author | huffman |
Fri, 20 Jun 2008 22:51:50 +0200 | |
changeset 27309 | c74270fd72a8 |
parent 27297 | 2c42b1505f25 |
child 27373 | 5794a0e3e26c |
permissions | -rw-r--r-- |
25904 | 1 |
(* Title: HOLCF/CompactBasis.thy |
2 |
ID: $Id$ |
|
3 |
Author: Brian Huffman |
|
4 |
*) |
|
5 |
||
6 |
header {* Compact bases of domains *} |
|
7 |
||
8 |
theory CompactBasis |
|
27297
2c42b1505f25
removed SetPcpo.thy and cpo instance for type bool;
huffman
parents:
27289
diff
changeset
|
9 |
imports Bifinite Cset |
25904 | 10 |
begin |
11 |
||
12 |
subsection {* Ideals over a preorder *} |
|
13 |
||
27268 | 14 |
locale preorder = |
15 |
fixes r :: "'a::type \<Rightarrow> 'a \<Rightarrow> bool" (infix "\<preceq>" 50) |
|
16 |
assumes r_refl: "x \<preceq> x" |
|
17 |
assumes r_trans: "\<lbrakk>x \<preceq> y; y \<preceq> z\<rbrakk> \<Longrightarrow> x \<preceq> z" |
|
25904 | 18 |
begin |
19 |
||
20 |
definition |
|
21 |
ideal :: "'a set \<Rightarrow> bool" where |
|
27268 | 22 |
"ideal A = ((\<exists>x. x \<in> A) \<and> (\<forall>x\<in>A. \<forall>y\<in>A. \<exists>z\<in>A. x \<preceq> z \<and> y \<preceq> z) \<and> |
23 |
(\<forall>x y. x \<preceq> y \<longrightarrow> y \<in> A \<longrightarrow> x \<in> A))" |
|
25904 | 24 |
|
25 |
lemma idealI: |
|
26 |
assumes "\<exists>x. x \<in> A" |
|
27268 | 27 |
assumes "\<And>x y. \<lbrakk>x \<in> A; y \<in> A\<rbrakk> \<Longrightarrow> \<exists>z\<in>A. x \<preceq> z \<and> y \<preceq> z" |
28 |
assumes "\<And>x y. \<lbrakk>x \<preceq> y; y \<in> A\<rbrakk> \<Longrightarrow> x \<in> A" |
|
25904 | 29 |
shows "ideal A" |
30 |
unfolding ideal_def using prems by fast |
|
31 |
||
32 |
lemma idealD1: |
|
33 |
"ideal A \<Longrightarrow> \<exists>x. x \<in> A" |
|
34 |
unfolding ideal_def by fast |
|
35 |
||
36 |
lemma idealD2: |
|
27268 | 37 |
"\<lbrakk>ideal A; x \<in> A; y \<in> A\<rbrakk> \<Longrightarrow> \<exists>z\<in>A. x \<preceq> z \<and> y \<preceq> z" |
25904 | 38 |
unfolding ideal_def by fast |
39 |
||
40 |
lemma idealD3: |
|
27268 | 41 |
"\<lbrakk>ideal A; x \<preceq> y; y \<in> A\<rbrakk> \<Longrightarrow> x \<in> A" |
25904 | 42 |
unfolding ideal_def by fast |
43 |
||
44 |
lemma ideal_directed_finite: |
|
45 |
assumes A: "ideal A" |
|
27268 | 46 |
shows "\<lbrakk>finite U; U \<subseteq> A\<rbrakk> \<Longrightarrow> \<exists>z\<in>A. \<forall>x\<in>U. x \<preceq> z" |
25904 | 47 |
apply (induct U set: finite) |
48 |
apply (simp add: idealD1 [OF A]) |
|
49 |
apply (simp, clarify, rename_tac y) |
|
50 |
apply (drule (1) idealD2 [OF A]) |
|
51 |
apply (clarify, erule_tac x=z in rev_bexI) |
|
27268 | 52 |
apply (fast intro: r_trans) |
25904 | 53 |
done |
54 |
||
27268 | 55 |
lemma ideal_principal: "ideal {x. x \<preceq> z}" |
25904 | 56 |
apply (rule idealI) |
57 |
apply (rule_tac x=z in exI) |
|
27268 | 58 |
apply (fast intro: r_refl) |
25904 | 59 |
apply (rule_tac x=z in bexI, fast) |
27268 | 60 |
apply (fast intro: r_refl) |
61 |
apply (fast intro: r_trans) |
|
25904 | 62 |
done |
63 |
||
27268 | 64 |
lemma ex_ideal: "\<exists>A. ideal A" |
65 |
by (rule exI, rule ideal_principal) |
|
66 |
||
25904 | 67 |
lemma directed_image_ideal: |
68 |
assumes A: "ideal A" |
|
27268 | 69 |
assumes f: "\<And>x y. x \<preceq> y \<Longrightarrow> f x \<sqsubseteq> f y" |
25904 | 70 |
shows "directed (f ` A)" |
71 |
apply (rule directedI) |
|
72 |
apply (cut_tac idealD1 [OF A], fast) |
|
73 |
apply (clarify, rename_tac a b) |
|
74 |
apply (drule (1) idealD2 [OF A]) |
|
75 |
apply (clarify, rename_tac c) |
|
76 |
apply (rule_tac x="f c" in rev_bexI) |
|
77 |
apply (erule imageI) |
|
78 |
apply (simp add: f) |
|
79 |
done |
|
80 |
||
27297
2c42b1505f25
removed SetPcpo.thy and cpo instance for type bool;
huffman
parents:
27289
diff
changeset
|
81 |
lemma adm_ideal: "adm (\<lambda>A. ideal (Rep_cset A))" |
25904 | 82 |
unfolding ideal_def by (intro adm_lemmas adm_set_lemmas) |
83 |
||
27297
2c42b1505f25
removed SetPcpo.thy and cpo instance for type bool;
huffman
parents:
27289
diff
changeset
|
84 |
lemma cpodef_ideal_lemma: |
2c42b1505f25
removed SetPcpo.thy and cpo instance for type bool;
huffman
parents:
27289
diff
changeset
|
85 |
"(\<exists>x. x \<in> {S. ideal (Rep_cset S)}) \<and> adm (\<lambda>x. x \<in> {S. ideal (Rep_cset S)})" |
2c42b1505f25
removed SetPcpo.thy and cpo instance for type bool;
huffman
parents:
27289
diff
changeset
|
86 |
apply (simp add: adm_ideal) |
2c42b1505f25
removed SetPcpo.thy and cpo instance for type bool;
huffman
parents:
27289
diff
changeset
|
87 |
apply (rule exI [where x="Abs_cset {x. x \<preceq> arbitrary}"]) |
2c42b1505f25
removed SetPcpo.thy and cpo instance for type bool;
huffman
parents:
27289
diff
changeset
|
88 |
apply (simp add: ideal_principal) |
2c42b1505f25
removed SetPcpo.thy and cpo instance for type bool;
huffman
parents:
27289
diff
changeset
|
89 |
done |
2c42b1505f25
removed SetPcpo.thy and cpo instance for type bool;
huffman
parents:
