src/HOL/Rings.thy
author wenzelm
Sun, 22 Dec 2019 15:48:42 +0100
changeset 71333 c898cd5b8519
parent 71167 b4d409c65a76
child 71398 e0237f2eb49d
permissions -rw-r--r--
obsolete;
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
35050
9f841f20dca6 renamed OrderedGroup to Groups; split theory Ring_and_Field into Rings Fields
haftmann
parents: 35043
diff changeset
     1
(*  Title:      HOL/Rings.thy
32960
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 30961
diff changeset
     2
    Author:     Gertrud Bauer
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 30961
diff changeset
     3
    Author:     Steven Obua
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 30961
diff changeset
     4
    Author:     Tobias Nipkow
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 30961
diff changeset
     5
    Author:     Lawrence C Paulson
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 30961
diff changeset
     6
    Author:     Markus Wenzel
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 30961
diff changeset
     7
    Author:     Jeremy Avigad
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
     8
*)
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
     9
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60690
diff changeset
    10
section \<open>Rings\<close>
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
    11
35050
9f841f20dca6 renamed OrderedGroup to Groups; split theory Ring_and_Field into Rings Fields
haftmann
parents: 35043
diff changeset
    12
theory Rings
69661
a03a63b81f44 tuned proofs
haftmann
parents: 69605
diff changeset
    13
  imports Groups Set Fun
15131
c69542757a4d New theory header syntax.
nipkow
parents: 15077
diff changeset
    14
begin
14504
7a3d80e276d4 new type class abelian_group
paulson
parents: 14475
diff changeset
    15
70145
f07b8fb99818 more document structure
haftmann
parents: 70144
diff changeset
    16
subsection \<open>Semirings and rings\<close>
f07b8fb99818 more document structure
haftmann
parents: 70144
diff changeset
    17
22390
378f34b1e380 now using "class"
haftmann
parents: 21328
diff changeset
    18
class semiring = ab_semigroup_add + semigroup_mult +
70817
dd675800469d dedicated fact collections for algebraic simplification rules potentially splitting goals
haftmann
parents: 70347
diff changeset
    19
  assumes distrib_right [algebra_simps, algebra_split_simps]: "(a + b) * c = a * c + b * c"
dd675800469d dedicated fact collections for algebraic simplification rules potentially splitting goals
haftmann
parents: 70347
diff changeset
    20
  assumes distrib_left [algebra_simps, algebra_split_simps]: "a * (b + c) = a * b + a * c"
25152
bfde2f8c0f63 partially localized
haftmann
parents: 25078
diff changeset
    21
begin
bfde2f8c0f63 partially localized
haftmann
parents: 25078
diff changeset
    22
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
    23
text \<open>For the \<open>combine_numerals\<close> simproc\<close>
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
    24
lemma combine_common_factor: "a * e + (b * e + c) = (a + b) * e + c"
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
    25
  by (simp add: distrib_right ac_simps)
25152
bfde2f8c0f63 partially localized
haftmann
parents: 25078
diff changeset
    26
bfde2f8c0f63 partially localized
haftmann
parents: 25078
diff changeset
    27
end
14504
7a3d80e276d4 new type class abelian_group
paulson
parents: 14475
diff changeset
    28
22390
378f34b1e380 now using "class"
haftmann
parents: 21328
diff changeset
    29
class mult_zero = times + zero +
25062
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
    30
  assumes mult_zero_left [simp]: "0 * a = 0"
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
    31
  assumes mult_zero_right [simp]: "a * 0 = 0"
58195
1fee63e0377d added various facts
haftmann
parents: 57514
diff changeset
    32
begin
1fee63e0377d added various facts
haftmann
parents: 57514
diff changeset
    33
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
    34
lemma mult_not_zero: "a * b \<noteq> 0 \<Longrightarrow> a \<noteq> 0 \<and> b \<noteq> 0"
58195
1fee63e0377d added various facts
haftmann
parents: 57514
diff changeset
    35
  by auto
1fee63e0377d added various facts
haftmann
parents: 57514
diff changeset
    36
1fee63e0377d added various facts
haftmann
parents: 57514
diff changeset
    37
end
21199
2d83f93c3580 * Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
krauss
parents: 20633
diff changeset
    38
58198
099ca49b5231 generalized
haftmann
parents: 58195
diff changeset
    39
class semiring_0 = semiring + comm_monoid_add + mult_zero
099ca49b5231 generalized
haftmann
parents: 58195
diff changeset
    40
29904
856f16a3b436 add class cancel_comm_monoid_add
huffman
parents: 29833
diff changeset
    41
class semiring_0_cancel = semiring + cancel_comm_monoid_add
25186
f4d1ebffd025 localized further
haftmann
parents: 25152
diff changeset
    42
begin
14504
7a3d80e276d4 new type class abelian_group
paulson
parents: 14475
diff changeset
    43
25186
f4d1ebffd025 localized further
haftmann
parents: 25152
diff changeset
    44
subclass semiring_0
28823
dcbef866c9e2 tuned unfold_locales invocation
haftmann
parents: 28559
diff changeset
    45
proof
21199
2d83f93c3580 * Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
krauss
parents: 20633
diff changeset
    46
  fix a :: 'a
63588
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
    47
  have "0 * a + 0 * a = 0 * a + 0"
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
    48
    by (simp add: distrib_right [symmetric])
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
    49
  then show "0 * a = 0"
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
    50
    by (simp only: add_left_cancel)
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
    51
  have "a * 0 + a * 0 = a * 0 + 0"
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
    52
    by (simp add: distrib_left [symmetric])
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
    53
  then show "a * 0 = 0"
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
    54
    by (simp only: add_left_cancel)
21199
2d83f93c3580 * Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
krauss
parents: 20633
diff changeset
    55
qed
14940
b9ab8babd8b3 Further development of matrix theory
obua
parents: 14770
diff changeset
    56
25186
f4d1ebffd025 localized further
haftmann
parents: 25152
diff changeset
    57
end
25152
bfde2f8c0f63 partially localized
haftmann
parents: 25078
diff changeset
    58
22390
378f34b1e380 now using "class"
haftmann
parents: 21328
diff changeset
    59
class comm_semiring = ab_semigroup_add + ab_semigroup_mult +
25062
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
    60
  assumes distrib: "(a + b) * c = a * c + b * c"
25152
bfde2f8c0f63 partially localized
haftmann
parents: 25078
diff changeset
    61
begin
14504
7a3d80e276d4 new type class abelian_group
paulson
parents: 14475
diff changeset
    62
25152
bfde2f8c0f63 partially localized
haftmann
parents: 25078
diff changeset
    63
subclass semiring
28823
dcbef866c9e2 tuned unfold_locales invocation
haftmann
parents: 28559
diff changeset
    64
proof
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
    65
  fix a b c :: 'a
63588
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
    66
  show "(a + b) * c = a * c + b * c"
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
    67
    by (simp add: distrib)
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
    68
  have "a * (b + c) = (b + c) * a"
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
    69
    by (simp add: ac_simps)
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
    70
  also have "\<dots> = b * a + c * a"
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
    71
    by (simp only: distrib)
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
    72
  also have "\<dots> = a * b + a * c"
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
    73
    by (simp add: ac_simps)
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
    74
  finally show "a * (b + c) = a * b + a * c"
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
    75
    by blast
14504
7a3d80e276d4 new type class abelian_group
paulson
parents: 14475
diff changeset
    76
qed
7a3d80e276d4 new type class abelian_group
paulson
parents: 14475
diff changeset
    77
25152
bfde2f8c0f63 partially localized
haftmann
parents: 25078
diff changeset
    78
end
14504
7a3d80e276d4 new type class abelian_group
paulson
parents: 14475
diff changeset
    79
25152
bfde2f8c0f63 partially localized
haftmann
parents: 25078
diff changeset
    80
class comm_semiring_0 = comm_semiring + comm_monoid_add + mult_zero
bfde2f8c0f63 partially localized
haftmann
parents: 25078
diff changeset
    81
begin
bfde2f8c0f63 partially localized
haftmann
parents: 25078
diff changeset
    82
27516
9a5d4a8d4aac by intro_locales -> ..
huffman
parents: 26274
diff changeset
    83
subclass semiring_0 ..
25152
bfde2f8c0f63 partially localized
haftmann
parents: 25078
diff changeset
    84
bfde2f8c0f63 partially localized
haftmann
parents: 25078
diff changeset
    85
end
14504
7a3d80e276d4 new type class abelian_group
paulson
parents: 14475
diff changeset
    86
29904
856f16a3b436 add class cancel_comm_monoid_add
huffman
parents: 29833
diff changeset
    87
class comm_semiring_0_cancel = comm_semiring + cancel_comm_monoid_add
25186
f4d1ebffd025 localized further
haftmann
parents: 25152
diff changeset
    88
begin
14940
b9ab8babd8b3 Further development of matrix theory
obua
parents: 14770
diff changeset
    89
27516
9a5d4a8d4aac by intro_locales -> ..
huffman
parents: 26274
diff changeset
    90
subclass semiring_0_cancel ..
14940
b9ab8babd8b3 Further development of matrix theory
obua
parents: 14770
diff changeset
    91
28141
193c3ea0f63b instances comm_semiring_0_cancel < comm_semiring_0, comm_ring < comm_semiring_0_cancel
huffman
parents: 27651
diff changeset
    92
subclass comm_semiring_0 ..
193c3ea0f63b instances comm_semiring_0_cancel < comm_semiring_0, comm_ring < comm_semiring_0_cancel
huffman
parents: 27651
diff changeset
    93
25186
f4d1ebffd025 localized further
haftmann
parents: 25152
diff changeset
    94
end
21199
2d83f93c3580 * Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
krauss
parents: 20633
diff changeset
    95
22390
378f34b1e380 now using "class"
haftmann
parents: 21328
diff changeset
    96
class zero_neq_one = zero + one +
25062
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
    97
  assumes zero_neq_one [simp]: "0 \<noteq> 1"
26193
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
    98
begin
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
    99
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   100
lemma one_neq_zero [simp]: "1 \<noteq> 0"
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
   101
  by (rule not_sym) (rule zero_neq_one)
26193
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   102
54225
8a49a5a30284 generalized of_bool conversion
haftmann
parents: 54147
diff changeset
   103
definition of_bool :: "bool \<Rightarrow> 'a"
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
   104
  where "of_bool p = (if p then 1 else 0)"
54225
8a49a5a30284 generalized of_bool conversion
haftmann
parents: 54147
diff changeset
   105
8a49a5a30284 generalized of_bool conversion
haftmann
parents: 54147
diff changeset
   106
lemma of_bool_eq [simp, code]:
8a49a5a30284 generalized of_bool conversion
haftmann
parents: 54147
diff changeset
   107
  "of_bool False = 0"
8a49a5a30284 generalized of_bool conversion
haftmann
parents: 54147
diff changeset
   108
  "of_bool True = 1"
8a49a5a30284 generalized of_bool conversion
haftmann
parents: 54147
diff changeset
   109
  by (simp_all add: of_bool_def)
8a49a5a30284 generalized of_bool conversion
haftmann
parents: 54147
diff changeset
   110
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
   111
lemma of_bool_eq_iff: "of_bool p = of_bool q \<longleftrightarrow> p = q"
54225
8a49a5a30284 generalized of_bool conversion
haftmann
parents: 54147
diff changeset
   112
  by (simp add: of_bool_def)
8a49a5a30284 generalized of_bool conversion
haftmann
parents: 54147
diff changeset
   113
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
   114
lemma split_of_bool [split]: "P (of_bool p) \<longleftrightarrow> (p \<longrightarrow> P 1) \<and> (\<not> p \<longrightarrow> P 0)"
55187
6d0d93316daf split rules for of_bool, similar to if
haftmann
parents: 54703
diff changeset
   115
  by (cases p) simp_all
6d0d93316daf split rules for of_bool, similar to if
haftmann
parents: 54703
diff changeset
   116
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
   117
lemma split_of_bool_asm: "P (of_bool p) \<longleftrightarrow> \<not> (p \<and> \<not> P 1 \<or> \<not> p \<and> \<not> P 0)"
55187
6d0d93316daf split rules for of_bool, similar to if
haftmann
parents: 54703
diff changeset
   118
  by (cases p) simp_all
60562
24af00b010cf Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
paulson <lp15@cam.ac.uk>
parents: 60529
diff changeset
   119
24af00b010cf Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
paulson <lp15@cam.ac.uk>
parents: 60529
diff changeset
   120
end
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   121
22390
378f34b1e380 now using "class"
haftmann
parents: 21328
diff changeset
   122
class semiring_1 = zero_neq_one + semiring_0 + monoid_mult
66816
212a3334e7da more fundamental definition of div and mod on int
haftmann
parents: 66810
diff changeset
   123
begin
212a3334e7da more fundamental definition of div and mod on int
haftmann
parents: 66810
diff changeset
   124
70144
haftmann
parents: 70094
diff changeset
   125
lemma of_bool_conj:
66816
212a3334e7da more fundamental definition of div and mod on int
haftmann
parents: 66810
diff changeset
   126
  "of_bool (P \<and> Q) = of_bool P * of_bool Q"
212a3334e7da more fundamental definition of div and mod on int
haftmann
parents: 66810
diff changeset
   127
  by auto
212a3334e7da more fundamental definition of div and mod on int
haftmann
parents: 66810
diff changeset
   128
212a3334e7da more fundamental definition of div and mod on int
haftmann
parents: 66810
diff changeset
   129
end
14504
7a3d80e276d4 new type class abelian_group
paulson
parents: 14475
diff changeset
   130
71167
b4d409c65a76 Rearrangement of material in Complex_Analysis_Basics, which contained much that had nothing to do with complex analysis.
paulson <lp15@cam.ac.uk>
parents: 70902
diff changeset
   131
lemma lambda_zero: "(\<lambda>h::'a::mult_zero. 0) = (*) 0"
b4d409c65a76 Rearrangement of material in Complex_Analysis_Basics, which contained much that had nothing to do with complex analysis.
paulson <lp15@cam.ac.uk>
parents: 70902
diff changeset
   132
  by auto
b4d409c65a76 Rearrangement of material in Complex_Analysis_Basics, which contained much that had nothing to do with complex analysis.
paulson <lp15@cam.ac.uk>
parents: 70902
diff changeset
   133
b4d409c65a76 Rearrangement of material in Complex_Analysis_Basics, which contained much that had nothing to do with complex analysis.
paulson <lp15@cam.ac.uk>
parents: 70902
diff changeset
   134
lemma lambda_one: "(\<lambda>x::'a::monoid_mult. x) = (*) 1"
b4d409c65a76 Rearrangement of material in Complex_Analysis_Basics, which contained much that had nothing to do with complex analysis.
paulson <lp15@cam.ac.uk>
parents: 70902
diff changeset
   135
  by auto
70145
f07b8fb99818 more document structure
haftmann
parents: 70144
diff changeset
   136
f07b8fb99818 more document structure
haftmann
parents: 70144
diff changeset
   137
subsection \<open>Abstract divisibility\<close>
27651
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   138
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   139
class dvd = times
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   140
begin
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   141
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
   142
definition dvd :: "'a \<Rightarrow> 'a \<Rightarrow> bool" (infix "dvd" 50)
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
   143
  where "b dvd a \<longleftrightarrow> (\<exists>k. a = b * k)"
27651
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   144
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   145
lemma dvdI [intro?]: "a = b * k \<Longrightarrow> b dvd a"
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   146
  unfolding dvd_def ..
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   147
68251
54a127873735 consider dvdE for automated classical proving
haftmann
parents: 67689
diff changeset
   148
lemma dvdE [elim]: "b dvd a \<Longrightarrow> (\<And>k. a = b * k \<Longrightarrow> P) \<Longrightarrow> P"
60562
24af00b010cf Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
paulson <lp15@cam.ac.uk>
parents: 60529
diff changeset
   149
  unfolding dvd_def by blast
27651
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   150
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   151
end
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   152
59009
348561aa3869 generalized lemmas (particularly concerning dvd) as far as appropriate
haftmann
parents: 59000
diff changeset
   153
context comm_monoid_mult
25152
bfde2f8c0f63 partially localized
haftmann
parents: 25078
diff changeset
   154
begin
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   155
59009
348561aa3869 generalized lemmas (particularly concerning dvd) as far as appropriate
haftmann
parents: 59000
diff changeset
   156
subclass dvd .
25152
bfde2f8c0f63 partially localized
haftmann
parents: 25078
diff changeset
   157
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
   158
lemma dvd_refl [simp]: "a dvd a"
28559
55c003a5600a tuned default rules of (dvd)
haftmann
parents: 28141
diff changeset
   159
proof
55c003a5600a tuned default rules of (dvd)
haftmann
parents: 28141
diff changeset
   160
  show "a = a * 1" by simp
27651
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   161
qed
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   162
62349
7c23469b5118 cleansed junk-producing interpretations for gcd/lcm on nat altogether
haftmann
parents: 62347
diff changeset
   163
lemma dvd_trans [trans]:
27651
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   164
  assumes "a dvd b" and "b dvd c"
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   165
  shows "a dvd c"
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   166
proof -
63588
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
   167
  from assms obtain v where "b = a * v"
70146
haftmann
parents: 70145
diff changeset
   168
    by auto
63588
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
   169
  moreover from assms obtain w where "c = b * w"
70146
haftmann
parents: 70145
diff changeset
   170
    by auto
63588
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
   171
  ultimately have "c = a * (v * w)"
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
   172
    by (simp add: mult.assoc)
28559
55c003a5600a tuned default rules of (dvd)
haftmann
parents: 28141
diff changeset
   173
  then show ?thesis ..
27651
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   174
qed
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   175
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
   176
lemma subset_divisors_dvd: "{c. c dvd a} \<subseteq> {c. c dvd b} \<longleftrightarrow> a dvd b"
62366
95c6cf433c91 more theorems
haftmann
parents: 62349
diff changeset
   177
  by (auto simp add: subset_iff intro: dvd_trans)
95c6cf433c91 more theorems
haftmann
parents: 62349
diff changeset
   178
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
   179
lemma strict_subset_divisors_dvd: "{c. c dvd a} \<subset> {c. c dvd b} \<longleftrightarrow> a dvd b \<and> \<not> b dvd a"
62366
95c6cf433c91 more theorems
haftmann
parents: 62349
diff changeset
   180
  by (auto simp add: subset_iff intro: dvd_trans)
95c6cf433c91 more theorems
haftmann
parents: 62349
diff changeset
   181
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
   182
lemma one_dvd [simp]: "1 dvd a"
70146
haftmann
parents: 70145
diff changeset
   183
  by (auto intro: dvdI)
haftmann
parents: 70145
diff changeset
   184
haftmann
parents: 70145
diff changeset
   185
lemma dvd_mult [simp]: "a dvd (b * c)" if "a dvd c"
haftmann
parents: 70145
diff changeset
   186
  using that by rule (auto intro: mult.left_commute dvdI)
haftmann
parents: 70145
diff changeset
   187
haftmann
parents: 70145
diff changeset
   188
lemma dvd_mult2 [simp]: "a dvd (b * c)" if "a dvd b"
haftmann
parents: 70145
diff changeset
   189
  using that dvd_mult [of a b c] by (simp add: ac_simps)
27651
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   190
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
   191
lemma dvd_triv_right [simp]: "a dvd b * a"
59009
348561aa3869 generalized lemmas (particularly concerning dvd) as far as appropriate
haftmann
parents: 59000
diff changeset
   192
  by (rule dvd_mult) (rule dvd_refl)
27651
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   193
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
   194
lemma dvd_triv_left [simp]: "a dvd a * b"
59009
348561aa3869 generalized lemmas (particularly concerning dvd) as far as appropriate
haftmann
parents: 59000
diff changeset
   195
  by (rule dvd_mult2) (rule dvd_refl)
27651
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   196
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   197
lemma mult_dvd_mono:
30042
31039ee583fa Removed subsumed lemmas
nipkow
parents: 29981
diff changeset
   198
  assumes "a dvd b"
31039ee583fa Removed subsumed lemmas
nipkow
parents: 29981
diff changeset
   199
    and "c dvd d"
27651
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   200
  shows "a * c dvd b * d"
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   201
proof -
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60690
diff changeset
   202
  from \<open>a dvd b\<close> obtain b' where "b = a * b'" ..
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60690
diff changeset
   203
  moreover from \<open>c dvd d\<close> obtain d' where "d = c * d'" ..
63588
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
   204
  ultimately have "b * d = (a * c) * (b' * d')"
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
   205
    by (simp add: ac_simps)
27651
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   206
  then show ?thesis ..
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   207
qed
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   208
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
   209
lemma dvd_mult_left: "a * b dvd c \<Longrightarrow> a dvd c"
59009
348561aa3869 generalized lemmas (particularly concerning dvd) as far as appropriate
haftmann
parents: 59000
diff changeset
   210
  by (simp add: dvd_def mult.assoc) blast
27651
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   211
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
   212
lemma dvd_mult_right: "a * b dvd c \<Longrightarrow> b dvd c"
59009
348561aa3869 generalized lemmas (particularly concerning dvd) as far as appropriate
haftmann
parents: 59000
diff changeset
   213
  using dvd_mult_left [of b a c] by (simp add: ac_simps)
60562
24af00b010cf Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
paulson <lp15@cam.ac.uk>
parents: 60529
diff changeset
   214
59009
348561aa3869 generalized lemmas (particularly concerning dvd) as far as appropriate
haftmann
parents: 59000
diff changeset
   215
end
348561aa3869 generalized lemmas (particularly concerning dvd) as far as appropriate
haftmann
parents: 59000
diff changeset
   216
348561aa3869 generalized lemmas (particularly concerning dvd) as far as appropriate
haftmann
parents: 59000
diff changeset
   217
class comm_semiring_1 = zero_neq_one + comm_semiring_0 + comm_monoid_mult
348561aa3869 generalized lemmas (particularly concerning dvd) as far as appropriate
haftmann
parents: 59000
diff changeset
   218
begin
348561aa3869 generalized lemmas (particularly concerning dvd) as far as appropriate
haftmann
parents: 59000
diff changeset
   219
348561aa3869 generalized lemmas (particularly concerning dvd) as far as appropriate
haftmann
parents: 59000
diff changeset
   220
subclass semiring_1 ..
27651
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   221
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
   222
lemma dvd_0_left_iff [simp]: "0 dvd a \<longleftrightarrow> a = 0"
70146
haftmann
parents: 70145
diff changeset
   223
  by auto
27651
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   224
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
   225
lemma dvd_0_right [iff]: "a dvd 0"
59009
348561aa3869 generalized lemmas (particularly concerning dvd) as far as appropriate
haftmann
parents: 59000
diff changeset
   226
proof
348561aa3869 generalized lemmas (particularly concerning dvd) as far as appropriate
haftmann
parents: 59000
diff changeset
   227
  show "0 = a * 0" by simp
348561aa3869 generalized lemmas (particularly concerning dvd) as far as appropriate
haftmann
parents: 59000
diff changeset
   228
qed
348561aa3869 generalized lemmas (particularly concerning dvd) as far as appropriate
haftmann
parents: 59000
diff changeset
   229
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
   230
lemma dvd_0_left: "0 dvd a \<Longrightarrow> a = 0"
59009
348561aa3869 generalized lemmas (particularly concerning dvd) as far as appropriate
haftmann
parents: 59000
diff changeset
   231
  by simp
348561aa3869 generalized lemmas (particularly concerning dvd) as far as appropriate
haftmann
parents: 59000
diff changeset
   232
348561aa3869 generalized lemmas (particularly concerning dvd) as far as appropriate
haftmann
parents: 59000
diff changeset
   233
lemma dvd_add [simp]:
348561aa3869 generalized lemmas (particularly concerning dvd) as far as appropriate
haftmann
parents: 59000
diff changeset
   234
  assumes "a dvd b" and "a dvd c"
348561aa3869 generalized lemmas (particularly concerning dvd) as far as appropriate
haftmann
parents: 59000
diff changeset
   235
  shows "a dvd (b + c)"
27651
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   236
proof -
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60690
diff changeset
   237
  from \<open>a dvd b\<close> obtain b' where "b = a * b'" ..
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60690
diff changeset
   238
  moreover from \<open>a dvd c\<close> obtain c' where "c = a * c'" ..
63588
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
   239
  ultimately have "b + c = a * (b' + c')"
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
   240
    by (simp add: distrib_left)
27651
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   241
  then show ?thesis ..
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   242
qed
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   243
25152
bfde2f8c0f63 partially localized
haftmann
parents: 25078
diff changeset
   244
end
14421
ee97b6463cb4 new Ring_and_Field hierarchy, eliminating redundant axioms
paulson
parents: 14398
diff changeset
   245
29904
856f16a3b436 add class cancel_comm_monoid_add
huffman
parents: 29833
diff changeset
   246
class semiring_1_cancel = semiring + cancel_comm_monoid_add
856f16a3b436 add class cancel_comm_monoid_add
huffman
parents: 29833
diff changeset
   247
  + zero_neq_one + monoid_mult
25267
1f745c599b5c proper reinitialisation after subclass
haftmann
parents: 25238
diff changeset
   248
begin
14940
b9ab8babd8b3 Further development of matrix theory
obua
parents: 14770
diff changeset
   249
27516
9a5d4a8d4aac by intro_locales -> ..
huffman
parents: 26274
diff changeset
   250
subclass semiring_0_cancel ..
25512
4134f7c782e2 using intro_locales instead of unfold_locales if appropriate
haftmann
parents: 25450
diff changeset
   251
27516
9a5d4a8d4aac by intro_locales -> ..
huffman
parents: 26274
diff changeset
   252
subclass semiring_1 ..
25267
1f745c599b5c proper reinitialisation after subclass
haftmann
parents: 25238
diff changeset
   253
1f745c599b5c proper reinitialisation after subclass
haftmann
parents: 25238
diff changeset
   254
end
21199
2d83f93c3580 * Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
krauss
parents: 20633
diff changeset
   255
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
   256
class comm_semiring_1_cancel =
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
   257
  comm_semiring + cancel_comm_monoid_add + zero_neq_one + comm_monoid_mult +
70817
dd675800469d dedicated fact collections for algebraic simplification rules potentially splitting goals
haftmann
parents: 70347
diff changeset
   258
  assumes right_diff_distrib' [algebra_simps, algebra_split_simps]:
dd675800469d dedicated fact collections for algebraic simplification rules potentially splitting goals
haftmann
parents: 70347
diff changeset
   259
    "a * (b - c) = a * b - a * c"
25267
1f745c599b5c proper reinitialisation after subclass
haftmann
parents: 25238
diff changeset
   260
begin
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   261
27516
9a5d4a8d4aac by intro_locales -> ..
huffman
parents: 26274
diff changeset
   262
subclass semiring_1_cancel ..
9a5d4a8d4aac by intro_locales -> ..
huffman
parents: 26274
diff changeset
   263
subclass comm_semiring_0_cancel ..
9a5d4a8d4aac by intro_locales -> ..
huffman
parents: 26274
diff changeset
   264
subclass comm_semiring_1 ..
25267
1f745c599b5c proper reinitialisation after subclass
haftmann
parents: 25238
diff changeset
   265
70817
dd675800469d dedicated fact collections for algebraic simplification rules potentially splitting goals
haftmann
parents: 70347
diff changeset
   266
lemma left_diff_distrib' [algebra_simps, algebra_split_simps]:
dd675800469d dedicated fact collections for algebraic simplification rules potentially splitting goals
haftmann
parents: 70347
diff changeset
   267
  "(b - c) * a = b * a - c * a"
59816
034b13f4efae distributivity of partial minus establishes desired properties of dvd in semirings
haftmann
parents: 59557
diff changeset
   268
  by (simp add: algebra_simps)
034b13f4efae distributivity of partial minus establishes desired properties of dvd in semirings
haftmann
parents: 59557
diff changeset
   269
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
   270
lemma dvd_add_times_triv_left_iff [simp]: "a dvd c * a + b \<longleftrightarrow> a dvd b"
59816
034b13f4efae distributivity of partial minus establishes desired properties of dvd in semirings
haftmann
parents: 59557
diff changeset
   271
proof -
034b13f4efae distributivity of partial minus establishes desired properties of dvd in semirings
haftmann
parents: 59557
diff changeset
   272
  have "a dvd a * c + b \<longleftrightarrow> a dvd b" (is "?P \<longleftrightarrow> ?Q")
034b13f4efae distributivity of partial minus establishes desired properties of dvd in semirings
haftmann
parents: 59557
diff changeset
   273
  proof
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
   274
    assume ?Q
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
   275
    then show ?P by simp
59816
034b13f4efae distributivity of partial minus establishes desired properties of dvd in semirings
haftmann
parents: 59557
diff changeset
   276
  next
034b13f4efae distributivity of partial minus establishes desired properties of dvd in semirings
haftmann
parents: 59557
diff changeset
   277
    assume ?P
034b13f4efae distributivity of partial minus establishes desired properties of dvd in semirings
haftmann
parents: 59557
diff changeset
   278
    then obtain d where "a * c + b = a * d" ..
034b13f4efae distributivity of partial minus establishes desired properties of dvd in semirings
haftmann
parents: 59557
diff changeset
   279
    then have "a * c + b - a * c = a * d - a * c" by simp
034b13f4efae distributivity of partial minus establishes desired properties of dvd in semirings
haftmann
parents: 59557
diff changeset
   280
    then have "b = a * d - a * c" by simp
60562
24af00b010cf Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
paulson <lp15@cam.ac.uk>
parents: 60529
diff changeset
   281
    then have "b = a * (d - c)" by (simp add: algebra_simps)
59816
034b13f4efae distributivity of partial minus establishes desired properties of dvd in semirings
haftmann
parents: 59557
diff changeset
   282
    then show ?Q ..
034b13f4efae distributivity of partial minus establishes desired properties of dvd in semirings
haftmann
parents: 59557
diff changeset
   283
  qed
034b13f4efae distributivity of partial minus establishes desired properties of dvd in semirings
haftmann
parents: 59557
diff changeset
   284
  then show "a dvd c * a + b \<longleftrightarrow> a dvd b" by (simp add: ac_simps)
034b13f4efae distributivity of partial minus establishes desired properties of dvd in semirings
haftmann
parents: 59557
diff changeset
   285
qed
034b13f4efae distributivity of partial minus establishes desired properties of dvd in semirings
haftmann
parents: 59557
diff changeset
   286
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
   287
lemma dvd_add_times_triv_right_iff [simp]: "a dvd b + c * a \<longleftrightarrow> a dvd b"
59816
034b13f4efae distributivity of partial minus establishes desired properties of dvd in semirings
haftmann
parents: 59557
diff changeset
   288
  using dvd_add_times_triv_left_iff [of a c b] by (simp add: ac_simps)
034b13f4efae distributivity of partial minus establishes desired properties of dvd in semirings
haftmann
parents: 59557
diff changeset
   289
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
   290
lemma dvd_add_triv_left_iff [simp]: "a dvd a + b \<longleftrightarrow> a dvd b"
59816
034b13f4efae distributivity of partial minus establishes desired properties of dvd in semirings
haftmann
parents: 59557
diff changeset
   291
  using dvd_add_times_triv_left_iff [of a 1 b] by simp
034b13f4efae distributivity of partial minus establishes desired properties of dvd in semirings
haftmann
parents: 59557
diff changeset
   292
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
   293
lemma dvd_add_triv_right_iff [simp]: "a dvd b + a \<longleftrightarrow> a dvd b"
59816
034b13f4efae distributivity of partial minus establishes desired properties of dvd in semirings
haftmann
parents: 59557
diff changeset
   294
  using dvd_add_times_triv_right_iff [of a b 1] by simp
034b13f4efae distributivity of partial minus establishes desired properties of dvd in semirings
haftmann
parents: 59557
diff changeset
   295
034b13f4efae distributivity of partial minus establishes desired properties of dvd in semirings
haftmann
parents: 59557
diff changeset
   296
lemma dvd_add_right_iff:
034b13f4efae distributivity of partial minus establishes desired properties of dvd in semirings
haftmann
parents: 59557
diff changeset
   297
  assumes "a dvd b"
034b13f4efae distributivity of partial minus establishes desired properties of dvd in semirings
haftmann
parents: 59557
diff changeset
   298
  shows "a dvd b + c \<longleftrightarrow> a dvd c" (is "?P \<longleftrightarrow> ?Q")
034b13f4efae distributivity of partial minus establishes desired properties of dvd in semirings
haftmann
parents: 59557
diff changeset
   299
proof
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
   300
  assume ?P
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
   301
  then obtain d where "b + c = a * d" ..
