| author | blanchet | 
| Fri, 23 Aug 2013 16:02:32 +0200 | |
| changeset 53157 | c8369b691d04 | 
| parent 52265 | bb907eba5902 | 
| child 53215 | 5e47c31c6f7c | 
| permissions | -rw-r--r-- | 
| 52265 | 1 | (* Title: HOL/Conditionally_Complete_Lattices.thy | 
| 51518 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51475diff
changeset | 2 | Author: Amine Chaieb and L C Paulson, University of Cambridge | 
| 51643 | 3 | Author: Johannes Hölzl, TU München | 
| 51518 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51475diff
changeset | 4 | *) | 
| 33269 
3b7e2dbbd684
New theory SupInf of the supremum and infimum operators for sets of reals.
 paulson parents: diff
changeset | 5 | |
| 51773 | 6 | header {* Conditionally-complete Lattices *}
 | 
| 33269 
3b7e2dbbd684
New theory SupInf of the supremum and infimum operators for sets of reals.
 paulson parents: diff
changeset | 7 | |
| 51773 | 8 | theory Conditionally_Complete_Lattices | 
| 51518 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51475diff
changeset | 9 | imports Main Lubs | 
| 33269 
3b7e2dbbd684
New theory SupInf of the supremum and infimum operators for sets of reals.
 paulson parents: diff
changeset | 10 | begin | 
| 
3b7e2dbbd684
New theory SupInf of the supremum and infimum operators for sets of reals.
 paulson parents: diff
changeset | 11 | |
| 51475 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 12 | lemma Sup_fin_eq_Max: "finite X \<Longrightarrow> X \<noteq> {} \<Longrightarrow> Sup_fin X = Max X"
 | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 13 | by (induct X rule: finite_ne_induct) (simp_all add: sup_max) | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 14 | |
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 15 | lemma Inf_fin_eq_Min: "finite X \<Longrightarrow> X \<noteq> {} \<Longrightarrow> Inf_fin X = Min X"
 | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 16 | by (induct X rule: finite_ne_induct) (simp_all add: inf_min) | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 17 | |
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 18 | text {*
 | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 19 | |
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 20 | To avoid name classes with the @{class complete_lattice}-class we prefix @{const Sup} and
 | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 21 | @{const Inf} in theorem names with c.
 | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 22 | |
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 23 | *} | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 24 | |
| 51773 | 25 | class conditionally_complete_lattice = lattice + Sup + Inf + | 
| 51475 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 26 | assumes cInf_lower: "x \<in> X \<Longrightarrow> (\<And>a. a \<in> X \<Longrightarrow> z \<le> a) \<Longrightarrow> Inf X \<le> x" | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 27 |     and cInf_greatest: "X \<noteq> {} \<Longrightarrow> (\<And>x. x \<in> X \<Longrightarrow> z \<le> x) \<Longrightarrow> z \<le> Inf X"
 | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 28 | assumes cSup_upper: "x \<in> X \<Longrightarrow> (\<And>a. a \<in> X \<Longrightarrow> a \<le> z) \<Longrightarrow> x \<le> Sup X" | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 29 |     and cSup_least: "X \<noteq> {} \<Longrightarrow> (\<And>x. x \<in> X \<Longrightarrow> x \<le> z) \<Longrightarrow> Sup X \<le> z"
 | 
| 33269 
3b7e2dbbd684
New theory SupInf of the supremum and infimum operators for sets of reals.