27289
diff
changeset
|
90 |
|
26420
57a626f64875
make preorder locale into a superclass of class po
huffman
parents:
26407
diff
changeset
|
91 |
lemma lub_image_principal: |
27268 | 92 |
assumes f: "\<And>x y. x \<preceq> y \<Longrightarrow> f x \<sqsubseteq> f y" |
93 |
shows "(\<Squnion>x\<in>{x. x \<preceq> y}. f x) = f y" |
|
25904 | 94 |
apply (rule thelubI) |
95 |
apply (rule is_lub_maximal) |
|
96 |
apply (rule ub_imageI) |
|
97 |
apply (simp add: f) |
|
98 |
apply (rule imageI) |
|
27268 | 99 |
apply (simp add: r_refl) |
25904 | 100 |
done |
101 |
||
26420
57a626f64875
make preorder locale into a superclass of class po
huffman
parents:
26407
diff
changeset
|
102 |
end |
57a626f64875
make preorder locale into a superclass of class po
huffman
parents:
26407
diff
changeset
|
103 |
|
27268 | 104 |
interpretation sq_le: preorder ["sq_le :: 'a::po \<Rightarrow> 'a \<Rightarrow> bool"] |
105 |
apply unfold_locales |
|
106 |
apply (rule refl_less) |
|
107 |
apply (erule (1) trans_less) |
|
108 |
done |
|
109 |
||
26420
57a626f64875
make preorder locale into a superclass of class po
huffman
parents:
26407
diff
changeset
|
110 |
subsection {* Defining functions in terms of basis elements *} |
57a626f64875
make preorder locale into a superclass of class po
huffman
parents:
26407
diff
changeset
|
111 |
|
26034 | 112 |
lemma finite_directed_contains_lub: |
113 |
"\<lbrakk>finite S; directed S\<rbrakk> \<Longrightarrow> \<exists>u\<in>S. S <<| u" |
|
25904 | 114 |
apply (drule (1) directed_finiteD, rule subset_refl) |
115 |
apply (erule bexE) |
|
26034 | 116 |
apply (rule rev_bexI, assumption) |
25904 | 117 |
apply (erule (1) is_lub_maximal) |
118 |
done |
|
119 |
||
26034 | 120 |
lemma lub_finite_directed_in_self: |
121 |
"\<lbrakk>finite S; directed S\<rbrakk> \<Longrightarrow> lub S \<in> S" |
|
122 |
apply (drule (1) finite_directed_contains_lub, clarify) |
|
123 |
apply (drule thelubI, simp) |
|
124 |
done |
|
125 |
||
126 |
lemma finite_directed_has_lub: "\<lbrakk>finite S; directed S\<rbrakk> \<Longrightarrow> \<exists>u. S <<| u" |
|
127 |
by (drule (1) finite_directed_contains_lub, fast) |
|
128 |
||
25904 | 129 |
lemma is_ub_thelub0: "\<lbrakk>\<exists>u. S <<| u; x \<in> S\<rbrakk> \<Longrightarrow> x \<sqsubseteq> lub S" |
130 |
apply (erule exE, drule lubI) |
|
131 |
apply (drule is_lubD1) |
|
132 |
apply (erule (1) is_ubD) |
|
133 |
done |
|
134 |
||
135 |
lemma is_lub_thelub0: "\<lbrakk>\<exists>u. S <<| u; S <| x\<rbrakk> \<Longrightarrow> lub S \<sqsubseteq> x" |
|
136 |
by (erule exE, drule lubI, erule is_lub_lub) |
|
137 |
||
27268 | 138 |
locale basis_take = preorder + |
25904 | 139 |
fixes take :: "nat \<Rightarrow> 'a::type \<Rightarrow> 'a" |
27268 | 140 |
assumes take_less: "take n a \<preceq> a" |
25904 | 141 |
assumes take_take: "take n (take n a) = take n a" |
27268 | 142 |
assumes take_mono: "a \<preceq> b \<Longrightarrow> take n a \<preceq> take n b" |
143 |
assumes take_chain: "take n a \<preceq> take (Suc n) a" |
|
25904 | 144 |
assumes finite_range_take: "finite (range (take n))" |
145 |
assumes take_covers: "\<exists>n. take n a = a" |
|
27288 | 146 |
begin |
147 |
||
148 |
lemma take_chain_less: "m < n \<Longrightarrow> take m a \<preceq> take n a" |
|
149 |
by (erule less_Suc_induct, rule take_chain, erule (1) r_trans) |
|
150 |
||
151 |
lemma take_chain_le: "m \<le> n \<Longrightarrow> take m a \<preceq> take n a" |
|
152 |
by (cases "m = n", simp add: r_refl, simp add: take_chain_less) |
|
153 |
||
154 |
end |
|
26420
57a626f64875
make preorder locale into a superclass of class po
huffman
parents:
26407
diff
changeset
|
155 |
|
27268 | 156 |
locale ideal_completion = basis_take + |
26420
57a626f64875
make preorder locale into a superclass of class po
huffman
parents:
26407
diff
changeset
|
157 |
fixes principal :: "'a::type \<Rightarrow> 'b::cpo" |
26927 | 158 |
fixes rep :: "'b::cpo \<Rightarrow> 'a::type set" |
159 |
assumes ideal_rep: "\<And>x. preorder.ideal r (rep x)" |
|
27297
2c42b1505f25
removed SetPcpo.thy and cpo instance for type bool;
huffman
parents:
27289
diff
changeset
|
160 |
assumes rep_contlub: "\<And>Y. chain Y \<Longrightarrow> rep (\<Squnion>i. Y i) = (\<Union>i. rep (Y i))" |
27268 | 161 |
assumes rep_principal: "\<And>a. rep (principal a) = {b. b \<preceq> a}" |
26927 | 162 |
assumes subset_repD: "\<And>x y. rep x \<subseteq> rep y \<Longrightarrow> x \<sqsubseteq> y" |
25904 | 163 |
begin |
164 |
||
26927 | 165 |
lemma finite_take_rep: "finite (take n ` rep x)" |
25904 | 166 |
by (rule finite_subset [OF image_mono [OF subset_UNIV] finite_range_take]) |
167 |
||
168 |
lemma basis_fun_lemma0: |
|
169 |
fixes f :: "'a::type \<Rightarrow> 'c::cpo" |
|
27268 | 170 |
assumes f_mono: "\<And>a b. a \<preceq> b \<Longrightarrow> f a \<sqsubseteq> f b" |
26927 | 171 |
shows "\<exists>u. f ` take i ` rep x <<| u" |
25904 | 172 |
apply (rule finite_directed_has_lub) |