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60690
diff changeset
   302
  moreover from \<open>a dvd b\<close> obtain e where "b = a * e" ..
59816
034b13f4efae distributivity of partial minus establishes desired properties of dvd in semirings
haftmann
parents: 59557
diff changeset
   303
  ultimately have "a * e + c = a * d" by simp
034b13f4efae distributivity of partial minus establishes desired properties of dvd in semirings
haftmann
parents: 59557
diff changeset
   304
  then have "a * e + c - a * e = a * d - a * e" by simp
034b13f4efae distributivity of partial minus establishes desired properties of dvd in semirings
haftmann
parents: 59557
diff changeset
   305
  then have "c = a * d - a * e" by simp
034b13f4efae distributivity of partial minus establishes desired properties of dvd in semirings
haftmann
parents: 59557
diff changeset
   306
  then have "c = a * (d - e)" by (simp add: algebra_simps)
034b13f4efae distributivity of partial minus establishes desired properties of dvd in semirings
haftmann
parents: 59557
diff changeset
   307
  then show ?Q ..
034b13f4efae distributivity of partial minus establishes desired properties of dvd in semirings
haftmann
parents: 59557
diff changeset
   308
next
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
   309
  assume ?Q
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
   310
  with assms show ?P by simp
59816
034b13f4efae distributivity of partial minus establishes desired properties of dvd in semirings
haftmann
parents: 59557
diff changeset
   311
qed
034b13f4efae distributivity of partial minus establishes desired properties of dvd in semirings
haftmann
parents: 59557
diff changeset
   312
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
   313
lemma dvd_add_left_iff: "a dvd c \<Longrightarrow> a dvd b + c \<longleftrightarrow> a dvd b"
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
   314
  using dvd_add_right_iff [of a c b] by (simp add: ac_simps)
59816
034b13f4efae distributivity of partial minus establishes desired properties of dvd in semirings
haftmann
parents: 59557
diff changeset
   315
034b13f4efae distributivity of partial minus establishes desired properties of dvd in semirings
haftmann
parents: 59557
diff changeset
   316
end
034b13f4efae distributivity of partial minus establishes desired properties of dvd in semirings
haftmann
parents: 59557
diff changeset
   317
22390
378f34b1e380 now using "class"
haftmann
parents: 21328
diff changeset
   318
class ring = semiring + ab_group_add
25267
1f745c599b5c proper reinitialisation after subclass
haftmann
parents: 25238
diff changeset
   319
begin
25152
bfde2f8c0f63 partially localized
haftmann
parents: 25078
diff changeset
   320
27516
9a5d4a8d4aac by intro_locales -> ..
huffman
parents: 26274
diff changeset
   321
subclass semiring_0_cancel ..
25152
bfde2f8c0f63 partially localized
haftmann
parents: 25078
diff changeset
   322
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60690
diff changeset
   323
text \<open>Distribution rules\<close>
25152
bfde2f8c0f63 partially localized
haftmann
parents: 25078
diff changeset
   324
bfde2f8c0f63 partially localized
haftmann
parents: 25078
diff changeset
   325
lemma minus_mult_left: "- (a * b) = - a * b"
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
   326
  by (rule minus_unique) (simp add: distrib_right [symmetric])
25152
bfde2f8c0f63 partially localized
haftmann
parents: 25078
diff changeset
   327
bfde2f8c0f63 partially localized
haftmann
parents: 25078
diff changeset
   328
lemma minus_mult_right: "- (a * b) = a * - b"
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
   329
  by (rule minus_unique) (simp add: distrib_left [symmetric])
25152
bfde2f8c0f63 partially localized
haftmann
parents: 25078
diff changeset
   330
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
   331
text \<open>Extract signs from products\<close>
54147
97a8ff4e4ac9 killed most "no_atp", to make Sledgehammer more complete
blanchet
parents: 52435
diff changeset
   332
lemmas mult_minus_left [simp] = minus_mult_left [symmetric]
97a8ff4e4ac9 killed most "no_atp", to make Sledgehammer more complete
blanchet
parents: 52435
diff changeset
   333
lemmas mult_minus_right [simp] = minus_mult_right [symmetric]
29407
5ef7e97fd9e4 move lemmas mult_minus{left,right} inside class ring
huffman
parents: 29406
diff changeset
   334
25152
bfde2f8c0f63 partially localized
haftmann
parents: 25078
diff changeset
   335
lemma minus_mult_minus [simp]: "- a * - b = a * b"
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
   336
  by simp
25152
bfde2f8c0f63 partially localized
haftmann
parents: 25078
diff changeset
   337
bfde2f8c0f63 partially localized
haftmann
parents: 25078
diff changeset
   338
lemma minus_mult_commute: "- a * b = a * - b"
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
   339
  by simp
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29465
diff changeset
   340
70817
dd675800469d dedicated fact collections for algebraic simplification rules potentially splitting goals
haftmann
parents: 70347
diff changeset
   341
lemma right_diff_distrib [algebra_simps, algebra_split_simps]:
dd675800469d dedicated fact collections for algebraic simplification rules potentially splitting goals
haftmann
parents: 70347
diff changeset
   342
  "a * (b - c) = a * b - a * c"
54230
b1d955791529 more simplification rules on unary and binary minus
haftmann
parents: 54225
diff changeset
   343
  using distrib_left [of a b "-c "] by simp
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29465
diff changeset
   344
70817
dd675800469d dedicated fact collections for algebraic simplification rules potentially splitting goals
haftmann
parents: 70347
diff changeset
   345
lemma left_diff_distrib [algebra_simps, algebra_split_simps]:
dd675800469d dedicated fact collections for algebraic simplification rules potentially splitting goals
haftmann
parents: 70347
diff changeset
   346
  "(a - b) * c = a * c - b * c"
54230
b1d955791529 more simplification rules on unary and binary minus
haftmann
parents: 54225
diff changeset
   347
  using distrib_right [of a "- b" c] by simp
25152
bfde2f8c0f63 partially localized
haftmann
parents: 25078
diff changeset
   348
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
   349
lemmas ring_distribs = distrib_left distrib_right left_diff_distrib right_diff_distrib
25152
bfde2f8c0f63 partially localized
haftmann
parents: 25078
diff changeset
   350
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
   351
lemma eq_add_iff1: "a * e + c = b * e + d \<longleftrightarrow> (a - b) * e + c = d"
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
   352
  by (simp add: algebra_simps)
25230
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   353
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
   354
lemma eq_add_iff2: "a * e + c = b * e + d \<longleftrightarrow> c = (b - a) * e + d"
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
   355
  by (simp add: algebra_simps)
25230
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   356
25152
bfde2f8c0f63 partially localized
haftmann
parents: 25078
diff changeset
   357
end
bfde2f8c0f63 partially localized
haftmann
parents: 25078
diff changeset
   358
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
   359
lemmas ring_distribs = distrib_left distrib_right left_diff_distrib right_diff_distrib
25152
bfde2f8c0f63 partially localized
haftmann
parents: 25078
diff changeset
   360
22390
378f34b1e380 now using "class"
haftmann
parents: 21328
diff changeset
   361
class comm_ring = comm_semiring + ab_group_add
25267
1f745c599b5c proper reinitialisation after subclass
haftmann
parents: 25238
diff changeset
   362
begin
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   363
27516
9a5d4a8d4aac by intro_locales -> ..
huffman
parents: 26274
diff changeset
   364
subclass ring ..
28141
193c3ea0f63b instances comm_semiring_0_cancel < comm_semiring_0, comm_ring < comm_semiring_0_cancel
huffman
parents: 27651
diff changeset
   365
subclass comm_semiring_0_cancel ..
25267
1f745c599b5c proper reinitialisation after subclass
haftmann
parents: 25238
diff changeset
   366
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
   367
lemma square_diff_square_factored: "x * x - y * y = (x + y) * (x - y)"
44350
63cddfbc5a09 replace lemma realpow_two_diff with new lemma square_diff_square_factored
huffman
parents: 44346
diff changeset
   368
  by (simp add: algebra_simps)
63cddfbc5a09 replace lemma realpow_two_diff with new lemma square_diff_square_factored
huffman
parents: 44346
diff changeset
   369
25267
1f745c599b5c proper reinitialisation after subclass
haftmann
parents: 25238
diff changeset
   370
end
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   371
22390
378f34b1e380 now using "class"
haftmann
parents: 21328
diff changeset
   372
class ring_1 = ring + zero_neq_one + monoid_mult
25267
1f745c599b5c proper reinitialisation after subclass
haftmann
parents: 25238
diff changeset
   373
begin
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   374
27516
9a5d4a8d4aac by intro_locales -> ..
huffman
parents: 26274
diff changeset
   375
subclass semiring_1_cancel ..
25267
1f745c599b5c proper reinitialisation after subclass
haftmann
parents: 25238
diff changeset
   376
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
   377
lemma square_diff_one_factored: "x * x - 1 = (x + 1) * (x - 1)"
44346
00dd3c4dabe0 rename real_squared_diff_one_factored to square_diff_one_factored and move to Rings.thy
huffman
parents: 44064
diff changeset
   378
  by (simp add: algebra_simps)
00dd3c4dabe0 rename real_squared_diff_one_factored to square_diff_one_factored and move to Rings.thy
huffman
parents: 44064
diff changeset
   379
25267
1f745c599b5c proper reinitialisation after subclass
haftmann
parents: 25238
diff changeset
   380
end
25152
bfde2f8c0f63 partially localized
haftmann
parents: 25078
diff changeset
   381
22390
378f34b1e380 now using "class"
haftmann
parents: 21328
diff changeset
   382
class comm_ring_1 = comm_ring + zero_neq_one + comm_monoid_mult
25267
1f745c599b5c proper reinitialisation after subclass
haftmann
parents: 25238
diff changeset
   383
begin
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   384
27516
9a5d4a8d4aac by intro_locales -> ..
huffman
parents: 26274
diff changeset
   385
subclass ring_1 ..
60562
24af00b010cf Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
paulson <lp15@cam.ac.uk>
parents: 60529
diff changeset
   386
subclass comm_semiring_1_cancel
70146
haftmann
parents: 70145
diff changeset
   387
  by standard (simp add: algebra_simps)
58647
fce800afeec7 more facts about abstract divisibility
haftmann
parents: 58198
diff changeset
   388
29465
b2cfb5d0a59e change dvd_minus_iff, minus_dvd_iff from [iff] to [simp] (due to problems with Library/Primes.thy)
huffman
parents: 29461
diff changeset
   389
lemma dvd_minus_iff [simp]: "x dvd - y \<longleftrightarrow> x dvd y"
29408
6d10cf26b5dc add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
huffman
parents: 29407
diff changeset
   390
proof
6d10cf26b5dc add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
huffman
parents: 29407
diff changeset
   391
  assume "x dvd - y"
6d10cf26b5dc add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
huffman
parents: 29407
diff changeset
   392
  then have "x dvd - 1 * - y" by (rule dvd_mult)
6d10cf26b5dc add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
huffman
parents: 29407
diff changeset
   393
  then show "x dvd y" by simp
6d10cf26b5dc add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
huffman
parents: 29407
diff changeset
   394
next
6d10cf26b5dc add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
huffman
parents: 29407
diff changeset
   395
  assume "x dvd y"
6d10cf26b5dc add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
huffman
parents: 29407
diff changeset
   396
  then have "x dvd - 1 * y" by (rule dvd_mult)
6d10cf26b5dc add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
huffman
parents: 29407
diff changeset
   397
  then show "x dvd - y" by simp
6d10cf26b5dc add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
huffman
parents: 29407
diff changeset
   398
qed
6d10cf26b5dc add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
huffman
parents: 29407
diff changeset
   399
29465
b2cfb5d0a59e change dvd_minus_iff, minus_dvd_iff from [iff] to [simp] (due to problems with Library/Primes.thy)
huffman
parents: 29461
diff changeset
   400
lemma minus_dvd_iff [simp]: "- x dvd y \<longleftrightarrow> x dvd y"
29408
6d10cf26b5dc add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
huffman
parents: 29407
diff changeset
   401
proof
6d10cf26b5dc add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
huffman
parents: 29407
diff changeset
   402
  assume "- x dvd y"
6d10cf26b5dc add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
huffman
parents: 29407
diff changeset
   403
  then obtain k where "y = - x * k" ..
6d10cf26b5dc add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
huffman
parents: 29407
diff changeset
   404
  then have "y = x * - k" by simp
6d10cf26b5dc add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
huffman
parents: 29407
diff changeset
   405
  then show "x dvd y" ..
6d10cf26b5dc add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
huffman
parents: 29407
diff changeset
   406
next
6d10cf26b5dc add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
huffman
parents: 29407
diff changeset
   407
  assume "x dvd y"
6d10cf26b5dc add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
huffman
parents: 29407
diff changeset
   408
  then obtain k where "y = x * k" ..
6d10cf26b5dc add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
huffman
parents: 29407
diff changeset
   409
  then have "y = - x * - k" by simp
6d10cf26b5dc add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
huffman
parents: 29407
diff changeset
   410
  then show "- x dvd y" ..
6d10cf26b5dc add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
huffman
parents: 29407
diff changeset
   411
qed
6d10cf26b5dc add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
huffman
parents: 29407
diff changeset
   412
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
   413
lemma dvd_diff [simp]: "x dvd y \<Longrightarrow> x dvd z \<Longrightarrow> x dvd (y - z)"
54230
b1d955791529 more simplification rules on unary and binary minus
haftmann
parents: 54225
diff changeset
   414
  using dvd_add [of x y "- z"] by simp
29409
f0a8fe83bc07 add lemma dvd_diff to class comm_ring_1
huffman
parents: 29408
diff changeset
   415
25267
1f745c599b5c proper reinitialisation after subclass
haftmann
parents: 25238
diff changeset
   416
end
25152
bfde2f8c0f63 partially localized
haftmann
parents: 25078
diff changeset
   417
70145
f07b8fb99818 more document structure
haftmann
parents: 70144
diff changeset
   418
f07b8fb99818 more document structure
haftmann
parents: 70144
diff changeset
   419
subsection \<open>Towards integral domains\<close>
f07b8fb99818 more document structure
haftmann
parents: 70144
diff changeset
   420
59833
ab828c2c5d67 clarified no_zero_devisors: makes only sense in a semiring;
haftmann
parents: 59832
diff changeset
   421
class semiring_no_zero_divisors = semiring_0 +
ab828c2c5d67 clarified no_zero_devisors: makes only sense in a semiring;
haftmann
parents: 59832
diff changeset
   422
  assumes no_zero_divisors: "a \<noteq> 0 \<Longrightarrow> b \<noteq> 0 \<Longrightarrow> a * b \<noteq> 0"
25230
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   423
begin
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   424
59833
ab828c2c5d67 clarified no_zero_devisors: makes only sense in a semiring;
haftmann
parents: 59832
diff changeset
   425
lemma divisors_zero:
ab828c2c5d67 clarified no_zero_devisors: makes only sense in a semiring;
haftmann
parents: 59832
diff changeset
   426
  assumes "a * b = 0"
ab828c2c5d67 clarified no_zero_devisors: makes only sense in a semiring;
haftmann
parents: 59832
diff changeset
   427
  shows "a = 0 \<or> b = 0"
ab828c2c5d67 clarified no_zero_devisors: makes only sense in a semiring;
haftmann
parents: 59832
diff changeset
   428
proof (rule classical)
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
   429
  assume "\<not> ?thesis"
59833
ab828c2c5d67 clarified no_zero_devisors: makes only sense in a semiring;
haftmann
parents: 59832
diff changeset
   430
  then have "a \<noteq> 0" and "b \<noteq> 0" by auto
ab828c2c5d67 clarified no_zero_devisors: makes only sense in a semiring;
haftmann
parents: 59832
diff changeset
   431
  with no_zero_divisors have "a * b \<noteq> 0" by blast
ab828c2c5d67 clarified no_zero_devisors: makes only sense in a semiring;
haftmann
parents: 59832
diff changeset
   432
  with assms show ?thesis by simp
ab828c2c5d67 clarified no_zero_devisors: makes only sense in a semiring;
haftmann
parents: 59832
diff changeset
   433
qed
ab828c2c5d67 clarified no_zero_devisors: makes only sense in a semiring;
haftmann
parents: 59832
diff changeset
   434
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
   435
lemma mult_eq_0_iff [simp]: "a * b = 0 \<longleftrightarrow> a = 0 \<or> b = 0"
25230
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   436
proof (cases "a = 0 \<or> b = 0")
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
   437
  case False
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
   438
  then have "a \<noteq> 0" and "b \<noteq> 0" by auto
25230
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   439
    then show ?thesis using no_zero_divisors by simp
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   440
next
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
   441
  case True
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
   442
  then show ?thesis by auto
25230
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   443
qed
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   444
58952
5d82cdef6c1b equivalence rules for structures without zero divisors
haftmann
parents: 58889
diff changeset
   445
end
5d82cdef6c1b equivalence rules for structures without zero divisors
haftmann
parents: 58889
diff changeset
   446
62481
b5d8e57826df tuned bootstrap order to provide type classes in a more sensible order
haftmann
parents: 62390
diff changeset
   447
class semiring_1_no_zero_divisors = semiring_1 + semiring_no_zero_divisors
b5d8e57826df tuned bootstrap order to provide type classes in a more sensible order
haftmann
parents: 62390
diff changeset
   448
60516
0826b7025d07 generalized some theorems about integral domains and moved to HOL theories
haftmann
parents: 60429
diff changeset
   449
class semiring_no_zero_divisors_cancel = semiring_no_zero_divisors +
0826b7025d07 generalized some theorems about integral domains and moved to HOL theories
haftmann
parents: 60429
diff changeset
   450
  assumes mult_cancel_right [simp]: "a * c = b * c \<longleftrightarrow> c = 0 \<or> a = b"
0826b7025d07 generalized some theorems about integral domains and moved to HOL theories
haftmann
parents: 60429
diff changeset
   451
    and mult_cancel_left [simp]: "c * a = c * b \<longleftrightarrow> c = 0 \<or> a = b"
58952
5d82cdef6c1b equivalence rules for structures without zero divisors
haftmann
parents: 58889
diff changeset
   452
begin
5d82cdef6c1b equivalence rules for structures without zero divisors
haftmann
parents: 58889
diff changeset
   453
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
   454
lemma mult_left_cancel: "c \<noteq> 0 \<Longrightarrow> c * a = c * b \<longleftrightarrow> a = b"
60562
24af00b010cf Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
paulson <lp15@cam.ac.uk>
parents: 60529
diff changeset
   455
  by simp
56217
dc429a5b13c4 Some rationalisation of basic lemmas
paulson <lp15@cam.ac.uk>
parents: 55912
diff changeset
   456
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
   457
lemma mult_right_cancel: "c \<noteq> 0 \<Longrightarrow> a * c = b * c \<longleftrightarrow> a = b"
60562
24af00b010cf Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
paulson <lp15@cam.ac.uk>
parents: 60529
diff changeset
   458
  by simp
56217
dc429a5b13c4 Some rationalisation of basic lemmas
paulson <lp15@cam.ac.uk>
parents: 55912
diff changeset
   459
25230
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   460
end
22990
775e9de3db48 added classes ring_no_zero_divisors and dom (non-commutative version of idom);
huffman
parents: 22987
diff changeset
   461
60516
0826b7025d07 generalized some theorems about integral domains and moved to HOL theories
haftmann
parents: 60429
diff changeset
   462
class ring_no_zero_divisors = ring + semiring_no_zero_divisors
0826b7025d07 generalized some theorems about integral domains and moved to HOL theories
haftmann
parents: 60429
diff changeset
   463
begin
0826b7025d07 generalized some theorems about integral domains and moved to HOL theories
haftmann
parents: 60429
diff changeset
   464
0826b7025d07 generalized some theorems about integral domains and moved to HOL theories
haftmann
parents: 60429
diff changeset
   465
subclass semiring_no_zero_divisors_cancel
0826b7025d07 generalized some theorems about integral domains and moved to HOL theories
haftmann
parents: 60429
diff changeset
   466
proof
0826b7025d07 generalized some theorems about integral domains and moved to HOL theories
haftmann
parents: 60429
diff changeset
   467
  fix a b c
0826b7025d07 generalized some theorems about integral domains and moved to HOL theories
haftmann
parents: 60429
diff changeset
   468
  have "a * c = b * c \<longleftrightarrow> (a - b) * c = 0"
0826b7025d07 generalized some theorems about integral domains and moved to HOL theories
haftmann
parents: 60429
diff changeset
   469
    by (simp add: algebra_simps)
0826b7025d07 generalized some theorems about integral domains and moved to HOL theories
haftmann
parents: 60429
diff changeset
   470
  also have "\<dots> \<longleftrightarrow> c = 0 \<or> a = b"
0826b7025d07 generalized some theorems about integral domains and moved to HOL theories
haftmann
parents: 60429
diff changeset
   471
    by auto
0826b7025d07 generalized some theorems about integral domains and moved to HOL theories
haftmann
parents: 60429
diff changeset
   472
  finally show "a * c = b * c \<longleftrightarrow> c = 0 \<or> a = b" .
0826b7025d07 generalized some theorems about integral domains and moved to HOL theories
haftmann
parents: 60429
diff changeset
   473
  have "c * a = c * b \<longleftrightarrow> c * (a - b) = 0"
0826b7025d07 generalized some theorems about integral domains and moved to HOL theories
haftmann
parents: 60429
diff changeset
   474
    by (simp add: algebra_simps)
0826b7025d07 generalized some theorems about integral domains and moved to HOL theories
haftmann
parents: 60429
diff changeset
   475
  also have "\<dots> \<longleftrightarrow> c = 0 \<or> a = b"
0826b7025d07 generalized some theorems about integral domains and moved to HOL theories
haftmann
parents: 60429
diff changeset
   476
    by auto
0826b7025d07 generalized some theorems about integral domains and moved to HOL theories
haftmann
parents: 60429
diff changeset
   477
  finally show "c * a = c * b \<longleftrightarrow> c = 0 \<or> a = b" .
0826b7025d07 generalized some theorems about integral domains and moved to HOL theories
haftmann
parents: 60429
diff changeset
   478
qed
0826b7025d07 generalized some theorems about integral domains and moved to HOL theories
haftmann
parents: 60429
diff changeset
   479
0826b7025d07 generalized some theorems about integral domains and moved to HOL theories
haftmann
parents: 60429
diff changeset
   480
end
0826b7025d07 generalized some theorems about integral domains and moved to HOL theories
haftmann
parents: 60429
diff changeset
   481
23544
4b4165cb3e0d rename class dom to ring_1_no_zero_divisors
huffman
parents: 23527
diff changeset
   482
class ring_1_no_zero_divisors = ring_1 + ring_no_zero_divisors
26274
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
   483
begin
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
   484
62481
b5d8e57826df tuned bootstrap order to provide type classes in a more sensible order
haftmann
parents: 62390
diff changeset
   485
subclass semiring_1_no_zero_divisors ..
b5d8e57826df tuned bootstrap order to provide type classes in a more sensible order
haftmann
parents: 62390
diff changeset
   486
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
   487
lemma square_eq_1_iff: "x * x = 1 \<longleftrightarrow> x = 1 \<or> x = - 1"
36821
9207505d1ee5 move lemma real_mult_is_one to Rings.thy, renamed to square_eq_1_iff
huffman
parents: 36719
diff changeset
   488
proof -
9207505d1ee5 move lemma real_mult_is_one to Rings.thy, renamed to square_eq_1_iff
huffman
parents: 36719
diff changeset
   489
  have "(x - 1) * (x + 1) = x * x - 1"
9207505d1ee5 move lemma real_mult_is_one to Rings.thy, renamed to square_eq_1_iff
huffman
parents: 36719
diff changeset
   490
    by (simp add: algebra_simps)
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
   491
  then have "x * x = 1 \<longleftrightarrow> (x - 1) * (x + 1) = 0"
36821
9207505d1ee5 move lemma real_mult_is_one to Rings.thy, renamed to square_eq_1_iff
huffman
parents: 36719
diff changeset
   492
    by simp
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
   493
  then show ?thesis
36821
9207505d1ee5 move lemma real_mult_is_one to Rings.thy, renamed to square_eq_1_iff
huffman
parents: 36719
diff changeset
   494
    by (simp add: eq_neg_iff_add_eq_0)
9207505d1ee5 move lemma real_mult_is_one to Rings.thy, renamed to square_eq_1_iff
huffman
parents: 36719
diff changeset
   495
qed
9207505d1ee5 move lemma real_mult_is_one to Rings.thy, renamed to square_eq_1_iff
huffman
parents: 36719
diff changeset
   496
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
   497
lemma mult_cancel_right1 [simp]: "c = b * c \<longleftrightarrow> c = 0 \<or> b = 1"
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
   498
  using mult_cancel_right [of 1 c b] by auto
26274
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
   499
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
   500
lemma mult_cancel_right2 [simp]: "a * c = c \<longleftrightarrow> c = 0 \<or> a = 1"
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
   501
  using mult_cancel_right [of a c 1] by simp
60562
24af00b010cf Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
paulson <lp15@cam.ac.uk>
parents: 60529
diff changeset
   502
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
   503
lemma mult_cancel_left1 [simp]: "c = c * b \<longleftrightarrow> c = 0 \<or> b = 1"
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
   504
  using mult_cancel_left [of c 1 b] by force
26274
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
   505
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
   506
lemma mult_cancel_left2 [simp]: "c * a = c \<longleftrightarrow> c = 0 \<or> a = 1"
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
   507
  using mult_cancel_left [of c a 1] by simp
26274
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
   508
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
   509
end
22990
775e9de3db48 added classes ring_no_zero_divisors and dom (non-commutative version of idom);
huffman
parents: 22987
diff changeset
   510
60562
24af00b010cf Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
paulson <lp15@cam.ac.uk>
parents: 60529
diff changeset
   511
class semidom = comm_semiring_1_cancel + semiring_no_zero_divisors
62481
b5d8e57826df tuned bootstrap order to provide type classes in a more sensible order
haftmann
parents: 62390
diff changeset
   512
begin
b5d8e57826df tuned bootstrap order to provide type classes in a more sensible order
haftmann
parents: 62390
diff changeset
   513
b5d8e57826df tuned bootstrap order to provide type classes in a more sensible order
haftmann
parents: 62390
diff changeset
   514
subclass semiring_1_no_zero_divisors ..
b5d8e57826df tuned bootstrap order to provide type classes in a more sensible order
haftmann
parents: 62390
diff changeset
   515
b5d8e57826df tuned bootstrap order to provide type classes in a more sensible order
haftmann
parents: 62390
diff changeset
   516
end
59833
ab828c2c5d67 clarified no_zero_devisors: makes only sense in a semiring;
haftmann
parents: 59832
diff changeset
   517
ab828c2c5d67 clarified no_zero_devisors: makes only sense in a semiring;
haftmann
parents: 59832
diff changeset
   518
class idom = comm_ring_1 + semiring_no_zero_divisors
25186
f4d1ebffd025 localized further
haftmann
parents: 25152
diff changeset
   519
begin
14421
ee97b6463cb4 new Ring_and_Field hierarchy, eliminating redundant axioms
paulson
parents: 14398
diff changeset
   520
59833
ab828c2c5d67 clarified no_zero_devisors: makes only sense in a semiring;
haftmann
parents: 59832
diff changeset
   521
subclass semidom ..
ab828c2c5d67 clarified no_zero_devisors: makes only sense in a semiring;
haftmann
parents: 59832
diff changeset
   522
27516
9a5d4a8d4aac by intro_locales -> ..
huffman
parents: 26274
diff changeset
   523
subclass ring_1_no_zero_divisors ..
22990
775e9de3db48 added classes ring_no_zero_divisors and dom (non-commutative version of idom);
huffman
parents: 22987
diff changeset
   524
70146
haftmann
parents: 70145
diff changeset
   525
lemma dvd_mult_cancel_right [simp]:
haftmann
parents: 70145
diff changeset
   526
  "a * c dvd b * c \<longleftrightarrow> c = 0 \<or> a dvd b"
29981
7d0ed261b712 generalize int_dvd_cancel_factor simproc to idom class
huffman
parents: 29949
diff changeset
   527
proof -
7d0ed261b712 generalize int_dvd_cancel_factor simproc to idom class
huffman
parents: 29949
diff changeset
   528
  have "a * c dvd b * c \<longleftrightarrow> (\<exists>k. b * c = (a * k) * c)"
70146
haftmann
parents: 70145
diff changeset
   529
    by (auto simp add: ac_simps)
29981
7d0ed261b712 generalize int_dvd_cancel_factor simproc to idom class
huffman
parents: 29949
diff changeset
   530
  also have "(\<exists>k. b * c = (a * k) * c) \<longleftrightarrow> c = 0 \<or> a dvd b"
70146
haftmann
parents: 70145
diff changeset
   531
    by auto
29981
7d0ed261b712 generalize int_dvd_cancel_factor simproc to idom class
huffman
parents: 29949
diff changeset
   532
  finally show ?thesis .
