| author | blanchet | 
| Mon, 06 Jun 2011 20:36:35 +0200 | |
| changeset 43197 | c71657bbdbc0 | 
| parent 42103 | src/HOL/Metis_Examples/BT.thy@6066a35f6678 | 
| child 45502 | 6246bef495ff | 
| permissions | -rw-r--r-- | 
| 43197 | 1  | 
(* Title: HOL/Metis_Examples/Binary_Tree.thy  | 
2  | 
Author: Lawrence C. Paulson, Cambridge University Computer Laboratory  | 
|
| 
36487
 
50fd056cc3ce
insert a nice proof found by Vampire, which demonstrates the use of "let" in Isar proofs
 
blanchet 
parents: 
36484 
diff
changeset
 | 
3  | 
Author: Jasmin Blanchette, TU Muenchen  | 
| 23449 | 4  | 
|
| 43197 | 5  | 
Metis example featuring binary trees.  | 
| 23449 | 6  | 
*)  | 
7  | 
||
| 43197 | 8  | 
header {* Metis Example Featuring Binary Trees *}
 | 
| 23449 | 9  | 
|
| 43197 | 10  | 
theory Binary_Tree  | 
| 
27104
 
791607529f6d
rep_datatype command now takes list of constructors as input arguments
 
haftmann 
parents: 
26312 
diff
changeset
 | 
11  | 
imports Main  | 
| 
 
791607529f6d
rep_datatype command now takes list of constructors as input arguments
 
haftmann 
parents: 
26312 
diff
changeset
 | 
12  | 
begin  | 
| 23449 | 13  | 
|
| 
42103
 
6066a35f6678
Metis examples use the new Skolemizer to test it
 
blanchet 
parents: 
41144 
diff
changeset
 | 
14  | 
declare [[metis_new_skolemizer]]  | 
| 
 
6066a35f6678
Metis examples use the new Skolemizer to test it
 
blanchet 
parents: 
41144 
diff
changeset
 | 
15  | 
|
| 23449 | 16  | 
datatype 'a bt =  | 
17  | 
Lf  | 
|
18  | 
| Br 'a "'a bt" "'a bt"  | 
|
19  | 
||
| 39246 | 20  | 
primrec n_nodes :: "'a bt => nat" where  | 
21  | 
"n_nodes Lf = 0"  | 
|
22  | 
| "n_nodes (Br a t1 t2) = Suc (n_nodes t1 + n_nodes t2)"  | 
|
23  | 
||
24  | 
primrec n_leaves :: "'a bt => nat" where  | 
|
25  | 
"n_leaves Lf = Suc 0"  | 
|
26  | 
| "n_leaves (Br a t1 t2) = n_leaves t1 + n_leaves t2"  | 
|
| 23449 | 27  | 
|
| 39246 | 28  | 
primrec depth :: "'a bt => nat" where  | 
29  | 
"depth Lf = 0"  | 
|
30  | 
| "depth (Br a t1 t2) = Suc (max (depth t1) (depth t2))"  | 
|
| 23449 | 31  | 
|
| 39246 | 32  | 
primrec reflect :: "'a bt => 'a bt" where  | 
33  | 
"reflect Lf = Lf"  | 
|
34  | 
| "reflect (Br a t1 t2) = Br a (reflect t2) (reflect t1)"  | 
|
| 23449 | 35  | 
|
| 39246 | 36  | 
primrec bt_map :: "('a => 'b) => ('a bt => 'b bt)" where
 | 
| 23449 | 37  | 
"bt_map f Lf = Lf"  | 
| 39246 | 38  | 
| "bt_map f (Br a t1 t2) = Br (f a) (bt_map f t1) (bt_map f t2)"  | 
| 23449 | 39  | 
|
| 39246 | 40  | 
primrec preorder :: "'a bt => 'a list" where  | 
| 23449 | 41  | 
"preorder Lf = []"  | 
| 39246 | 42  | 
| "preorder (Br a t1 t2) = [a] @ (preorder t1) @ (preorder t2)"  | 
| 23449 | 43  | 
|
| 39246 | 44  | 
primrec inorder :: "'a bt => 'a list" where  | 
| 23449 | 45  | 
"inorder Lf = []"  | 
| 39246 | 46  | 
| "inorder (Br a t1 t2) = (inorder t1) @ [a] @ (inorder t2)"  | 
| 23449 | 47  | 
|
| 39246 | 48  | 
primrec postorder :: "'a bt => 'a list" where  | 
| 23449 | 49  | 
"postorder Lf = []"  | 
| 39246 | 50  | 
| "postorder (Br a t1 t2) = (postorder t1) @ (postorder t2) @ [a]"  | 
| 23449 | 51  | 
|
| 39246 | 52  | 
primrec append :: "'a bt => 'a bt => 'a bt" where  | 
53  | 
"append Lf t = t"  | 
|
54  | 
| "append (Br a t1 t2) t = Br a (append t1 t) (append t2 t)"  | 
|
| 23449 | 55  | 
|
56  | 
text {* \medskip BT simplification *}
 | 
|
57  | 
||
| 38991 | 58  | 
declare [[ sledgehammer_problem_prefix = "BT__n_leaves_reflect" ]]  | 
| 36484 | 59  | 
|
| 23449 | 60  | 
lemma n_leaves_reflect: "n_leaves (reflect t) = n_leaves t"  | 
| 36484 | 61  | 
proof (induct t)  | 
| 
36487
 