173 |
apply (rule finite_imageI) |
|
26927 | 174 |
apply (rule finite_take_rep) |
25904 | 175 |
apply (subst image_image) |
176 |
apply (rule directed_image_ideal) |
|
26927 | 177 |
apply (rule ideal_rep) |
25904 | 178 |
apply (rule f_mono) |
179 |
apply (erule take_mono) |
|
180 |
done |
|
181 |
||
182 |
lemma basis_fun_lemma1: |
|
183 |
fixes f :: "'a::type \<Rightarrow> 'c::cpo" |
|
27268 | 184 |
assumes f_mono: "\<And>a b. a \<preceq> b \<Longrightarrow> f a \<sqsubseteq> f b" |
26927 | 185 |
shows "chain (\<lambda>i. lub (f ` take i ` rep x))" |
25904 | 186 |
apply (rule chainI) |
187 |
apply (rule is_lub_thelub0) |
|
188 |
apply (rule basis_fun_lemma0, erule f_mono) |
|
189 |
apply (rule is_ubI, clarsimp, rename_tac a) |
|
26420
57a626f64875
make preorder locale into a superclass of class po
huffman
parents:
26407
diff
changeset
|
190 |
apply (rule sq_le.trans_less [OF f_mono [OF take_chain]]) |
25904 | 191 |
apply (rule is_ub_thelub0) |
192 |
apply (rule basis_fun_lemma0, erule f_mono) |
|
193 |
apply simp |
|
194 |
done |
|
195 |
||
196 |
lemma basis_fun_lemma2: |
|
197 |
fixes f :: "'a::type \<Rightarrow> 'c::cpo" |
|
27268 | 198 |
assumes f_mono: "\<And>a b. a \<preceq> b \<Longrightarrow> f a \<sqsubseteq> f b" |
26927 | 199 |
shows "f ` rep x <<| (\<Squnion>i. lub (f ` take i ` rep x))" |
25904 | 200 |
apply (rule is_lubI) |
201 |
apply (rule ub_imageI, rename_tac a) |
|
202 |
apply (cut_tac a=a in take_covers, erule exE, rename_tac i) |
|
203 |
apply (erule subst) |
|
204 |
apply (rule rev_trans_less) |
|
205 |
apply (rule_tac x=i in is_ub_thelub) |
|
206 |
apply (rule basis_fun_lemma1, erule f_mono) |
|
207 |
apply (rule is_ub_thelub0) |
|
208 |
apply (rule basis_fun_lemma0, erule f_mono) |
|
209 |
apply simp |
|
210 |
apply (rule is_lub_thelub [OF _ ub_rangeI]) |
|
211 |
apply (rule basis_fun_lemma1, erule f_mono) |
|
212 |
apply (rule is_lub_thelub0) |
|
213 |
apply (rule basis_fun_lemma0, erule f_mono) |
|
214 |
apply (rule is_ubI, clarsimp, rename_tac a) |
|
26420
57a626f64875
make preorder locale into a superclass of class po
huffman
parents:
26407
diff
changeset
|
215 |
apply (rule sq_le.trans_less [OF f_mono [OF take_less]]) |
25904 | 216 |
apply (erule (1) ub_imageD) |
217 |
done |
|
218 |
||
219 |
lemma basis_fun_lemma: |
|
220 |
fixes f :: "'a::type \<Rightarrow> 'c::cpo" |
|
27268 | 221 |
assumes f_mono: "\<And>a b. a \<preceq> b \<Longrightarrow> f a \<sqsubseteq> f b" |
26927 | 222 |
shows "\<exists>u. f ` rep x <<| u" |
25904 | 223 |
by (rule exI, rule basis_fun_lemma2, erule f_mono) |
224 |
||
26927 | 225 |
lemma rep_mono: "x \<sqsubseteq> y \<Longrightarrow> rep x \<subseteq> rep y" |
27297
2c42b1505f25
removed SetPcpo.thy and cpo instance for type bool;
huffman
parents:
27289
diff
changeset
|
226 |
apply (frule bin_chain) |
2c42b1505f25
removed SetPcpo.thy and cpo instance for type bool;
huffman
parents:
27289
diff
changeset
|
227 |
apply (drule rep_contlub) |
2c42b1505f25
removed SetPcpo.thy and cpo instance for type bool;
huffman
parents:
27289
diff
changeset
|
228 |
apply (simp only: thelubI [OF lub_bin_chain]) |
2c42b1505f25
removed SetPcpo.thy and cpo instance for type bool;
huffman
parents:
27289
diff
changeset
|
229 |
apply (rule subsetI, rule UN_I [where a=0], simp_all) |
25904 | 230 |
done |
231 |
||
26927 | 232 |
lemma less_def: "x \<sqsubseteq> y \<longleftrightarrow> rep x \<subseteq> rep y" |
233 |
by (rule iffI [OF rep_mono subset_repD]) |
|
25904 | 234 |
|
26927 | 235 |
lemma rep_eq: "rep x = {a. principal a \<sqsubseteq> x}" |
236 |
unfolding less_def rep_principal |
|
25904 | 237 |
apply safe |
26927 | 238 |
apply (erule (1) idealD3 [OF ideal_rep]) |
27268 | 239 |
apply (erule subsetD, simp add: r_refl) |
25904 | 240 |
done |
241 |
||
26927 | 242 |
lemma mem_rep_iff_principal_less: "a \<in> rep x \<longleftrightarrow> principal a \<sqsubseteq> x" |
243 |
by (simp add: rep_eq) |
|
244 |
||
245 |
lemma principal_less_iff_mem_rep: "principal a \<sqsubseteq> x \<longleftrightarrow> a \<in> rep x" |
|
246 |
by (simp add: rep_eq) |
|
25904 | 247 |
|
27289 | 248 |
lemma principal_less_iff [simp]: "principal a \<sqsubseteq> principal b \<longleftrightarrow> a \<preceq> b" |
26927 | 249 |
by (simp add: principal_less_iff_mem_rep rep_principal) |
25904 | 250 |
|
27268 | 251 |
lemma principal_eq_iff: "principal a = principal b \<longleftrightarrow> a \<preceq> b \<and> b \<preceq> a" |
26927 | 252 |
unfolding po_eq_conv [where 'a='b] principal_less_iff .. |
253 |
||
254 |
lemma repD: "a \<in> rep x \<Longrightarrow> principal a \<sqsubseteq> x" |
|
255 |
by (simp add: rep_eq) |
|
25904 | 256 |
|
27268 | 257 |
lemma principal_mono: "a \<preceq> b \<Longrightarrow> principal a \<sqsubseteq> principal b" |
27289 | 258 |
by (simp only: principal_less_iff) |
25904 | 259 |
|
260 |
lemma lessI: "(\<And>a. principal a \<sqsubseteq> x \<Longrightarrow> principal a \<sqsubseteq> u) \<Longrightarrow> x \<sqsubseteq> u" |