7d0ed261b712 generalize int_dvd_cancel_factor simproc to idom class
huffman
parents: 29949
diff changeset
   533
qed
7d0ed261b712 generalize int_dvd_cancel_factor simproc to idom class
huffman
parents: 29949
diff changeset
   534
70146
haftmann
parents: 70145
diff changeset
   535
lemma dvd_mult_cancel_left [simp]:
haftmann
parents: 70145
diff changeset
   536
  "c * a dvd c * b \<longleftrightarrow> c = 0 \<or> a dvd b"
haftmann
parents: 70145
diff changeset
   537
  using dvd_mult_cancel_right [of a c b] by (simp add: ac_simps)
29981
7d0ed261b712 generalize int_dvd_cancel_factor simproc to idom class
huffman
parents: 29949
diff changeset
   538
60516
0826b7025d07 generalized some theorems about integral domains and moved to HOL theories
haftmann
parents: 60429
diff changeset
   539
lemma square_eq_iff: "a * a = b * b \<longleftrightarrow> a = b \<or> a = - b"
59833
ab828c2c5d67 clarified no_zero_devisors: makes only sense in a semiring;
haftmann
parents: 59832
diff changeset
   540
proof
ab828c2c5d67 clarified no_zero_devisors: makes only sense in a semiring;
haftmann
parents: 59832
diff changeset
   541
  assume "a * a = b * b"
ab828c2c5d67 clarified no_zero_devisors: makes only sense in a semiring;
haftmann
parents: 59832
diff changeset
   542
  then have "(a - b) * (a + b) = 0"
ab828c2c5d67 clarified no_zero_devisors: makes only sense in a semiring;
haftmann
parents: 59832
diff changeset
   543
    by (simp add: algebra_simps)
ab828c2c5d67 clarified no_zero_devisors: makes only sense in a semiring;
haftmann
parents: 59832
diff changeset
   544
  then show "a = b \<or> a = - b"
ab828c2c5d67 clarified no_zero_devisors: makes only sense in a semiring;
haftmann
parents: 59832
diff changeset
   545
    by (simp add: eq_neg_iff_add_eq_0)
ab828c2c5d67 clarified no_zero_devisors: makes only sense in a semiring;
haftmann
parents: 59832
diff changeset
   546
next
ab828c2c5d67 clarified no_zero_devisors: makes only sense in a semiring;
haftmann
parents: 59832
diff changeset
   547
  assume "a = b \<or> a = - b"
ab828c2c5d67 clarified no_zero_devisors: makes only sense in a semiring;
haftmann
parents: 59832
diff changeset
   548
  then show "a * a = b * b" by auto
ab828c2c5d67 clarified no_zero_devisors: makes only sense in a semiring;
haftmann
parents: 59832
diff changeset
   549
qed
ab828c2c5d67 clarified no_zero_devisors: makes only sense in a semiring;
haftmann
parents: 59832
diff changeset
   550
25186
f4d1ebffd025 localized further
haftmann
parents: 25152
diff changeset
   551
end
25152
bfde2f8c0f63 partially localized
haftmann
parents: 25078
diff changeset
   552
64290
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
   553
class idom_abs_sgn = idom + abs + sgn +
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
   554
  assumes sgn_mult_abs: "sgn a * \<bar>a\<bar> = a"
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
   555
    and sgn_sgn [simp]: "sgn (sgn a) = sgn a"
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
   556
    and abs_abs [simp]: "\<bar>\<bar>a\<bar>\<bar> = \<bar>a\<bar>"
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
   557
    and abs_0 [simp]: "\<bar>0\<bar> = 0"
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
   558
    and sgn_0 [simp]: "sgn 0 = 0"
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
   559
    and sgn_1 [simp]: "sgn 1 = 1"
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
   560
    and sgn_minus_1: "sgn (- 1) = - 1"
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
   561
    and sgn_mult: "sgn (a * b) = sgn a * sgn b"
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
   562
begin
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
   563
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
   564
lemma sgn_eq_0_iff:
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
   565
  "sgn a = 0 \<longleftrightarrow> a = 0"
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
   566
proof -
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
   567
  { assume "sgn a = 0"
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
   568
    then have "sgn a * \<bar>a\<bar> = 0"
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
   569
      by simp
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
   570
    then have "a = 0"
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
   571
      by (simp add: sgn_mult_abs)
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
   572
  } then show ?thesis
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
   573
    by auto
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
   574
qed
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
   575
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
   576
lemma abs_eq_0_iff:
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
   577
  "\<bar>a\<bar> = 0 \<longleftrightarrow> a = 0"
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
   578
proof -
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
   579
  { assume "\<bar>a\<bar> = 0"
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
   580
    then have "sgn a * \<bar>a\<bar> = 0"
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
   581
      by simp
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
   582
    then have "a = 0"
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
   583
      by (simp add: sgn_mult_abs)
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
   584
  } then show ?thesis
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
   585
    by auto
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
   586
qed
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
   587
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
   588
lemma abs_mult_sgn:
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
   589
  "\<bar>a\<bar> * sgn a = a"
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
   590
  using sgn_mult_abs [of a] by (simp add: ac_simps)
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
   591
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
   592
lemma abs_1 [simp]:
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
   593
  "\<bar>1\<bar> = 1"
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
   594
  using sgn_mult_abs [of 1] by simp
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
   595
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
   596
lemma sgn_abs [simp]:
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
   597
  "\<bar>sgn a\<bar> = of_bool (a \<noteq> 0)"
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
   598
  using sgn_mult_abs [of "sgn a"] mult_cancel_left [of "sgn a" "\<bar>sgn a\<bar>" 1]
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
   599
  by (auto simp add: sgn_eq_0_iff)
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
   600
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
   601
lemma abs_sgn [simp]:
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
   602
  "sgn \<bar>a\<bar> = of_bool (a \<noteq> 0)"
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
   603
  using sgn_mult_abs [of "\<bar>a\<bar>"] mult_cancel_right [of "sgn \<bar>a\<bar>" "\<bar>a\<bar>" 1]
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
   604
  by (auto simp add: abs_eq_0_iff)
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
   605
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
   606
lemma abs_mult:
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
   607
  "\<bar>a * b\<bar> = \<bar>a\<bar> * \<bar>b\<bar>"
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
   608
proof (cases "a = 0 \<or> b = 0")
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
   609
  case True
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
   610
  then show ?thesis
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
   611
    by auto
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
   612
next
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
   613
  case False
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
   614
  then have *: "sgn (a * b) \<noteq> 0"
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
   615
    by (simp add: sgn_eq_0_iff)
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
   616
  from abs_mult_sgn [of "a * b"] abs_mult_sgn [of a] abs_mult_sgn [of b]
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
   617
  have "\<bar>a * b\<bar> * sgn (a * b) = \<bar>a\<bar> * sgn a * \<bar>b\<bar> * sgn b"
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
   618
    by (simp add: ac_simps)
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
   619
  then have "\<bar>a * b\<bar> * sgn (a * b) = \<bar>a\<bar> * \<bar>b\<bar> * sgn (a * b)"
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
   620
    by (simp add: sgn_mult ac_simps)
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
   621
  with * show ?thesis
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
   622
    by simp
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
   623
qed
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
   624
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
   625
lemma sgn_minus [simp]:
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
   626
  "sgn (- a) = - sgn a"
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
   627
proof -
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
   628
  from sgn_minus_1 have "sgn (- 1 * a) = - 1 * sgn a"
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
   629
    by (simp only: sgn_mult)
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
   630
  then show ?thesis
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
   631
    by simp
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
   632
qed
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
   633
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
   634
lemma abs_minus [simp]:
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
   635
  "\<bar>- a\<bar> = \<bar>a\<bar>"
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
   636
proof -
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
   637
  have [simp]: "\<bar>- 1\<bar> = 1"
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
   638
    using sgn_mult_abs [of "- 1"] by simp
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
   639
  then have "\<bar>- 1 * a\<bar> = 1 * \<bar>a\<bar>"
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
   640
    by (simp only: abs_mult)
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
   641
  then show ?thesis
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
   642
    by simp
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
   643
qed
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
   644
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
   645
end
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
   646
70145
f07b8fb99818 more document structure
haftmann
parents: 70144
diff changeset
   647
f07b8fb99818 more document structure
haftmann
parents: 70144
diff changeset
   648
subsection \<open>(Partial) Division\<close>
63950
cdc1e59aa513 syntactic type class for operation mod named after mod;
haftmann
parents: 63947
diff changeset
   649
60353
838025c6e278 implicit partial divison operation in integral domains
haftmann
parents: 60352
diff changeset
   650
class divide =
60429
d3d1e185cd63 uniform _ div _ as infix syntax for ring division
haftmann
parents: 60353
diff changeset
   651
  fixes divide :: "'a \<Rightarrow> 'a \<Rightarrow> 'a"  (infixl "div" 70)
60353
838025c6e278 implicit partial divison operation in integral domains
haftmann
parents: 60352
diff changeset
   652
69593
3dda49e08b9d isabelle update -u control_cartouches;
wenzelm
parents: 68253
diff changeset
   653
setup \<open>Sign.add_const_constraint (\<^const_name>\<open>divide\<close>, SOME \<^typ>\<open>'a \<Rightarrow> 'a \<Rightarrow> 'a\<close>)\<close>
60353
838025c6e278 implicit partial divison operation in integral domains
haftmann
parents: 60352
diff changeset
   654
838025c6e278 implicit partial divison operation in integral domains
haftmann
parents: 60352
diff changeset
   655
context semiring
838025c6e278 implicit partial divison operation in integral domains
haftmann
parents: 60352
diff changeset
   656
begin
838025c6e278 implicit partial divison operation in integral domains
haftmann
parents: 60352
diff changeset
   657
70817
dd675800469d dedicated fact collections for algebraic simplification rules potentially splitting goals
haftmann
parents: 70347
diff changeset
   658
lemma [field_simps, field_split_simps]:
60429
d3d1e185cd63 uniform _ div _ as infix syntax for ring division
haftmann
parents: 60353
diff changeset
   659
  shows distrib_left_NO_MATCH: "NO_MATCH (x div y) a \<Longrightarrow> a * (b + c) = a * b + a * c"
d3d1e185cd63 uniform _ div _ as infix syntax for ring division
haftmann
parents: 60353
diff changeset
   660
    and distrib_right_NO_MATCH: "NO_MATCH (x div y) c \<Longrightarrow> (a + b) * c = a * c + b * c"
60353
838025c6e278 implicit partial divison operation in integral domains
haftmann
parents: 60352
diff changeset
   661
  by (rule distrib_left distrib_right)+
838025c6e278 implicit partial divison operation in integral domains
haftmann
parents: 60352
diff changeset
   662
838025c6e278 implicit partial divison operation in integral domains
haftmann
parents: 60352
diff changeset
   663
end
838025c6e278 implicit partial divison operation in integral domains
haftmann
parents: 60352
diff changeset
   664
838025c6e278 implicit partial divison operation in integral domains
haftmann
parents: 60352
diff changeset
   665
context ring
838025c6e278 implicit partial divison operation in integral domains
haftmann
parents: 60352
diff changeset
   666
begin
838025c6e278 implicit partial divison operation in integral domains
haftmann
parents: 60352
diff changeset
   667
70817
dd675800469d dedicated fact collections for algebraic simplification rules potentially splitting goals
haftmann
parents: 70347
diff changeset
   668
lemma [field_simps, field_split_simps]:
60429
d3d1e185cd63 uniform _ div _ as infix syntax for ring division
haftmann
parents: 60353
diff changeset
   669
  shows left_diff_distrib_NO_MATCH: "NO_MATCH (x div y) c \<Longrightarrow> (a - b) * c = a * c - b * c"
d3d1e185cd63 uniform _ div _ as infix syntax for ring division
haftmann
parents: 60353
diff changeset
   670
    and right_diff_distrib_NO_MATCH: "NO_MATCH (x div y) a \<Longrightarrow> a * (b - c) = a * b - a * c"
60353
838025c6e278 implicit partial divison operation in integral domains
haftmann
parents: 60352
diff changeset
   671
  by (rule left_diff_distrib right_diff_distrib)+
838025c6e278 implicit partial divison operation in integral domains
haftmann
parents: 60352
diff changeset
   672
838025c6e278 implicit partial divison operation in integral domains
haftmann
parents: 60352
diff changeset
   673
end
838025c6e278 implicit partial divison operation in integral domains
haftmann
parents: 60352
diff changeset
   674
69593
3dda49e08b9d isabelle update -u control_cartouches;
wenzelm
parents: 68253
diff changeset
   675
setup \<open>Sign.add_const_constraint (\<^const_name>\<open>divide\<close>, SOME \<^typ>\<open>'a::divide \<Rightarrow> 'a \<Rightarrow> 'a\<close>)\<close>
60353
838025c6e278 implicit partial divison operation in integral domains
haftmann
parents: 60352
diff changeset
   676
63950
cdc1e59aa513 syntactic type class for operation mod named after mod;
haftmann
parents: 63947
diff changeset
   677
text \<open>Algebraic classes with division\<close>
cdc1e59aa513 syntactic type class for operation mod named after mod;
haftmann
parents: 63947
diff changeset
   678
  
60353
838025c6e278 implicit partial divison operation in integral domains
haftmann
parents: 60352
diff changeset
   679
class semidom_divide = semidom + divide +
64240
eabf80376aab more standardized names
haftmann
parents: 64239
diff changeset
   680
  assumes nonzero_mult_div_cancel_right [simp]: "b \<noteq> 0 \<Longrightarrow> (a * b) div b = a"
eabf80376aab more standardized names
haftmann
parents: 64239
diff changeset
   681
  assumes div_by_0 [simp]: "a div 0 = 0"
60353
838025c6e278 implicit partial divison operation in integral domains
haftmann
parents: 60352
diff changeset
   682
begin
838025c6e278 implicit partial divison operation in integral domains
haftmann
parents: 60352
diff changeset
   683
64240
eabf80376aab more standardized names
haftmann
parents: 64239
diff changeset
   684
lemma nonzero_mult_div_cancel_left [simp]: "a \<noteq> 0 \<Longrightarrow> (a * b) div a = b"
eabf80376aab more standardized names
haftmann
parents: 64239
diff changeset
   685
  using nonzero_mult_div_cancel_right [of a b] by (simp add: ac_simps)
60353
838025c6e278 implicit partial divison operation in integral domains
haftmann
parents: 60352
diff changeset
   686
60516
0826b7025d07 generalized some theorems about integral domains and moved to HOL theories
haftmann
parents: 60429
diff changeset
   687
subclass semiring_no_zero_divisors_cancel
0826b7025d07 generalized some theorems about integral domains and moved to HOL theories
haftmann
parents: 60429
diff changeset
   688
proof
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
   689
  show *: "a * c = b * c \<longleftrightarrow> c = 0 \<or> a = b" for a b c
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
   690
  proof (cases "c = 0")
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
   691
    case True
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
   692
    then show ?thesis by simp
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
   693
  next
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
   694
    case False
63588
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
   695
    have "a = b" if "a * c = b * c"
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
   696
    proof -
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
   697
      from that have "a * c div c = b * c div c"
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
   698
        by simp
63588
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
   699
      with False show ?thesis
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
   700
        by simp
63588
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
   701
    qed
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
   702
    then show ?thesis by auto
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
   703
  qed
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
   704
  show "c * a = c * b \<longleftrightarrow> c = 0 \<or> a = b" for a b c
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
   705
    using * [of a c b] by (simp add: ac_simps)
60516
0826b7025d07 generalized some theorems about integral domains and moved to HOL theories
haftmann
parents: 60429
diff changeset
   706
qed
0826b7025d07 generalized some theorems about integral domains and moved to HOL theories
haftmann
parents: 60429
diff changeset
   707
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
   708
lemma div_self [simp]: "a \<noteq> 0 \<Longrightarrow> a div a = 1"
64240
eabf80376aab more standardized names
haftmann
parents: 64239
diff changeset
   709
  using nonzero_mult_div_cancel_left [of a 1] by simp
60516
0826b7025d07 generalized some theorems about integral domains and moved to HOL theories
haftmann
parents: 60429
diff changeset
   710
64240
eabf80376aab more standardized names
haftmann
parents: 64239
diff changeset
   711
lemma div_0 [simp]: "0 div a = 0"
60570
7ed2cde6806d more theorems
haftmann
parents: 60562
diff changeset
   712
proof (cases "a = 0")
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
   713
  case True
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
   714
  then show ?thesis by simp
60570
7ed2cde6806d more theorems
haftmann
parents: 60562
diff changeset
   715
next
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
   716
  case False
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
   717
  then have "a * 0 div a = 0"
64240
eabf80376aab more standardized names
haftmann
parents: 64239
diff changeset
   718
    by (rule nonzero_mult_div_cancel_left)
60570
7ed2cde6806d more theorems
haftmann
parents: 60562
diff changeset
   719
  then show ?thesis by simp
62376
85f38d5f8807 Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
hoelzl
parents: 62366
diff changeset
   720
qed
60570
7ed2cde6806d more theorems
haftmann
parents: 60562
diff changeset
   721
64240
eabf80376aab more standardized names
haftmann
parents: 64239
diff changeset
   722
lemma div_by_1 [simp]: "a div 1 = a"
eabf80376aab more standardized names
haftmann
parents: 64239
diff changeset
   723
  using nonzero_mult_div_cancel_left [of 1 a] by simp
60690
a9e45c9588c3 tuned facts
haftmann
parents: 60688
diff changeset
   724
64591
240a39af9ec4 restructured matter on polynomials and normalized fractions
haftmann
parents: 64290
diff changeset
   725
lemma dvd_div_eq_0_iff:
240a39af9ec4 restructured matter on polynomials and normalized fractions
haftmann
parents: 64290
diff changeset
   726
  assumes "b dvd a"
240a39af9ec4 restructured matter on polynomials and normalized fractions
haftmann
parents: 64290
diff changeset
   727
  shows "a div b = 0 \<longleftrightarrow> a = 0"
240a39af9ec4 restructured matter on polynomials and normalized fractions
haftmann
parents: 64290
diff changeset
   728
  using assms by (elim dvdE, cases "b = 0") simp_all  
240a39af9ec4 restructured matter on polynomials and normalized fractions
haftmann
parents: 64290
diff changeset
   729
240a39af9ec4 restructured matter on polynomials and normalized fractions
haftmann
parents: 64290
diff changeset
   730
lemma dvd_div_eq_cancel:
240a39af9ec4 restructured matter on polynomials and normalized fractions
haftmann
parents: 64290
diff changeset
   731
  "a div c = b div c \<Longrightarrow> c dvd a \<Longrightarrow> c dvd b \<Longrightarrow> a = b"
240a39af9ec4 restructured matter on polynomials and normalized fractions
haftmann
parents: 64290
diff changeset
   732
  by (elim dvdE, cases "c = 0") simp_all
240a39af9ec4 restructured matter on polynomials and normalized fractions
haftmann
parents: 64290
diff changeset
   733
240a39af9ec4 restructured matter on polynomials and normalized fractions
haftmann
parents: 64290
diff changeset
   734
lemma dvd_div_eq_iff:
240a39af9ec4 restructured matter on polynomials and normalized fractions
haftmann
parents: 64290
diff changeset
   735
  "c dvd a \<Longrightarrow> c dvd b \<Longrightarrow> a div c = b div c \<longleftrightarrow> a = b"
240a39af9ec4 restructured matter on polynomials and normalized fractions
haftmann
parents: 64290
diff changeset
   736
  by (elim dvdE, cases "c = 0") simp_all
240a39af9ec4 restructured matter on polynomials and normalized fractions
haftmann
parents: 64290
diff changeset
   737
69661
a03a63b81f44 tuned proofs
haftmann
parents: 69605
diff changeset
   738
lemma inj_on_mult:
a03a63b81f44 tuned proofs
haftmann
parents: 69605
diff changeset
   739
  "inj_on ((*) a) A" if "a \<noteq> 0"
a03a63b81f44 tuned proofs
haftmann
parents: 69605
diff changeset
   740
proof (rule inj_onI)
a03a63b81f44 tuned proofs
haftmann
parents: 69605
diff changeset
   741
  fix b c
a03a63b81f44 tuned proofs
haftmann
parents: 69605
diff changeset
   742
  assume "a * b = a * c"
a03a63b81f44 tuned proofs
haftmann
parents: 69605
diff changeset
   743
  then have "a * b div a = a * c div a"
a03a63b81f44 tuned proofs
haftmann
parents: 69605
diff changeset
   744
    by (simp only:)
a03a63b81f44 tuned proofs
haftmann
parents: 69605
diff changeset
   745
  with that show "b = c"
a03a63b81f44 tuned proofs
haftmann
parents: 69605
diff changeset
   746
    by simp
a03a63b81f44 tuned proofs
haftmann
parents: 69605
diff changeset
   747
qed
a03a63b81f44 tuned proofs
haftmann
parents: 69605
diff changeset
   748
60867
86e7560e07d0 slight cleanup of lemmas
haftmann
parents: 60758
diff changeset
   749
end
86e7560e07d0 slight cleanup of lemmas
haftmann
parents: 60758
diff changeset
   750
86e7560e07d0 slight cleanup of lemmas
haftmann
parents: 60758
diff changeset
   751
class idom_divide = idom + semidom_divide
64591
240a39af9ec4 restructured matter on polynomials and normalized fractions
haftmann
parents: 64290
diff changeset
   752
begin
240a39af9ec4 restructured matter on polynomials and normalized fractions
haftmann
parents: 64290
diff changeset
   753
64592
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64591
diff changeset
   754
lemma dvd_neg_div:
64591
240a39af9ec4 restructured matter on polynomials and normalized fractions
haftmann
parents: 64290
diff changeset
   755
  assumes "b dvd a"
240a39af9ec4 restructured matter on polynomials and normalized fractions
haftmann
parents: 64290
diff changeset
   756
  shows "- a div b = - (a div b)"
240a39af9ec4 restructured matter on polynomials and normalized fractions
haftmann
parents: 64290
diff changeset
   757
proof (cases "b = 0")
240a39af9ec4 restructured matter on polynomials and normalized fractions
haftmann
parents: 64290
diff changeset
   758
  case True
240a39af9ec4 restructured matter on polynomials and normalized fractions
haftmann
parents: 64290
diff changeset
   759
  then show ?thesis by simp
240a39af9ec4 restructured matter on polynomials and normalized fractions
haftmann
parents: 64290
diff changeset
   760
next
240a39af9ec4 restructured matter on polynomials and normalized fractions
haftmann
parents: 64290
diff changeset
   761
  case False
240a39af9ec4 restructured matter on polynomials and normalized fractions
haftmann
parents: 64290
diff changeset
   762
  from assms obtain c where "a = b * c" ..
64592
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64591
diff changeset
   763
  then have "- a div b = (b * - c) div b"
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64591
diff changeset
   764
    by simp
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64591
diff changeset
   765
  from False also have "\<dots> = - c"
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64591
diff changeset
   766
    by (rule nonzero_mult_div_cancel_left)  
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64591
diff changeset
   767
  with False \<open>a = b * c\<close> show ?thesis
64591
240a39af9ec4 restructured matter on polynomials and normalized fractions
haftmann
parents: 64290
diff changeset
   768
    by simp
64592
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64591
diff changeset
   769
qed
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64591
diff changeset
   770
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64591
diff changeset
   771
lemma dvd_div_neg:
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64591
diff changeset
   772
  assumes "b dvd a"
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64591
diff changeset
   773
  shows "a div - b = - (a div b)"
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64591
diff changeset
   774
proof (cases "b = 0")
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64591
diff changeset
   775
  case True
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64591
diff changeset
   776
  then show ?thesis by simp
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64591
diff changeset
   777
next
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64591
diff changeset
   778
  case False
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64591
diff changeset
   779
  then have "- b \<noteq> 0"
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64591
diff changeset
   780
    by simp
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64591
diff changeset
   781
  from assms obtain c where "a = b * c" ..
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64591
diff changeset
   782
  then have "a div - b = (- b * - c) div - b"
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64591
diff changeset
   783
    by simp
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64591
diff changeset
   784
  from \<open>- b \<noteq> 0\<close> also have "\<dots> = - c"
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64591
diff changeset
   785
    by (rule nonzero_mult_div_cancel_left)  
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64591
diff changeset
   786
  with False \<open>a = b * c\<close> show ?thesis
64591
240a39af9ec4 restructured matter on polynomials and normalized fractions
haftmann
parents: 64290
diff changeset
   787
    by simp
240a39af9ec4 restructured matter on polynomials and normalized fractions
haftmann
parents: 64290
diff changeset
   788
qed
240a39af9ec4 restructured matter on polynomials and normalized fractions
haftmann
parents: 64290
diff changeset
   789
240a39af9ec4 restructured matter on polynomials and normalized fractions
haftmann
parents: 64290
diff changeset
   790
end
60867
86e7560e07d0 slight cleanup of lemmas
haftmann
parents: 60758
diff changeset
   791
86e7560e07d0 slight cleanup of lemmas
haftmann
parents: 60758
diff changeset
   792
class algebraic_semidom = semidom_divide
86e7560e07d0 slight cleanup of lemmas
haftmann
parents: 60758
diff changeset
   793
begin
86e7560e07d0 slight cleanup of lemmas
haftmann
parents: 60758
diff changeset
   794
86e7560e07d0 slight cleanup of lemmas
haftmann
parents: 60758
diff changeset
   795
text \<open>
69593
3dda49e08b9d isabelle update -u control_cartouches;
wenzelm
parents: 68253
diff changeset
   796
  Class \<^class>\<open>algebraic_semidom\<close> enriches a integral domain
60867
86e7560e07d0 slight cleanup of lemmas
haftmann
parents: 60758
diff changeset
   797
  by notions from algebra, like units in a ring.
86e7560e07d0 slight cleanup of lemmas
haftmann
parents: 60758
diff changeset
   798
  It is a separate class to avoid spoiling fields with notions
86e7560e07d0 slight cleanup of lemmas
haftmann
parents: 60758
diff changeset
   799
  which are degenerated there.
86e7560e07d0 slight cleanup of lemmas
haftmann
parents: 60758
diff changeset
   800
\<close>
86e7560e07d0 slight cleanup of lemmas
haftmann
parents: 60758
diff changeset
   801
60690
a9e45c9588c3 tuned facts
haftmann
parents: 60688
diff changeset
   802
lemma dvd_times_left_cancel_iff [simp]:
a9e45c9588c3 tuned facts
haftmann
parents: 60688
diff changeset
   803
  assumes "a \<noteq> 0"
63588
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
   804
  shows "a * b dvd a * c \<longleftrightarrow> b dvd c"
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
   805
    (is "?lhs \<longleftrightarrow> ?rhs")
60690
a9e45c9588c3 tuned facts
haftmann
parents: 60688
diff changeset
   806
proof
63588
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
   807
  assume ?lhs
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
   808
  then obtain d where "a * c = a * b * d" ..
60690
a9e45c9588c3 tuned facts
haftmann
parents: 60688
diff changeset
   809
  with assms have "c = b * d" by (simp add: ac_simps)
63588
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
   810
  then show ?rhs ..
60690
a9e45c9588c3 tuned facts
haftmann
parents: 60688
diff changeset
   811
next
63588
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
   812
  assume ?rhs
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
   813
  then obtain d where "c = b * d" ..
60690
a9e45c9588c3 tuned facts
haftmann
parents: 60688
diff changeset
   814
  then have "a * c = a * b * d" by (simp add: ac_simps)
63588
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
   815
  then show ?lhs ..
60690
a9e45c9588c3 tuned facts
haftmann
parents: 60688
diff changeset
   816
qed
62376
85f38d5f8807 Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
hoelzl
parents: 62366
diff changeset
   817
60690
a9e45c9588c3 tuned facts
haftmann
parents: 60688
diff changeset
   818
lemma dvd_times_right_cancel_iff [simp]:
a9e45c9588c3 tuned facts
haftmann
parents: 60688
diff changeset
   819
  assumes "a \<noteq> 0"
63588
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
   820
  shows "b * a dvd c * a \<longleftrightarrow> b dvd c"
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
   821
  using dvd_times_left_cancel_iff [of a b c] assms by (simp add: ac_simps)
62376
85f38d5f8807 Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
hoelzl
parents: 62366
diff changeset
   822
60690
a9e45c9588c3 tuned facts
haftmann
parents: 60688
diff changeset
   823
lemma div_dvd_iff_mult:
a9e45c9588c3 tuned facts
haftmann
parents: 60688
diff changeset
   824
  assumes "b \<noteq> 0" and "b dvd a"
a9e45c9588c3 tuned facts
haftmann
parents: 60688
diff changeset
   825
  shows "a div b dvd c \<longleftrightarrow> a dvd c * b"
a9e45c9588c3 tuned facts
haftmann
parents: 60688
diff changeset
   826
proof -
a9e45c9588c3 tuned facts
haftmann
parents: 60688
diff changeset
   827
  from \<open>b dvd a\<close> obtain d where "a = b * d" ..
a9e45c9588c3 tuned facts
haftmann
parents: 60688
diff changeset
   828
  with \<open>b \<noteq> 0\<close> show ?thesis by (simp add: ac_simps)
a9e45c9588c3 tuned facts
haftmann
parents: 60688
diff changeset
   829
qed
a9e45c9588c3 tuned facts
haftmann
parents: 60688
diff changeset
   830
a9e45c9588c3 tuned facts
haftmann
parents: 60688
diff changeset
   831
lemma dvd_div_iff_mult:
a9e45c9588c3 tuned facts
haftmann
parents: 60688
diff changeset
   832
  assumes "c \<noteq> 0" and "c dvd b"
a9e45c9588c3 tuned facts
haftmann
parents: 60688
diff changeset
   833
  shows "a dvd b div c \<longleftrightarrow> a * c dvd b"
a9e45c9588c3 tuned facts
haftmann
parents: 60688
diff changeset
   834
proof -
a9e45c9588c3 tuned facts
haftmann
parents: 60688
diff changeset
   835
  from \<open>c dvd b\<close> obtain d where "b = c * d" ..
a9e45c9588c3 tuned facts
haftmann
parents: 60688
diff changeset
   836
  with \<open>c \<noteq> 0\<close> show ?thesis by (simp add: mult.commute [of a])
a9e45c9588c3 tuned facts
haftmann
parents: 60688
diff changeset
   837
qed
a9e45c9588c3 tuned facts
haftmann
parents: 60688
diff changeset
   838
60867
86e7560e07d0 slight cleanup of lemmas
haftmann
parents: 60758
diff changeset
   839
lemma div_dvd_div [simp]:
86e7560e07d0 slight cleanup of lemmas
haftmann
parents: 60758
diff changeset
   840
  assumes "a dvd b" and "a dvd c"
86e7560e07d0 slight cleanup of lemmas
haftmann
parents: 60758
diff changeset
   841
  shows "b div a dvd c div a \<longleftrightarrow> b dvd c"
86e7560e07d0 slight cleanup of lemmas
haftmann
parents: 60758
diff changeset
   842
proof (cases "a = 0")
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
   843
  case True
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
   844
  with assms show ?thesis by simp
60867
86e7560e07d0 slight cleanup of lemmas
haftmann
parents: 60758
diff changeset
   845
next
86e7560e07d0 slight cleanup of lemmas
haftmann
parents: 60758
diff changeset
   846
  case False
86e7560e07d0 slight cleanup of lemmas
haftmann
parents: 60758
diff changeset
   847
  moreover from assms obtain k l where "b = a * k" and "c = a * l"
70146
haftmann
parents: 70145
diff changeset
   848
    by blast
60867
86e7560e07d0 slight cleanup of lemmas
haftmann
parents: 60758
diff changeset
   849
  ultimately show ?thesis by simp
86e7560e07d0 slight cleanup of lemmas
haftmann
parents: 60758
diff changeset
   850
qed
60353
838025c6e278 implicit partial divison operation in integral domains
haftmann
parents: 60352
diff changeset
   851
60867
86e7560e07d0 slight cleanup of lemmas
haftmann
parents: 60758
diff changeset
   852
lemma div_add [simp]:
86e7560e07d0 slight cleanup of lemmas
haftmann
parents: 60758
diff changeset
   853
  assumes "c dvd a" and "c dvd b"
86e7560e07d0 slight cleanup of lemmas
haftmann
parents: 60758
diff changeset
   854
  shows "(a + b) div c = a div c + b div c"
86e7560e07d0 slight cleanup of lemmas
haftmann
parents: 60758
diff changeset
   855
proof (cases "c = 0")
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
   856
  case True
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
   857
  then show ?thesis by simp
60867
86e7560e07d0 slight cleanup of lemmas
haftmann
parents: 60758
diff changeset
   858
next
86e7560e07d0 slight cleanup of lemmas
haftmann
parents: 60758
diff changeset
   859
  case False
86e7560e07d0 slight cleanup of lemmas
haftmann
parents: 60758
diff changeset
   860
  moreover from assms obtain k l where "a = c * k" and "b = c * l"
70146
haftmann
parents: 70145
diff changeset
   861
    by blast
60867
86e7560e07d0 slight cleanup of lemmas
haftmann
parents: 60758
diff changeset
   862
  moreover have "c * k + c * l = c * (k + l)"
86e7560e07d0 slight cleanup of lemmas
haftmann
parents: 60758
diff changeset
   863
    by (simp add: algebra_simps)
86e7560e07d0 slight cleanup of lemmas
haftmann
parents: 60758
diff changeset
   864
  ultimately show ?thesis
86e7560e07d0 slight cleanup of lemmas
haftmann
parents: 60758
diff changeset
   865
    by simp
86e7560e07d0 slight cleanup of lemmas
haftmann
parents: 60758
diff changeset
   866
qed
60517
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
   867
60867
86e7560e07d0 slight cleanup of lemmas
haftmann
parents: 60758
diff changeset
   868
lemma div_mult_div_if_dvd:
86e7560e07d0 slight cleanup of lemmas
haftmann
parents: 60758
diff changeset
   869
  assumes "b dvd a" and "d dvd c"
86e7560e07d0 slight cleanup of lemmas
haftmann
parents: 60758
diff changeset
   870
  shows "(a div b) * (c div d) = (a * c) div (b * d)"
86e7560e07d0 slight cleanup of lemmas
haftmann
parents: 60758
diff changeset
   871
proof (cases "b = 0 \<or> c = 0")
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
   872
  case True
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
   873
  with assms show ?thesis by auto
60867
86e7560e07d0 slight cleanup of lemmas
haftmann
parents: 60758
diff changeset
   874
next
86e7560e07d0 slight cleanup of lemmas
haftmann
parents: 60758
diff changeset
   875
  case False
86e7560e07d0 slight cleanup of lemmas
haftmann
parents: 60758
diff changeset
   876
  moreover from assms obtain k l where "a = b * k" and "c = d * l"
70146
haftmann
parents: 70145
diff changeset
   877
    by blast
60867
86e7560e07d0 slight cleanup of lemmas
haftmann
parents: 60758
diff changeset
   878
  moreover have "b * k * (d * l) div (b * d) = (b * d) * (k * l) div (b * d)"
86e7560e07d0 slight cleanup of lemmas
haftmann
parents: 60758
diff changeset
   879
    by (simp add: ac_simps)
86e7560e07d0 slight cleanup of lemmas
haftmann
parents: 60758
diff changeset
   880
  ultimately show ?thesis by simp
86e7560e07d0 slight cleanup of lemmas
haftmann
parents: 60758
diff changeset
   881
qed
86e7560e07d0 slight cleanup of lemmas
haftmann
parents: 60758
diff changeset
   882
86e7560e07d0 slight cleanup of lemmas
haftmann
parents: 60758
diff changeset
   883
lemma dvd_div_eq_mult:
86e7560e07d0 slight cleanup of lemmas
haftmann
parents: 60758
diff changeset
   884
  assumes "a \<noteq> 0" and "a dvd b"
86e7560e07d0 slight cleanup of lemmas
haftmann
parents: 60758
diff changeset
   885
  shows "b div a = c \<longleftrightarrow> b = c * a"
63588
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
   886
    (is "?lhs \<longleftrightarrow> ?rhs")
60867
86e7560e07d0 slight cleanup of lemmas
haftmann
parents: 60758
diff changeset
   887
proof
63588
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
   888
  assume ?rhs
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
   889
  then show ?lhs by (simp add: assms)
60867
86e7560e07d0 slight cleanup of lemmas
haftmann
parents: 60758
diff changeset
   890
next
63588
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
   891
  assume ?lhs
60867
86e7560e07d0 slight cleanup of lemmas
haftmann
parents: 60758
diff changeset
   892
  then have "b div a * a = c * a" by simp
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
   893
  moreover from assms have "b div a * a = b"
70146
haftmann
parents: 70145
diff changeset
   894
    by (auto simp add: ac_simps)
63588
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
   895
  ultimately show ?rhs by simp
60867
86e7560e07d0 slight cleanup of lemmas
haftmann
parents: 60758
diff changeset
   896
qed
60688
01488b559910 avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
haftmann
parents: 60685
diff changeset
   897
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
   898
lemma dvd_div_mult_self [simp]: "a dvd b \<Longrightarrow> b div a * a = b"
70146
haftmann
parents: 70145
diff changeset
   899
  by (cases "a = 0") (auto simp add: ac_simps)
60517
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
   900
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
   901
lemma dvd_mult_div_cancel [simp]: "a dvd b \<Longrightarrow> a * (b div a) = b"
60517
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
   902
  using dvd_div_mult_self [of a b] by (simp add: ac_simps)
60562
24af00b010cf Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
paulson <lp15@cam.ac.uk>
parents: 60529
diff changeset
   903
60517
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
   904
lemma div_mult_swap:
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
   905
  assumes "c dvd b"
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
   906
  shows "a * (b div c) = (a * b) div c"
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
   907
proof (cases "c = 0")
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
   908
  case True
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
   909
  then show ?thesis by simp
60517
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
   910
next
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
   911
  case False
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
   912
  from assms obtain d where "b = c * d" ..