50fd056cc3ce
insert a nice proof found by Vampire, which demonstrates the use of "let" in Isar proofs
 
blanchet 
parents: 
36484 
diff
changeset
 | 
62  | 
case Lf thus ?case  | 
| 
 
50fd056cc3ce
insert a nice proof found by Vampire, which demonstrates the use of "let" in Isar proofs
 
blanchet 
parents: 
36484 
diff
changeset
 | 
63  | 
proof -  | 
| 
 
50fd056cc3ce
insert a nice proof found by Vampire, which demonstrates the use of "let" in Isar proofs
 
blanchet 
parents: 
36484 
diff
changeset
 | 
64  | 
let "?p\<^isub>1 x\<^isub>1" = "x\<^isub>1 \<noteq> n_leaves (reflect (Lf::'a bt))"  | 
| 
 
50fd056cc3ce
insert a nice proof found by Vampire, which demonstrates the use of "let" in Isar proofs
 
blanchet 
parents: 
36484 
diff
changeset
 | 
65  | 
have "\<not> ?p\<^isub>1 (Suc 0)" by (metis reflect.simps(1) n_leaves.simps(1))  | 
| 
 
50fd056cc3ce
insert a nice proof found by Vampire, which demonstrates the use of "let" in Isar proofs
 
blanchet 
parents: 
36484 
diff
changeset
 | 
66  | 
hence "\<not> ?p\<^isub>1 (n_leaves (Lf::'a bt))" by (metis n_leaves.simps(1))  | 
| 
 
50fd056cc3ce
insert a nice proof found by Vampire, which demonstrates the use of "let" in Isar proofs
 
blanchet 
parents: 
36484 
diff
changeset
 | 
67  | 
thus "n_leaves (reflect (Lf::'a bt)) = n_leaves (Lf::'a bt)" by metis  | 
| 
 
50fd056cc3ce
insert a nice proof found by Vampire, which demonstrates the use of "let" in Isar proofs
 
blanchet 
parents: 
36484 
diff
changeset
 | 
68  | 
qed  | 
| 36484 | 69  | 
next  | 
70  | 
case (Br a t1 t2) thus ?case  | 
|
| 
36487
 