|
26927 | 261 |
unfolding principal_less_iff_mem_rep |
26806 | 262 |
by (simp add: less_def subset_eq) |
25904 | 263 |
|
26927 | 264 |
lemma lub_principal_rep: "principal ` rep x <<| x" |
25904 | 265 |
apply (rule is_lubI) |
266 |
apply (rule ub_imageI) |
|
26927 | 267 |
apply (erule repD) |
25904 | 268 |
apply (subst less_def) |
269 |
apply (rule subsetI) |
|
270 |
apply (drule (1) ub_imageD) |
|
26927 | 271 |
apply (simp add: rep_eq) |
25904 | 272 |
done |
273 |
||
274 |
definition |
|
275 |
basis_fun :: "('a::type \<Rightarrow> 'c::cpo) \<Rightarrow> 'b \<rightarrow> 'c" where |
|
26927 | 276 |
"basis_fun = (\<lambda>f. (\<Lambda> x. lub (f ` rep x)))" |
25904 | 277 |
|
278 |
lemma basis_fun_beta: |
|
279 |
fixes f :: "'a::type \<Rightarrow> 'c::cpo" |
|
27268 | 280 |
assumes f_mono: "\<And>a b. a \<preceq> b \<Longrightarrow> f a \<sqsubseteq> f b" |
26927 | 281 |
shows "basis_fun f\<cdot>x = lub (f ` rep x)" |
25904 | 282 |
unfolding basis_fun_def |
283 |
proof (rule beta_cfun) |
|
26927 | 284 |
have lub: "\<And>x. \<exists>u. f ` rep x <<| u" |
25904 | 285 |
using f_mono by (rule basis_fun_lemma) |
26927 | 286 |
show cont: "cont (\<lambda>x. lub (f ` rep x))" |
25904 | 287 |
apply (rule contI2) |
288 |
apply (rule monofunI) |
|
289 |
apply (rule is_lub_thelub0 [OF lub ub_imageI]) |
|
290 |
apply (rule is_ub_thelub0 [OF lub imageI]) |
|
26927 | 291 |
apply (erule (1) subsetD [OF rep_mono]) |
25904 | 292 |
apply (rule is_lub_thelub0 [OF lub ub_imageI]) |
26927 | 293 |
apply (simp add: rep_contlub, clarify) |
25904 | 294 |
apply (erule rev_trans_less [OF is_ub_thelub]) |
295 |
apply (erule is_ub_thelub0 [OF lub imageI]) |
|
296 |
done |
|
297 |
qed |
|
298 |
||
299 |
lemma basis_fun_principal: |
|
300 |
fixes f :: "'a::type \<Rightarrow> 'c::cpo" |
|
27268 | 301 |
assumes f_mono: "\<And>a b. a \<preceq> b \<Longrightarrow> f a \<sqsubseteq> f b" |
25904 | 302 |
shows "basis_fun f\<cdot>(principal a) = f a" |
303 |
apply (subst basis_fun_beta, erule f_mono) |
|
26927 | 304 |
apply (subst rep_principal) |
25904 | 305 |
apply (rule lub_image_principal, erule f_mono) |
306 |
done |
|
307 |
||
308 |
lemma basis_fun_mono: |
|
27268 | 309 |
assumes f_mono: "\<And>a b. a \<preceq> b \<Longrightarrow> f a \<sqsubseteq> f b" |
310 |
assumes g_mono: "\<And>a b. a \<preceq> b \<Longrightarrow> g a \<sqsubseteq> g b" |
|
25904 | 311 |
assumes less: "\<And>a. f a \<sqsubseteq> g a" |
312 |
shows "basis_fun f \<sqsubseteq> basis_fun g" |
|
313 |
apply (rule less_cfun_ext) |
|
314 |
apply (simp only: basis_fun_beta f_mono g_mono) |
|
315 |
apply (rule is_lub_thelub0) |
|
316 |
apply (rule basis_fun_lemma, erule f_mono) |
|
317 |
apply (rule ub_imageI, rename_tac a) |
|
26420
57a626f64875
make preorder locale into a superclass of class po
huffman
parents:
26407
diff
changeset
|
318 |
apply (rule sq_le.trans_less [OF less]) |
25904 | 319 |
apply (rule is_ub_thelub0) |
320 |
apply (rule basis_fun_lemma, erule g_mono) |
|
321 |
apply (erule imageI) |
|
322 |
done |
|
323 |
||
27289 | 324 |
lemma compact_principal [simp]: "compact (principal a)" |
26927 | 325 |
by (rule compactI2, simp add: principal_less_iff_mem_rep rep_contlub) |
326 |
||
327 |
definition |
|
328 |
completion_approx :: "nat \<Rightarrow> 'b \<rightarrow> 'b" where |
|
329 |
"completion_approx = (\<lambda>i. basis_fun (\<lambda>a. principal (take i a)))" |
|
25904 | 330 |
|
26927 | 331 |
lemma completion_approx_beta: |
332 |
"completion_approx i\<cdot>x = (\<Squnion>a\<in>rep x. principal (take i a))" |
|
333 |
unfolding completion_approx_def |
|
334 |
by (simp add: basis_fun_beta principal_mono take_mono) |
|
335 |
||
336 |
lemma completion_approx_principal: |
|
337 |
"completion_approx i\<cdot>(principal a) = principal (take i a)" |
|
338 |
unfolding completion_approx_def |
|
339 |
by (simp add: basis_fun_principal principal_mono take_mono) |
|
340 |
||
341 |
lemma chain_completion_approx: "chain completion_approx" |
|
342 |
unfolding completion_approx_def |
|
25904 | 343 |
apply (rule chainI) |
344 |
apply (rule basis_fun_mono) |
|
345 |
apply (erule principal_mono [OF take_mono]) |
|
346 |
apply (erule principal_mono [OF take_mono]) |
|
347 |
apply (rule principal_mono [OF take_chain]) |
|
348 |
done |
|
349 |
||
26927 | 350 |
lemma lub_completion_approx: "(\<Squnion>i. completion_approx i\<cdot>x) = x" |
351 |
unfolding completion_approx_beta |
|
25904 | 352 |
apply (subst image_image [where f=principal, symmetric]) |
26927 | 353 |
apply (rule unique_lub [OF _ lub_principal_rep]) |
25904 | 354 |
apply (rule basis_fun_lemma2, erule principal_mono) |
355 |
done |
|
356 |
||
26927 | 357 |
lemma completion_approx_eq_principal: |
358 |
"\<exists>a\<in>rep x. completion_approx i\<cdot>x = principal (take i a)" |
|
359 |
unfolding completion_approx_beta |
|
25904 | 360 |
apply (subst image_image [where f=principal, symmetric]) |