 paulson parents: diff
changeset | 30 | begin | 
| 51475 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 31 | |
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 32 | lemma cSup_eq_maximum: (*REAL_SUP_MAX in HOL4*) | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 33 | "z \<in> X \<Longrightarrow> (\<And>x. x \<in> X \<Longrightarrow> x \<le> z) \<Longrightarrow> Sup X = z" | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 34 | by (blast intro: antisym cSup_upper cSup_least) | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 35 | |
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 36 | lemma cInf_eq_minimum: (*REAL_INF_MIN in HOL4*) | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 37 | "z \<in> X \<Longrightarrow> (\<And>x. x \<in> X \<Longrightarrow> z \<le> x) \<Longrightarrow> Inf X = z" | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 38 | by (intro antisym cInf_lower[of z X z] cInf_greatest[of X z]) auto | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 39 | |
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 40 | lemma cSup_le_iff: "S \<noteq> {} \<Longrightarrow> (\<And>a. a \<in> S \<Longrightarrow> a \<le> z) \<Longrightarrow> Sup S \<le> a \<longleftrightarrow> (\<forall>x\<in>S. x \<le> a)"
 | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 41 | by (metis order_trans cSup_upper cSup_least) | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 42 | |
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 43 | lemma le_cInf_iff: "S \<noteq> {} \<Longrightarrow> (\<And>a. a \<in> S \<Longrightarrow> z \<le> a) \<Longrightarrow> a \<le> Inf S \<longleftrightarrow> (\<forall>x\<in>S. a \<le> x)"
 | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 44 | by (metis order_trans cInf_lower cInf_greatest) | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 45 | |
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 46 | lemma cSup_singleton [simp]: "Sup {x} = x"
 | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 47 | by (intro cSup_eq_maximum) auto | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 48 | |
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 49 | lemma cInf_singleton [simp]: "Inf {x} = x"
 | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 50 | by (intro cInf_eq_minimum) auto | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 51 | |
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 52 | lemma cSup_upper2: (*REAL_IMP_LE_SUP in HOL4*) | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 53 | "x \<in> X \<Longrightarrow> y \<le> x \<Longrightarrow> (\<And>x. x \<in> X \<Longrightarrow> x \<le> z) \<Longrightarrow> y \<le> Sup X" | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 54 | by (metis cSup_upper order_trans) | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 55 | |
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 56 | lemma cInf_lower2: | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 57 | "x \<in> X \<Longrightarrow> x \<le> y \<Longrightarrow> (\<And>x. x \<in> X \<Longrightarrow> z \<le> x) \<Longrightarrow> Inf X \<le> y" | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 58 | by (metis cInf_lower order_trans) | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 59 | |
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 60 | lemma cSup_upper_EX: "x \<in> X \<Longrightarrow> \<exists>z. \<forall>x. x \<in> X \<longrightarrow> x \<le> z \<Longrightarrow> x \<le> Sup X" | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 61 | by (blast intro: cSup_upper) | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 62 | |
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 63 | lemma cInf_lower_EX: "x \<in> X \<Longrightarrow> \<exists>z. \<forall>x. x \<in> X \<longrightarrow> z \<le> x \<Longrightarrow> Inf X \<le> x" | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 64 | by (blast intro: cInf_lower) | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 65 | |
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 66 | lemma cSup_eq_non_empty: | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 67 |   assumes 1: "X \<noteq> {}"
 | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 68 | assumes 2: "\<And>x. x \<in> X \<Longrightarrow> x \<le> a" | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 69 | assumes 3: "\<And>y. (\<And>x. x \<in> X \<Longrightarrow> x \<le> y) \<Longrightarrow> a \<le> y" | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 70 | shows "Sup X = a" | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 71 | by (intro 3 1 antisym cSup_least) (auto intro: 2 1 cSup_upper) | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 72 | |
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 73 | lemma cInf_eq_non_empty: | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 74 |   assumes 1: "X \<noteq> {}"
 | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 75 | assumes 2: "\<And>x. x \<in> X \<Longrightarrow> a \<le> x" | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 76 | assumes 3: "\<And>y. (\<And>x. x \<in> X \<Longrightarrow> y \<le> x) \<Longrightarrow> y \<le> a" | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 77 | shows "Inf X = a" | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 78 | by (intro 3 1 antisym cInf_greatest) (auto intro: 2 1 cInf_lower) | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 79 | |
| 51518 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51475diff
changeset | 80 | lemma cInf_cSup: "S \<noteq> {} \<Longrightarrow> (\<And>x. x \<in> S \<Longrightarrow> z \<le> x) \<Longrightarrow> Inf S = Sup {x. \<forall>s\<in>S. x \<le> s}"
 | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51475diff
changeset | 81 | by (rule cInf_eq_non_empty) (auto intro: cSup_upper cSup_least) | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51475diff