60517
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
   913
  moreover from False have "a * divide (d * c) c = ((a * d) * c) div c"
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
   914
    by simp
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
   915
  ultimately show ?thesis by (simp add: ac_simps)
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
   916
qed
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
   917
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
   918
lemma dvd_div_mult: "c dvd b \<Longrightarrow> b div c * a = (b * a) div c"
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
   919
  using div_mult_swap [of c b a] by (simp add: ac_simps)
60517
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
   920
60570
7ed2cde6806d more theorems
haftmann
parents: 60562
diff changeset
   921
lemma dvd_div_mult2_eq:
7ed2cde6806d more theorems
haftmann
parents: 60562
diff changeset
   922
  assumes "b * c dvd a"
7ed2cde6806d more theorems
haftmann
parents: 60562
diff changeset
   923
  shows "a div (b * c) = a div b div c"
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
   924
proof -
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
   925
  from assms obtain k where "a = b * c * k" ..
60570
7ed2cde6806d more theorems
haftmann
parents: 60562
diff changeset
   926
  then show ?thesis
7ed2cde6806d more theorems
haftmann
parents: 60562
diff changeset
   927
    by (cases "b = 0 \<or> c = 0") (auto, simp add: ac_simps)
7ed2cde6806d more theorems
haftmann
parents: 60562
diff changeset
   928
qed
7ed2cde6806d more theorems
haftmann
parents: 60562
diff changeset
   929
60867
86e7560e07d0 slight cleanup of lemmas
haftmann
parents: 60758
diff changeset
   930
lemma dvd_div_div_eq_mult:
86e7560e07d0 slight cleanup of lemmas
haftmann
parents: 60758
diff changeset
   931
  assumes "a \<noteq> 0" "c \<noteq> 0" and "a dvd b" "c dvd d"
63588
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
   932
  shows "b div a = d div c \<longleftrightarrow> b * c = a * d"
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
   933
    (is "?lhs \<longleftrightarrow> ?rhs")
60867
86e7560e07d0 slight cleanup of lemmas
haftmann
parents: 60758
diff changeset
   934
proof -
86e7560e07d0 slight cleanup of lemmas
haftmann
parents: 60758
diff changeset
   935
  from assms have "a * c \<noteq> 0" by simp
63588
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
   936
  then have "?lhs \<longleftrightarrow> b div a * (a * c) = d div c * (a * c)"
60867
86e7560e07d0 slight cleanup of lemmas
haftmann
parents: 60758
diff changeset
   937
    by simp
86e7560e07d0 slight cleanup of lemmas
haftmann
parents: 60758
diff changeset
   938
  also have "\<dots> \<longleftrightarrow> (a * (b div a)) * c = (c * (d div c)) * a"
86e7560e07d0 slight cleanup of lemmas
haftmann
parents: 60758
diff changeset
   939
    by (simp add: ac_simps)
86e7560e07d0 slight cleanup of lemmas
haftmann
parents: 60758
diff changeset
   940
  also have "\<dots> \<longleftrightarrow> (a * b div a) * c = (c * d div c) * a"
86e7560e07d0 slight cleanup of lemmas
haftmann
parents: 60758
diff changeset
   941
    using assms by (simp add: div_mult_swap)
63588
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
   942
  also have "\<dots> \<longleftrightarrow> ?rhs"
60867
86e7560e07d0 slight cleanup of lemmas
haftmann
parents: 60758
diff changeset
   943
    using assms by (simp add: ac_simps)
86e7560e07d0 slight cleanup of lemmas
haftmann
parents: 60758
diff changeset
   944
  finally show ?thesis .
86e7560e07d0 slight cleanup of lemmas
haftmann
parents: 60758
diff changeset
   945
qed
86e7560e07d0 slight cleanup of lemmas
haftmann
parents: 60758
diff changeset
   946
63359
99b51ba8da1c More lemmas on Gcd/Lcm
Manuel Eberl <eberlm@in.tum.de>
parents: 63325
diff changeset
   947
lemma dvd_mult_imp_div:
99b51ba8da1c More lemmas on Gcd/Lcm
Manuel Eberl <eberlm@in.tum.de>
parents: 63325
diff changeset
   948
  assumes "a * c dvd b"
99b51ba8da1c More lemmas on Gcd/Lcm
Manuel Eberl <eberlm@in.tum.de>
parents: 63325
diff changeset
   949
  shows "a dvd b div c"
99b51ba8da1c More lemmas on Gcd/Lcm
Manuel Eberl <eberlm@in.tum.de>
parents: 63325
diff changeset
   950
proof (cases "c = 0")
99b51ba8da1c More lemmas on Gcd/Lcm
Manuel Eberl <eberlm@in.tum.de>
parents: 63325
diff changeset
   951
  case True then show ?thesis by simp
99b51ba8da1c More lemmas on Gcd/Lcm
Manuel Eberl <eberlm@in.tum.de>
parents: 63325
diff changeset
   952
next
99b51ba8da1c More lemmas on Gcd/Lcm
Manuel Eberl <eberlm@in.tum.de>
parents: 63325
diff changeset
   953
  case False
99b51ba8da1c More lemmas on Gcd/Lcm
Manuel Eberl <eberlm@in.tum.de>
parents: 63325
diff changeset
   954
  from \<open>a * c dvd b\<close> obtain d where "b = a * c * d" ..
63588
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
   955
  with False show ?thesis
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
   956
    by (simp add: mult.commute [of a] mult.assoc)
63359
99b51ba8da1c More lemmas on Gcd/Lcm
Manuel Eberl <eberlm@in.tum.de>
parents: 63325
diff changeset
   957
qed
99b51ba8da1c More lemmas on Gcd/Lcm
Manuel Eberl <eberlm@in.tum.de>
parents: 63325
diff changeset
   958
64592
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64591
diff changeset
   959
lemma div_div_eq_right:
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64591
diff changeset
   960
  assumes "c dvd b" "b dvd a"
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64591
diff changeset
   961
  shows   "a div (b div c) = a div b * c"
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64591
diff changeset
   962
proof (cases "c = 0 \<or> b = 0")
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64591
diff changeset
   963
  case True
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64591
diff changeset
   964
  then show ?thesis
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64591
diff changeset
   965
    by auto
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64591
diff changeset
   966
next
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64591
diff changeset
   967
  case False
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64591
diff changeset
   968
  from assms obtain r s where "b = c * r" and "a = c * r * s"
70146
haftmann
parents: 70145
diff changeset
   969
    by blast
64592
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64591
diff changeset
   970
  moreover with False have "r \<noteq> 0"
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64591
diff changeset
   971
    by auto
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64591
diff changeset
   972
  ultimately show ?thesis using False
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64591
diff changeset
   973
    by simp (simp add: mult.commute [of _ r] mult.assoc mult.commute [of c])
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64591
diff changeset
   974
qed
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64591
diff changeset
   975
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64591
diff changeset
   976
lemma div_div_div_same:
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64591
diff changeset
   977
  assumes "d dvd b" "b dvd a"
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64591
diff changeset
   978
  shows   "(a div d) div (b div d) = a div b"
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64591
diff changeset
   979
proof (cases "b = 0 \<or> d = 0")
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64591
diff changeset
   980
  case True
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64591
diff changeset
   981
  with assms show ?thesis
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64591
diff changeset
   982
    by auto
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64591
diff changeset
   983
next
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64591
diff changeset
   984
  case False
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64591
diff changeset
   985
  from assms obtain r s
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64591
diff changeset
   986
    where "a = d * r * s" and "b = d * r"
70146
haftmann
parents: 70145
diff changeset
   987
    by blast
64592
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64591
diff changeset
   988
  with False show ?thesis
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64591
diff changeset
   989
    by simp (simp add: ac_simps)
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64591
diff changeset
   990
qed
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64591
diff changeset
   991
60562
24af00b010cf Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
paulson <lp15@cam.ac.uk>
parents: 60529
diff changeset
   992
60517
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
   993
text \<open>Units: invertible elements in a ring\<close>
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
   994
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
   995
abbreviation is_unit :: "'a \<Rightarrow> bool"
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
   996
  where "is_unit a \<equiv> a dvd 1"
60517
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
   997
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
   998
lemma not_is_unit_0 [simp]: "\<not> is_unit 0"
60517
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
   999
  by simp
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
  1000
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1001
lemma unit_imp_dvd [dest]: "is_unit b \<Longrightarrow> b dvd a"
60517
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
  1002
  by (rule dvd_trans [of _ 1]) simp_all
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
  1003
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
  1004
lemma unit_dvdE:
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
  1005
  assumes "is_unit a"
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
  1006
  obtains c where "a \<noteq> 0" and "b = a * c"
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
  1007
proof -
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
  1008
  from assms have "a dvd b" by auto
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
  1009
  then obtain c where "b = a * c" ..
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
  1010
  moreover from assms have "a \<noteq> 0" by auto
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
  1011
  ultimately show thesis using that by blast
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
  1012
qed
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
  1013
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1014
lemma dvd_unit_imp_unit: "a dvd b \<Longrightarrow> is_unit b \<Longrightarrow> is_unit a"
60517
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
  1015
  by (rule dvd_trans)
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
  1016
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
  1017
lemma unit_div_1_unit [simp, intro]:
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
  1018
  assumes "is_unit a"
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
  1019
  shows "is_unit (1 div a)"
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
  1020
proof -
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
  1021
  from assms have "1 = 1 div a * a" by simp
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
  1022
  then show "is_unit (1 div a)" by (rule dvdI)
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
  1023
qed
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
  1024
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
  1025
lemma is_unitE [elim?]:
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
  1026
  assumes "is_unit a"
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
  1027
  obtains b where "a \<noteq> 0" and "b \<noteq> 0"
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
  1028
    and "is_unit b" and "1 div a = b" and "1 div b = a"
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
  1029
    and "a * b = 1" and "c div a = c * b"
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
  1030
proof (rule that)
63040
eb4ddd18d635 eliminated old 'def';
wenzelm
parents: 62626
diff changeset
  1031
  define b where "b = 1 div a"
60517
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
  1032
  then show "1 div a = b" by simp
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1033
  from assms b_def show "is_unit b" by simp
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1034
  with assms show "a \<noteq> 0" and "b \<noteq> 0" by auto
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1035
  from assms b_def show "a * b = 1" by simp
60517
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
  1036
  then have "1 = a * b" ..
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60690
diff changeset
  1037
  with b_def \<open>b \<noteq> 0\<close> show "1 div b = a" by simp
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1038
  from assms have "a dvd c" ..
60517
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
  1039
  then obtain d where "c = a * d" ..
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60690
diff changeset
  1040
  with \<open>a \<noteq> 0\<close> \<open>a * b = 1\<close> show "c div a = c * b"
60517
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
  1041
    by (simp add: mult.assoc mult.left_commute [of a])
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
  1042
qed
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
  1043
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1044
lemma unit_prod [intro]: "is_unit a \<Longrightarrow> is_unit b \<Longrightarrow> is_unit (a * b)"
60562
24af00b010cf Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
paulson <lp15@cam.ac.uk>
parents: 60529
diff changeset
  1045
  by (subst mult_1_left [of 1, symmetric]) (rule mult_dvd_mono)
24af00b010cf Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
paulson <lp15@cam.ac.uk>
parents: 60529
diff changeset
  1046
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1047
lemma is_unit_mult_iff: "is_unit (a * b) \<longleftrightarrow> is_unit a \<and> is_unit b"
62366
95c6cf433c91 more theorems
haftmann
parents: 62349
diff changeset
  1048
  by (auto dest: dvd_mult_left dvd_mult_right)
95c6cf433c91 more theorems
haftmann
parents: 62349
diff changeset
  1049
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1050
lemma unit_div [intro]: "is_unit a \<Longrightarrow> is_unit b \<Longrightarrow> is_unit (a div b)"
60517
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
  1051
  by (erule is_unitE [of b a]) (simp add: ac_simps unit_prod)
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
  1052
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
  1053
lemma mult_unit_dvd_iff:
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
  1054
  assumes "is_unit b"
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
  1055
  shows "a * b dvd c \<longleftrightarrow> a dvd c"
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
  1056
proof
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
  1057
  assume "a * b dvd c"
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
  1058
  with assms show "a dvd c"
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
  1059
    by (simp add: dvd_mult_left)
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
  1060
next
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
  1061
  assume "a dvd c"
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
  1062
  then obtain k where "c = a * k" ..
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
  1063
  with assms have "c = (a * b) * (1 div b * k)"
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
  1064
    by (simp add: mult_ac)
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
  1065
  then show "a * b dvd c" by (rule dvdI)
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
  1066
qed
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
  1067
63924
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63680
diff changeset
  1068
lemma mult_unit_dvd_iff': "is_unit a \<Longrightarrow> (a * b) dvd c \<longleftrightarrow> b dvd c"
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63680
diff changeset
  1069
  using mult_unit_dvd_iff [of a b c] by (simp add: ac_simps)
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63680
diff changeset
  1070
60517
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
  1071
lemma dvd_mult_unit_iff:
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
  1072
  assumes "is_unit b"
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
  1073
  shows "a dvd c * b \<longleftrightarrow> a dvd c"
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
  1074
proof
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
  1075
  assume "a dvd c * b"
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
  1076
  with assms have "c * b dvd c * (b * (1 div b))"
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
  1077
    by (subst mult_assoc [symmetric]) simp
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1078
  also from assms have "b * (1 div b) = 1"
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1079
    by (rule is_unitE) simp
60517
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
  1080
  finally have "c * b dvd c" by simp
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60690
diff changeset
  1081
  with \<open>a dvd c * b\<close> show "a dvd c" by (rule dvd_trans)
60517
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
  1082
next
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
  1083
  assume "a dvd c"
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
  1084
  then show "a dvd c * b" by simp
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
  1085
qed
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
  1086
63924
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63680
diff changeset
  1087
lemma dvd_mult_unit_iff': "is_unit b \<Longrightarrow> a dvd b * c \<longleftrightarrow> a dvd c"
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63680
diff changeset
  1088
  using dvd_mult_unit_iff [of b a c] by (simp add: ac_simps)
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63680
diff changeset
  1089
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1090
lemma div_unit_dvd_iff: "is_unit b \<Longrightarrow> a div b dvd c \<longleftrightarrow> a dvd c"
60517
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
  1091
  by (erule is_unitE [of _ a]) (auto simp add: mult_unit_dvd_iff)
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
  1092
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1093
lemma dvd_div_unit_iff: "is_unit b \<Longrightarrow> a dvd c div b \<longleftrightarrow> a dvd c"
60517
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
  1094
  by (erule is_unitE [of _ c]) (simp add: dvd_mult_unit_iff)
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
  1095
63924
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63680
diff changeset
  1096
lemmas unit_dvd_iff = mult_unit_dvd_iff mult_unit_dvd_iff'
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63680
diff changeset
  1097
  dvd_mult_unit_iff dvd_mult_unit_iff' 
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63680
diff changeset
  1098
  div_unit_dvd_iff dvd_div_unit_iff (* FIXME consider named_theorems *)
60517
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
  1099
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1100
lemma unit_mult_div_div [simp]: "is_unit a \<Longrightarrow> b * (1 div a) = b div a"
60517
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
  1101
  by (erule is_unitE [of _ b]) simp
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
  1102
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1103
lemma unit_div_mult_self [simp]: "is_unit a \<Longrightarrow> b div a * a = b"
60517
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
  1104
  by (rule dvd_div_mult_self) auto
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
  1105
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1106
lemma unit_div_1_div_1 [simp]: "is_unit a \<Longrightarrow> 1 div (1 div a) = a"
60517
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
  1107
  by (erule is_unitE) simp
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
  1108
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1109
lemma unit_div_mult_swap: "is_unit c \<Longrightarrow> a * (b div c) = (a * b) div c"
60517
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
  1110
  by (erule unit_dvdE [of _ b]) (simp add: mult.left_commute [of _ c])
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
  1111
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1112
lemma unit_div_commute: "is_unit b \<Longrightarrow> (a div b) * c = (a * c) div b"
60517
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
  1113
  using unit_div_mult_swap [of b c a] by (simp add: ac_simps)
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
  1114
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1115
lemma unit_eq_div1: "is_unit b \<Longrightarrow> a div b = c \<longleftrightarrow> a = c * b"
60517
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
  1116
  by (auto elim: is_unitE)
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
  1117
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1118
lemma unit_eq_div2: "is_unit b \<Longrightarrow> a = c div b \<longleftrightarrow> a * b = c"
60517
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
  1119
  using unit_eq_div1 [of b c a] by auto
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
  1120
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1121
lemma unit_mult_left_cancel: "is_unit a \<Longrightarrow> a * b = a * c \<longleftrightarrow> b = c"
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1122
  using mult_cancel_left [of a b c] by auto
60517
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
  1123
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1124
lemma unit_mult_right_cancel: "is_unit a \<Longrightarrow> b * a = c * a \<longleftrightarrow> b = c"
60517
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
  1125
  using unit_mult_left_cancel [of a b c] by (auto simp add: ac_simps)
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
  1126
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
  1127
lemma unit_div_cancel:
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
  1128
  assumes "is_unit a"
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
  1129
  shows "b div a = c div a \<longleftrightarrow> b = c"
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
  1130
proof -
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
  1131
  from assms have "is_unit (1 div a)" by simp
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
  1132
  then have "b * (1 div a) = c * (1 div a) \<longleftrightarrow> b = c"
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
  1133
    by (rule unit_mult_right_cancel)
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
  1134
  with assms show ?thesis by simp
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
  1135
qed
60562
24af00b010cf Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
paulson <lp15@cam.ac.uk>
parents: 60529
diff changeset
  1136
60570
7ed2cde6806d more theorems
haftmann
parents: 60562
diff changeset
  1137
lemma is_unit_div_mult2_eq:
7ed2cde6806d more theorems
haftmann
parents: 60562
diff changeset
  1138
  assumes "is_unit b" and "is_unit c"
7ed2cde6806d more theorems
haftmann
parents: 60562
diff changeset
  1139
  shows "a div (b * c) = a div b div c"
7ed2cde6806d more theorems
haftmann
parents: 60562
diff changeset
  1140
proof -
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1141
  from assms have "is_unit (b * c)"
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1142
    by (simp add: unit_prod)
60570
7ed2cde6806d more theorems
haftmann
parents: 60562
diff changeset
  1143
  then have "b * c dvd a"
7ed2cde6806d more theorems
haftmann
parents: 60562
diff changeset
  1144
    by (rule unit_imp_dvd)
7ed2cde6806d more theorems
haftmann
parents: 60562
diff changeset
  1145
  then show ?thesis
7ed2cde6806d more theorems
haftmann
parents: 60562
diff changeset
  1146
    by (rule dvd_div_mult2_eq)
7ed2cde6806d more theorems
haftmann
parents: 60562
diff changeset
  1147
qed
7ed2cde6806d more theorems
haftmann
parents: 60562
diff changeset
  1148
64240
eabf80376aab more standardized names
haftmann
parents: 64239
diff changeset
  1149
lemma is_unit_div_mult_cancel_left:
60685
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1150
  assumes "a \<noteq> 0" and "is_unit b"
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1151
  shows "a div (a * b) = 1 div b"
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1152
proof -
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1153
  from assms have "a div (a * b) = a div a div b"
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1154
    by (simp add: mult_unit_dvd_iff dvd_div_mult2_eq)
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1155
  with assms show ?thesis by simp
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1156
qed
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1157
64240
eabf80376aab more standardized names
haftmann
parents: 64239
diff changeset
  1158
lemma is_unit_div_mult_cancel_right:
60685
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1159
  assumes "a \<noteq> 0" and "is_unit b"
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1160
  shows "a div (b * a) = 1 div b"
64240
eabf80376aab more standardized names
haftmann
parents: 64239
diff changeset
  1161
  using assms is_unit_div_mult_cancel_left [of a b] by (simp add: ac_simps)
60685
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1162
64591
240a39af9ec4 restructured matter on polynomials and normalized fractions
haftmann
parents: 64290
diff changeset
  1163
lemma unit_div_eq_0_iff:
240a39af9ec4 restructured matter on polynomials and normalized fractions
haftmann
parents: 64290
diff changeset
  1164
  assumes "is_unit b"
240a39af9ec4 restructured matter on polynomials and normalized fractions
haftmann
parents: 64290
diff changeset
  1165
  shows "a div b = 0 \<longleftrightarrow> a = 0"
240a39af9ec4 restructured matter on polynomials and normalized fractions
haftmann
parents: 64290
diff changeset
  1166
  by (rule dvd_div_eq_0_iff) (insert assms, auto)  
240a39af9ec4 restructured matter on polynomials and normalized fractions
haftmann
parents: 64290
diff changeset
  1167
240a39af9ec4 restructured matter on polynomials and normalized fractions
haftmann
parents: 64290
diff changeset
  1168
lemma div_mult_unit2:
240a39af9ec4 restructured matter on polynomials and normalized fractions
haftmann
parents: 64290
diff changeset
  1169
  "is_unit c \<Longrightarrow> b dvd a \<Longrightarrow> a div (b * c) = a div b div c"
240a39af9ec4 restructured matter on polynomials and normalized fractions
haftmann
parents: 64290
diff changeset
  1170
  by (rule dvd_div_mult2_eq) (simp_all add: mult_unit_dvd_iff)
240a39af9ec4 restructured matter on polynomials and normalized fractions
haftmann
parents: 64290
diff changeset
  1171
67051
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1172
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1173
text \<open>Coprimality\<close>
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1174
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1175
definition coprime :: "'a \<Rightarrow> 'a \<Rightarrow> bool"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1176
  where "coprime a b \<longleftrightarrow> (\<forall>c. c dvd a \<longrightarrow> c dvd b \<longrightarrow> is_unit c)"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1177
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1178
lemma coprimeI:
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1179
  assumes "\<And>c. c dvd a \<Longrightarrow> c dvd b \<Longrightarrow> is_unit c"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1180
  shows "coprime a b"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1181
  using assms by (auto simp: coprime_def)
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1182
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1183
lemma not_coprimeI:
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1184
  assumes "c dvd a" and "c dvd b" and "\<not> is_unit c"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1185
  shows "\<not> coprime a b"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1186
  using assms by (auto simp: coprime_def)
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1187
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1188
lemma coprime_common_divisor:
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1189
  "is_unit c" if "coprime a b" and "c dvd a" and "c dvd b"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1190
  using that by (auto simp: coprime_def)
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1191
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1192
lemma not_coprimeE:
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1193
  assumes "\<not> coprime a b"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1194
  obtains c where "c dvd a" and "c dvd b" and "\<not> is_unit c"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1195
  using assms by (auto simp: coprime_def)
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1196
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1197
lemma coprime_imp_coprime:
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1198
  "coprime a b" if "coprime c d"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1199
    and "\<And>e. \<not> is_unit e \<Longrightarrow> e dvd a \<Longrightarrow> e dvd b \<Longrightarrow> e dvd c"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1200
    and "\<And>e. \<not> is_unit e \<Longrightarrow> e dvd a \<Longrightarrow> e dvd b \<Longrightarrow> e dvd d"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1201
proof (rule coprimeI)
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1202
  fix e
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1203
  assume "e dvd a" and "e dvd b"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1204
  with that have "e dvd c" and "e dvd d"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1205
    by (auto intro: dvd_trans)
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1206
  with \<open>coprime c d\<close> show "is_unit e"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1207
    by (rule coprime_common_divisor)
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1208
qed
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1209
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1210
lemma coprime_divisors:
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1211
  "coprime a b" if "a dvd c" "b dvd d" and "coprime c d"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1212
using \<open>coprime c d\<close> proof (rule coprime_imp_coprime)
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1213
  fix e
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1214
  assume "e dvd a" then show "e dvd c"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1215
    using \<open>a dvd c\<close> by (rule dvd_trans)
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1216
  assume "e dvd b" then show "e dvd d"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1217
    using \<open>b dvd d\<close> by (rule dvd_trans)
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1218
qed
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1219
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1220
lemma coprime_self [simp]:
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1221
  "coprime a a \<longleftrightarrow> is_unit a" (is "?P \<longleftrightarrow> ?Q")
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1222
proof
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1223
  assume ?P
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1224
  then show ?Q
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1225
    by (rule coprime_common_divisor) simp_all
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1226
next
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1227
  assume ?Q
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1228
  show ?P
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1229
    by (rule coprimeI) (erule dvd_unit_imp_unit, rule \<open>?Q\<close>)
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1230
qed
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1231
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1232
lemma coprime_commute [ac_simps]:
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1233
  "coprime b a \<longleftrightarrow> coprime a b"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1234
  unfolding coprime_def by auto
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1235
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1236
lemma is_unit_left_imp_coprime:
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1237
  "coprime a b" if "is_unit a"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1238
proof (rule coprimeI)
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1239
  fix c
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1240
  assume "c dvd a"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1241
  with that show "is_unit c"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1242
    by (auto intro: dvd_unit_imp_unit)
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1243
qed
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1244
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1245
lemma is_unit_right_imp_coprime:
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1246
  "coprime a b" if "is_unit b"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1247
  using that is_unit_left_imp_coprime [of b a] by (simp add: ac_simps)
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1248
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1249
lemma coprime_1_left [simp]:
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1250
  "coprime 1 a"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1251
  by (rule coprimeI)
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1252
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1253
lemma coprime_1_right [simp]:
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1254
  "coprime a 1"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1255
  by (rule coprimeI)
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1256
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1257
lemma coprime_0_left_iff [simp]:
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1258
  "coprime 0 a \<longleftrightarrow> is_unit a"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1259
  by (auto intro: coprimeI dvd_unit_imp_unit coprime_common_divisor [of 0 a a])
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1260
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1261
lemma coprime_0_right_iff [simp]:
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1262
  "coprime a 0 \<longleftrightarrow> is_unit a"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1263
  using coprime_0_left_iff [of a] by (simp add: ac_simps)
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1264
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1265
lemma coprime_mult_self_left_iff [simp]:
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1266
  "coprime (c * a) (c * b) \<longleftrightarrow> is_unit c \<and> coprime a b"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1267
  by (auto intro: coprime_common_divisor)
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1268
    (rule coprimeI, auto intro: coprime_common_divisor simp add: dvd_mult_unit_iff')+
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1269
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1270
lemma coprime_mult_self_right_iff [simp]:
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1271
  "coprime (a * c) (b * c) \<longleftrightarrow> is_unit c \<and> coprime a b"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1272
  using coprime_mult_self_left_iff [of c a b] by (simp add: ac_simps)
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1273
67234
ab10ea1d6fd0 Some lemmas on complex numbers and coprimality
eberlm <eberlm@in.tum.de>
parents: 67226
diff changeset
  1274
lemma coprime_absorb_left:
ab10ea1d6fd0 Some lemmas on complex numbers and coprimality
eberlm <eberlm@in.tum.de>
parents: 67226
diff changeset
  1275
  assumes "x dvd y"
ab10ea1d6fd0 Some lemmas on complex numbers and coprimality
eberlm <eberlm@in.tum.de>
parents: 67226
diff changeset
  1276
  shows   "coprime x y \<longleftrightarrow> is_unit x"
ab10ea1d6fd0 Some lemmas on complex numbers and coprimality
eberlm <eberlm@in.tum.de>
parents: 67226
diff changeset
  1277
  using assms coprime_common_divisor is_unit_left_imp_coprime by auto
ab10ea1d6fd0 Some lemmas on complex numbers and coprimality
eberlm <eberlm@in.tum.de>
parents: 67226
diff changeset
  1278
ab10ea1d6fd0 Some lemmas on complex numbers and coprimality
eberlm <eberlm@in.tum.de>
parents: 67226
diff changeset
  1279
lemma coprime_absorb_right:
ab10ea1d6fd0 Some lemmas on complex numbers and coprimality
eberlm <eberlm@in.tum.de>
parents: 67226
diff changeset
  1280
  assumes "y dvd x"
ab10ea1d6fd0 Some lemmas on complex numbers and coprimality
eberlm <eberlm@in.tum.de>
parents: 67226
diff changeset
  1281
  shows   "coprime x y \<longleftrightarrow> is_unit y"
ab10ea1d6fd0 Some lemmas on complex numbers and coprimality
eberlm <eberlm@in.tum.de>
parents: 67226
diff changeset
  1282
  using assms coprime_common_divisor is_unit_right_imp_coprime by auto
ab10ea1d6fd0 Some lemmas on complex numbers and coprimality
eberlm <eberlm@in.tum.de>
parents: 67226
diff changeset
  1283
60685
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1284
end
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1285
64848
c50db2128048 slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
haftmann
parents: 64713
diff changeset
  1286
class unit_factor =
c50db2128048 slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
haftmann
parents: 64713
diff changeset
  1287
  fixes unit_factor :: "'a \<Rightarrow> 'a"
c50db2128048 slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
haftmann
parents: 64713
diff changeset
  1288
c50db2128048 slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
haftmann
parents: 64713
diff changeset
  1289
class semidom_divide_unit_factor = semidom_divide + unit_factor +
c50db2128048 slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
haftmann
parents: 64713
diff changeset
  1290
  assumes unit_factor_0 [simp]: "unit_factor 0 = 0"
c50db2128048 slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
haftmann
parents: 64713
diff changeset
  1291
    and is_unit_unit_factor: "a dvd 1 \<Longrightarrow> unit_factor a = a"
c50db2128048 slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
haftmann
parents: 64713
diff changeset
  1292
    and unit_factor_is_unit: "a \<noteq> 0 \<Longrightarrow> unit_factor a dvd 1"
c50db2128048 slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
haftmann
parents: 64713
diff changeset
  1293
    and unit_factor_mult: "unit_factor (a * b) = unit_factor a * unit_factor b"
67226
ec32cdaab97b isabelle update_cartouches -c -t;
wenzelm
parents: 67084
diff changeset
  1294
  \<comment> \<open>This fine-grained hierarchy will later on allow lean normalization of polynomials\<close>
64848
c50db2128048 slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
haftmann
parents: 64713
diff changeset
  1295
  
c50db2128048 slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
haftmann
parents: 64713
diff changeset
  1296
class normalization_semidom = algebraic_semidom + semidom_divide_unit_factor +
60685
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1297
  fixes normalize :: "'a \<Rightarrow> 'a"
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1298
  assumes unit_factor_mult_normalize [simp]: "unit_factor a * normalize a = a"
63588
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
  1299
    and normalize_0 [simp]: "normalize 0 = 0"
60685
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1300
begin
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1301
60688
01488b559910 avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
haftmann
parents: 60685
diff changeset
  1302
text \<open>
69593
3dda49e08b9d isabelle update -u control_cartouches;
wenzelm
parents: 68253
diff changeset
  1303
  Class \<^class>\<open>normalization_semidom\<close> cultivates the idea that each integral
63588
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
  1304
  domain can be split into equivalence classes whose representants are
69593
3dda49e08b9d isabelle update -u control_cartouches;
wenzelm
parents: 68253
diff changeset
  1305
  associated, i.e. divide each other. \<^const>\<open>normalize\<close> specifies a canonical
63588
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
  1306
  representant for each equivalence class. The rationale behind this is that
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
  1307
  it is easier to reason about equality than equivalences, hence we prefer to
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
  1308
  think about equality of normalized values rather than associated elements.