26927 | 361 |
apply (subgoal_tac "finite (principal ` take i ` rep x)") |
362 |
apply (subgoal_tac "directed (principal ` take i ` rep x)") |
|
25904 | 363 |
apply (drule (1) lub_finite_directed_in_self, fast) |
364 |
apply (subst image_image) |
|
365 |
apply (rule directed_image_ideal) |
|
26927 | 366 |
apply (rule ideal_rep) |
25904 | 367 |
apply (erule principal_mono [OF take_mono]) |
368 |
apply (rule finite_imageI) |
|
26927 | 369 |
apply (rule finite_take_rep) |
370 |
done |
|
371 |
||
372 |
lemma completion_approx_idem: |
|
373 |
"completion_approx i\<cdot>(completion_approx i\<cdot>x) = completion_approx i\<cdot>x" |
|
374 |
using completion_approx_eq_principal [where i=i and x=x] |
|
375 |
by (auto simp add: completion_approx_principal take_take) |
|
376 |
||
377 |
lemma finite_fixes_completion_approx: |
|
378 |
"finite {x. completion_approx i\<cdot>x = x}" (is "finite ?S") |
|
379 |
apply (subgoal_tac "?S \<subseteq> principal ` range (take i)") |
|
380 |
apply (erule finite_subset) |
|
381 |
apply (rule finite_imageI) |
|
382 |
apply (rule finite_range_take) |
|
383 |
apply (clarify, erule subst) |
|
384 |
apply (cut_tac x=x and i=i in completion_approx_eq_principal) |
|
385 |
apply fast |
|
25904 | 386 |
done |
387 |
||
388 |
lemma principal_induct: |
|
389 |
assumes adm: "adm P" |
|
390 |
assumes P: "\<And>a. P (principal a)" |
|
391 |
shows "P x" |
|
26927 | 392 |
apply (subgoal_tac "P (\<Squnion>i. completion_approx i\<cdot>x)") |
393 |
apply (simp add: lub_completion_approx) |
|
25925 | 394 |
apply (rule admD [OF adm]) |
26927 | 395 |
apply (simp add: chain_completion_approx) |
396 |
apply (cut_tac x=x and i=i in completion_approx_eq_principal) |
|
25904 | 397 |
apply (clarify, simp add: P) |
398 |
done |
|
399 |
||
27289 | 400 |
lemma principal_induct2: |
401 |
"\<lbrakk>\<And>y. adm (\<lambda>x. P x y); \<And>x. adm (\<lambda>y. P x y); |
|
402 |
\<And>a b. P (principal a) (principal b)\<rbrakk> \<Longrightarrow> P x y" |
|
403 |
apply (rule_tac x=y in spec) |
|
404 |
apply (rule_tac x=x in principal_induct, simp) |
|
405 |
apply (rule allI, rename_tac y) |
|
406 |
apply (rule_tac x=y in principal_induct, simp) |
|
407 |
apply simp |
|
408 |
done |
|
409 |
||
27267
5ebfb7f25ebb
add lemma compact_imp_principal to locale ideal_completion
huffman
parents:
26927
diff
changeset
|
410 |
lemma compact_imp_principal: "compact x \<Longrightarrow> \<exists>a. x = principal a" |
5ebfb7f25ebb
add lemma compact_imp_principal to locale ideal_completion
huffman
parents:
26927
diff
changeset
|
411 |
apply (drule adm_compact_neq [OF _ cont_id]) |
5ebfb7f25ebb
add lemma compact_imp_principal to locale ideal_completion
huffman
parents:
26927
diff
changeset
|
412 |
apply (drule admD2 [where Y="\<lambda>n. completion_approx n\<cdot>x"]) |
5ebfb7f25ebb
add lemma compact_imp_principal to locale ideal_completion
huffman
parents:
26927
diff
changeset
|
413 |
apply (simp add: chain_completion_approx) |
5ebfb7f25ebb
add lemma compact_imp_principal to locale ideal_completion
huffman
parents:
26927
diff
changeset
|
414 |
apply (simp add: lub_completion_approx) |
5ebfb7f25ebb
add lemma compact_imp_principal to locale ideal_completion
huffman
parents:
26927
diff
changeset
|
415 |
apply (erule exE, erule ssubst) |
5ebfb7f25ebb
add lemma compact_imp_principal to locale ideal_completion
huffman
parents:
26927
diff
changeset
|
416 |
apply (cut_tac i=i and x=x in completion_approx_eq_principal) |
5ebfb7f25ebb
add lemma compact_imp_principal to locale ideal_completion
huffman
parents:
26927
diff
changeset
|
417 |
apply (clarify, erule exI) |
5ebfb7f25ebb
add lemma compact_imp_principal to locale ideal_completion
huffman
parents:
26927
diff
changeset
|
418 |
done |
5ebfb7f25ebb
add lemma compact_imp_principal to locale ideal_completion
huffman
parents:
26927
diff
changeset
|
419 |
|
25904 | 420 |
end |
421 |
||
422 |
||
423 |
subsection {* Compact bases of bifinite domains *} |
|
424 |
||
26407
562a1d615336
rename class bifinite_cpo to profinite; generalize powerdomains from bifinite to profinite
huffman
parents:
26041
diff
changeset
|
425 |
defaultsort profinite |
25904 | 426 |
|
26407
562a1d615336
rename class bifinite_cpo to profinite; generalize powerdomains from bifinite to profinite
huffman
parents:
26041
diff
changeset
|
427 |
typedef (open) 'a compact_basis = "{x::'a::profinite. compact x}" |
25904 | 428 |
by (fast intro: compact_approx) |
429 |
||
27289 | 430 |
lemma compact_Rep_compact_basis: "compact (Rep_compact_basis a)" |
26927 | 431 |
by (rule Rep_compact_basis [unfolded mem_Collect_eq]) |
25904 | 432 |
|
26420
57a626f64875
make preorder locale into a superclass of class po
huffman
parents:
26407
diff
changeset
|
433 |
instantiation compact_basis :: (profinite) sq_ord |
57a626f64875
make preorder locale into a superclass of class po
huffman
parents:
26407
diff
changeset
|
434 |
begin |