changeset | 82 | |
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51475diff
changeset | 83 | lemma cSup_cInf: "S \<noteq> {} \<Longrightarrow> (\<And>x. x \<in> S \<Longrightarrow> x \<le> z) \<Longrightarrow> Sup S = Inf {x. \<forall>s\<in>S. s \<le> x}"
 | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51475diff
changeset | 84 | by (rule cSup_eq_non_empty) (auto intro: cInf_lower cInf_greatest) | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51475diff
changeset | 85 | |
| 51475 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 86 | lemma cSup_insert: | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 87 |   assumes x: "X \<noteq> {}"
 | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 88 | and z: "\<And>x. x \<in> X \<Longrightarrow> x \<le> z" | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 89 | shows "Sup (insert a X) = sup a (Sup X)" | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 90 | proof (intro cSup_eq_non_empty) | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 91 | fix y assume "\<And>x. x \<in> insert a X \<Longrightarrow> x \<le> y" with x show "sup a (Sup X) \<le> y" by (auto intro: cSup_least) | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 92 | qed (auto intro: le_supI2 z cSup_upper) | 
| 33269 
3b7e2dbbd684
New theory SupInf of the supremum and infimum operators for sets of reals.
 paulson parents: diff
changeset | 93 | |
| 51475 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 94 | lemma cInf_insert: | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 95 |   assumes x: "X \<noteq> {}"
 | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 96 | and z: "\<And>x. x \<in> X \<Longrightarrow> z \<le> x" | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 97 | shows "Inf (insert a X) = inf a (Inf X)" | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 98 | proof (intro cInf_eq_non_empty) | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 99 | fix y assume "\<And>x. x \<in> insert a X \<Longrightarrow> y \<le> x" with x show "y \<le> inf a (Inf X)" by (auto intro: cInf_greatest) | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 100 | qed (auto intro: le_infI2 z cInf_lower) | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 101 | |
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 102 | lemma cSup_insert_If: | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 103 |   "(\<And>x. x \<in> X \<Longrightarrow> x \<le> z) \<Longrightarrow> Sup (insert a X) = (if X = {} then a else sup a (Sup X))"
 | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 104 | using cSup_insert[of X z] by simp | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 105 | |
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 106 | lemma cInf_insert_if: | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 107 |   "(\<And>x. x \<in> X \<Longrightarrow> z \<le> x) \<Longrightarrow> Inf (insert a X) = (if X = {} then a else inf a (Inf X))"
 | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 108 | using cInf_insert[of X z] by simp | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 109 | |
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 110 | lemma le_cSup_finite: "finite X \<Longrightarrow> x \<in> X \<Longrightarrow> x \<le> Sup X" | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 111 | proof (induct X arbitrary: x rule: finite_induct) | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 112 | case (insert x X y) then show ?case | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 113 |     apply (cases "X = {}")
 | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 114 | apply simp | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 115 | apply (subst cSup_insert[of _ "Sup X"]) | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 116 | apply (auto intro: le_supI2) | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 117 | done | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 118 | qed simp | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 119 | |
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 120 | lemma cInf_le_finite: "finite X \<Longrightarrow> x \<in> X \<Longrightarrow> Inf X \<le> x" | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 121 | proof (induct X arbitrary: x rule: finite_induct) | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 122 | case (insert x X y) then show ?case | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 123 |     apply (cases "X = {}")
 | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 124 | apply simp | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 125 | apply (subst cInf_insert[of _ "Inf X"]) | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 126 | apply (auto intro: le_infI2) | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 127 | done | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 128 | qed simp | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 129 | |
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 130 | lemma cSup_eq_Sup_fin: "finite X \<Longrightarrow> X \<noteq> {} \<Longrightarrow> Sup X = Sup_fin X"
 | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 131 | proof (induct X rule: finite_ne_induct) | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 132 | case (insert x X) then show ?case | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 133 | using cSup_insert[of X "Sup_fin X" x] le_cSup_finite[of X] by simp | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 134 | qed simp | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 135 | |
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 136 | lemma cInf_eq_Inf_fin: "finite X \<Longrightarrow> X \<noteq> {} \<Longrightarrow> Inf X = Inf_fin X"
 | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 137 | proof (induct X rule: finite_ne_induct) | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 138 | case (insert x X) then show ?case | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 139 | using cInf_insert[of X "Inf_fin X" x] cInf_le_finite[of X] by simp | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 140 | qed simp | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 141 | |
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 142 | lemma cSup_atMost[simp]: "Sup {..x} = x"
 | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 143 | by (auto intro!: cSup_eq_maximum) | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 144 | |
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 145 | lemma cSup_greaterThanAtMost[simp]: "y < x \<Longrightarrow> Sup {y<..x} = x"
 | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 146 | by (auto intro!: cSup_eq_maximum) | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 147 | |
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 148 | lemma cSup_atLeastAtMost[simp]: "y \<le> x \<Longrightarrow> Sup {y..x} = x"
 | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 149 | by (auto intro!: cSup_eq_maximum) | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 150 | |
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 151 | lemma cInf_atLeast[simp]: "Inf {x..} = x"
 | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 152 | by (auto intro!: cInf_eq_minimum) | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 153 | |
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 154 | lemma cInf_atLeastLessThan[simp]: "y < x \<Longrightarrow> Inf {y..<x} = y"
 | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 155 | by (auto intro!: cInf_eq_minimum) | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 156 | |
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 157 | lemma cInf_atLeastAtMost[simp]: "y \<le> x \<Longrightarrow> Inf {y..x} = y"
 | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 158 | by (auto intro!: cInf_eq_minimum) | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 159 | |
| 33269 
3b7e2dbbd684
New theory SupInf of the supremum and infimum operators for sets of reals.
 paulson parents: diff
changeset | 160 | end | 
| 
3b7e2dbbd684
New theory SupInf of the supremum and infimum operators for sets of reals.
 paulson parents: diff
changeset | 161 | |
| 51773 | 162 | instance complete_lattice \<subseteq> conditionally_complete_lattice | 
| 51475 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 163 | by default (auto intro: Sup_upper Sup_least Inf_lower Inf_greatest) | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 164 | |
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 165 | lemma isLub_cSup: | 
| 51773 | 166 |   "(S::'a :: conditionally_complete_lattice set) \<noteq> {} \<Longrightarrow> (\<exists>b. S *<= b) \<Longrightarrow> isLub UNIV S (Sup S)"
 | 
| 51475 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 167 | by (auto simp add: isLub_def setle_def leastP_def isUb_def | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 168 | intro!: setgeI intro: cSup_upper cSup_least) | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 169 | |
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 170 | lemma cSup_eq: | 
| 51773 | 171 |   fixes a :: "'a :: {conditionally_complete_lattice, no_bot}"
 | 
| 51475 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 172 | assumes upper: "\<And>x. x \<in> X \<Longrightarrow> x \<le> a" | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 173 | assumes least: "\<And>y. (\<And>x. x \<in> X \<Longrightarrow> x \<le> y) \<Longrightarrow> a \<le> y" | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 174 | shows "Sup X = a" | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 175 | proof cases | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 176 |   assume "X = {}" with lt_ex[of a] least show ?thesis by (auto simp: less_le_not_le)
 | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 177 | qed (intro cSup_eq_non_empty assms) | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 178 | |
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 179 | lemma cInf_eq: | 
| 51773 | 180 |   fixes a :: "'a :: {conditionally_complete_lattice, no_top}"
 | 
| 51475 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 181 | assumes upper: "\<And>x. x \<in> X \<Longrightarrow> a \<le> x" | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 182 | assumes least: "\<And>y. (\<And>x. x \<in> X \<Longrightarrow> y \<le> x) \<Longrightarrow> y \<le> a" | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 183 | shows "Inf X = a" | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 184 | proof cases | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 185 |   assume "X = {}" with gt_ex[of a] least show ?thesis by (auto simp: less_le_not_le)
 | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 186 | qed (intro cInf_eq_non_empty assms) | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 187 | |
| 51773 | 188 | lemma cSup_le: "(S::'a::conditionally_complete_lattice set) \<noteq> {} \<Longrightarrow> S *<= b \<Longrightarrow> Sup S \<le> b"
 | 
| 51475 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 189 | by (metis cSup_least setle_def) | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 190 | |
| 51773 | 191 | lemma cInf_ge: "(S::'a :: conditionally_complete_lattice set) \<noteq> {} \<Longrightarrow> b <=* S \<Longrightarrow> Inf S \<ge> b"
 | 
| 51475 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 192 | by (metis cInf_greatest setge_def) | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 193 | |
| 51773 | 194 | class conditionally_complete_linorder = conditionally_complete_lattice + linorder | 
| 33269 
3b7e2dbbd684
New theory SupInf of the supremum and infimum operators for sets of reals.