60688
01488b559910 avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
haftmann
parents: 60685
diff changeset
  1309
\<close>
01488b559910 avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
haftmann
parents: 60685
diff changeset
  1310
64848
c50db2128048 slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
haftmann
parents: 64713
diff changeset
  1311
declare unit_factor_is_unit [iff]
c50db2128048 slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
haftmann
parents: 64713
diff changeset
  1312
  
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1313
lemma unit_factor_dvd [simp]: "a \<noteq> 0 \<Longrightarrow> unit_factor a dvd b"
60685
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1314
  by (rule unit_imp_dvd) simp
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1315
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1316
lemma unit_factor_self [simp]: "unit_factor a dvd a"
62376
85f38d5f8807 Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
hoelzl
parents: 62366
diff changeset
  1317
  by (cases "a = 0") simp_all
85f38d5f8807 Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
hoelzl
parents: 62366
diff changeset
  1318
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1319
lemma normalize_mult_unit_factor [simp]: "normalize a * unit_factor a = a"
60685
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1320
  using unit_factor_mult_normalize [of a] by (simp add: ac_simps)
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1321
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1322
lemma normalize_eq_0_iff [simp]: "normalize a = 0 \<longleftrightarrow> a = 0"
63588
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
  1323
  (is "?lhs \<longleftrightarrow> ?rhs")
60685
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1324
proof
63588
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
  1325
  assume ?lhs
60685
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1326
  moreover have "unit_factor a * normalize a = a" by simp
63588
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
  1327
  ultimately show ?rhs by simp
60685
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1328
next
63588
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
  1329
  assume ?rhs
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
  1330
  then show ?lhs by simp
60685
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1331
qed
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1332
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1333
lemma unit_factor_eq_0_iff [simp]: "unit_factor a = 0 \<longleftrightarrow> a = 0"
63588
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
  1334
  (is "?lhs \<longleftrightarrow> ?rhs")
60685
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1335
proof
63588
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
  1336
  assume ?lhs
60685
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1337
  moreover have "unit_factor a * normalize a = a" by simp
63588
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
  1338
  ultimately show ?rhs by simp
60685
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1339
next
63588
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
  1340
  assume ?rhs
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
  1341
  then show ?lhs by simp
60685
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1342
qed
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1343
64848
c50db2128048 slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
haftmann
parents: 64713
diff changeset
  1344
lemma div_unit_factor [simp]: "a div unit_factor a = normalize a"
c50db2128048 slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
haftmann
parents: 64713
diff changeset
  1345
proof (cases "a = 0")
c50db2128048 slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
haftmann
parents: 64713
diff changeset
  1346
  case True
c50db2128048 slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
haftmann
parents: 64713
diff changeset
  1347
  then show ?thesis by simp
c50db2128048 slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
haftmann
parents: 64713
diff changeset
  1348
next
c50db2128048 slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
haftmann
parents: 64713
diff changeset
  1349
  case False
c50db2128048 slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
haftmann
parents: 64713
diff changeset
  1350
  then have "unit_factor a \<noteq> 0"
c50db2128048 slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
haftmann
parents: 64713
diff changeset
  1351
    by simp
c50db2128048 slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
haftmann
parents: 64713
diff changeset
  1352
  with nonzero_mult_div_cancel_left
c50db2128048 slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
haftmann
parents: 64713
diff changeset
  1353
  have "unit_factor a * normalize a div unit_factor a = normalize a"
c50db2128048 slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
haftmann
parents: 64713
diff changeset
  1354
    by blast
c50db2128048 slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
haftmann
parents: 64713
diff changeset
  1355
  then show ?thesis by simp
c50db2128048 slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
haftmann
parents: 64713
diff changeset
  1356
qed
c50db2128048 slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
haftmann
parents: 64713
diff changeset
  1357
c50db2128048 slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
haftmann
parents: 64713
diff changeset
  1358
lemma normalize_div [simp]: "normalize a div a = 1 div unit_factor a"
c50db2128048 slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
haftmann
parents: 64713
diff changeset
  1359
proof (cases "a = 0")
c50db2128048 slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
haftmann
parents: 64713
diff changeset
  1360
  case True
c50db2128048 slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
haftmann
parents: 64713
diff changeset
  1361
  then show ?thesis by simp
c50db2128048 slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
haftmann
parents: 64713
diff changeset
  1362
next
c50db2128048 slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
haftmann
parents: 64713
diff changeset
  1363
  case False
c50db2128048 slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
haftmann
parents: 64713
diff changeset
  1364
  have "normalize a div a = normalize a div (unit_factor a * normalize a)"
c50db2128048 slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
haftmann
parents: 64713
diff changeset
  1365
    by simp
c50db2128048 slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
haftmann
parents: 64713
diff changeset
  1366
  also have "\<dots> = 1 div unit_factor a"
c50db2128048 slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
haftmann
parents: 64713
diff changeset
  1367
    using False by (subst is_unit_div_mult_cancel_right) simp_all
c50db2128048 slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
haftmann
parents: 64713
diff changeset
  1368
  finally show ?thesis .
c50db2128048 slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
haftmann
parents: 64713
diff changeset
  1369
qed
c50db2128048 slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
haftmann
parents: 64713
diff changeset
  1370
c50db2128048 slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
haftmann
parents: 64713
diff changeset
  1371
lemma is_unit_normalize:
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1372
  assumes "is_unit a"
64848
c50db2128048 slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
haftmann
parents: 64713
diff changeset
  1373
  shows "normalize a = 1"
62376
85f38d5f8807 Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
hoelzl
parents: 62366
diff changeset
  1374
proof -
64848
c50db2128048 slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
haftmann
parents: 64713
diff changeset
  1375
  from assms have "unit_factor a = a"
c50db2128048 slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
haftmann
parents: 64713
diff changeset
  1376
    by (rule is_unit_unit_factor)
c50db2128048 slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
haftmann
parents: 64713
diff changeset
  1377
  moreover from assms have "a \<noteq> 0"
c50db2128048 slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
haftmann
parents: 64713
diff changeset
  1378
    by auto
c50db2128048 slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
haftmann
parents: 64713
diff changeset
  1379
  moreover have "normalize a = a div unit_factor a"
c50db2128048 slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
haftmann
parents: 64713
diff changeset
  1380
    by simp
c50db2128048 slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
haftmann
parents: 64713
diff changeset
  1381
  ultimately show ?thesis
c50db2128048 slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
haftmann
parents: 64713
diff changeset
  1382
    by simp
60685
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1383
qed
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1384
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1385
lemma unit_factor_1 [simp]: "unit_factor 1 = 1"
60685
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1386
  by (rule is_unit_unit_factor) simp
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1387
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1388
lemma normalize_1 [simp]: "normalize 1 = 1"
60685
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1389
  by (rule is_unit_normalize) simp
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1390
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1391
lemma normalize_1_iff: "normalize a = 1 \<longleftrightarrow> is_unit a"
63588
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
  1392
  (is "?lhs \<longleftrightarrow> ?rhs")
60685
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1393
proof
63588
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
  1394
  assume ?rhs
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
  1395
  then show ?lhs by (rule is_unit_normalize)
60685
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1396
next
63588
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
  1397
  assume ?lhs
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
  1398
  then have "unit_factor a * normalize a = unit_factor a * 1"
60685
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1399
    by simp
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1400
  then have "unit_factor a = a"
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1401
    by simp
63588
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
  1402
  moreover
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
  1403
  from \<open>?lhs\<close> have "a \<noteq> 0" by auto
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
  1404
  then have "is_unit (unit_factor a)" by simp
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
  1405
  ultimately show ?rhs by simp
60685
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1406
qed
62376
85f38d5f8807 Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
hoelzl
parents: 62366
diff changeset
  1407
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1408
lemma div_normalize [simp]: "a div normalize a = unit_factor a"
60685
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1409
proof (cases "a = 0")
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1410
  case True
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1411
  then show ?thesis by simp
60685
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1412
next
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1413
  case False
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1414
  then have "normalize a \<noteq> 0" by simp
64240
eabf80376aab more standardized names
haftmann
parents: 64239
diff changeset
  1415
  with nonzero_mult_div_cancel_right
60685
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1416
  have "unit_factor a * normalize a div normalize a = unit_factor a" by blast
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1417
  then show ?thesis by simp
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1418
qed
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1419
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1420
lemma mult_one_div_unit_factor [simp]: "a * (1 div unit_factor b) = a div unit_factor b"
60685
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1421
  by (cases "b = 0") simp_all
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1422
63947
559f0882d6a6 more lemmas
haftmann
parents: 63924
diff changeset
  1423
lemma inv_unit_factor_eq_0_iff [simp]:
559f0882d6a6 more lemmas
haftmann
parents: 63924
diff changeset
  1424
  "1 div unit_factor a = 0 \<longleftrightarrow> a = 0"
559f0882d6a6 more lemmas
haftmann
parents: 63924
diff changeset
  1425
  (is "?lhs \<longleftrightarrow> ?rhs")
559f0882d6a6 more lemmas
haftmann
parents: 63924
diff changeset
  1426
proof
559f0882d6a6 more lemmas
haftmann
parents: 63924
diff changeset
  1427
  assume ?lhs
559f0882d6a6 more lemmas
haftmann
parents: 63924
diff changeset
  1428
  then have "a * (1 div unit_factor a) = a * 0"
559f0882d6a6 more lemmas
haftmann
parents: 63924
diff changeset
  1429
    by simp
559f0882d6a6 more lemmas
haftmann
parents: 63924
diff changeset
  1430
  then show ?rhs
559f0882d6a6 more lemmas
haftmann
parents: 63924
diff changeset
  1431
    by simp
559f0882d6a6 more lemmas
haftmann
parents: 63924
diff changeset
  1432
next
559f0882d6a6 more lemmas
haftmann
parents: 63924
diff changeset
  1433
  assume ?rhs
559f0882d6a6 more lemmas
haftmann
parents: 63924
diff changeset
  1434
  then show ?lhs by simp
559f0882d6a6 more lemmas
haftmann
parents: 63924
diff changeset
  1435
qed
559f0882d6a6 more lemmas
haftmann
parents: 63924
diff changeset
  1436
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1437
lemma normalize_mult: "normalize (a * b) = normalize a * normalize b"
60685
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1438
proof (cases "a = 0 \<or> b = 0")
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1439
  case True
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1440
  then show ?thesis by auto
60685
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1441
next
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1442
  case False
63588
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
  1443
  have "unit_factor (a * b) * normalize (a * b) = a * b"
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
  1444
    by (rule unit_factor_mult_normalize)
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1445
  then have "normalize (a * b) = a * b div unit_factor (a * b)"
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1446
    by simp
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1447
  also have "\<dots> = a * b div unit_factor (b * a)"
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1448
    by (simp add: ac_simps)
60685
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1449
  also have "\<dots> = a * b div unit_factor b div unit_factor a"
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1450
    using False by (simp add: unit_factor_mult is_unit_div_mult2_eq [symmetric])
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1451
  also have "\<dots> = a * (b div unit_factor b) div unit_factor a"
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1452
    using False by (subst unit_div_mult_swap) simp_all
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1453
  also have "\<dots> = normalize a * normalize b"
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1454
    using False
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1455
    by (simp add: mult.commute [of a] mult.commute [of "normalize a"] unit_div_mult_swap [symmetric])
60685
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1456
  finally show ?thesis .
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1457
qed
62376
85f38d5f8807 Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
hoelzl
parents: 62366
diff changeset
  1458
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1459
lemma unit_factor_idem [simp]: "unit_factor (unit_factor a) = unit_factor a"
60685
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1460
  by (cases "a = 0") (auto intro: is_unit_unit_factor)
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1461
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1462
lemma normalize_unit_factor [simp]: "a \<noteq> 0 \<Longrightarrow> normalize (unit_factor a) = 1"
60685
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1463
  by (rule is_unit_normalize) simp
62376
85f38d5f8807 Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
hoelzl
parents: 62366
diff changeset
  1464
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1465
lemma normalize_idem [simp]: "normalize (normalize a) = normalize a"
60685
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1466
proof (cases "a = 0")
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1467
  case True
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1468
  then show ?thesis by simp
60685
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1469
next
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1470
  case False
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1471
  have "normalize a = normalize (unit_factor a * normalize a)"
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1472
    by simp
60685
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1473
  also have "\<dots> = normalize (unit_factor a) * normalize (normalize a)"
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1474
    by (simp only: normalize_mult)
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1475
  finally show ?thesis
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1476
    using False by simp_all
60685
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1477
qed
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1478
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1479
lemma unit_factor_normalize [simp]:
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1480
  assumes "a \<noteq> 0"
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1481
  shows "unit_factor (normalize a) = 1"
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1482
proof -
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1483
  from assms have *: "normalize a \<noteq> 0"
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1484
    by simp
60685
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1485
  have "unit_factor (normalize a) * normalize (normalize a) = normalize a"
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1486
    by (simp only: unit_factor_mult_normalize)
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1487
  then have "unit_factor (normalize a) * normalize a = normalize a"
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1488
    by simp
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1489
  with * have "unit_factor (normalize a) * normalize a div normalize a = normalize a div normalize a"
60685
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1490
    by simp
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1491
  with * show ?thesis
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1492
    by simp
60685
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1493
qed
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1494
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1495
lemma dvd_unit_factor_div:
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1496
  assumes "b dvd a"
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1497
  shows "unit_factor (a div b) = unit_factor a div unit_factor b"
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1498
proof -
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1499
  from assms have "a = a div b * b"
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1500
    by simp
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1501
  then have "unit_factor a = unit_factor (a div b * b)"
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1502
    by simp
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1503
  then show ?thesis
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1504
    by (cases "b = 0") (simp_all add: unit_factor_mult)
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1505
qed
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1506
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1507
lemma dvd_normalize_div:
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1508
  assumes "b dvd a"
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1509
  shows "normalize (a div b) = normalize a div normalize b"
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1510
proof -
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1511
  from assms have "a = a div b * b"
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1512
    by simp
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1513
  then have "normalize a = normalize (a div b * b)"
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1514
    by simp
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1515
  then show ?thesis
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1516
    by (cases "b = 0") (simp_all add: normalize_mult)
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1517
qed
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1518
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1519
lemma normalize_dvd_iff [simp]: "normalize a dvd b \<longleftrightarrow> a dvd b"
60685
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1520
proof -
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1521
  have "normalize a dvd b \<longleftrightarrow> unit_factor a * normalize a dvd b"
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1522
    using mult_unit_dvd_iff [of "unit_factor a" "normalize a" b]
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1523
      by (cases "a = 0") simp_all
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1524
  then show ?thesis by simp
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1525
qed
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1526
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1527
lemma dvd_normalize_iff [simp]: "a dvd normalize b \<longleftrightarrow> a dvd b"
60685
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1528
proof -
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1529
  have "a dvd normalize  b \<longleftrightarrow> a dvd normalize b * unit_factor b"
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1530
    using dvd_mult_unit_iff [of "unit_factor b" a "normalize b"]
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1531
      by (cases "b = 0") simp_all
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1532
  then show ?thesis by simp
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1533
qed
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1534
65811
2653f1cd8775 more lemmas
haftmann
parents: 64848
diff changeset
  1535
lemma normalize_idem_imp_unit_factor_eq:
2653f1cd8775 more lemmas
haftmann
parents: 64848
diff changeset
  1536
  assumes "normalize a = a"
2653f1cd8775 more lemmas
haftmann
parents: 64848
diff changeset
  1537
  shows "unit_factor a = of_bool (a \<noteq> 0)"
2653f1cd8775 more lemmas
haftmann
parents: 64848
diff changeset
  1538
proof (cases "a = 0")
2653f1cd8775 more lemmas
haftmann
parents: 64848
diff changeset
  1539
  case True
2653f1cd8775 more lemmas
haftmann
parents: 64848
diff changeset
  1540
  then show ?thesis
2653f1cd8775 more lemmas
haftmann
parents: 64848
diff changeset
  1541
    by simp
2653f1cd8775 more lemmas
haftmann
parents: 64848
diff changeset
  1542
next
2653f1cd8775 more lemmas
haftmann
parents: 64848
diff changeset
  1543
  case False
2653f1cd8775 more lemmas
haftmann
parents: 64848
diff changeset
  1544
  then show ?thesis
2653f1cd8775 more lemmas
haftmann
parents: 64848
diff changeset
  1545
    using assms unit_factor_normalize [of a] by simp
2653f1cd8775 more lemmas
haftmann
parents: 64848
diff changeset
  1546
qed
2653f1cd8775 more lemmas
haftmann
parents: 64848
diff changeset
  1547
2653f1cd8775 more lemmas
haftmann
parents: 64848
diff changeset
  1548
lemma normalize_idem_imp_is_unit_iff:
2653f1cd8775 more lemmas
haftmann
parents: 64848
diff changeset
  1549
  assumes "normalize a = a"
2653f1cd8775 more lemmas
haftmann
parents: 64848
diff changeset
  1550
  shows "is_unit a \<longleftrightarrow> a = 1"
2653f1cd8775 more lemmas
haftmann
parents: 64848
diff changeset
  1551
  using assms by (cases "a = 0") (auto dest: is_unit_normalize)
2653f1cd8775 more lemmas
haftmann
parents: 64848
diff changeset
  1552
67051
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1553
lemma coprime_normalize_left_iff [simp]:
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1554
  "coprime (normalize a) b \<longleftrightarrow> coprime a b"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1555
  by (rule; rule coprimeI) (auto intro: coprime_common_divisor)
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1556
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1557
lemma coprime_normalize_right_iff [simp]:
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1558
  "coprime a (normalize b) \<longleftrightarrow> coprime a b"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1559
  using coprime_normalize_left_iff [of b a] by (simp add: ac_simps)
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1560
60688
01488b559910 avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
haftmann
parents: 60685
diff changeset
  1561
text \<open>
63588
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
  1562
  We avoid an explicit definition of associated elements but prefer explicit
69593
3dda49e08b9d isabelle update -u control_cartouches;
wenzelm
parents: 68253
diff changeset
  1563
  normalisation instead. In theory we could define an abbreviation like \<^prop>\<open>associated a b \<longleftrightarrow> normalize a = normalize b\<close> but this is counterproductive
63588
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
  1564
  without suggestive infix syntax, which we do not want to sacrifice for this
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
  1565
  purpose here.
60688
01488b559910 avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
haftmann
parents: 60685
diff changeset
  1566
\<close>
60685
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1567
60688
01488b559910 avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
haftmann
parents: 60685
diff changeset
  1568
lemma associatedI:
01488b559910 avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
haftmann
parents: 60685
diff changeset
  1569
  assumes "a dvd b" and "b dvd a"
01488b559910 avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
haftmann
parents: 60685
diff changeset
  1570
  shows "normalize a = normalize b"
60685
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1571
proof (cases "a = 0 \<or> b = 0")
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1572
  case True
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1573
  with assms show ?thesis by auto
60685
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1574
next
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1575
  case False
60688
01488b559910 avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
haftmann
parents: 60685
diff changeset
  1576
  from \<open>a dvd b\<close> obtain c where b: "b = a * c" ..
01488b559910 avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
haftmann
parents: 60685
diff changeset
  1577
  moreover from \<open>b dvd a\<close> obtain d where a: "a = b * d" ..
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1578
  ultimately have "b * 1 = b * (c * d)"
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1579
    by (simp add: ac_simps)
60688
01488b559910 avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
haftmann
parents: 60685
diff changeset
  1580
  with False have "1 = c * d"
01488b559910 avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
haftmann
parents: 60685
diff changeset
  1581
    unfolding mult_cancel_left by simp
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1582
  then have "is_unit c" and "is_unit d"
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1583
    by auto
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1584
  with a b show ?thesis
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1585
    by (simp add: normalize_mult is_unit_normalize)
60688
01488b559910 avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
haftmann
parents: 60685
diff changeset
  1586
qed
01488b559910 avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
haftmann
parents: 60685
diff changeset
  1587
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1588
lemma associatedD1: "normalize a = normalize b \<Longrightarrow> a dvd b"
60688
01488b559910 avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
haftmann
parents: 60685
diff changeset
  1589
  using dvd_normalize_iff [of _ b, symmetric] normalize_dvd_iff [of a _, symmetric]
01488b559910 avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
haftmann
parents: 60685
diff changeset
  1590
  by simp
01488b559910 avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
haftmann
parents: 60685
diff changeset
  1591
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1592
lemma associatedD2: "normalize a = normalize b \<Longrightarrow> b dvd a"
60688
01488b559910 avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
haftmann
parents: 60685
diff changeset
  1593
  using dvd_normalize_iff [of _ a, symmetric] normalize_dvd_iff [of b _, symmetric]
01488b559910 avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
haftmann
parents: 60685
diff changeset
  1594
  by simp
01488b559910 avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
haftmann
parents: 60685
diff changeset
  1595
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1596
lemma associated_unit: "normalize a = normalize b \<Longrightarrow> is_unit a \<Longrightarrow> is_unit b"
60688
01488b559910 avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
haftmann
parents: 60685
diff changeset
  1597
  using dvd_unit_imp_unit by (auto dest!: associatedD1 associatedD2)
01488b559910 avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
haftmann
parents: 60685
diff changeset
  1598
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1599
lemma associated_iff_dvd: "normalize a = normalize b \<longleftrightarrow> a dvd b \<and> b dvd a"
63588
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
  1600
  (is "?lhs \<longleftrightarrow> ?rhs")
60688
01488b559910 avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
haftmann
parents: 60685
diff changeset
  1601
proof
63588
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
  1602
  assume ?rhs
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
  1603
  then show ?lhs by (auto intro!: associatedI)
60688
01488b559910 avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
haftmann
parents: 60685
diff changeset
  1604
next
63588
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
  1605
  assume ?lhs
60688
01488b559910 avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
haftmann
parents: 60685
diff changeset
  1606
  then have "unit_factor a * normalize a = unit_factor a * normalize b"
01488b559910 avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
haftmann
parents: 60685
diff changeset
  1607
    by simp
01488b559910 avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
haftmann
parents: 60685
diff changeset
  1608
  then have *: "normalize b * unit_factor a = a"
01488b559910 avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
haftmann
parents: 60685
diff changeset
  1609
    by (simp add: ac_simps)
63588
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
  1610
  show ?rhs
60688
01488b559910 avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
haftmann
parents: 60685
diff changeset
  1611
  proof (cases "a = 0 \<or> b = 0")
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1612
    case True
63588
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
  1613
    with \<open>?lhs\<close> show ?thesis by auto
60685
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1614
  next
62376
85f38d5f8807 Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
hoelzl
parents: 62366
diff changeset
  1615
    case False
60688
01488b559910 avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
haftmann
parents: 60685
diff changeset
  1616
    then have "b dvd normalize b * unit_factor a" and "normalize b * unit_factor a dvd b"
01488b559910 avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
haftmann
parents: 60685
diff changeset
  1617
      by (simp_all add: mult_unit_dvd_iff dvd_mult_unit_iff)
01488b559910 avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
haftmann
parents: 60685
diff changeset
  1618
    with * show ?thesis by simp
60685
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1619
  qed
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1620
qed
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1621
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1622
lemma associated_eqI:
60688
01488b559910 avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
haftmann
parents: 60685
diff changeset
  1623
  assumes "a dvd b" and "b dvd a"
01488b559910 avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
haftmann
parents: 60685
diff changeset
  1624
  assumes "normalize a = a" and "normalize b = b"
60685
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1625
  shows "a = b"
60688
01488b559910 avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
haftmann
parents: 60685
diff changeset
  1626
proof -
01488b559910 avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
haftmann
parents: 60685
diff changeset
  1627
  from assms have "normalize a = normalize b"
01488b559910 avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
haftmann
parents: 60685
diff changeset
  1628
    unfolding associated_iff_dvd by simp
63588
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
  1629
  with \<open>normalize a = a\<close> have "a = normalize b"
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
  1630
    by simp
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
  1631
  with \<open>normalize b = b\<close> show "a = b"
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
  1632
    by simp
60685
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1633
qed
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1634
64591
240a39af9ec4 restructured matter on polynomials and normalized fractions
haftmann
parents: 64290
diff changeset
  1635
lemma normalize_unit_factor_eqI:
240a39af9ec4 restructured matter on polynomials and normalized fractions
haftmann
parents: 64290
diff changeset
  1636
  assumes "normalize a = normalize b"
240a39af9ec4 restructured matter on polynomials and normalized fractions
haftmann
parents: 64290
diff changeset
  1637
    and "unit_factor a = unit_factor b"
240a39af9ec4 restructured matter on polynomials and normalized fractions
haftmann
parents: 64290
diff changeset
  1638
  shows "a = b"
240a39af9ec4 restructured matter on polynomials and normalized fractions
haftmann
parents: 64290
diff changeset
  1639
proof -
240a39af9ec4 restructured matter on polynomials and normalized fractions
haftmann
parents: 64290
diff changeset
  1640
  from assms have "unit_factor a * normalize a = unit_factor b * normalize b"
240a39af9ec4 restructured matter on polynomials and normalized fractions
haftmann
parents: 64290
diff changeset
  1641
    by simp
240a39af9ec4 restructured matter on polynomials and normalized fractions
haftmann
parents: 64290
diff changeset
  1642
  then show ?thesis
240a39af9ec4 restructured matter on polynomials and normalized fractions
haftmann
parents: 64290
diff changeset
  1643
    by simp
240a39af9ec4 restructured matter on polynomials and normalized fractions
haftmann
parents: 64290
diff changeset
  1644
qed
240a39af9ec4 restructured matter on polynomials and normalized fractions
haftmann
parents: 64290
diff changeset
  1645
60685
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1646
end
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1647
64164
38c407446400 separate type class for arbitrary quotient and remainder partitions
haftmann
parents: 63950
diff changeset
  1648
38c407446400 separate type class for arbitrary quotient and remainder partitions
haftmann
parents: 63950
diff changeset
  1649
text \<open>Syntactic division remainder operator\<close>
38c407446400 separate type class for arbitrary quotient and remainder partitions
haftmann
parents: 63950
diff changeset
  1650
38c407446400 separate type class for arbitrary quotient and remainder partitions
haftmann
parents: 63950
diff changeset
  1651
class modulo = dvd + divide +
38c407446400 separate type class for arbitrary quotient and remainder partitions
haftmann
parents: 63950
diff changeset
  1652
  fixes modulo :: "'a \<Rightarrow> 'a \<Rightarrow> 'a"  (infixl "mod" 70)
38c407446400 separate type class for arbitrary quotient and remainder partitions
haftmann
parents: 63950
diff changeset
  1653
38c407446400 separate type class for arbitrary quotient and remainder partitions
haftmann
parents: 63950
diff changeset
  1654
text \<open>Arbitrary quotient and remainder partitions\<close>
38c407446400 separate type class for arbitrary quotient and remainder partitions
haftmann
parents: 63950
diff changeset
  1655
38c407446400 separate type class for arbitrary quotient and remainder partitions
haftmann
parents: 63950
diff changeset
  1656
class semiring_modulo = comm_semiring_1_cancel + divide + modulo +
64242
93c6f0da5c70 more standardized theorem names for facts involving the div and mod identity
haftmann
parents: 64240
diff changeset
  1657
  assumes div_mult_mod_eq: "a div b * b + a mod b = a"
64164
38c407446400 separate type class for arbitrary quotient and remainder partitions
haftmann
parents: 63950
diff changeset
  1658
begin
38c407446400 separate type class for arbitrary quotient and remainder partitions
haftmann
parents: 63950
diff changeset
  1659
38c407446400 separate type class for arbitrary quotient and remainder partitions
haftmann
parents: 63950
diff changeset
  1660
lemma mod_div_decomp:
38c407446400 separate type class for arbitrary quotient and remainder partitions
haftmann
parents: 63950
diff changeset
  1661
  fixes a b
38c407446400 separate type class for arbitrary quotient and remainder partitions
haftmann
parents: 63950
diff changeset
  1662
  obtains q r where "q = a div b" and "r = a mod b"
38c407446400 separate type class for arbitrary quotient and remainder partitions
haftmann
parents: 63950
diff changeset
  1663
    and "a = q * b + r"
38c407446400 separate type class for arbitrary quotient and remainder partitions
haftmann
parents: 63950
diff changeset
  1664
proof -
64242
93c6f0da5c70 more standardized theorem names for facts involving the div and mod identity
haftmann
parents: 64240
diff changeset
  1665
  from div_mult_mod_eq have "a = a div b * b + a mod b" by simp
64164
38c407446400 separate type class for arbitrary quotient and remainder partitions
haftmann
parents: 63950
diff changeset
  1666
  moreover have "a div b = a div b" ..