57a626f64875
make preorder locale into a superclass of class po
huffman
parents:
26407
diff
changeset
|
435 |
|
57a626f64875
make preorder locale into a superclass of class po
huffman
parents:
26407
diff
changeset
|
436 |
definition |
57a626f64875
make preorder locale into a superclass of class po
huffman
parents:
26407
diff
changeset
|
437 |
compact_le_def: |
57a626f64875
make preorder locale into a superclass of class po
huffman
parents:
26407
diff
changeset
|
438 |
"(op \<sqsubseteq>) \<equiv> (\<lambda>x y. Rep_compact_basis x \<sqsubseteq> Rep_compact_basis y)" |
57a626f64875
make preorder locale into a superclass of class po
huffman
parents:
26407
diff
changeset
|
439 |
|
57a626f64875
make preorder locale into a superclass of class po
huffman
parents:
26407
diff
changeset
|
440 |
instance .. |
57a626f64875
make preorder locale into a superclass of class po
huffman
parents:
26407
diff
changeset
|
441 |
|
57a626f64875
make preorder locale into a superclass of class po
huffman
parents:
26407
diff
changeset
|
442 |
end |
57a626f64875
make preorder locale into a superclass of class po
huffman
parents:
26407
diff
changeset
|
443 |
|
57a626f64875
make preorder locale into a superclass of class po
huffman
parents:
26407
diff
changeset
|
444 |
instance compact_basis :: (profinite) po |
57a626f64875
make preorder locale into a superclass of class po
huffman
parents:
26407
diff
changeset
|
445 |
by (rule typedef_po |
57a626f64875
make preorder locale into a superclass of class po
huffman
parents:
26407
diff
changeset
|
446 |
[OF type_definition_compact_basis compact_le_def]) |
25904 | 447 |
|
27289 | 448 |
text {* Take function for compact basis *} |
25904 | 449 |
|
450 |
definition |
|
451 |
compact_approx :: "nat \<Rightarrow> 'a compact_basis \<Rightarrow> 'a compact_basis" where |
|
452 |
"compact_approx = (\<lambda>n a. Abs_compact_basis (approx n\<cdot>(Rep_compact_basis a)))" |
|
453 |
||
454 |
lemma Rep_compact_approx: |
|
455 |
"Rep_compact_basis (compact_approx n a) = approx n\<cdot>(Rep_compact_basis a)" |
|
456 |
unfolding compact_approx_def |
|
457 |
by (simp add: Abs_compact_basis_inverse) |
|
458 |
||
459 |
lemmas approx_Rep_compact_basis = Rep_compact_approx [symmetric] |
|
460 |
||
27289 | 461 |
interpretation compact_basis: |
462 |
basis_take [sq_le compact_approx] |
|
463 |
proof |
|
464 |
fix n :: nat and a :: "'a compact_basis" |
|
465 |
show "compact_approx n a \<sqsubseteq> a" |
|
466 |
unfolding compact_le_def |
|
467 |
by (simp add: Rep_compact_approx approx_less) |
|
468 |
next |
|
469 |
fix n :: nat and a :: "'a compact_basis" |
|
470 |
show "compact_approx n (compact_approx n a) = compact_approx n a" |
|
471 |
by (simp add: Rep_compact_basis_inject [symmetric] Rep_compact_approx) |
|
472 |
next |
|
473 |
fix n :: nat and a b :: "'a compact_basis" |
|
474 |
assume "a \<sqsubseteq> b" thus "compact_approx n a \<sqsubseteq> compact_approx n b" |
|
475 |
unfolding compact_le_def Rep_compact_approx |
|
476 |
by (rule monofun_cfun_arg) |
|
477 |
next |
|
478 |
fix n :: nat and a :: "'a compact_basis" |
|
479 |
show "\<And>n a. compact_approx n a \<sqsubseteq> compact_approx (Suc n) a" |
|
480 |
unfolding compact_le_def Rep_compact_approx |
|
481 |
by (rule chainE, simp) |
|
482 |
next |
|
483 |
fix n :: nat |
|
484 |
show "finite (range (compact_approx n))" |
|
485 |
apply (rule finite_imageD [where f="Rep_compact_basis"]) |
|
486 |
apply (rule finite_subset [where B="range (\<lambda>x. approx n\<cdot>x)"]) |
|
487 |
apply (clarsimp simp add: Rep_compact_approx) |
|
488 |
apply (rule finite_range_approx) |
|
489 |
apply (rule inj_onI, simp add: Rep_compact_basis_inject) |
|
490 |
done |
|
491 |
next |
|
492 |
fix a :: "'a compact_basis" |
|
493 |
show "\<exists>n. compact_approx n a = a" |
|
494 |
apply (simp add: Rep_compact_basis_inject [symmetric]) |
|
495 |
apply (simp add: Rep_compact_approx) |
|
27309 | 496 |
apply (rule profinite_compact_eq_approx) |
27289 | 497 |
apply (rule compact_Rep_compact_basis) |
498 |
done |
|
499 |
qed |
|
25904 | 500 |
|
27289 | 501 |
text {* Ideal completion *} |
25904 | 502 |
|
27289 | 503 |
definition |
504 |
compacts :: "'a \<Rightarrow> 'a compact_basis set" where |
|
505 |
"compacts = (\<lambda>x. {a. Rep_compact_basis a \<sqsubseteq> x})" |
|
25904 | 506 |
|
507 |
interpretation compact_basis: |
|
26927 | 508 |
ideal_completion [sq_le compact_approx Rep_compact_basis compacts] |
27289 | 509 |
proof |
510 |
fix w :: 'a |
|
511 |
show "preorder.ideal sq_le (compacts w)" |
|
512 |
proof (rule sq_le.idealI) |
|
513 |
show "\<exists>x. x \<in> compacts w" |
|
514 |
unfolding compacts_def |
|
515 |
apply (rule_tac x="Abs_compact_basis (approx 0\<cdot>w)" in exI) |
|
516 |
apply (simp add: Abs_compact_basis_inverse approx_less) |
|
517 |
done |
|
518 |
next |
|
519 |
fix x y :: "'a compact_basis" |
|
520 |
assume "x \<in> compacts w" "y \<in> compacts w" |