50fd056cc3ce
insert a nice proof found by Vampire, which demonstrates the use of "let" in Isar proofs
 
blanchet 
parents: 
36484 
diff
changeset
 | 
71  | 
by (metis n_leaves.simps(2) nat_add_commute reflect.simps(2))  | 
| 36484 | 72  | 
qed  | 
| 23449 | 73  | 
|
| 38991 | 74  | 
declare [[ sledgehammer_problem_prefix = "BT__n_nodes_reflect" ]]  | 
| 36484 | 75  | 
|
| 23449 | 76  | 
lemma n_nodes_reflect: "n_nodes (reflect t) = n_nodes t"  | 
| 36484 | 77  | 
proof (induct t)  | 
78  | 
case Lf thus ?case by (metis reflect.simps(1))  | 
|
79  | 
next  | 
|
80  | 
case (Br a t1 t2) thus ?case  | 
|
| 36844 | 81  | 
by (metis add_commute n_nodes.simps(2) reflect.simps(2))  | 
| 36484 | 82  | 
qed  | 
| 23449 | 83  | 
|
| 38991 | 84  | 
declare [[ sledgehammer_problem_prefix = "BT__depth_reflect" ]]  | 
| 36484 | 85  | 
|
| 23449 | 86  | 
lemma depth_reflect: "depth (reflect t) = depth t"  | 
| 36484 | 87  | 
apply (induct t)  | 
88  | 
apply (metis depth.simps(1) reflect.simps(1))  | 
|
89  | 
by (metis depth.simps(2) min_max.inf_sup_aci(5) reflect.simps(2))  | 
|
| 23449 | 90  | 
|
91  | 
text {*
 | 
|
| 36484 | 92  | 
The famous relationship between the numbers of leaves and nodes.  | 
| 23449 | 93  | 
*}  | 
94  | 
||
| 38991 | 95  | 
declare [[ sledgehammer_problem_prefix = "BT__n_leaves_nodes" ]]  | 
| 36484 | 96  | 
|
| 23449 | 97  | 
lemma n_leaves_nodes: "n_leaves t = Suc (n_nodes t)"  | 
| 36484 | 98  | 
apply (induct t)  | 
99  | 
apply (metis n_leaves.simps(1) n_nodes.simps(1))  | 
|
100  | 
by auto  | 
|
| 23449 | 101  | 
|
| 38991 | 102  | 
declare [[ sledgehammer_problem_prefix = "BT__reflect_reflect_ident" ]]  | 
| 36484 | 103  | 
|
| 23449 | 104  | 
lemma reflect_reflect_ident: "reflect (reflect t) = t"  | 
| 36484 | 105  | 
apply (induct t)  | 
106  | 
apply (metis reflect.simps(1))  | 
|
107  | 
proof -  | 
|
108  | 
fix a :: 'a and t1 :: "'a bt" and t2 :: "'a bt"  | 
|
109  | 
assume A1: "reflect (reflect t1) = t1"  | 
|
110  | 
assume A2: "reflect (reflect t2) = t2"  | 
|
111  | 
have "\<And>V U. reflect (Br U V (reflect t1)) = Br U t1 (reflect V)"  | 
|
112  | 
using A1 by (metis reflect.simps(2))  | 
|
113  | 
hence "\<And>V U. Br U t1 (reflect (reflect V)) = reflect (reflect (Br U t1 V))"  | 
|
114  | 
by (metis reflect.simps(2))  | 
|
115  | 
hence "\<And>U. reflect (reflect (Br U t1 t2)) = Br U t1 t2"  | 
|
116  | 
using A2 by metis  | 
|
117  | 
thus "reflect (reflect (Br a t1 t2)) = Br a t1 t2" by blast  | 
|
118  | 
qed  | 
|
| 23449 | 119  | 
|
| 38991 | 120  | 
declare [[ sledgehammer_problem_prefix = "BT__bt_map_ident" ]]  | 
| 36484 | 121  | 
|