38c407446400 separate type class for arbitrary quotient and remainder partitions
haftmann
parents: 63950
diff changeset
  1667
  moreover have "a mod b = a mod b" ..
38c407446400 separate type class for arbitrary quotient and remainder partitions
haftmann
parents: 63950
diff changeset
  1668
  note that ultimately show thesis by blast
38c407446400 separate type class for arbitrary quotient and remainder partitions
haftmann
parents: 63950
diff changeset
  1669
qed
38c407446400 separate type class for arbitrary quotient and remainder partitions
haftmann
parents: 63950
diff changeset
  1670
64242
93c6f0da5c70 more standardized theorem names for facts involving the div and mod identity
haftmann
parents: 64240
diff changeset
  1671
lemma mult_div_mod_eq: "b * (a div b) + a mod b = a"
93c6f0da5c70 more standardized theorem names for facts involving the div and mod identity
haftmann
parents: 64240
diff changeset
  1672
  using div_mult_mod_eq [of a b] by (simp add: ac_simps)
64164
38c407446400 separate type class for arbitrary quotient and remainder partitions
haftmann
parents: 63950
diff changeset
  1673
64242
93c6f0da5c70 more standardized theorem names for facts involving the div and mod identity
haftmann
parents: 64240
diff changeset
  1674
lemma mod_div_mult_eq: "a mod b + a div b * b = a"
93c6f0da5c70 more standardized theorem names for facts involving the div and mod identity
haftmann
parents: 64240
diff changeset
  1675
  using div_mult_mod_eq [of a b] by (simp add: ac_simps)
64164
38c407446400 separate type class for arbitrary quotient and remainder partitions
haftmann
parents: 63950
diff changeset
  1676
64242
93c6f0da5c70 more standardized theorem names for facts involving the div and mod identity
haftmann
parents: 64240
diff changeset
  1677
lemma mod_mult_div_eq: "a mod b + b * (a div b) = a"
93c6f0da5c70 more standardized theorem names for facts involving the div and mod identity
haftmann
parents: 64240
diff changeset
  1678
  using div_mult_mod_eq [of a b] by (simp add: ac_simps)
64164
38c407446400 separate type class for arbitrary quotient and remainder partitions
haftmann
parents: 63950
diff changeset
  1679
64242
93c6f0da5c70 more standardized theorem names for facts involving the div and mod identity
haftmann
parents: 64240
diff changeset
  1680
lemma minus_div_mult_eq_mod: "a - a div b * b = a mod b"
93c6f0da5c70 more standardized theorem names for facts involving the div and mod identity
haftmann
parents: 64240
diff changeset
  1681
  by (rule add_implies_diff [symmetric]) (fact mod_div_mult_eq)
64164
38c407446400 separate type class for arbitrary quotient and remainder partitions
haftmann
parents: 63950
diff changeset
  1682
64242
93c6f0da5c70 more standardized theorem names for facts involving the div and mod identity
haftmann
parents: 64240
diff changeset
  1683
lemma minus_mult_div_eq_mod: "a - b * (a div b) = a mod b"
93c6f0da5c70 more standardized theorem names for facts involving the div and mod identity
haftmann
parents: 64240
diff changeset
  1684
  by (rule add_implies_diff [symmetric]) (fact mod_mult_div_eq)
64164
38c407446400 separate type class for arbitrary quotient and remainder partitions
haftmann
parents: 63950
diff changeset
  1685
64242
93c6f0da5c70 more standardized theorem names for facts involving the div and mod identity
haftmann
parents: 64240
diff changeset
  1686
lemma minus_mod_eq_div_mult: "a - a mod b = a div b * b"
93c6f0da5c70 more standardized theorem names for facts involving the div and mod identity
haftmann
parents: 64240
diff changeset
  1687
  by (rule add_implies_diff [symmetric]) (fact div_mult_mod_eq)
64164
38c407446400 separate type class for arbitrary quotient and remainder partitions
haftmann
parents: 63950
diff changeset
  1688
64242
93c6f0da5c70 more standardized theorem names for facts involving the div and mod identity
haftmann
parents: 64240
diff changeset
  1689
lemma minus_mod_eq_mult_div: "a - a mod b = b * (a div b)"
93c6f0da5c70 more standardized theorem names for facts involving the div and mod identity
haftmann
parents: 64240
diff changeset
  1690
  by (rule add_implies_diff [symmetric]) (fact mult_div_mod_eq)
64164
38c407446400 separate type class for arbitrary quotient and remainder partitions
haftmann
parents: 63950
diff changeset
  1691
70902
cb161182ce7f generalized
haftmann
parents: 70817
diff changeset
  1692
lemma mod_0_imp_dvd [dest!]:
cb161182ce7f generalized
haftmann
parents: 70817
diff changeset
  1693
  "b dvd a" if "a mod b = 0"
cb161182ce7f generalized
haftmann
parents: 70817
diff changeset
  1694
proof -
cb161182ce7f generalized
haftmann
parents: 70817
diff changeset
  1695
  have "b dvd (a div b) * b" by simp
cb161182ce7f generalized
haftmann
parents: 70817
diff changeset
  1696
  also have "(a div b) * b = a"
cb161182ce7f generalized
haftmann
parents: 70817
diff changeset
  1697
    using div_mult_mod_eq [of a b] by (simp add: that)
cb161182ce7f generalized
haftmann
parents: 70817
diff changeset
  1698
  finally show ?thesis .
cb161182ce7f generalized
haftmann
parents: 70817
diff changeset
  1699
qed
cb161182ce7f generalized
haftmann
parents: 70817
diff changeset
  1700
68253
a8660a39e304 grouped material on numeral division
haftmann
parents: 68252
diff changeset
  1701
lemma [nitpick_unfold]:
a8660a39e304 grouped material on numeral division
haftmann
parents: 68252
diff changeset
  1702
  "a mod b = a - a div b * b"
a8660a39e304 grouped material on numeral division
haftmann
parents: 68252
diff changeset
  1703
  by (fact minus_div_mult_eq_mod [symmetric])
a8660a39e304 grouped material on numeral division
haftmann
parents: 68252
diff changeset
  1704
64164
38c407446400 separate type class for arbitrary quotient and remainder partitions
haftmann
parents: 63950
diff changeset
  1705
end
64242
93c6f0da5c70 more standardized theorem names for facts involving the div and mod identity
haftmann
parents: 64240
diff changeset
  1706
64164
38c407446400 separate type class for arbitrary quotient and remainder partitions
haftmann
parents: 63950
diff changeset
  1707
70145
f07b8fb99818 more document structure
haftmann
parents: 70144
diff changeset
  1708
subsection \<open>Quotient and remainder in integral domains\<close>
66807
c3631f32dfeb tuned structure
haftmann
parents: 66793
diff changeset
  1709
c3631f32dfeb tuned structure
haftmann
parents: 66793
diff changeset
  1710
class semidom_modulo = algebraic_semidom + semiring_modulo
c3631f32dfeb tuned structure
haftmann
parents: 66793
diff changeset
  1711
begin
c3631f32dfeb tuned structure
haftmann
parents: 66793
diff changeset
  1712
c3631f32dfeb tuned structure
haftmann
parents: 66793
diff changeset
  1713
lemma mod_0 [simp]: "0 mod a = 0"
c3631f32dfeb tuned structure
haftmann
parents: 66793
diff changeset
  1714
  using div_mult_mod_eq [of 0 a] by simp
c3631f32dfeb tuned structure
haftmann
parents: 66793
diff changeset
  1715
c3631f32dfeb tuned structure
haftmann
parents: 66793
diff changeset
  1716
lemma mod_by_0 [simp]: "a mod 0 = a"
c3631f32dfeb tuned structure
haftmann
parents: 66793
diff changeset
  1717
  using div_mult_mod_eq [of a 0] by simp
c3631f32dfeb tuned structure
haftmann
parents: 66793
diff changeset
  1718
c3631f32dfeb tuned structure
haftmann
parents: 66793
diff changeset
  1719
lemma mod_by_1 [simp]:
c3631f32dfeb tuned structure
haftmann
parents: 66793
diff changeset
  1720
  "a mod 1 = 0"
c3631f32dfeb tuned structure
haftmann
parents: 66793
diff changeset
  1721
proof -
c3631f32dfeb tuned structure
haftmann
parents: 66793
diff changeset
  1722
  from div_mult_mod_eq [of a one] div_by_1 have "a + a mod 1 = a" by simp
c3631f32dfeb tuned structure
haftmann
parents: 66793
diff changeset
  1723
  then have "a + a mod 1 = a + 0" by simp
c3631f32dfeb tuned structure
haftmann
parents: 66793
diff changeset
  1724
  then show ?thesis by (rule add_left_imp_eq)
c3631f32dfeb tuned structure
haftmann
parents: 66793
diff changeset
  1725
qed
c3631f32dfeb tuned structure
haftmann
parents: 66793
diff changeset
  1726
c3631f32dfeb tuned structure
haftmann
parents: 66793
diff changeset
  1727
lemma mod_self [simp]:
c3631f32dfeb tuned structure
haftmann
parents: 66793
diff changeset
  1728
  "a mod a = 0"
c3631f32dfeb tuned structure
haftmann
parents: 66793
diff changeset
  1729
  using div_mult_mod_eq [of a a] by simp
c3631f32dfeb tuned structure
haftmann
parents: 66793
diff changeset
  1730
c3631f32dfeb tuned structure
haftmann
parents: 66793
diff changeset
  1731
lemma dvd_imp_mod_0 [simp]:
67084
haftmann
parents: 67051
diff changeset
  1732
  "b mod a = 0" if "a dvd b"
haftmann
parents: 67051
diff changeset
  1733
  using that minus_div_mult_eq_mod [of b a] by simp
66807
c3631f32dfeb tuned structure
haftmann
parents: 66793
diff changeset
  1734
c3631f32dfeb tuned structure
haftmann
parents: 66793
diff changeset
  1735
lemma mod_eq_0_iff_dvd:
c3631f32dfeb tuned structure
haftmann
parents: 66793
diff changeset
  1736
  "a mod b = 0 \<longleftrightarrow> b dvd a"
c3631f32dfeb tuned structure
haftmann
parents: 66793
diff changeset
  1737
  by (auto intro: mod_0_imp_dvd)
c3631f32dfeb tuned structure
haftmann
parents: 66793
diff changeset
  1738
c3631f32dfeb tuned structure
haftmann
parents: 66793
diff changeset
  1739
lemma dvd_eq_mod_eq_0 [nitpick_unfold, code]:
c3631f32dfeb tuned structure
haftmann
parents: 66793
diff changeset
  1740
  "a dvd b \<longleftrightarrow> b mod a = 0"
c3631f32dfeb tuned structure
haftmann
parents: 66793
diff changeset
  1741
  by (simp add: mod_eq_0_iff_dvd)
c3631f32dfeb tuned structure
haftmann
parents: 66793
diff changeset
  1742
c3631f32dfeb tuned structure
haftmann
parents: 66793
diff changeset
  1743
lemma dvd_mod_iff: 
c3631f32dfeb tuned structure
haftmann
parents: 66793
diff changeset
  1744
  assumes "c dvd b"
c3631f32dfeb tuned structure
haftmann
parents: 66793
diff changeset
  1745
  shows "c dvd a mod b \<longleftrightarrow> c dvd a"
c3631f32dfeb tuned structure
haftmann
parents: 66793
diff changeset
  1746
proof -
c3631f32dfeb tuned structure
haftmann
parents: 66793
diff changeset
  1747
  from assms have "(c dvd a mod b) \<longleftrightarrow> (c dvd ((a div b) * b + a mod b))" 
c3631f32dfeb tuned structure
haftmann
parents: 66793
diff changeset
  1748
    by (simp add: dvd_add_right_iff)
c3631f32dfeb tuned structure
haftmann
parents: 66793
diff changeset
  1749
  also have "(a div b) * b + a mod b = a"
c3631f32dfeb tuned structure
haftmann
parents: 66793
diff changeset
  1750
    using div_mult_mod_eq [of a b] by simp
c3631f32dfeb tuned structure
haftmann
parents: 66793
diff changeset
  1751
  finally show ?thesis .
c3631f32dfeb tuned structure
haftmann
parents: 66793
diff changeset
  1752
qed
c3631f32dfeb tuned structure
haftmann
parents: 66793
diff changeset
  1753
c3631f32dfeb tuned structure
haftmann
parents: 66793
diff changeset
  1754
lemma dvd_mod_imp_dvd:
c3631f32dfeb tuned structure
haftmann
parents: 66793
diff changeset
  1755
  assumes "c dvd a mod b" and "c dvd b"
c3631f32dfeb tuned structure
haftmann
parents: 66793
diff changeset
  1756
  shows "c dvd a"
c3631f32dfeb tuned structure
haftmann
parents: 66793
diff changeset
  1757
  using assms dvd_mod_iff [of c b a] by simp
c3631f32dfeb tuned structure
haftmann
parents: 66793
diff changeset
  1758
66808
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1759
lemma dvd_minus_mod [simp]:
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1760
  "b dvd a - a mod b"
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1761
  by (simp add: minus_mod_eq_div_mult)
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1762
66810
cc2b490f9dc4 generalized simproc
haftmann
parents: 66808
diff changeset
  1763
lemma cancel_div_mod_rules:
cc2b490f9dc4 generalized simproc
haftmann
parents: 66808
diff changeset
  1764
  "((a div b) * b + a mod b) + c = a + c"
cc2b490f9dc4 generalized simproc
haftmann
parents: 66808
diff changeset
  1765
  "(b * (a div b) + a mod b) + c = a + c"
cc2b490f9dc4 generalized simproc
haftmann
parents: 66808
diff changeset
  1766
  by (simp_all add: div_mult_mod_eq mult_div_mod_eq)
cc2b490f9dc4 generalized simproc
haftmann
parents: 66808
diff changeset
  1767
66807
c3631f32dfeb tuned structure
haftmann
parents: 66793
diff changeset
  1768
end
c3631f32dfeb tuned structure
haftmann
parents: 66793
diff changeset
  1769
70145
f07b8fb99818 more document structure
haftmann
parents: 70144
diff changeset
  1770
class idom_modulo = idom + semidom_modulo
f07b8fb99818 more document structure
haftmann
parents: 70144
diff changeset
  1771
begin
f07b8fb99818 more document structure
haftmann
parents: 70144
diff changeset
  1772
f07b8fb99818 more document structure
haftmann
parents: 70144
diff changeset
  1773
subclass idom_divide ..
f07b8fb99818 more document structure
haftmann
parents: 70144
diff changeset
  1774
f07b8fb99818 more document structure
haftmann
parents: 70144
diff changeset
  1775
lemma div_diff [simp]:
f07b8fb99818 more document structure
haftmann
parents: 70144
diff changeset
  1776
  "c dvd a \<Longrightarrow> c dvd b \<Longrightarrow> (a - b) div c = a div c - b div c"
f07b8fb99818 more document structure
haftmann
parents: 70144
diff changeset
  1777
  using div_add [of _  _ "- b"] by (simp add: dvd_neg_div)
f07b8fb99818 more document structure
haftmann
parents: 70144
diff changeset
  1778
f07b8fb99818 more document structure
haftmann
parents: 70144
diff changeset
  1779
end
f07b8fb99818 more document structure
haftmann
parents: 70144
diff changeset
  1780
f07b8fb99818 more document structure
haftmann
parents: 70144
diff changeset
  1781
f07b8fb99818 more document structure
haftmann
parents: 70144
diff changeset
  1782
subsection \<open>Interlude: basic tool support for algebraic and arithmetic calculations\<close>
66810
cc2b490f9dc4 generalized simproc
haftmann
parents: 66808
diff changeset
  1783
cc2b490f9dc4 generalized simproc
haftmann
parents: 66808
diff changeset
  1784
named_theorems arith "arith facts -- only ground formulas"
69605
a96320074298 isabelle update -u path_cartouches;
wenzelm
parents: 69593
diff changeset
  1785
ML_file \<open>Tools/arith_data.ML\<close>
a96320074298 isabelle update -u path_cartouches;
wenzelm
parents: 69593
diff changeset
  1786
a96320074298 isabelle update -u path_cartouches;
wenzelm
parents: 69593
diff changeset
  1787
ML_file \<open>~~/src/Provers/Arith/cancel_div_mod.ML\<close>
66810
cc2b490f9dc4 generalized simproc
haftmann
parents: 66808
diff changeset
  1788
cc2b490f9dc4 generalized simproc
haftmann
parents: 66808
diff changeset
  1789
ML \<open>
cc2b490f9dc4 generalized simproc
haftmann
parents: 66808
diff changeset
  1790
structure Cancel_Div_Mod_Ring = Cancel_Div_Mod
cc2b490f9dc4 generalized simproc
haftmann
parents: 66808
diff changeset
  1791
(
69593
3dda49e08b9d isabelle update -u control_cartouches;
wenzelm
parents: 68253
diff changeset
  1792
  val div_name = \<^const_name>\<open>divide\<close>;
3dda49e08b9d isabelle update -u control_cartouches;
wenzelm
parents: 68253
diff changeset
  1793
  val mod_name = \<^const_name>\<open>modulo\<close>;
66810
cc2b490f9dc4 generalized simproc
haftmann
parents: 66808
diff changeset
  1794
  val mk_binop = HOLogic.mk_binop;
cc2b490f9dc4 generalized simproc
haftmann
parents: 66808
diff changeset
  1795
  val mk_sum = Arith_Data.mk_sum;
cc2b490f9dc4 generalized simproc
haftmann
parents: 66808
diff changeset
  1796
  val dest_sum = Arith_Data.dest_sum;
cc2b490f9dc4 generalized simproc
haftmann
parents: 66808
diff changeset
  1797
cc2b490f9dc4 generalized simproc
haftmann
parents: 66808
diff changeset
  1798
  val div_mod_eqs = map mk_meta_eq @{thms cancel_div_mod_rules};
cc2b490f9dc4 generalized simproc
haftmann
parents: 66808
diff changeset
  1799
cc2b490f9dc4 generalized simproc
haftmann
parents: 66808
diff changeset
  1800
  val prove_eq_sums = Arith_Data.prove_conv2 all_tac (Arith_Data.simp_all_tac
cc2b490f9dc4 generalized simproc
haftmann
parents: 66808
diff changeset
  1801
    @{thms diff_conv_add_uminus add_0_left add_0_right ac_simps})
cc2b490f9dc4 generalized simproc
haftmann
parents: 66808
diff changeset
  1802
)
cc2b490f9dc4 generalized simproc
haftmann
parents: 66808
diff changeset
  1803
\<close>
cc2b490f9dc4 generalized simproc
haftmann
parents: 66808
diff changeset
  1804
cc2b490f9dc4 generalized simproc
haftmann
parents: 66808
diff changeset
  1805
simproc_setup cancel_div_mod_int ("(a::'a::semidom_modulo) + b") =
cc2b490f9dc4 generalized simproc
haftmann
parents: 66808
diff changeset
  1806
  \<open>K Cancel_Div_Mod_Ring.proc\<close>
cc2b490f9dc4 generalized simproc
haftmann
parents: 66808
diff changeset
  1807
70145
f07b8fb99818 more document structure
haftmann
parents: 70144
diff changeset
  1808
f07b8fb99818 more document structure
haftmann
parents: 70144
diff changeset
  1809
subsection \<open>Ordered semirings and rings\<close>
f07b8fb99818 more document structure
haftmann
parents: 70144
diff changeset
  1810
f07b8fb99818 more document structure
haftmann
parents: 70144
diff changeset
  1811
text \<open>
f07b8fb99818 more document structure
haftmann
parents: 70144
diff changeset
  1812
  The theory of partially ordered rings is taken from the books:
f07b8fb99818 more document structure
haftmann
parents: 70144
diff changeset
  1813
    \<^item> \<^emph>\<open>Lattice Theory\<close> by Garret Birkhoff, American Mathematical Society, 1979
f07b8fb99818 more document structure
haftmann
parents: 70144
diff changeset
  1814
    \<^item> \<^emph>\<open>Partially Ordered Algebraic Systems\<close>, Pergamon Press, 1963
f07b8fb99818 more document structure
haftmann
parents: 70144
diff changeset
  1815
f07b8fb99818 more document structure
haftmann
parents: 70144
diff changeset
  1816
  Most of the used notions can also be looked up in
f07b8fb99818 more document structure
haftmann
parents: 70144
diff changeset
  1817
    \<^item> \<^url>\<open>http://www.mathworld.com\<close> by Eric Weisstein et. al.
f07b8fb99818 more document structure
haftmann
parents: 70144
diff changeset
  1818
    \<^item> \<^emph>\<open>Algebra I\<close> by van der Waerden, Springer
f07b8fb99818 more document structure
haftmann
parents: 70144
diff changeset
  1819
\<close>
66807
c3631f32dfeb tuned structure
haftmann
parents: 66793
diff changeset
  1820
62376
85f38d5f8807 Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
hoelzl
parents: 62366
diff changeset
  1821
class ordered_semiring = semiring + ordered_comm_monoid_add +
38642
8fa437809c67 dropped type classes mult_mono and mult_mono1; tuned names of technical rule duplicates
haftmann
parents: 37767
diff changeset
  1822
  assumes mult_left_mono: "a \<le> b \<Longrightarrow> 0 \<le> c \<Longrightarrow> c * a \<le> c * b"
8fa437809c67 dropped type classes mult_mono and mult_mono1; tuned names of technical rule duplicates
haftmann
parents: 37767
diff changeset
  1823
  assumes mult_right_mono: "a \<le> b \<Longrightarrow> 0 \<le> c \<Longrightarrow> a * c \<le> b * c"
25230
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
  1824
begin
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
  1825
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1826
lemma mult_mono: "a \<le> b \<Longrightarrow> c \<le> d \<Longrightarrow> 0 \<le> b \<Longrightarrow> 0 \<le> c \<Longrightarrow> a * c \<le> b * d"
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1827
  apply (erule (1) mult_right_mono [THEN order_trans])
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1828
  apply (erule (1) mult_left_mono)
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1829
  done
25230
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
  1830
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1831
lemma mult_mono': "a \<le> b \<Longrightarrow> c \<le> d \<Longrightarrow> 0 \<le> a \<Longrightarrow> 0 \<le> c \<Longrightarrow> a * c \<le> b * d"
63588
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
  1832
  by (rule mult_mono) (fast intro: order_trans)+
25230
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
  1833
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
  1834
end
21199
2d83f93c3580 * Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
krauss
parents: 20633
diff changeset
  1835
62377
ace69956d018 moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
hoelzl
parents: 62376
diff changeset
  1836
class ordered_semiring_0 = semiring_0 + ordered_semiring
25267
1f745c599b5c proper reinitialisation after subclass
haftmann
parents: 25238
diff changeset
  1837
begin
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1838
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1839
lemma mult_nonneg_nonneg [simp]: "0 \<le> a \<Longrightarrow> 0 \<le> b \<Longrightarrow> 0 \<le> a * b"
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1840
  using mult_left_mono [of 0 b a] by simp
25230
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
  1841
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
  1842
lemma mult_nonneg_nonpos: "0 \<le> a \<Longrightarrow> b \<le> 0 \<Longrightarrow> a * b \<le> 0"
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1843
  using mult_left_mono [of b 0 a] by simp
30692
44ea10bc07a7 clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
huffman
parents: 30650
diff changeset
  1844
44ea10bc07a7 clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
huffman
parents: 30650
diff changeset
  1845
lemma mult_nonpos_nonneg: "a \<le> 0 \<Longrightarrow> 0 \<le> b \<Longrightarrow> a * b \<le> 0"
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1846
  using mult_right_mono [of a 0 b] by simp
30692
44ea10bc07a7 clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
huffman
parents: 30650
diff changeset
  1847
63588
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
  1848
text \<open>Legacy -- use @{thm [source] mult_nonpos_nonneg}.\<close>
60562
24af00b010cf Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
paulson <lp15@cam.ac.uk>
parents: 60529
diff changeset
  1849
lemma mult_nonneg_nonpos2: "0 \<le> a \<Longrightarrow> b \<le> 0 \<Longrightarrow> b * a \<le> 0"
63588
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
  1850
  by (drule mult_right_mono [of b 0]) auto
25230
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
  1851
62378
85ed00c1fe7c generalize more theorems to support enat and ennreal
hoelzl
parents: 62377
diff changeset
  1852
lemma split_mult_neg_le: "(0 \<le> a \<and> b \<le> 0) \<or> (a \<le> 0 \<and> 0 \<le> b) \<Longrightarrow> a * b \<le> 0"
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1853
  by (auto simp add: mult_nonneg_nonpos mult_nonneg_nonpos2)
25230
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
  1854
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
  1855
end
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
  1856
62377
ace69956d018 moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
hoelzl
parents: 62376
diff changeset
  1857
class ordered_cancel_semiring = ordered_semiring + cancel_comm_monoid_add
ace69956d018 moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
hoelzl
parents: 62376
diff changeset
  1858
begin
ace69956d018 moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
hoelzl
parents: 62376
diff changeset
  1859
ace69956d018 moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
hoelzl
parents: 62376
diff changeset
  1860
subclass semiring_0_cancel ..
63588
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
  1861
62377
ace69956d018 moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
hoelzl
parents: 62376
diff changeset
  1862
subclass ordered_semiring_0 ..
ace69956d018 moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
hoelzl
parents: 62376
diff changeset
  1863
ace69956d018 moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
hoelzl
parents: 62376
diff changeset
  1864
end
ace69956d018 moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
hoelzl
parents: 62376
diff changeset
  1865
38642
8fa437809c67 dropped type classes mult_mono and mult_mono1; tuned names of technical rule duplicates
haftmann
parents: 37767
diff changeset
  1866
class linordered_semiring = ordered_semiring + linordered_cancel_ab_semigroup_add
25267
1f745c599b5c proper reinitialisation after subclass
haftmann
parents: 25238
diff changeset
  1867
begin
25230
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
  1868
35028
108662d50512 more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents: 34146
diff changeset
  1869
subclass ordered_cancel_semiring ..
108662d50512 more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents: 34146
diff changeset
  1870
62376
85f38d5f8807 Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
hoelzl
parents: 62366
diff changeset
  1871
subclass ordered_cancel_comm_monoid_add ..
25304
7491c00f0915 removed subclass edge ordered_ring < lordered_ring
haftmann
parents: 25267
diff changeset
  1872
63456
3365c8ec67bd sharing simp rules between ordered monoids and rings
fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents: 63359
diff changeset
  1873
subclass ordered_ab_semigroup_monoid_add_imp_le ..
3365c8ec67bd sharing simp rules between ordered monoids and rings
fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents: 63359
diff changeset
  1874
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1875
lemma mult_left_less_imp_less: "c * a < c * b \<Longrightarrow> 0 \<le> c \<Longrightarrow> a < b"
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1876
  by (force simp add: mult_left_mono not_le [symmetric])
60562
24af00b010cf Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
paulson <lp15@cam.ac.uk>
parents: 60529
diff changeset
  1877
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1878
lemma mult_right_less_imp_less: "a * c < b * c \<Longrightarrow> 0 \<le> c \<Longrightarrow> a < b"
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1879
  by (force simp add: mult_right_mono not_le [symmetric])
23521
195fe3fe2831 added ordered_ring and ordered_semiring
obua
parents: 23496
diff changeset
  1880
25186
f4d1ebffd025 localized further
haftmann
parents: 25152
diff changeset
  1881
end
25152
bfde2f8c0f63 partially localized
haftmann
parents: 25078
diff changeset
  1882
66937
a1a4a5e2933a rule out pathologic instances
haftmann
parents: 66816
diff changeset
  1883
class zero_less_one = order + zero + one +
a1a4a5e2933a rule out pathologic instances
haftmann
parents: 66816
diff changeset
  1884
  assumes zero_less_one [simp]: "0 < 1"
a1a4a5e2933a rule out pathologic instances
haftmann
parents: 66816
diff changeset
  1885
a1a4a5e2933a rule out pathologic instances
haftmann
parents: 66816
diff changeset
  1886
class linordered_semiring_1 = linordered_semiring + semiring_1 + zero_less_one
36622
e393a91f86df Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
hoelzl
parents: 36348
diff changeset
  1887
begin
e393a91f86df Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
hoelzl
parents: 36348
diff changeset
  1888
e393a91f86df Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
hoelzl
parents: 36348
diff changeset
  1889
lemma convex_bound_le:
e393a91f86df Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
hoelzl
parents: 36348
diff changeset
  1890
  assumes "x \<le> a" "y \<le> a" "0 \<le> u" "0 \<le> v" "u + v = 1"
e393a91f86df Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
hoelzl
parents: 36348
diff changeset
  1891
  shows "u * x + v * y \<le> a"
e393a91f86df Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
hoelzl
parents: 36348
diff changeset
  1892
proof-
e393a91f86df Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
hoelzl
parents: 36348
diff changeset
  1893
  from assms have "u * x + v * y \<le> u * a + v * a"
e393a91f86df Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
hoelzl
parents: 36348
diff changeset
  1894
    by (simp add: add_mono mult_left_mono)
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1895
  with assms show ?thesis
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1896
    unfolding distrib_right[symmetric] by simp
36622
e393a91f86df Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
hoelzl
parents: 36348
diff changeset
  1897
qed
e393a91f86df Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
hoelzl
parents: 36348
diff changeset
  1898
e393a91f86df Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
hoelzl
parents: 36348
diff changeset
  1899
end
35043
07dbdf60d5ad dropped accidental duplication of "lin" prefix from cs. 108662d50512
haftmann
parents: 35032
diff changeset
  1900
07dbdf60d5ad dropped accidental duplication of "lin" prefix from cs. 108662d50512
haftmann
parents: 35032
diff changeset
  1901
class linordered_semiring_strict = semiring + comm_monoid_add + linordered_cancel_ab_semigroup_add +
25062
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
  1902
  assumes mult_strict_left_mono: "a < b \<Longrightarrow> 0 < c \<Longrightarrow> c * a < c * b"
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
  1903
  assumes mult_strict_right_mono: "a < b \<Longrightarrow> 0 < c \<Longrightarrow> a * c < b * c"
25267
1f745c599b5c proper reinitialisation after subclass
haftmann
parents: 25238
diff changeset
  1904
begin
14341
a09441bd4f1e Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents: 14334
diff changeset
  1905
27516
9a5d4a8d4aac by intro_locales -> ..
huffman
parents: 26274
diff changeset
  1906
subclass semiring_0_cancel ..