|
521 |
thus "\<exists>z \<in> compacts w. x \<sqsubseteq> z \<and> y \<sqsubseteq> z" |
|
522 |
unfolding compacts_def |
|
523 |
apply simp |
|
524 |
apply (cut_tac a=x in compact_Rep_compact_basis) |
|
525 |
apply (cut_tac a=y in compact_Rep_compact_basis) |
|
27309 | 526 |
apply (drule profinite_compact_eq_approx) |
527 |
apply (drule profinite_compact_eq_approx) |
|
27289 | 528 |
apply (clarify, rename_tac i j) |
529 |
apply (rule_tac x="Abs_compact_basis (approx (max i j)\<cdot>w)" in exI) |
|
530 |
apply (simp add: compact_le_def) |
|
531 |
apply (simp add: Abs_compact_basis_inverse approx_less) |
|
532 |
apply (erule subst, erule subst) |
|
533 |
apply (simp add: monofun_cfun chain_mono [OF chain_approx]) |
|
534 |
done |
|
535 |
next |
|
536 |
fix x y :: "'a compact_basis" |
|
537 |
assume "x \<sqsubseteq> y" "y \<in> compacts w" thus "x \<in> compacts w" |
|
538 |
unfolding compacts_def |
|
539 |
apply simp |
|
540 |
apply (simp add: compact_le_def) |
|
541 |
apply (erule (1) trans_less) |
|
542 |
done |
|
543 |
qed |
|
544 |
next |
|
27297
2c42b1505f25
removed SetPcpo.thy and cpo instance for type bool;
huffman
parents:
27289
diff
changeset
|
545 |
fix Y :: "nat \<Rightarrow> 'a" |
2c42b1505f25
removed SetPcpo.thy and cpo instance for type bool;
huffman
parents:
27289
diff
changeset
|
546 |
assume Y: "chain Y" |
2c42b1505f25
removed SetPcpo.thy and cpo instance for type bool;
huffman
parents:
27289
diff
changeset
|
547 |
show "compacts (\<Squnion>i. Y i) = (\<Union>i. compacts (Y i))" |
27289 | 548 |
unfolding compacts_def |
27297
2c42b1505f25
removed SetPcpo.thy and cpo instance for type bool;
huffman
parents:
27289
diff
changeset
|
549 |
apply safe |
2c42b1505f25
removed SetPcpo.thy and cpo instance for type bool;
huffman
parents:
27289
diff
changeset
|
550 |
apply (simp add: compactD2 [OF compact_Rep_compact_basis Y]) |
2c42b1505f25
removed SetPcpo.thy and cpo instance for type bool;
huffman
parents:
27289
diff
changeset
|
551 |
apply (erule trans_less, rule is_ub_thelub [OF Y]) |
27289 | 552 |
done |
26420
57a626f64875
make preorder locale into a superclass of class po
huffman
parents:
26407
diff
changeset
|
553 |
next |
27289 | 554 |
fix a :: "'a compact_basis" |
555 |
show "compacts (Rep_compact_basis a) = {b. b \<sqsubseteq> a}" |
|
556 |
unfolding compacts_def compact_le_def .. |
|
26420
57a626f64875
make preorder locale into a superclass of class po
huffman
parents:
26407
diff
changeset
|
557 |
next |
57a626f64875
make preorder locale into a superclass of class po
huffman
parents:
26407
diff
changeset
|
558 |
fix x y :: "'a" |
57a626f64875
make preorder locale into a superclass of class po
huffman
parents:
26407
diff
changeset
|
559 |
assume "compacts x \<subseteq> compacts y" thus "x \<sqsubseteq> y" |
27289 | 560 |
apply (subgoal_tac "(\<Squnion>i. approx i\<cdot>x) \<sqsubseteq> y", simp) |
561 |
apply (rule admD, simp, simp) |
|
562 |
apply (drule_tac c="Abs_compact_basis (approx i\<cdot>x)" in subsetD) |
|
563 |
apply (simp add: compacts_def Abs_compact_basis_inverse approx_less) |
|
564 |
apply (simp add: compacts_def Abs_compact_basis_inverse) |
|
565 |
done |
|
26420
57a626f64875
make preorder locale into a superclass of class po
huffman
parents:
26407
diff
changeset
|
566 |
qed |
25904 | 567 |
|
27289 | 568 |
text {* minimal compact element *} |
569 |
||
570 |
definition |
|
571 |
compact_bot :: "'a::bifinite compact_basis" where |
|
572 |
"compact_bot = Abs_compact_basis \<bottom>" |
|
573 |
||
574 |
lemma Rep_compact_bot: "Rep_compact_basis compact_bot = \<bottom>" |
|
575 |
unfolding compact_bot_def by (simp add: Abs_compact_basis_inverse) |
|
576 |
||
577 |
lemma compact_minimal [simp]: "compact_bot \<sqsubseteq> a" |
|
578 |
unfolding compact_le_def Rep_compact_bot by simp |
|
579 |
||
25904 | 580 |
|
581 |
subsection {* A compact basis for powerdomains *} |
|
582 |
||
583 |
typedef 'a pd_basis = |
|
26407
562a1d615336
rename class bifinite_cpo to profinite; generalize powerdomains from bifinite to profinite
huffman
parents:
26041
diff
changeset
|
584 |
"{S::'a::profinite compact_basis set. finite S \<and> S \<noteq> {}}" |
25904 | 585 |
by (rule_tac x="{arbitrary}" in exI, simp) |
586 |
||
587 |
lemma finite_Rep_pd_basis [simp]: "finite (Rep_pd_basis u)" |
|
588 |
by (insert Rep_pd_basis [of u, unfolded pd_basis_def]) simp |
|
589 |
||
590 |
lemma Rep_pd_basis_nonempty [simp]: "Rep_pd_basis u \<noteq> {}" |
|
591 |
by (insert Rep_pd_basis [of u, unfolded pd_basis_def]) simp |
|
592 |
||
593 |
text {* unit and plus *} |
|
594 |
||
595 |
definition |
|
596 |
PDUnit :: "'a compact_basis \<Rightarrow> 'a pd_basis" where |
|
597 |
"PDUnit = (\<lambda>x. Abs_pd_basis {x})" |
|
598 |
||
599 |
definition |
|
600 |
PDPlus :: "'a pd_basis \<Rightarrow> 'a pd_basis \<Rightarrow> 'a pd_basis" where |
|
601 |
"PDPlus t u = Abs_pd_basis (Rep_pd_basis t \<union> Rep_pd_basis u)" |
