57514 | bdc2c6b40bf2 | 
| permissions | -rw-r--r-- | 
| 
28952
 
15a4b2cf8c34
made repository layout more coherent with logical distribution structure; stripped some $Id$s
 
haftmann 
parents: 
28001 
diff
changeset
 | 
1  | 
(* Title: HOL/ex/Sqrt_Script.thy  | 
| 13957 | 2  | 
Author: Lawrence C Paulson, Cambridge University Computer Laboratory  | 
3  | 
Copyright 2001 University of Cambridge  | 
|
4  | 
*)  | 
|
5  | 
||
6  | 
header {* Square roots of primes are irrational (script version) *}
 | 
|
7  | 
||
| 15149 | 8  | 
theory Sqrt_Script  | 
| 32479 | 9  | 
imports Complex_Main "~~/src/HOL/Number_Theory/Primes"  | 
| 15149 | 10  | 
begin  | 
| 13957 | 11  | 
|
12  | 
text {*
 | 
|
13  | 
\medskip Contrast this linear Isabelle/Isar script with Markus  | 
|
14  | 
Wenzel's more mathematical version.  | 
|
15  | 
*}  | 
|
16  | 
||
17  | 
subsection {* Preliminaries *}
 | 
|
18  | 
||
| 32479 | 19  | 
lemma prime_nonzero: "prime (p::nat) \<Longrightarrow> p \<noteq> 0"  | 
20  | 
by (force simp add: prime_nat_def)  | 
|
| 13957 | 21  | 
|
22  | 
lemma prime_dvd_other_side:  | 
|
| 32479 | 23  | 
"(n::nat) * n = p * (k * k) \<Longrightarrow> prime p \<Longrightarrow> p dvd n"  | 
24  | 
apply (subgoal_tac "p dvd n * n", blast dest: prime_dvd_mult_nat)  | 
|
| 
27651
 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 
haftmann 
parents: 
21404 
diff
changeset
 | 
25  | 
apply auto  | 
| 13957 | 26  | 
done  | 
27  | 
||
| 32479 | 28  | 
lemma reduction: "prime (p::nat) \<Longrightarrow>  | 
| 13957 | 29  | 
0 < k \<Longrightarrow> k * k = p * (j * j) \<Longrightarrow> k < p * j \<and> 0 < j"  | 
30  | 
apply (rule ccontr)  | 
|
31  | 
apply (simp add: linorder_not_less)  | 
|
32  | 
apply (erule disjE)  | 
|
33  | 
apply (frule mult_le_mono, assumption)  | 
|
34  | 
apply auto  | 
|
| 32479 | 35  | 
apply (force simp add: prime_nat_def)  | 
| 13957 | 36  | 
done  | 
37  | 
||
38  | 
lemma rearrange: "(j::nat) * (p * j) = k * k \<Longrightarrow> k * k = p * (j * j)"  | 
|
39  | 
by (simp add: mult_ac)  | 
|
40  | 
||
41  | 
lemma prime_not_square:  | 
|
| 32479 | 42  | 
"prime (p::nat) \<Longrightarrow> (\<And>k. 0 < k \<Longrightarrow> m * m \<noteq> p * (k * k))"  | 
| 13957 | 43  | 
apply (induct m rule: nat_less_induct)  | 
44  | 
apply clarify  | 
|
45  | 
apply (frule prime_dvd_other_side, assumption)  | 
|
46  | 
apply (erule dvdE)  | 
|
47  | 
apply (simp add: nat_mult_eq_cancel_disj prime_nonzero)  | 
|
48  | 
apply (blast dest: rearrange reduction)  | 
|
49  | 
done  | 
|
50  | 
||
51  | 
||
52  | 
subsection {* Main theorem *}
 | 
|
53  | 
||
54  | 
text {*
 | 
|
55  | 
  The square root of any prime number (including @{text 2}) is
 | 
|
56  | 
irrational.  | 
|
57  | 
*}  | 
|
58  | 
||
59  | 
theorem prime_sqrt_irrational:  | 
|
| 32479 | 60  | 
"prime (p::nat) \<Longrightarrow> x * x = real p \<Longrightarrow> 0 \<le> x \<Longrightarrow> x \<notin> \<rat>"  | 
| 28001 | 61  | 
apply (rule notI)  | 
62  | 
apply (erule Rats_abs_nat_div_natE)  | 
|
| 13957 | 63  | 
apply (simp del: real_of_nat_mult  | 
| 
36778
 
739a9379e29b
avoid using real-specific versions of generic lemmas
 
huffman 
parents: 
32479 
diff
changeset
 | 
64  | 
add: abs_if divide_eq_eq prime_not_square real_of_nat_mult [symmetric])  | 
| 13957 | 65  | 
done  | 
66  | 
||
67  | 
lemmas two_sqrt_irrational =  | 
|
| 32479 | 68  | 
prime_sqrt_irrational [OF two_is_prime_nat]  | 
| 13957 | 69  | 
|
70  | 
end  |