 paulson parents: diff
changeset | 195 | begin | 
| 51475 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 196 | |
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 197 | lemma less_cSup_iff : (*REAL_SUP_LE in HOL4*) | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 198 |   "X \<noteq> {} \<Longrightarrow> (\<And>x. x \<in> X \<Longrightarrow> x \<le> z) \<Longrightarrow> y < Sup X \<longleftrightarrow> (\<exists>x\<in>X. y < x)"
 | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 199 | by (rule iffI) (metis cSup_least not_less, metis cSup_upper less_le_trans) | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 200 | |
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 201 | lemma cInf_less_iff: "X \<noteq> {} \<Longrightarrow> (\<And>x. x \<in> X \<Longrightarrow> z \<le> x) \<Longrightarrow> Inf X < y \<longleftrightarrow> (\<exists>x\<in>X. x < y)"
 | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 202 | by (rule iffI) (metis cInf_greatest not_less, metis cInf_lower le_less_trans) | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 203 | |
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 204 | lemma less_cSupE: | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 205 |   assumes "y < Sup X" "X \<noteq> {}" obtains x where "x \<in> X" "y < x"
 | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 206 | by (metis cSup_least assms not_le that) | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 207 | |
| 51518 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51475diff
changeset | 208 | lemma less_cSupD: | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51475diff
changeset | 209 |   "X \<noteq> {} \<Longrightarrow> z < Sup X \<Longrightarrow> \<exists>x\<in>X. z < x"
 | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51475diff
changeset | 210 | by (metis less_cSup_iff not_leE) | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51475diff
changeset | 211 | |
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51475diff
changeset | 212 | lemma cInf_lessD: | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51475diff
changeset | 213 |   "X \<noteq> {} \<Longrightarrow> Inf X < z \<Longrightarrow> \<exists>x\<in>X. x < z"
 | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51475diff
changeset | 214 | by (metis cInf_less_iff not_leE) | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51475diff
changeset | 215 | |
| 51475 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 216 | lemma complete_interval: | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 217 | assumes "a < b" and "P a" and "\<not> P b" | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 218 | shows "\<exists>c. a \<le> c \<and> c \<le> b \<and> (\<forall>x. a \<le> x \<and> x < c \<longrightarrow> P x) \<and> | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 219 | (\<forall>d. (\<forall>x. a \<le> x \<and> x < d \<longrightarrow> P x) \<longrightarrow> d \<le> c)" | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 220 | proof (rule exI [where x = "Sup {d. \<forall>x. a \<le> x & x < d --> P x}"], auto)
 | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 221 |   show "a \<le> Sup {d. \<forall>c. a \<le> c \<and> c < d \<longrightarrow> P c}"
 | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 222 | by (rule cSup_upper [where z=b], auto) | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 223 | (metis `a < b` `\<not> P b` linear less_le) | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 224 | next | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 225 |   show "Sup {d. \<forall>c. a \<le> c \<and> c < d \<longrightarrow> P c} \<le> b"
 | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 226 | apply (rule cSup_least) | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 227 | apply auto | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 228 | apply (metis less_le_not_le) | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 229 | apply (metis `a<b` `~ P b` linear less_le) | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 230 | done | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 231 | next | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 232 | fix x | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 233 |   assume x: "a \<le> x" and lt: "x < Sup {d. \<forall>c. a \<le> c \<and> c < d \<longrightarrow> P c}"
 | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 234 | show "P x" | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 235 | apply (rule less_cSupE [OF lt], auto) | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 236 | apply (metis less_le_not_le) | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 237 | apply (metis x) | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 238 | done | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 239 | next | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 240 | fix d | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 241 | assume 0: "\<forall>x. a \<le> x \<and> x < d \<longrightarrow> P x" | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 242 |     thus "d \<le> Sup {d. \<forall>c. a \<le> c \<and> c < d \<longrightarrow> P c}"
 | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 243 | by (rule_tac z="b" in cSup_upper, auto) | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 244 | (metis `a<b` `~ P b` linear less_le) | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 245 | qed | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 246 | |
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 247 | end | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 248 | |
| 51775 
408d937c9486
revert #916271d52466; add non-topological linear_continuum type class; show linear_continuum_topology is a perfect_space
 hoelzl parents: 
51773diff
changeset | 249 | class linear_continuum = conditionally_complete_linorder + inner_dense_linorder + | 
| 
408d937c9486
revert #916271d52466; add non-topological linear_continuum type class; show linear_continuum_topology is a perfect_space
 hoelzl parents: 
51773diff
changeset | 250 | assumes UNIV_not_singleton: "\<exists>a b::'a. a \<noteq> b" | 
| 
408d937c9486
revert #916271d52466; add non-topological linear_continuum type class; show linear_continuum_topology is a perfect_space
 hoelzl parents: 
51773diff
changeset | 251 | begin | 
| 
408d937c9486
revert #916271d52466; add non-topological linear_continuum type class; show linear_continuum_topology is a perfect_space
 hoelzl parents: 
51773diff
changeset | 252 | |
| 
408d937c9486
revert #916271d52466; add non-topological linear_continuum type class; show linear_continuum_topology is a perfect_space
 hoelzl parents: 
51773diff
changeset | 253 | lemma ex_gt_or_lt: "\<exists>b. a < b \<or> b < a" | 
| 
408d937c9486
revert #916271d52466; add non-topological linear_continuum type class; show linear_continuum_topology is a perfect_space
 hoelzl parents: 
51773diff
changeset | 254 | by (metis UNIV_not_singleton neq_iff) | 
| 
408d937c9486
revert #916271d52466; add non-topological linear_continuum type class; show linear_continuum_topology is a perfect_space
 hoelzl parents: 
51773diff
changeset | 255 | |
| 
408d937c9486
revert #916271d52466; add non-topological linear_continuum type class; show linear_continuum_topology is a perfect_space
 hoelzl parents: 
51773diff
changeset | 256 | end | 
| 
408d937c9486
revert #916271d52466; add non-topological linear_continuum type class; show linear_continuum_topology is a perfect_space
 hoelzl parents: 
51773diff
changeset | 257 | |
| 51518 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51475diff
changeset | 258 | lemma cSup_bounds: | 
| 51773 | 259 | fixes S :: "'a :: conditionally_complete_lattice set" | 
| 51518 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51475diff
changeset | 260 |   assumes Se: "S \<noteq> {}" and l: "a <=* S" and u: "S *<= b"
 | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51475diff
changeset | 261 | shows "a \<le> Sup S \<and> Sup S \<le> b" | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51475diff
changeset | 262 | proof- | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51475diff
changeset | 263 | from isLub_cSup[OF Se] u have lub: "isLub UNIV S (Sup S)" by blast | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51475diff
changeset | 264 | hence b: "Sup S \<le> b" using u | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51475diff
changeset | 265 | by (auto simp add: isLub_def leastP_def setle_def setge_def isUb_def) | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51475diff