14940
b9ab8babd8b3 Further development of matrix theory
obua
parents: 14770
diff changeset
  1907
35028
108662d50512 more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents: 34146
diff changeset
  1908
subclass linordered_semiring
28823
dcbef866c9e2 tuned unfold_locales invocation
haftmann
parents: 28559
diff changeset
  1909
proof
23550
d4f1d6ef119c convert instance proofs to Isar style
huffman
parents: 23544
diff changeset
  1910
  fix a b c :: 'a
63588
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
  1911
  assume *: "a \<le> b" "0 \<le> c"
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
  1912
  then show "c * a \<le> c * b"
25186
f4d1ebffd025 localized further
haftmann
parents: 25152
diff changeset
  1913
    unfolding le_less
f4d1ebffd025 localized further
haftmann
parents: 25152
diff changeset
  1914
    using mult_strict_left_mono by (cases "c = 0") auto
63588
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
  1915
  from * show "a * c \<le> b * c"
25152
bfde2f8c0f63 partially localized
haftmann
parents: 25078
diff changeset
  1916
    unfolding le_less
25186
f4d1ebffd025 localized further
haftmann
parents: 25152
diff changeset
  1917
    using mult_strict_right_mono by (cases "c = 0") auto
25152
bfde2f8c0f63 partially localized
haftmann
parents: 25078
diff changeset
  1918
qed
bfde2f8c0f63 partially localized
haftmann
parents: 25078
diff changeset
  1919
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1920
lemma mult_left_le_imp_le: "c * a \<le> c * b \<Longrightarrow> 0 < c \<Longrightarrow> a \<le> b"
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1921
  by (auto simp add: mult_strict_left_mono _not_less [symmetric])
60562
24af00b010cf Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
paulson <lp15@cam.ac.uk>
parents: 60529
diff changeset
  1922
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1923
lemma mult_right_le_imp_le: "a * c \<le> b * c \<Longrightarrow> 0 < c \<Longrightarrow> a \<le> b"
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1924
  by (auto simp add: mult_strict_right_mono not_less [symmetric])
25230
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
  1925
56544
b60d5d119489 made mult_pos_pos a simp rule
nipkow
parents: 56536
diff changeset
  1926
lemma mult_pos_pos[simp]: "0 < a \<Longrightarrow> 0 < b \<Longrightarrow> 0 < a * b"
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1927
  using mult_strict_left_mono [of 0 b a] by simp
30692
44ea10bc07a7 clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
huffman
parents: 30650
diff changeset
  1928
44ea10bc07a7 clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
huffman
parents: 30650
diff changeset
  1929
lemma mult_pos_neg: "0 < a \<Longrightarrow> b < 0 \<Longrightarrow> a * b < 0"
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1930
  using mult_strict_left_mono [of b 0 a] by simp
30692
44ea10bc07a7 clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
huffman
parents: 30650
diff changeset
  1931
44ea10bc07a7 clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
huffman
parents: 30650
diff changeset
  1932
lemma mult_neg_pos: "a < 0 \<Longrightarrow> 0 < b \<Longrightarrow> a * b < 0"
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1933
  using mult_strict_right_mono [of a 0 b] by simp
30692
44ea10bc07a7 clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
huffman
parents: 30650
diff changeset
  1934
63588
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
  1935
text \<open>Legacy -- use @{thm [source] mult_neg_pos}.\<close>
60562
24af00b010cf Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
paulson <lp15@cam.ac.uk>
parents: 60529
diff changeset
  1936
lemma mult_pos_neg2: "0 < a \<Longrightarrow> b < 0 \<Longrightarrow> b * a < 0"
63588
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
  1937
  by (drule mult_strict_right_mono [of b 0]) auto
25230
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
  1938
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1939
lemma zero_less_mult_pos: "0 < a * b \<Longrightarrow> 0 < a \<Longrightarrow> 0 < b"
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1940
  apply (cases "b \<le> 0")
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1941
   apply (auto simp add: le_less not_less)
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1942
  apply (drule_tac mult_pos_neg [of a b])
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1943
   apply (auto dest: less_not_sym)
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1944
  done
25230
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
  1945
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1946
lemma zero_less_mult_pos2: "0 < b * a \<Longrightarrow> 0 < a \<Longrightarrow> 0 < b"
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1947
  apply (cases "b \<le> 0")
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1948
   apply (auto simp add: le_less not_less)
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1949
  apply (drule_tac mult_pos_neg2 [of a b])
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1950
   apply (auto dest: less_not_sym)
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1951
  done
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1952
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1953
text \<open>Strict monotonicity in both arguments\<close>
26193
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
  1954
lemma mult_strict_mono:
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
  1955
  assumes "a < b" and "c < d" and "0 < b" and "0 \<le> c"
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
  1956
  shows "a * c < b * d"
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1957
  using assms
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1958
  apply (cases "c = 0")
63588
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
  1959
   apply simp
26193
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
  1960
  apply (erule mult_strict_right_mono [THEN less_trans])
63588
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
  1961
   apply (auto simp add: le_less)
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1962
  apply (erule (1) mult_strict_left_mono)
26193
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
  1963
  done
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
  1964
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1965
text \<open>This weaker variant has more natural premises\<close>
26193
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
  1966
lemma mult_strict_mono':
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
  1967
  assumes "a < b" and "c < d" and "0 \<le> a" and "0 \<le> c"
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
  1968
  shows "a * c < b * d"
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1969
  by (rule mult_strict_mono) (insert assms, auto)
26193
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
  1970
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
  1971
lemma mult_less_le_imp_less:
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
  1972
  assumes "a < b" and "c \<le> d" and "0 \<le> a" and "0 < c"
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
  1973
  shows "a * c < b * d"
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1974
  using assms
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1975
  apply (subgoal_tac "a * c < b * c")
63588
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
  1976
   apply (erule less_le_trans)
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
  1977
   apply (erule mult_left_mono)
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
  1978
   apply simp
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1979
  apply (erule (1) mult_strict_right_mono)
26193
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
  1980
  done
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
  1981
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
  1982
lemma mult_le_less_imp_less:
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
  1983
  assumes "a \<le> b" and "c < d" and "0 < a" and "0 \<le> c"
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
  1984
  shows "a * c < b * d"
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1985
  using assms
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1986
  apply (subgoal_tac "a * c \<le> b * c")
63588
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
  1987
   apply (erule le_less_trans)
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
  1988
   apply (erule mult_strict_left_mono)
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
  1989
   apply simp
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1990
  apply (erule (1) mult_right_mono)
26193
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
  1991
  done
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
  1992
25230
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
  1993
end
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
  1994
66937
a1a4a5e2933a rule out pathologic instances
haftmann
parents: 66816
diff changeset
  1995
class linordered_semiring_1_strict = linordered_semiring_strict + semiring_1 + zero_less_one
36622
e393a91f86df Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
hoelzl
parents: 36348
diff changeset
  1996
begin
e393a91f86df Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
hoelzl
parents: 36348
diff changeset
  1997
e393a91f86df Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
hoelzl
parents: 36348
diff changeset
  1998
subclass linordered_semiring_1 ..
e393a91f86df Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
hoelzl
parents: 36348
diff changeset
  1999
e393a91f86df Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
hoelzl
parents: 36348
diff changeset
  2000
lemma convex_bound_lt:
e393a91f86df Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
hoelzl
parents: 36348
diff changeset
  2001
  assumes "x < a" "y < a" "0 \<le> u" "0 \<le> v" "u + v = 1"
e393a91f86df Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
hoelzl
parents: 36348
diff changeset
  2002
  shows "u * x + v * y < a"
e393a91f86df Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
hoelzl
parents: 36348
diff changeset
  2003
proof -
e393a91f86df Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
hoelzl
parents: 36348
diff changeset
  2004
  from assms have "u * x + v * y < u * a + v * a"
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2005
    by (cases "u = 0") (auto intro!: add_less_le_mono mult_strict_left_mono mult_left_mono)
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2006
  with assms show ?thesis
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2007
    unfolding distrib_right[symmetric] by simp
36622
e393a91f86df Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
hoelzl
parents: 36348
diff changeset
  2008
qed
e393a91f86df Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
hoelzl
parents: 36348
diff changeset
  2009
e393a91f86df Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
hoelzl
parents: 36348
diff changeset
  2010
end
33319
74f0dcc0b5fb moved algebraic classes to Ring_and_Field
haftmann
parents: 32960
diff changeset
  2011
60562
24af00b010cf Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
paulson <lp15@cam.ac.uk>
parents: 60529
diff changeset
  2012
class ordered_comm_semiring = comm_semiring_0 + ordered_ab_semigroup_add +
38642
8fa437809c67 dropped type classes mult_mono and mult_mono1; tuned names of technical rule duplicates
haftmann
parents: 37767
diff changeset
  2013
  assumes comm_mult_left_mono: "a \<le> b \<Longrightarrow> 0 \<le> c \<Longrightarrow> c * a \<le> c * b"
25186
f4d1ebffd025 localized further
haftmann
parents: 25152
diff changeset
  2014
begin
25152
bfde2f8c0f63 partially localized
haftmann
parents: 25078
diff changeset
  2015
35028
108662d50512 more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents: 34146
diff changeset
  2016
subclass ordered_semiring
28823
dcbef866c9e2 tuned unfold_locales invocation
haftmann
parents: 28559
diff changeset
  2017
proof
21199
2d83f93c3580 * Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
krauss
parents: 20633
diff changeset
  2018
  fix a b c :: 'a
23550
d4f1d6ef119c convert instance proofs to Isar style
huffman
parents: 23544
diff changeset
  2019
  assume "a \<le> b" "0 \<le> c"
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2020
  then show "c * a \<le> c * b" by (rule comm_mult_left_mono)
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2021
  then show "a * c \<le> b * c" by (simp only: mult.commute)
21199
2d83f93c3580 * Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
krauss
parents: 20633
diff changeset
  2022
qed
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
  2023
25267
1f745c599b5c proper reinitialisation after subclass
haftmann
parents: 25238
diff changeset
  2024
end
1f745c599b5c proper reinitialisation after subclass
haftmann
parents: 25238
diff changeset
  2025
38642
8fa437809c67 dropped type classes mult_mono and mult_mono1; tuned names of technical rule duplicates
haftmann
parents: 37767
diff changeset
  2026
class ordered_cancel_comm_semiring = ordered_comm_semiring + cancel_comm_monoid_add
25267
1f745c599b5c proper reinitialisation after subclass
haftmann
parents: 25238
diff changeset
  2027
begin
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
  2028
38642
8fa437809c67 dropped type classes mult_mono and mult_mono1; tuned names of technical rule duplicates
haftmann
parents: 37767
diff changeset
  2029
subclass comm_semiring_0_cancel ..
35028
108662d50512 more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents: 34146
diff changeset
  2030
subclass ordered_comm_semiring ..
108662d50512 more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents: 34146
diff changeset
  2031
subclass ordered_cancel_semiring ..
25267
1f745c599b5c proper reinitialisation after subclass
haftmann
parents: 25238
diff changeset
  2032
1f745c599b5c proper reinitialisation after subclass
haftmann
parents: 25238
diff changeset
  2033
end
1f745c599b5c proper reinitialisation after subclass
haftmann
parents: 25238
diff changeset
  2034
35028
108662d50512 more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents: 34146
diff changeset
  2035
class linordered_comm_semiring_strict = comm_semiring_0 + linordered_cancel_ab_semigroup_add +
38642
8fa437809c67 dropped type classes mult_mono and mult_mono1; tuned names of technical rule duplicates
haftmann
parents: 37767
diff changeset
  2036
  assumes comm_mult_strict_left_mono: "a < b \<Longrightarrow> 0 < c \<Longrightarrow> c * a < c * b"
25267
1f745c599b5c proper reinitialisation after subclass
haftmann
parents: 25238
diff changeset
  2037
begin
1f745c599b5c proper reinitialisation after subclass
haftmann
parents: 25238
diff changeset
  2038
35043
07dbdf60d5ad dropped accidental duplication of "lin" prefix from cs. 108662d50512
haftmann
parents: 35032
diff changeset
  2039
subclass linordered_semiring_strict
28823
dcbef866c9e2 tuned unfold_locales invocation
haftmann
parents: 28559
diff changeset
  2040
proof
23550
d4f1d6ef119c convert instance proofs to Isar style
huffman
parents: 23544
diff changeset
  2041
  fix a b c :: 'a
d4f1d6ef119c convert instance proofs to Isar style
huffman
parents: 23544
diff changeset
  2042
  assume "a < b" "0 < c"
63588
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
  2043
  then show "c * a < c * b"
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
  2044
    by (rule comm_mult_strict_left_mono)
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
  2045
  then show "a * c < b * c"
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
  2046
    by (simp only: mult.commute)
23550
d4f1d6ef119c convert instance proofs to Isar style
huffman
parents: 23544
diff changeset
  2047
qed
14272
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
  2048
35028
108662d50512 more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents: 34146
diff changeset
  2049
subclass ordered_cancel_comm_semiring
28823
dcbef866c9e2 tuned unfold_locales invocation
haftmann
parents: 28559
diff changeset
  2050
proof
23550
d4f1d6ef119c convert instance proofs to Isar style
huffman
parents: 23544
diff changeset
  2051
  fix a b c :: 'a
d4f1d6ef119c convert instance proofs to Isar style
huffman
parents: 23544
diff changeset
  2052
  assume "a \<le> b" "0 \<le> c"
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2053
  then show "c * a \<le> c * b"
25186
f4d1ebffd025 localized further
haftmann
parents: 25152
diff changeset
  2054
    unfolding le_less
26193
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
  2055
    using mult_strict_left_mono by (cases "c = 0") auto
23550
d4f1d6ef119c convert instance proofs to Isar style
huffman
parents: 23544
diff changeset
  2056
qed
14272
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
  2057
25267
1f745c599b5c proper reinitialisation after subclass
haftmann
parents: 25238
diff changeset
  2058
end
25230
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
  2059
60562
24af00b010cf Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
paulson <lp15@cam.ac.uk>
parents: 60529
diff changeset
  2060
class ordered_ring = ring + ordered_cancel_semiring
25267
1f745c599b5c proper reinitialisation after subclass
haftmann
parents: 25238
diff changeset
  2061
begin
25230
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
  2062
35028
108662d50512 more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents: 34146
diff changeset
  2063
subclass ordered_ab_group_add ..
14270
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
  2064
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2065
lemma less_add_iff1: "a * e + c < b * e + d \<longleftrightarrow> (a - b) * e + c < d"
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2066
  by (simp add: algebra_simps)
25230
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
  2067
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2068
lemma less_add_iff2: "a * e + c < b * e + d \<longleftrightarrow> c < (b - a) * e + d"
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2069
  by (simp add: algebra_simps)
25230
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
  2070
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2071
lemma le_add_iff1: "a * e + c \<le> b * e + d \<longleftrightarrow> (a - b) * e + c \<le> d"
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2072
  by (simp add: algebra_simps)
25230
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
  2073
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2074
lemma le_add_iff2: "a * e + c \<le> b * e + d \<longleftrightarrow> c \<le> (b - a) * e + d"
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2075
  by (simp add: algebra_simps)
25230
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
  2076
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2077
lemma mult_left_mono_neg: "b \<le> a \<Longrightarrow> c \<le> 0 \<Longrightarrow> c * a \<le> c * b"
36301
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
  2078
  apply (drule mult_left_mono [of _ _ "- c"])
35216
7641e8d831d2 get rid of many duplicate simp rule warnings
huffman
parents: 35097
diff changeset
  2079
  apply simp_all
25230
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
  2080
  done
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
  2081
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2082
lemma mult_right_mono_neg: "b \<le> a \<Longrightarrow> c \<le> 0 \<Longrightarrow> a * c \<le> b * c"
36301
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
  2083
  apply (drule mult_right_mono [of _ _ "- c"])
35216
7641e8d831d2 get rid of many duplicate simp rule warnings
huffman
parents: 35097
diff changeset
  2084
  apply simp_all
25230
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
  2085
  done
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
  2086
30692
44ea10bc07a7 clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
huffman
parents: 30650
diff changeset
  2087
lemma mult_nonpos_nonpos: "a \<le> 0 \<Longrightarrow> b \<le> 0 \<Longrightarrow> 0 \<le> a * b"
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2088
  using mult_right_mono_neg [of a 0 b] by simp
25230
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
  2089
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2090
lemma split_mult_pos_le: "(0 \<le> a \<and> 0 \<le> b) \<or> (a \<le> 0 \<and> b \<le> 0) \<Longrightarrow> 0 \<le> a * b"
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2091
  by (auto simp add: mult_nonpos_nonpos)
25186
f4d1ebffd025 localized further
haftmann
parents: 25152
diff changeset
  2092
f4d1ebffd025 localized further
haftmann
parents: 25152
diff changeset
  2093
end
14270
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
  2094
64290
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
  2095
class abs_if = minus + uminus + ord + zero + abs +
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
  2096
  assumes abs_if: "\<bar>a\<bar> = (if a < 0 then - a else a)"
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
  2097
35028
108662d50512 more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents: 34146
diff changeset
  2098
class linordered_ring = ring + linordered_semiring + linordered_ab_group_add + abs_if
25304
7491c00f0915 removed subclass edge ordered_ring < lordered_ring
haftmann
parents: 25267
diff changeset
  2099
begin
7491c00f0915 removed subclass edge ordered_ring < lordered_ring
haftmann
parents: 25267
diff changeset
  2100
35028
108662d50512 more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents: 34146
diff changeset
  2101
subclass ordered_ring ..
108662d50512 more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents: 34146
diff changeset
  2102
108662d50512 more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents: 34146
diff changeset
  2103
subclass ordered_ab_group_add_abs
28823
dcbef866c9e2 tuned unfold_locales invocation
haftmann
parents: 28559
diff changeset
  2104
proof
25304
7491c00f0915 removed subclass edge ordered_ring < lordered_ring
haftmann
parents: 25267
diff changeset
  2105
  fix a b
7491c00f0915 removed subclass edge ordered_ring < lordered_ring
haftmann
parents: 25267
diff changeset
  2106
  show "\<bar>a + b\<bar> \<le> \<bar>a\<bar> + \<bar>b\<bar>"
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2107
    by (auto simp add: abs_if not_le not_less algebra_simps
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2108
        simp del: add.commute dest: add_neg_neg add_nonneg_nonneg)
63588
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
  2109
qed (auto simp: abs_if)
25304
7491c00f0915 removed subclass edge ordered_ring < lordered_ring
haftmann
parents: 25267
diff changeset
  2110
35631
0b8a5fd339ab generalize some lemmas from class linordered_ring_strict to linordered_ring
huffman
parents: 35302
diff changeset
  2111
lemma zero_le_square [simp]: "0 \<le> a * a"
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2112
  using linear [of 0 a] by (auto simp add: mult_nonpos_nonpos)
35631
0b8a5fd339ab generalize some lemmas from class linordered_ring_strict to linordered_ring
huffman
parents: 35302
diff changeset
  2113
0b8a5fd339ab generalize some lemmas from class linordered_ring_strict to linordered_ring
huffman
parents: 35302
diff changeset
  2114
lemma not_square_less_zero [simp]: "\<not> (a * a < 0)"
0b8a5fd339ab generalize some lemmas from class linordered_ring_strict to linordered_ring
huffman
parents: 35302
diff changeset
  2115
  by (simp add: not_less)
0b8a5fd339ab generalize some lemmas from class linordered_ring_strict to linordered_ring
huffman
parents: 35302
diff changeset
  2116
61944
5d06ecfdb472 prefer symbols for "abs";
wenzelm
parents: 61799
diff changeset
  2117
proposition abs_eq_iff: "\<bar>x\<bar> = \<bar>y\<bar> \<longleftrightarrow> x = y \<or> x = -y"
62390
842917225d56 more canonical names
nipkow
parents: 62378
diff changeset
  2118
  by (auto simp add: abs_if split: if_split_asm)
61762
d50b993b4fb9 Removal of redundant lemmas (diff_less_iff, diff_le_iff) and of the abbreviation Exp. Addition of some new material.
paulson <lp15@cam.ac.uk>
parents: 61649
diff changeset
  2119
64848
c50db2128048 slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
haftmann
parents: 64713
diff changeset
  2120
lemma abs_eq_iff':
c50db2128048 slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
haftmann
parents: 64713
diff changeset
  2121
  "\<bar>a\<bar> = b \<longleftrightarrow> b \<ge> 0 \<and> (a = b \<or> a = - b)"
c50db2128048 slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
haftmann
parents: 64713
diff changeset
  2122
  by (cases "a \<ge> 0") auto
c50db2128048 slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
haftmann
parents: 64713
diff changeset
  2123
c50db2128048 slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
haftmann
parents: 64713
diff changeset
  2124
lemma eq_abs_iff':
c50db2128048 slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
haftmann
parents: 64713
diff changeset
  2125
  "a = \<bar>b\<bar> \<longleftrightarrow> a \<ge> 0 \<and> (b = a \<or> b = - a)"
c50db2128048 slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
haftmann
parents: 64713
diff changeset
  2126
  using abs_eq_iff' [of b a] by auto
c50db2128048 slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
haftmann
parents: 64713
diff changeset
  2127
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2128
lemma sum_squares_ge_zero: "0 \<le> x * x + y * y"
62347
2230b7047376 generalized some lemmas;
haftmann
parents: 61944
diff changeset
  2129
  by (intro add_nonneg_nonneg zero_le_square)
2230b7047376 generalized some lemmas;
haftmann
parents: 61944
diff changeset
  2130
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2131
lemma not_sum_squares_lt_zero: "\<not> x * x + y * y < 0"
62347
2230b7047376 generalized some lemmas;
haftmann
parents: 61944
diff changeset
  2132
  by (simp add: not_less sum_squares_ge_zero)
2230b7047376 generalized some lemmas;
haftmann
parents: 61944
diff changeset
  2133
25304
7491c00f0915 removed subclass edge ordered_ring < lordered_ring
haftmann
parents: 25267
diff changeset
  2134
end
23521
195fe3fe2831 added ordered_ring and ordered_semiring
obua
parents: 23496
diff changeset
  2135
35043
07dbdf60d5ad dropped accidental duplication of "lin" prefix from cs. 108662d50512
haftmann
parents: 35032
diff changeset
  2136
class linordered_ring_strict = ring + linordered_semiring_strict
25304
7491c00f0915 removed subclass edge ordered_ring < lordered_ring
haftmann
parents: 25267
diff changeset
  2137
  + ordered_ab_group_add + abs_if
25230
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
  2138
begin
14348
744c868ee0b7 Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents: 14341
diff changeset
  2139
35028
108662d50512 more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents: 34146
diff changeset
  2140
subclass linordered_ring ..
25304
7491c00f0915 removed subclass edge ordered_ring < lordered_ring
haftmann
parents: 25267
diff changeset
  2141
30692
44ea10bc07a7 clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
huffman
parents: 30650
diff changeset
  2142
lemma mult_strict_left_mono_neg: "b < a \<Longrightarrow> c < 0 \<Longrightarrow> c * a < c * b"
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2143
  using mult_strict_left_mono [of b a "- c"] by simp
30692
44ea10bc07a7 clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
huffman
parents: 30650
diff changeset
  2144
44ea10bc07a7 clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
huffman
parents: 30650
diff changeset
  2145
lemma mult_strict_right_mono_neg: "b < a \<Longrightarrow> c < 0 \<Longrightarrow> a * c < b * c"
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2146
  using mult_strict_right_mono [of b a "- c"] by simp
30692
44ea10bc07a7 clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
huffman
parents: 30650
diff changeset
  2147
44ea10bc07a7 clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
huffman
parents: 30650
diff changeset
  2148
lemma mult_neg_neg: "a < 0 \<Longrightarrow> b < 0 \<Longrightarrow> 0 < a * b"
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2149
  using mult_strict_right_mono_neg [of a 0 b] by simp
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2150
25917
d6c920623afc further localization
haftmann
parents: 25762
diff changeset
  2151
subclass ring_no_zero_divisors
28823
dcbef866c9e2 tuned unfold_locales invocation
haftmann
parents: 28559
diff changeset
  2152
proof
25917
d6c920623afc further localization
haftmann
parents: 25762
diff changeset
  2153
  fix a b
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2154
  assume "a \<noteq> 0"
63588
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
  2155
  then have a: "a < 0 \<or> 0 < a" by (simp add: neq_iff)
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2156
  assume "b \<noteq> 0"
63588
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
  2157
  then have b: "b < 0 \<or> 0 < b" by (simp add: neq_iff)
25917
d6c920623afc further localization
haftmann
parents: 25762
diff changeset
  2158
  have "a * b < 0 \<or> 0 < a * b"
d6c920623afc further localization
haftmann
parents: 25762
diff changeset
  2159
  proof (cases "a < 0")
63588
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
  2160
    case True
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2161
    show ?thesis
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2162
    proof (cases "b < 0")
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2163
      case True
63588
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
  2164
      with \<open>a < 0\<close> show ?thesis by (auto dest: mult_neg_neg)
25917
d6c920623afc further localization
haftmann
parents: 25762
diff changeset
  2165
    next
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2166
      case False
63588
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
  2167
      with b have "0 < b" by auto
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
  2168
      with \<open>a < 0\<close> show ?thesis by (auto dest: mult_strict_right_mono)
25917
d6c920623afc further localization
haftmann
parents: 25762
diff changeset
  2169
    qed
d6c920623afc further localization
haftmann
parents: 25762
diff changeset
  2170
  next
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2171
    case False
63588
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
  2172
    with a have "0 < a" by auto
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2173
    show ?thesis
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2174
    proof (cases "b < 0")
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2175
      case True
63588
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
  2176
      with \<open>0 < a\<close> show ?thesis
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2177
        by (auto dest: mult_strict_right_mono_neg)
25917
d6c920623afc further localization
haftmann
parents: 25762
diff changeset
  2178
    next
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2179
      case False
63588
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
  2180
      with b have "0 < b" by auto
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
  2181
      with \<open>0 < a\<close> show ?thesis by auto
25917
d6c920623afc further localization
haftmann
parents: 25762
diff changeset
  2182
    qed
d6c920623afc further localization
haftmann
parents: 25762
diff changeset
  2183
  qed
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2184
  then show "a * b \<noteq> 0"
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2185
    by (simp add: neq_iff)
25917
d6c920623afc further localization
haftmann
parents: 25762
diff changeset
  2186
qed
25304
7491c00f0915 removed subclass edge ordered_ring < lordered_ring
haftmann
parents: 25267
diff changeset
  2187
70817
dd675800469d dedicated fact collections for algebraic simplification rules potentially splitting goals
haftmann
parents: 70347
diff changeset
  2188
lemma zero_less_mult_iff [algebra_split_simps, field_split_simps]:
dd675800469d dedicated fact collections for algebraic simplification rules potentially splitting goals
haftmann
parents: 70347
diff changeset
  2189
  "0 < a * b \<longleftrightarrow> 0 < a \<and> 0 < b \<or> a < 0 \<and> b < 0"
56480
093ea91498e6 field_simps: better support for negation and division, and power
hoelzl
parents: 56217
diff changeset
  2190
  by (cases a 0 b 0 rule: linorder_cases[case_product linorder_cases])
56544
b60d5d119489 made mult_pos_pos a simp rule
nipkow
parents: 56536
diff changeset
  2191
     (auto simp add: mult_neg_neg not_less le_less dest: zero_less_mult_pos zero_less_mult_pos2)
22990
775e9de3db48 added classes ring_no_zero_divisors and dom (non-commutative version of idom);
huffman
parents: 22987
diff changeset
  2192
70817
dd675800469d dedicated fact collections for algebraic simplification rules potentially splitting goals
haftmann
parents: 70347
diff changeset
  2193
lemma zero_le_mult_iff [algebra_split_simps, field_split_simps]:
dd675800469d dedicated fact collections for algebraic simplification rules potentially splitting goals
haftmann
parents: 70347
diff changeset
  2194
  "0 \<le> a * b \<longleftrightarrow> 0 \<le> a \<and> 0 \<le> b \<or> a \<le> 0 \<and> b \<le> 0"
56480
093ea91498e6 field_simps: better support for negation and division, and power
hoelzl
parents: 56217
diff changeset
  2195
  by (auto simp add: eq_commute [of 0] le_less not_less zero_less_mult_iff)
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
  2196
70817
dd675800469d dedicated fact collections for algebraic simplification rules potentially splitting goals
haftmann
parents: 70347
diff changeset
  2197
lemma mult_less_0_iff [algebra_split_simps, field_split_simps]:
dd675800469d dedicated fact collections for algebraic simplification rules potentially splitting goals
haftmann
parents: 70347
diff changeset
  2198
  "a * b < 0 \<longleftrightarrow> 0 < a \<and> b < 0 \<or> a < 0 \<and> 0 < b"
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2199
  using zero_less_mult_iff [of "- a" b] by auto
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
  2200
70817
dd675800469d dedicated fact collections for algebraic simplification rules potentially splitting goals
haftmann
parents: 70347
diff changeset
  2201
lemma mult_le_0_iff [algebra_split_simps, field_split_simps]:
dd675800469d dedicated fact collections for algebraic simplification rules potentially splitting goals
haftmann
parents: 70347
diff changeset
  2202
  "a * b \<le> 0 \<longleftrightarrow> 0 \<le> a \<and> b \<le> 0 \<or> a \<le> 0 \<and> 0 \<le> b"
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2203
  using zero_le_mult_iff [of "- a" b] by auto
25917
d6c920623afc further localization
haftmann
parents: 25762
diff changeset
  2204
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2205
text \<open>
69593
3dda49e08b9d isabelle update -u control_cartouches;
wenzelm
parents: 68253
diff changeset
  2206
  Cancellation laws for \<^term>\<open>c * a < c * b\<close> and \<^term>\<open>a * c < b * c\<close>,
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2207
  also with the relations \<open>\<le>\<close> and equality.
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2208
\<close>
26193
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
  2209
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2210
text \<open>
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2211
  These ``disjunction'' versions produce two cases when the comparison is
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2212
  an assumption, but effectively four when the comparison is a goal.
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2213
\<close>
26193
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
  2214
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2215
lemma mult_less_cancel_right_disj: "a * c < b * c \<longleftrightarrow> 0 < c \<and> a < b \<or> c < 0 \<and>  b < a"
26193
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
  2216
  apply (cases "c = 0")
63588
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
  2217
   apply (auto simp add: neq_iff mult_strict_right_mono mult_strict_right_mono_neg)
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
  2218
     apply (auto simp add: not_less not_le [symmetric, of "a*c"] not_le [symmetric, of a])
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
  2219
     apply (erule_tac [!] notE)
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
  2220
     apply (auto simp add: less_imp_le mult_right_mono mult_right_mono_neg)
26193
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
  2221
  done
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
  2222
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2223
lemma mult_less_cancel_left_disj: "c * a < c * b \<longleftrightarrow> 0 < c \<and> a < b \<or> c < 0 \<and>  b < a"
26193
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
  2224
  apply (cases "c = 0")
63588
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
  2225
   apply (auto simp add: neq_iff mult_strict_left_mono mult_strict_left_mono_neg)
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
  2226
     apply (auto simp add: not_less not_le [symmetric, of "c * a"] not_le [symmetric, of a])
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
  2227
     apply (erule_tac [!] notE)
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
  2228
     apply (auto simp add: less_imp_le mult_left_mono mult_left_mono_neg)
26193
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
  2229
  done
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
  2230
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2231
text \<open>
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2232
  The ``conjunction of implication'' lemmas produce two cases when the
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2233
  comparison is a goal, but give four when the comparison is an assumption.