| 23449 | 122  | 
lemma bt_map_ident: "bt_map (%x. x) = (%y. y)"  | 
| 43197 | 123  | 
apply (rule ext)  | 
| 23449 | 124  | 
apply (induct_tac y)  | 
| 36484 | 125  | 
apply (metis bt_map.simps(1))  | 
| 36571 | 126  | 
by (metis bt_map.simps(2))  | 
| 23449 | 127  | 
|
| 39246 | 128  | 
declare [[ sledgehammer_problem_prefix = "BT__bt_map_append" ]]  | 
| 36484 | 129  | 
|
| 39246 | 130  | 
lemma bt_map_append: "bt_map f (append t u) = append (bt_map f t) (bt_map f u)"  | 
| 23449 | 131  | 
apply (induct t)  | 
| 39246 | 132  | 
apply (metis append.simps(1) bt_map.simps(1))  | 
133  | 
by (metis append.simps(2) bt_map.simps(2))  | 
|
| 23449 | 134  | 
|
| 38991 | 135  | 
declare [[ sledgehammer_problem_prefix = "BT__bt_map_compose" ]]  | 
| 36484 | 136  | 
|
| 23449 | 137  | 
lemma bt_map_compose: "bt_map (f o g) t = bt_map f (bt_map g t)"  | 
| 36484 | 138  | 
apply (induct t)  | 
139  | 
apply (metis bt_map.simps(1))  | 
|
140  | 
by (metis bt_map.simps(2) o_eq_dest_lhs)  | 
|
| 23449 | 141  | 
|
| 38991 | 142  | 
declare [[ sledgehammer_problem_prefix = "BT__bt_map_reflect" ]]  | 
| 36484 | 143  | 
|
| 23449 | 144  | 
lemma bt_map_reflect: "bt_map f (reflect t) = reflect (bt_map f t)"  | 
| 36484 | 145  | 
apply (induct t)  | 
146  | 
apply (metis bt_map.simps(1) reflect.simps(1))  | 
|
147  | 
by (metis bt_map.simps(2) reflect.simps(2))  | 
|
| 23449 | 148  | 
|
| 38991 | 149  | 
declare [[ sledgehammer_problem_prefix = "BT__preorder_bt_map" ]]  | 
| 36484 | 150  | 
|
| 23449 | 151  | 
lemma preorder_bt_map: "preorder (bt_map f t) = map f (preorder t)"  | 
| 36484 | 152  | 
apply (induct t)  | 
153  | 
apply (metis bt_map.simps(1) map.simps(1) preorder.simps(1))  | 
|
154  | 
by simp  | 
|
| 23449 | 155  | 
|
| 38991 | 156  | 
declare [[ sledgehammer_problem_prefix = "BT__inorder_bt_map" ]]  | 
| 36484 | 157  | 
|
| 23449 | 158  | 
lemma inorder_bt_map: "inorder (bt_map f t) = map f (inorder t)"  | 
| 36484 | 159  | 
proof (induct t)  | 
160  | 
case Lf thus ?case  | 
|
161  | 
proof -  | 
|
162  | 
have "map f [] = []" by (metis map.simps(1))  | 
|
163  | 
hence "map f [] = inorder Lf" by (metis inorder.simps(1))  | 
|
164  | 
hence "inorder (bt_map f Lf) = map f []" by (metis bt_map.simps(1))  | 
|
165  | 
thus "inorder (bt_map f Lf) = map f (inorder Lf)" by (metis inorder.simps(1))  | 
|
166  | 
qed  | 
|
167  | 
next  | 
|
168  | 
case (Br a t1 t2) thus ?case by simp  | 
|
169  | 
qed  | 
|
| 23449 | 170  | 
|
| 38991 | 171  | 
declare [[ sledgehammer_problem_prefix = "BT__postorder_bt_map" ]]  | 
| 36484 | 172  | 
|
| 23449 | 173  | 
lemma postorder_bt_map: "postorder (bt_map f t) = map f (postorder t)"  | 