changeset | 266 | from Se obtain y where y: "y \<in> S" by blast | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51475diff
changeset | 267 | from lub l have "a \<le> Sup S" | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51475diff
changeset | 268 | by (auto simp add: isLub_def leastP_def setle_def setge_def isUb_def) | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51475diff
changeset | 269 | (metis le_iff_sup le_sup_iff y) | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51475diff
changeset | 270 | with b show ?thesis by blast | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51475diff
changeset | 271 | qed | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51475diff
changeset | 272 | |
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51475diff
changeset | 273 | |
| 51773 | 274 | lemma cSup_unique: "(S::'a :: {conditionally_complete_linorder, no_bot} set) *<= b \<Longrightarrow> (\<forall>b'<b. \<exists>x\<in>S. b' < x) \<Longrightarrow> Sup S = b"
 | 
| 51475 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 275 | by (rule cSup_eq) (auto simp: not_le[symmetric] setle_def) | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 276 | |
| 51773 | 277 | lemma cInf_unique: "b <=* (S::'a :: {conditionally_complete_linorder, no_top} set) \<Longrightarrow> (\<forall>b'>b. \<exists>x\<in>S. b' > x) \<Longrightarrow> Inf S = b"
 | 
| 51475 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 278 | by (rule cInf_eq) (auto simp: not_le[symmetric] setge_def) | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 279 | |
| 51773 | 280 | lemma cSup_eq_Max: "finite (X::'a::conditionally_complete_linorder set) \<Longrightarrow> X \<noteq> {} \<Longrightarrow> Sup X = Max X"
 | 
| 51475 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 281 | using cSup_eq_Sup_fin[of X] Sup_fin_eq_Max[of X] by simp | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 282 | |
| 51773 | 283 | lemma cInf_eq_Min: "finite (X::'a::conditionally_complete_linorder set) \<Longrightarrow> X \<noteq> {} \<Longrightarrow> Inf X = Min X"
 | 
| 51475 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 284 | using cInf_eq_Inf_fin[of X] Inf_fin_eq_Min[of X] by simp | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 285 | |
| 51773 | 286 | lemma cSup_lessThan[simp]: "Sup {..<x::'a::{conditionally_complete_linorder, dense_linorder}} = x"
 | 
| 51475 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 287 | by (auto intro!: cSup_eq_non_empty intro: dense_le) | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 288 | |
| 51773 | 289 | lemma cSup_greaterThanLessThan[simp]: "y < x \<Longrightarrow> Sup {y<..<x::'a::{conditionally_complete_linorder, dense_linorder}} = x"
 | 
| 51475 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 290 | by (auto intro!: cSup_eq intro: dense_le_bounded) | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 291 | |
| 51773 | 292 | lemma cSup_atLeastLessThan[simp]: "y < x \<Longrightarrow> Sup {y..<x::'a::{conditionally_complete_linorder, dense_linorder}} = x"
 | 
| 51475 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 293 | by (auto intro!: cSup_eq intro: dense_le_bounded) | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 294 | |
| 51773 | 295 | lemma cInf_greaterThan[simp]: "Inf {x::'a::{conditionally_complete_linorder, dense_linorder} <..} = x"
 | 
| 51475 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 296 | by (auto intro!: cInf_eq intro: dense_ge) | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 297 | |
| 51773 | 298 | lemma cInf_greaterThanAtMost[simp]: "y < x \<Longrightarrow> Inf {y<..x::'a::{conditionally_complete_linorder, dense_linorder}} = y"
 | 
| 51475 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 299 | by (auto intro!: cInf_eq intro: dense_ge_bounded) | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 300 | |
| 51773 | 301 | lemma cInf_greaterThanLessThan[simp]: "y < x \<Longrightarrow> Inf {y<..<x::'a::{conditionally_complete_linorder, dense_linorder}} = y"
 | 
| 51475 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 302 | by (auto intro!: cInf_eq intro: dense_ge_bounded) | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 303 | |
| 33269 
3b7e2dbbd684
New theory SupInf of the supremum and infimum operators for sets of reals.
 paulson parents: diff
changeset | 304 | end |