|
602 |
||
603 |
lemma Rep_PDUnit: |
|
604 |
"Rep_pd_basis (PDUnit x) = {x}" |
|
605 |
unfolding PDUnit_def by (rule Abs_pd_basis_inverse) (simp add: pd_basis_def) |
|
606 |
||
607 |
lemma Rep_PDPlus: |
|
608 |
"Rep_pd_basis (PDPlus u v) = Rep_pd_basis u \<union> Rep_pd_basis v" |
|
609 |
unfolding PDPlus_def by (rule Abs_pd_basis_inverse) (simp add: pd_basis_def) |
|
610 |
||
611 |
lemma PDUnit_inject [simp]: "(PDUnit a = PDUnit b) = (a = b)" |
|
612 |
unfolding Rep_pd_basis_inject [symmetric] Rep_PDUnit by simp |
|
613 |
||
614 |
lemma PDPlus_assoc: "PDPlus (PDPlus t u) v = PDPlus t (PDPlus u v)" |
|
615 |
unfolding Rep_pd_basis_inject [symmetric] Rep_PDPlus by (rule Un_assoc) |
|
616 |
||
617 |
lemma PDPlus_commute: "PDPlus t u = PDPlus u t" |
|
618 |
unfolding Rep_pd_basis_inject [symmetric] Rep_PDPlus by (rule Un_commute) |
|
619 |
||
620 |
lemma PDPlus_absorb: "PDPlus t t = t" |
|
621 |
unfolding Rep_pd_basis_inject [symmetric] Rep_PDPlus by (rule Un_absorb) |
|
622 |
||
623 |
lemma pd_basis_induct1: |
|
624 |
assumes PDUnit: "\<And>a. P (PDUnit a)" |
|
625 |
assumes PDPlus: "\<And>a t. P t \<Longrightarrow> P (PDPlus (PDUnit a) t)" |
|
626 |
shows "P x" |
|
627 |
apply (induct x, unfold pd_basis_def, clarify) |
|
628 |
apply (erule (1) finite_ne_induct) |
|
629 |
apply (cut_tac a=x in PDUnit) |
|
630 |
apply (simp add: PDUnit_def) |
|
631 |
apply (drule_tac a=x in PDPlus) |
|
632 |
apply (simp add: PDUnit_def PDPlus_def Abs_pd_basis_inverse [unfolded pd_basis_def]) |
|
633 |
done |
|
634 |
||
635 |
lemma pd_basis_induct: |
|
636 |
assumes PDUnit: "\<And>a. P (PDUnit a)" |
|
637 |
assumes PDPlus: "\<And>t u. \<lbrakk>P t; P u\<rbrakk> \<Longrightarrow> P (PDPlus t u)" |
|
638 |
shows "P x" |
|
639 |
apply (induct x rule: pd_basis_induct1) |
|
640 |
apply (rule PDUnit, erule PDPlus [OF PDUnit]) |
|
641 |
done |
|
642 |
||
643 |
text {* fold-pd *} |
|
644 |
||
645 |
definition |
|
646 |
fold_pd :: |
|
647 |
"('a compact_basis \<Rightarrow> 'b::type) \<Rightarrow> ('b \<Rightarrow> 'b \<Rightarrow> 'b) \<Rightarrow> 'a pd_basis \<Rightarrow> 'b" |
|
648 |
where "fold_pd g f t = fold1 f (g ` Rep_pd_basis t)" |
|
649 |
||
26927 | 650 |
lemma fold_pd_PDUnit: |
651 |
includes ab_semigroup_idem_mult f |
|
652 |
shows "fold_pd g f (PDUnit x) = g x" |
|
25904 | 653 |
unfolding fold_pd_def Rep_PDUnit by simp |
654 |
||
26927 | 655 |
lemma fold_pd_PDPlus: |
656 |
includes ab_semigroup_idem_mult f |
|
657 |
shows "fold_pd g f (PDPlus t u) = f (fold_pd g f t) (fold_pd g f u)" |
|
25904 | 658 |
unfolding fold_pd_def Rep_PDPlus by (simp add: image_Un fold1_Un2) |
659 |
||
660 |
text {* approx-pd *} |
|
661 |
||
662 |
definition |
|
663 |
approx_pd :: "nat \<Rightarrow> 'a pd_basis \<Rightarrow> 'a pd_basis" where |
|
664 |
"approx_pd n = (\<lambda>t. Abs_pd_basis (compact_approx n ` Rep_pd_basis t))" |
|
665 |
||
666 |
lemma Rep_approx_pd: |
|
667 |
"Rep_pd_basis (approx_pd n t) = compact_approx n ` Rep_pd_basis t" |
|
668 |
unfolding approx_pd_def |
|
669 |
apply (rule Abs_pd_basis_inverse) |
|
670 |
apply (simp add: pd_basis_def) |
|
671 |
done |
|
672 |
||
673 |
lemma approx_pd_simps [simp]: |
|
674 |
"approx_pd n (PDUnit a) = PDUnit (compact_approx n a)" |
|
675 |
"approx_pd n (PDPlus t u) = PDPlus (approx_pd n t) (approx_pd n u)" |
|
676 |
apply (simp_all add: Rep_pd_basis_inject [symmetric]) |
|
677 |
apply (simp_all add: Rep_approx_pd Rep_PDUnit Rep_PDPlus image_Un) |
|
678 |
done |
|
679 |
||
680 |
lemma approx_pd_idem: "approx_pd n (approx_pd n t) = approx_pd n t" |
|
681 |
apply (induct t rule: pd_basis_induct) |
|
27289 | 682 |
apply (simp add: compact_basis.take_take) |
25904 | 683 |
apply simp |
684 |
done |
|
685 |
||
686 |
lemma finite_range_approx_pd: "finite (range (approx_pd n))" |
|
27289 | 687 |
apply (rule finite_imageD [where f="Rep_pd_basis"]) |
688 |
apply (rule finite_subset [where B="Pow (range (compact_approx n))"]) |
|
689 |
apply (clarsimp simp add: Rep_approx_pd) |
|
690 |
apply (simp add: compact_basis.finite_range_take) |
|
25904 | 691 |
apply (rule inj_onI, simp add: Rep_pd_basis_inject) |
692 |
done |
|
693 |
||
27289 | 694 |
lemma approx_pd_covers: "\<exists>n. approx_pd n t = t" |
25904 | 695 |
apply (subgoal_tac "\<exists>n. \<forall>m\<ge>n. approx_pd m t = t", fast) |
696 |
apply (induct t rule: pd_basis_induct) |
|
27289 | 697 |
apply (cut_tac a=a in compact_basis.take_covers) |
25904 | 698 |
apply (clarify, rule_tac x=n in exI) |
699 |
apply (clarify, simp) |
|
26420
57a626f64875
make preorder locale into a superclass of class po
huffman
parents:
26407
diff
changeset
|
700 |
apply (rule antisym_less) |
27289 | 701 |
apply (rule compact_basis.take_less) |
702 |
apply (drule_tac a=a in compact_basis.take_chain_le) |
|
25904 | 703 |
apply simp |
704 |
apply (clarify, rename_tac i j) |
|
705 |
apply (rule_tac x="max i j" in exI, simp) |
|
706 |
done |
|
707 |
||
708 |
end |