| 36484 | 174  | 
apply (induct t)  | 
175  | 
apply (metis Nil_is_map_conv bt_map.simps(1) postorder.simps(1))  | 
|
176  | 
by simp  | 
|
| 23449 | 177  | 
|
| 38991 | 178  | 
declare [[ sledgehammer_problem_prefix = "BT__depth_bt_map" ]]  | 
| 36484 | 179  | 
|
| 23449 | 180  | 
lemma depth_bt_map [simp]: "depth (bt_map f t) = depth t"  | 
| 36484 | 181  | 
apply (induct t)  | 
182  | 
apply (metis bt_map.simps(1) depth.simps(1))  | 
|
183  | 
by simp  | 
|
| 23449 | 184  | 
|
| 38991 | 185  | 
declare [[ sledgehammer_problem_prefix = "BT__n_leaves_bt_map" ]]  | 
| 36484 | 186  | 
|
| 23449 | 187  | 
lemma n_leaves_bt_map [simp]: "n_leaves (bt_map f t) = n_leaves t"  | 
| 36484 | 188  | 
apply (induct t)  | 
189  | 
apply (metis bt_map.simps(1) n_leaves.simps(1))  | 
|
190  | 
proof -  | 
|
191  | 
fix a :: 'b and t1 :: "'b bt" and t2 :: "'b bt"  | 
|
192  | 
assume A1: "n_leaves (bt_map f t1) = n_leaves t1"  | 
|
193  | 
assume A2: "n_leaves (bt_map f t2) = n_leaves t2"  | 
|
194  | 
have "\<And>V U. n_leaves (Br U (bt_map f t1) V) = n_leaves t1 + n_leaves V"  | 
|
195  | 
using A1 by (metis n_leaves.simps(2))  | 
|
196  | 
hence "\<And>V U. n_leaves (bt_map f (Br U t1 V)) = n_leaves t1 + n_leaves (bt_map f V)"  | 
|
197  | 
by (metis bt_map.simps(2))  | 
|
198  | 
hence F1: "\<And>U. n_leaves (bt_map f (Br U t1 t2)) = n_leaves t1 + n_leaves t2"  | 
|
199  | 
using A2 by metis  | 
|
200  | 
have "n_leaves t1 + n_leaves t2 = n_leaves (Br a t1 t2)"  | 
|
201  | 
by (metis n_leaves.simps(2))  | 
|
202  | 
thus "n_leaves (bt_map f (Br a t1 t2)) = n_leaves (Br a t1 t2)"  | 
|
203  | 
using F1 by metis  | 
|
204  | 
qed  | 
|
| 23449 | 205  | 
|
| 38991 | 206  | 
declare [[ sledgehammer_problem_prefix = "BT__preorder_reflect" ]]  | 
| 36484 | 207  | 
|
| 23449 | 208  | 
lemma preorder_reflect: "preorder (reflect t) = rev (postorder t)"  | 
| 36484 | 209  | 
apply (induct t)  | 
210  | 
apply (metis Nil_is_rev_conv postorder.simps(1) preorder.simps(1)  | 
|
211  | 
reflect.simps(1))  | 
|
| 39246 | 212  | 
apply simp  | 
213  | 
done  | 
|
| 23449 | 214  | 
|
| 38991 | 215  | 
declare [[ sledgehammer_problem_prefix = "BT__inorder_reflect" ]]  | 
| 36484 | 216  | 
|
| 23449 | 217  | 
lemma inorder_reflect: "inorder (reflect t) = rev (inorder t)"  | 
| 36484 | 218  | 
apply (induct t)  | 
219  | 
apply (metis Nil_is_rev_conv inorder.simps(1) reflect.simps(1))  | 
|
220  | 
by simp  | 
|
221  | 
(* Slow:  | 
|
222  | 
by (metis append.simps(1) append_eq_append_conv2 inorder.simps(2)  | 
|
223  | 
reflect.simps(2) rev.simps(2) rev_append)  | 
|
224  | 
*)  | 
|
| 23449 | 225  | 
|
| 38991 | 226  | 
declare [[ sledgehammer_problem_prefix = "BT__postorder_reflect" ]]  | 
| 36484 | 227  | 
|
| 23449 | 228  | 
lemma postorder_reflect: "postorder (reflect t) = rev (preorder t)"  | 
| 36484 | 229  | 
apply (induct t)  | 
230  | 
apply (metis Nil_is_rev_conv postorder.simps(1) preorder.simps(1)  | 
|
231  | 
reflect.simps(1))  | 
|
232  | 
by (metis preorder_reflect reflect_reflect_ident rev_swap)  | 
|
| 23449 | 233  | 
|
234  | 
text {*
 | 
|
| 36484 | 235  | 
Analogues of the standard properties of the append function for lists.  | 
| 23449 | 236  | 
*}  | 
237  | 
||
| 39246 | 238  | 
declare [[ sledgehammer_problem_prefix = "BT__append_assoc" ]]  | 
| 36484 | 239  | 
|
| 39246 | 240  | 
lemma append_assoc [simp]: "append (append t1 t2) t3 = append t1 (append t2 t3)"  | 
| 36484 | 241  | 
apply (induct t1)  | 
| 39246 | 242  | 
apply (metis append.simps(1))  | 
243  | 
by (metis append.simps(2))  | 
|
| 23449 | 244  | 
|
| 39246 | 245  | 
declare [[ sledgehammer_problem_prefix = "BT__append_Lf2" ]]  | 
| 36484 | 246  | 
|
| 39246 | 247  | 
lemma append_Lf2 [simp]: "append t Lf = t"  | 
| 36484 | 248  | 
apply (induct t)  | 
| 39246 | 249  | 
apply (metis append.simps(1))  | 
250  | 
by (metis append.simps(2))  | 
|
| 36484 | 251  | 
|
252  | 
declare max_add_distrib_left [simp]  | 
|
| 23449 | 253  | 
|
| 39246 | 254  | 
declare [[ sledgehammer_problem_prefix = "BT__depth_append" ]]  | 
| 36484 | 255  | 
|
| 39246 | 256  | 
lemma depth_append [simp]: "depth (append t1 t2) = depth t1 + depth t2"  | 
| 36484 | 257  | 
apply (induct t1)  | 
| 39246 | 258  | 
apply (metis append.simps(1) depth.simps(1) plus_nat.simps(1))  | 
| 36484 | 259  | 
by simp  | 
| 23449 | 260  | 
|
| 39246 | 261  | 
declare [[ sledgehammer_problem_prefix = "BT__n_leaves_append" ]]  | 
| 36484 | 262  | 
|
| 39246 | 263  | 
lemma n_leaves_append [simp]:  | 
264  | 
"n_leaves (append t1 t2) = n_leaves t1 * n_leaves t2"  | 
|
| 36484 | 265  | 
apply (induct t1)  | 
| 39246 | 266  | 
apply (metis append.simps(1) n_leaves.simps(1) nat_mult_1 plus_nat.simps(1)  | 
| 36484 | 267  | 
semiring_norm(111))  | 
268  | 
by (simp add: left_distrib)  | 
|
| 23449 | 269  | 
|
| 39246 | 270  | 
declare [[ sledgehammer_problem_prefix = "BT__bt_map_append" ]]  | 
| 36484 | 271  | 
|
| 39246 | 272  | 
lemma (*bt_map_append:*)  | 
273  | 
"bt_map f (append t1 t2) = append (bt_map f t1) (bt_map f t2)"  | 
|
| 36484 | 274  | 
apply (induct t1)  | 
| 39246 | 275  | 
apply (metis append.simps(1) bt_map.simps(1))  | 
276  | 
by (metis bt_map_append)  | 
|
| 23449 | 277  | 
|
278  | 
end  |