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2234
\<close>
26193
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
  2235
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2236
lemma mult_less_cancel_right: "a * c < b * c \<longleftrightarrow> (0 \<le> c \<longrightarrow> a < b) \<and> (c \<le> 0 \<longrightarrow> b < a)"
26193
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
  2237
  using mult_less_cancel_right_disj [of a c b] by auto
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
  2238
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2239
lemma mult_less_cancel_left: "c * a < c * b \<longleftrightarrow> (0 \<le> c \<longrightarrow> a < b) \<and> (c \<le> 0 \<longrightarrow> b < a)"
26193
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
  2240
  using mult_less_cancel_left_disj [of c a b] by auto
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
  2241
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2242
lemma mult_le_cancel_right: "a * c \<le> b * c \<longleftrightarrow> (0 < c \<longrightarrow> a \<le> b) \<and> (c < 0 \<longrightarrow> b \<le> a)"
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2243
  by (simp add: not_less [symmetric] mult_less_cancel_right_disj)
26193
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
  2244
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2245
lemma mult_le_cancel_left: "c * a \<le> c * b \<longleftrightarrow> (0 < c \<longrightarrow> a \<le> b) \<and> (c < 0 \<longrightarrow> b \<le> a)"
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2246
  by (simp add: not_less [symmetric] mult_less_cancel_left_disj)
26193
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
  2247
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2248
lemma mult_le_cancel_left_pos: "0 < c \<Longrightarrow> c * a \<le> c * b \<longleftrightarrow> a \<le> b"
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2249
  by (auto simp: mult_le_cancel_left)
30649
57753e0ec1d4 1. New cancellation simprocs for common factors in inequations
nipkow
parents: 30242
diff changeset
  2250
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2251
lemma mult_le_cancel_left_neg: "c < 0 \<Longrightarrow> c * a \<le> c * b \<longleftrightarrow> b \<le> a"
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2252
  by (auto simp: mult_le_cancel_left)
30649
57753e0ec1d4 1. New cancellation simprocs for common factors in inequations
nipkow
parents: 30242
diff changeset
  2253
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2254
lemma mult_less_cancel_left_pos: "0 < c \<Longrightarrow> c * a < c * b \<longleftrightarrow> a < b"
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2255
  by (auto simp: mult_less_cancel_left)
30649
57753e0ec1d4 1. New cancellation simprocs for common factors in inequations
nipkow
parents: 30242
diff changeset
  2256
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2257
lemma mult_less_cancel_left_neg: "c < 0 \<Longrightarrow> c * a < c * b \<longleftrightarrow> b < a"
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2258
  by (auto simp: mult_less_cancel_left)
30649
57753e0ec1d4 1. New cancellation simprocs for common factors in inequations
nipkow
parents: 30242
diff changeset
  2259
25917
d6c920623afc further localization
haftmann
parents: 25762
diff changeset
  2260
end
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
  2261
30692
44ea10bc07a7 clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
huffman
parents: 30650
diff changeset
  2262
lemmas mult_sign_intros =
44ea10bc07a7 clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
huffman
parents: 30650
diff changeset
  2263
  mult_nonneg_nonneg mult_nonneg_nonpos
44ea10bc07a7 clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
huffman
parents: 30650
diff changeset
  2264
  mult_nonpos_nonneg mult_nonpos_nonpos
44ea10bc07a7 clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
huffman
parents: 30650
diff changeset
  2265
  mult_pos_pos mult_pos_neg
44ea10bc07a7 clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
huffman
parents: 30650
diff changeset
  2266
  mult_neg_pos mult_neg_neg
25230
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
  2267
35028
108662d50512 more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents: 34146
diff changeset
  2268
class ordered_comm_ring = comm_ring + ordered_comm_semiring
25267
1f745c599b5c proper reinitialisation after subclass
haftmann
parents: 25238
diff changeset
  2269
begin
25230
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
  2270
35028
108662d50512 more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents: 34146
diff changeset
  2271
subclass ordered_ring ..
108662d50512 more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents: 34146
diff changeset
  2272
subclass ordered_cancel_comm_semiring ..
25230
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
  2273
25267
1f745c599b5c proper reinitialisation after subclass
haftmann
parents: 25238
diff changeset
  2274
end
25230
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
  2275
67689
2c38ffd6ec71 type class linordered_nonzero_semiring has new axiom to guarantee characteristic 0
paulson <lp15@cam.ac.uk>
parents: 67234
diff changeset
  2276
class linordered_nonzero_semiring = ordered_comm_semiring + monoid_mult + linorder + zero_less_one +
2c38ffd6ec71 type class linordered_nonzero_semiring has new axiom to guarantee characteristic 0
paulson <lp15@cam.ac.uk>
parents: 67234
diff changeset
  2277
  assumes add_mono1: "a < b \<Longrightarrow> a + 1 < b + 1"
62378
85ed00c1fe7c generalize more theorems to support enat and ennreal
hoelzl
parents: 62377
diff changeset
  2278
begin
85ed00c1fe7c generalize more theorems to support enat and ennreal
hoelzl
parents: 62377
diff changeset
  2279
85ed00c1fe7c generalize more theorems to support enat and ennreal
hoelzl
parents: 62377
diff changeset
  2280
subclass zero_neq_one
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2281
  by standard (insert zero_less_one, blast)
62378
85ed00c1fe7c generalize more theorems to support enat and ennreal
hoelzl
parents: 62377
diff changeset
  2282
85ed00c1fe7c generalize more theorems to support enat and ennreal
hoelzl
parents: 62377
diff changeset
  2283
subclass comm_semiring_1
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2284
  by standard (rule mult_1_left)
62378
85ed00c1fe7c generalize more theorems to support enat and ennreal
hoelzl
parents: 62377
diff changeset
  2285
85ed00c1fe7c generalize more theorems to support enat and ennreal
hoelzl
parents: 62377
diff changeset
  2286
lemma zero_le_one [simp]: "0 \<le> 1"
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2287
  by (rule zero_less_one [THEN less_imp_le])
62378
85ed00c1fe7c generalize more theorems to support enat and ennreal
hoelzl
parents: 62377
diff changeset
  2288
85ed00c1fe7c generalize more theorems to support enat and ennreal
hoelzl
parents: 62377
diff changeset
  2289
lemma not_one_le_zero [simp]: "\<not> 1 \<le> 0"
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2290
  by (simp add: not_le)
62378
85ed00c1fe7c generalize more theorems to support enat and ennreal
hoelzl
parents: 62377
diff changeset
  2291
85ed00c1fe7c generalize more theorems to support enat and ennreal
hoelzl
parents: 62377
diff changeset
  2292
lemma not_one_less_zero [simp]: "\<not> 1 < 0"
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2293
  by (simp add: not_less)
62378
85ed00c1fe7c generalize more theorems to support enat and ennreal
hoelzl
parents: 62377
diff changeset
  2294
85ed00c1fe7c generalize more theorems to support enat and ennreal
hoelzl
parents: 62377
diff changeset
  2295
lemma mult_left_le: "c \<le> 1 \<Longrightarrow> 0 \<le> a \<Longrightarrow> a * c \<le> a"
85ed00c1fe7c generalize more theorems to support enat and ennreal
hoelzl
parents: 62377
diff changeset
  2296
  using mult_left_mono[of c 1 a] by simp
85ed00c1fe7c generalize more theorems to support enat and ennreal
hoelzl
parents: 62377
diff changeset
  2297
85ed00c1fe7c generalize more theorems to support enat and ennreal
hoelzl
parents: 62377
diff changeset
  2298
lemma mult_le_one: "a \<le> 1 \<Longrightarrow> 0 \<le> b \<Longrightarrow> b \<le> 1 \<Longrightarrow> a * b \<le> 1"
85ed00c1fe7c generalize more theorems to support enat and ennreal
hoelzl
parents: 62377
diff changeset
  2299
  using mult_mono[of a 1 b 1] by simp
85ed00c1fe7c generalize more theorems to support enat and ennreal
hoelzl
parents: 62377
diff changeset
  2300
85ed00c1fe7c generalize more theorems to support enat and ennreal
hoelzl
parents: 62377
diff changeset
  2301
lemma zero_less_two: "0 < 1 + 1"
85ed00c1fe7c generalize more theorems to support enat and ennreal
hoelzl
parents: 62377
diff changeset
  2302
  using add_pos_pos[OF zero_less_one zero_less_one] .
85ed00c1fe7c generalize more theorems to support enat and ennreal
hoelzl
parents: 62377
diff changeset
  2303
85ed00c1fe7c generalize more theorems to support enat and ennreal
hoelzl
parents: 62377
diff changeset
  2304
end
85ed00c1fe7c generalize more theorems to support enat and ennreal
hoelzl
parents: 62377
diff changeset
  2305
85ed00c1fe7c generalize more theorems to support enat and ennreal
hoelzl
parents: 62377
diff changeset
  2306
class linordered_semidom = semidom + linordered_comm_semiring_strict + zero_less_one +
60562
24af00b010cf Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
paulson <lp15@cam.ac.uk>
parents: 60529
diff changeset
  2307
  assumes le_add_diff_inverse2 [simp]: "b \<le> a \<Longrightarrow> a - b + b = a"
25230
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
  2308
begin
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
  2309
67689
2c38ffd6ec71 type class linordered_nonzero_semiring has new axiom to guarantee characteristic 0
paulson <lp15@cam.ac.uk>
parents: 67234
diff changeset
  2310
subclass linordered_nonzero_semiring 
2c38ffd6ec71 type class linordered_nonzero_semiring has new axiom to guarantee characteristic 0
paulson <lp15@cam.ac.uk>
parents: 67234
diff changeset
  2311
proof
2c38ffd6ec71 type class linordered_nonzero_semiring has new axiom to guarantee characteristic 0
paulson <lp15@cam.ac.uk>
parents: 67234
diff changeset
  2312
  show "a + 1 < b + 1" if "a < b" for a b
2c38ffd6ec71 type class linordered_nonzero_semiring has new axiom to guarantee characteristic 0
paulson <lp15@cam.ac.uk>
parents: 67234
diff changeset
  2313
  proof (rule ccontr, simp add: not_less)
2c38ffd6ec71 type class linordered_nonzero_semiring has new axiom to guarantee characteristic 0
paulson <lp15@cam.ac.uk>
parents: 67234
diff changeset
  2314
    assume "b \<le> a"
2c38ffd6ec71 type class linordered_nonzero_semiring has new axiom to guarantee characteristic 0
paulson <lp15@cam.ac.uk>
parents: 67234
diff changeset
  2315
    with that show False
2c38ffd6ec71 type class linordered_nonzero_semiring has new axiom to guarantee characteristic 0
paulson <lp15@cam.ac.uk>
parents: 67234
diff changeset
  2316
      by (simp add: )
2c38ffd6ec71 type class linordered_nonzero_semiring has new axiom to guarantee characteristic 0
paulson <lp15@cam.ac.uk>
parents: 67234
diff changeset
  2317
  qed
2c38ffd6ec71 type class linordered_nonzero_semiring has new axiom to guarantee characteristic 0
paulson <lp15@cam.ac.uk>
parents: 67234
diff changeset
  2318
qed
62378
85ed00c1fe7c generalize more theorems to support enat and ennreal
hoelzl
parents: 62377
diff changeset
  2319
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60690
diff changeset
  2320
text \<open>Addition is the inverse of subtraction.\<close>
60562
24af00b010cf Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
paulson <lp15@cam.ac.uk>
parents: 60529
diff changeset
  2321
24af00b010cf Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
paulson <lp15@cam.ac.uk>
parents: 60529
diff changeset
  2322
lemma le_add_diff_inverse [simp]: "b \<le> a \<Longrightarrow> b + (a - b) = a"
24af00b010cf Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
paulson <lp15@cam.ac.uk>
parents: 60529
diff changeset
  2323
  by (frule le_add_diff_inverse2) (simp add: add.commute)
24af00b010cf Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
paulson <lp15@cam.ac.uk>
parents: 60529
diff changeset
  2324
62378
85ed00c1fe7c generalize more theorems to support enat and ennreal
hoelzl
parents: 62377
diff changeset
  2325
lemma add_diff_inverse: "\<not> a < b \<Longrightarrow> b + (a - b) = a"
60562
24af00b010cf Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
paulson <lp15@cam.ac.uk>
parents: 60529
diff changeset
  2326
  by simp
60615
e5fa1d5d3952 Useful lemmas. The theorem concerning swapping the variables in a double integral.
paulson <lp15@cam.ac.uk>
parents: 60570
diff changeset
  2327
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2328
lemma add_le_imp_le_diff: "i + k \<le> n \<Longrightarrow> i \<le> n - k"
60615
e5fa1d5d3952 Useful lemmas. The theorem concerning swapping the variables in a double integral.
paulson <lp15@cam.ac.uk>
parents: 60570
diff changeset
  2329
  apply (subst add_le_cancel_right [where c=k, symmetric])
e5fa1d5d3952 Useful lemmas. The theorem concerning swapping the variables in a double integral.
paulson <lp15@cam.ac.uk>
parents: 60570
diff changeset
  2330
  apply (frule le_add_diff_inverse2)
e5fa1d5d3952 Useful lemmas. The theorem concerning swapping the variables in a double integral.
paulson <lp15@cam.ac.uk>
parents: 60570
diff changeset
  2331
  apply (simp only: add.assoc [symmetric])
63588
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
  2332
  using add_implies_diff
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
  2333
  apply fastforce
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2334
  done
60615
e5fa1d5d3952 Useful lemmas. The theorem concerning swapping the variables in a double integral.
paulson <lp15@cam.ac.uk>
parents: 60570
diff changeset
  2335
62376
85f38d5f8807 Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
hoelzl
parents: 62366
diff changeset
  2336
lemma add_le_add_imp_diff_le:
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2337
  assumes 1: "i + k \<le> n"
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2338
    and 2: "n \<le> j + k"
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2339
  shows "i + k \<le> n \<Longrightarrow> n \<le> j + k \<Longrightarrow> n - k \<le> j"
60615
e5fa1d5d3952 Useful lemmas. The theorem concerning swapping the variables in a double integral.
paulson <lp15@cam.ac.uk>
parents: 60570
diff changeset
  2340
proof -
e5fa1d5d3952 Useful lemmas. The theorem concerning swapping the variables in a double integral.
paulson <lp15@cam.ac.uk>
parents: 60570
diff changeset
  2341
  have "n - (i + k) + (i + k) = n"
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2342
    using 1 by simp
60615
e5fa1d5d3952 Useful lemmas. The theorem concerning swapping the variables in a double integral.
paulson <lp15@cam.ac.uk>
parents: 60570
diff changeset
  2343
  moreover have "n - k = n - k - i + i"
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2344
    using 1 by (simp add: add_le_imp_le_diff)
60615
e5fa1d5d3952 Useful lemmas. The theorem concerning swapping the variables in a double integral.
paulson <lp15@cam.ac.uk>
parents: 60570
diff changeset
  2345
  ultimately show ?thesis
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2346
    using 2
60615
e5fa1d5d3952 Useful lemmas. The theorem concerning swapping the variables in a double integral.
paulson <lp15@cam.ac.uk>
parents: 60570
diff changeset
  2347
    apply (simp add: add.assoc [symmetric])
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2348
    apply (rule add_le_imp_le_diff [of _ k "j + k", simplified add_diff_cancel_right'])
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2349
    apply (simp add: add.commute diff_diff_add)
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2350
    done
60615
e5fa1d5d3952 Useful lemmas. The theorem concerning swapping the variables in a double integral.
paulson <lp15@cam.ac.uk>
parents: 60570
diff changeset
  2351
qed
e5fa1d5d3952 Useful lemmas. The theorem concerning swapping the variables in a double integral.
paulson <lp15@cam.ac.uk>
parents: 60570
diff changeset
  2352
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2353
lemma less_1_mult: "1 < m \<Longrightarrow> 1 < n \<Longrightarrow> 1 < m * n"
62378
85ed00c1fe7c generalize more theorems to support enat and ennreal
hoelzl
parents: 62377
diff changeset
  2354
  using mult_strict_mono [of 1 m 1 n] by (simp add: less_trans [OF zero_less_one])
59000
6eb0725503fc import general theorems from AFP/Markov_Models
hoelzl
parents: 58952
diff changeset
  2355
25230
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
  2356
end
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
  2357
66937
a1a4a5e2933a rule out pathologic instances
haftmann
parents: 66816
diff changeset
  2358
class linordered_idom = comm_ring_1 + linordered_comm_semiring_strict +
a1a4a5e2933a rule out pathologic instances
haftmann
parents: 66816
diff changeset
  2359
  ordered_ab_group_add + abs_if + sgn +
64290
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
  2360
  assumes sgn_if: "sgn x = (if x = 0 then 0 else if 0 < x then 1 else - 1)"
25917
d6c920623afc further localization
haftmann
parents: 25762
diff changeset
  2361
begin
d6c920623afc further localization
haftmann
parents: 25762
diff changeset
  2362
35043
07dbdf60d5ad dropped accidental duplication of "lin" prefix from cs. 108662d50512
haftmann
parents: 35032
diff changeset
  2363
subclass linordered_ring_strict ..
66937
a1a4a5e2933a rule out pathologic instances
haftmann
parents: 66816
diff changeset
  2364
a1a4a5e2933a rule out pathologic instances
haftmann
parents: 66816
diff changeset
  2365
subclass linordered_semiring_1_strict
a1a4a5e2933a rule out pathologic instances
haftmann
parents: 66816
diff changeset
  2366
proof
a1a4a5e2933a rule out pathologic instances
haftmann
parents: 66816
diff changeset
  2367
  have "0 \<le> 1 * 1"
a1a4a5e2933a rule out pathologic instances
haftmann
parents: 66816
diff changeset
  2368
    by (fact zero_le_square)
a1a4a5e2933a rule out pathologic instances
haftmann
parents: 66816
diff changeset
  2369
  then show "0 < 1" 
a1a4a5e2933a rule out pathologic instances
haftmann
parents: 66816
diff changeset
  2370
    by (simp add: le_less)
a1a4a5e2933a rule out pathologic instances
haftmann
parents: 66816
diff changeset
  2371
qed
a1a4a5e2933a rule out pathologic instances
haftmann
parents: 66816
diff changeset
  2372
35028
108662d50512 more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents: 34146
diff changeset
  2373
subclass ordered_comm_ring ..
27516
9a5d4a8d4aac by intro_locales -> ..
huffman
parents: 26274
diff changeset
  2374
subclass idom ..
25917
d6c920623afc further localization
haftmann
parents: 25762
diff changeset
  2375
35028
108662d50512 more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents: 34146
diff changeset
  2376
subclass linordered_semidom
66937
a1a4a5e2933a rule out pathologic instances
haftmann
parents: 66816
diff changeset
  2377
  by standard simp
25917
d6c920623afc further localization
haftmann
parents: 25762
diff changeset
  2378
64290
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
  2379
subclass idom_abs_sgn
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
  2380
  by standard
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
  2381
    (auto simp add: sgn_if abs_if zero_less_mult_iff)
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
  2382
35028
108662d50512 more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents: 34146
diff changeset
  2383
lemma linorder_neqE_linordered_idom:
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2384
  assumes "x \<noteq> y"
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2385
  obtains "x < y" | "y < x"
26193
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
  2386
  using assms by (rule neqE)
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
  2387
63588
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
  2388
text \<open>These cancellation simp rules also produce two cases when the comparison is a goal.\<close>
26274
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
  2389
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2390
lemma mult_le_cancel_right1: "c \<le> b * c \<longleftrightarrow> (0 < c \<longrightarrow> 1 \<le> b) \<and> (c < 0 \<longrightarrow> b \<le> 1)"
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2391
  using mult_le_cancel_right [of 1 c b] by simp
26274
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
  2392
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2393
lemma mult_le_cancel_right2: "a * c \<le> c \<longleftrightarrow> (0 < c \<longrightarrow> a \<le> 1) \<and> (c < 0 \<longrightarrow> 1 \<le> a)"
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2394
  using mult_le_cancel_right [of a c 1] by simp
26274
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
  2395
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2396
lemma mult_le_cancel_left1: "c \<le> c * b \<longleftrightarrow> (0 < c \<longrightarrow> 1 \<le> b) \<and> (c < 0 \<longrightarrow> b \<le> 1)"
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2397
  using mult_le_cancel_left [of c 1 b] by simp
26274
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
  2398
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2399
lemma mult_le_cancel_left2: "c * a \<le> c \<longleftrightarrow> (0 < c \<longrightarrow> a \<le> 1) \<and> (c < 0 \<longrightarrow> 1 \<le> a)"
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2400
  using mult_le_cancel_left [of c a 1] by simp
26274
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
  2401
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2402
lemma mult_less_cancel_right1: "c < b * c \<longleftrightarrow> (0 \<le> c \<longrightarrow> 1 < b) \<and> (c \<le> 0 \<longrightarrow> b < 1)"
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2403
  using mult_less_cancel_right [of 1 c b] by simp
26274
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
  2404
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2405
lemma mult_less_cancel_right2: "a * c < c \<longleftrightarrow> (0 \<le> c \<longrightarrow> a < 1) \<and> (c \<le> 0 \<longrightarrow> 1 < a)"
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2406
  using mult_less_cancel_right [of a c 1] by simp
26274
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
  2407
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2408
lemma mult_less_cancel_left1: "c < c * b \<longleftrightarrow> (0 \<le> c \<longrightarrow> 1 < b) \<and> (c \<le> 0 \<longrightarrow> b < 1)"
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2409
  using mult_less_cancel_left [of c 1 b] by simp
26274
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
  2410
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2411
lemma mult_less_cancel_left2: "c * a < c \<longleftrightarrow> (0 \<le> c \<longrightarrow> a < 1) \<and> (c \<le> 0 \<longrightarrow> 1 < a)"
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2412
  using mult_less_cancel_left [of c a 1] by simp
26274
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
  2413
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2414
lemma sgn_0_0: "sgn a = 0 \<longleftrightarrow> a = 0"
64290
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
  2415
  by (fact sgn_eq_0_iff)
27651
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
  2416
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2417
lemma sgn_1_pos: "sgn a = 1 \<longleftrightarrow> a > 0"
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2418
  unfolding sgn_if by simp
27651
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
  2419
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2420
lemma sgn_1_neg: "sgn a = - 1 \<longleftrightarrow> a < 0"
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2421
  unfolding sgn_if by auto
27651
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
  2422
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2423
lemma sgn_pos [simp]: "0 < a \<Longrightarrow> sgn a = 1"
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2424
  by (simp only: sgn_1_pos)
29940
83b373f61d41 more default simp rules for sgn
haftmann
parents: 29925
diff changeset
  2425
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2426
lemma sgn_neg [simp]: "a < 0 \<Longrightarrow> sgn a = - 1"
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2427
  by (simp only: sgn_1_neg)
29940
83b373f61d41 more default simp rules for sgn
haftmann
parents: 29925
diff changeset
  2428
36301
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
  2429
lemma abs_sgn: "\<bar>k\<bar> = k * sgn k"
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2430
  unfolding sgn_if abs_if by auto
29700
22faf21db3df added some simp rules
nipkow
parents: 29668
diff changeset
  2431
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2432
lemma sgn_greater [simp]: "0 < sgn a \<longleftrightarrow> 0 < a"
29940
83b373f61d41 more default simp rules for sgn
haftmann
parents: 29925
diff changeset
  2433
  unfolding sgn_if by auto
83b373f61d41 more default simp rules for sgn
haftmann
parents: 29925
diff changeset
  2434
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2435
lemma sgn_less [simp]: "sgn a < 0 \<longleftrightarrow> a < 0"
29940
83b373f61d41 more default simp rules for sgn
haftmann
parents: 29925
diff changeset
  2436
  unfolding sgn_if by auto
83b373f61d41 more default simp rules for sgn
haftmann
parents: 29925
diff changeset
  2437
64239
de5cd9217d4c added lemma
haftmann
parents: 64164
diff changeset
  2438
lemma abs_sgn_eq_1 [simp]:
de5cd9217d4c added lemma
haftmann
parents: 64164
diff changeset
  2439
  "a \<noteq> 0 \<Longrightarrow> \<bar>sgn a\<bar> = 1"
64290
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
  2440
  by simp
64239
de5cd9217d4c added lemma
haftmann
parents: 64164
diff changeset
  2441
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2442
lemma abs_sgn_eq: "\<bar>sgn a\<bar> = (if a = 0 then 0 else 1)"
62347
2230b7047376 generalized some lemmas;
haftmann
parents: 61944
diff changeset
  2443
  by (simp add: sgn_if)
2230b7047376 generalized some lemmas;
haftmann
parents: 61944
diff changeset
  2444
64713
9638c07283bc more facts on sgn, abs
haftmann
parents: 64592
diff changeset
  2445
lemma sgn_mult_self_eq [simp]:
9638c07283bc more facts on sgn, abs
haftmann
parents: 64592
diff changeset
  2446
  "sgn a * sgn a = of_bool (a \<noteq> 0)"
9638c07283bc more facts on sgn, abs
haftmann
parents: 64592
diff changeset
  2447
  by (cases "a > 0") simp_all
9638c07283bc more facts on sgn, abs
haftmann
parents: 64592
diff changeset
  2448
9638c07283bc more facts on sgn, abs
haftmann
parents: 64592
diff changeset
  2449
lemma abs_mult_self_eq [simp]:
9638c07283bc more facts on sgn, abs
haftmann
parents: 64592
diff changeset
  2450
  "\<bar>a\<bar> * \<bar>a\<bar> = a * a"
9638c07283bc more facts on sgn, abs
haftmann
parents: 64592
diff changeset
  2451
  by (cases "a > 0") simp_all
9638c07283bc more facts on sgn, abs
haftmann
parents: 64592
diff changeset
  2452
9638c07283bc more facts on sgn, abs
haftmann
parents: 64592
diff changeset
  2453
lemma same_sgn_sgn_add:
9638c07283bc more facts on sgn, abs
haftmann
parents: 64592
diff changeset
  2454
  "sgn (a + b) = sgn a" if "sgn b = sgn a"
9638c07283bc more facts on sgn, abs
haftmann
parents: 64592
diff changeset
  2455
proof (cases a 0 rule: linorder_cases)
9638c07283bc more facts on sgn, abs
haftmann
parents: 64592
diff changeset
  2456
  case equal
9638c07283bc more facts on sgn, abs
haftmann
parents: 64592
diff changeset
  2457
  with that show ?thesis
9638c07283bc more facts on sgn, abs
haftmann
parents: 64592
diff changeset
  2458
    by simp
9638c07283bc more facts on sgn, abs
haftmann
parents: 64592
diff changeset
  2459
next
9638c07283bc more facts on sgn, abs
haftmann
parents: 64592
diff changeset
  2460
  case less
9638c07283bc more facts on sgn, abs
haftmann
parents: 64592
diff changeset
  2461
  with that have "b < 0"
9638c07283bc more facts on sgn, abs
haftmann
parents: 64592
diff changeset
  2462
    by (simp add: sgn_1_neg)
9638c07283bc more facts on sgn, abs
haftmann
parents: 64592
diff changeset
  2463
  with \<open>a < 0\<close> have "a + b < 0"
9638c07283bc more facts on sgn, abs
haftmann
parents: 64592
diff changeset
  2464
    by (rule add_neg_neg)
9638c07283bc more facts on sgn, abs
haftmann
parents: 64592
diff changeset
  2465
  with \<open>a < 0\<close> show ?thesis
9638c07283bc more facts on sgn, abs
haftmann
parents: 64592
diff changeset
  2466
    by simp
9638c07283bc more facts on sgn, abs
haftmann
parents: 64592
diff changeset
  2467
next
9638c07283bc more facts on sgn, abs
haftmann
parents: 64592
diff changeset
  2468
  case greater
9638c07283bc more facts on sgn, abs
haftmann
parents: 64592
diff changeset
  2469
  with that have "b > 0"
9638c07283bc more facts on sgn, abs
haftmann
parents: 64592
diff changeset
  2470
    by (simp add: sgn_1_pos)
9638c07283bc more facts on sgn, abs
haftmann
parents: 64592
diff changeset
  2471
  with \<open>a > 0\<close> have "a + b > 0"
9638c07283bc more facts on sgn, abs
haftmann
parents: 64592
diff changeset
  2472
    by (rule add_pos_pos)
9638c07283bc more facts on sgn, abs
haftmann
parents: 64592
diff changeset
  2473
  with \<open>a > 0\<close> show ?thesis
9638c07283bc more facts on sgn, abs
haftmann
parents: 64592
diff changeset
  2474
    by simp
9638c07283bc more facts on sgn, abs
haftmann
parents: 64592
diff changeset
  2475
qed
9638c07283bc more facts on sgn, abs
haftmann
parents: 64592
diff changeset
  2476
9638c07283bc more facts on sgn, abs
haftmann
parents: 64592
diff changeset
  2477
lemma same_sgn_abs_add:
9638c07283bc more facts on sgn, abs
haftmann
parents: 64592
diff changeset
  2478
  "\<bar>a + b\<bar> = \<bar>a\<bar> + \<bar>b\<bar>" if "sgn b = sgn a"
9638c07283bc more facts on sgn, abs
haftmann
parents: 64592
diff changeset
  2479
proof -
9638c07283bc more facts on sgn, abs
haftmann
parents: 64592
diff changeset
  2480
  have "a + b = sgn a * \<bar>a\<bar> + sgn b * \<bar>b\<bar>"
9638c07283bc more facts on sgn, abs
haftmann
parents: 64592
diff changeset
  2481
    by (simp add: sgn_mult_abs)
9638c07283bc more facts on sgn, abs
haftmann
parents: 64592
diff changeset
  2482
  also have "\<dots> = sgn a * (\<bar>a\<bar> + \<bar>b\<bar>)"
9638c07283bc more facts on sgn, abs
haftmann
parents: 64592
diff changeset
  2483
    using that by (simp add: algebra_simps)
9638c07283bc more facts on sgn, abs
haftmann
parents: 64592
diff changeset
  2484
  finally show ?thesis
9638c07283bc more facts on sgn, abs
haftmann
parents: 64592
diff changeset
  2485
    by (auto simp add: abs_mult)
9638c07283bc more facts on sgn, abs
haftmann
parents: 64592
diff changeset
  2486
qed
9638c07283bc more facts on sgn, abs
haftmann
parents: 64592
diff changeset
  2487
66816
212a3334e7da more fundamental definition of div and mod on int
haftmann
parents: 66810
diff changeset
  2488
lemma sgn_not_eq_imp:
212a3334e7da more fundamental definition of div and mod on int
haftmann
parents: 66810
diff changeset
  2489
  "sgn a = - sgn b" if "sgn b \<noteq> sgn a" and "sgn a \<noteq> 0" and "sgn b \<noteq> 0"
212a3334e7da more fundamental definition of div and mod on int
haftmann
parents: 66810
diff changeset
  2490
  using that by (cases "a < 0") (auto simp add: sgn_0_0 sgn_1_pos sgn_1_neg)
212a3334e7da more fundamental definition of div and mod on int
haftmann
parents: 66810
diff changeset
  2491
36301
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
  2492
lemma abs_dvd_iff [simp]: "\<bar>m\<bar> dvd k \<longleftrightarrow> m dvd k"
29949
20a506b8256d lemmas abs_dvd_iff, dvd_abs_iff
huffman
parents: 29940
diff changeset
  2493
  by (simp add: abs_if)
20a506b8256d lemmas abs_dvd_iff, dvd_abs_iff
huffman
parents: 29940
diff changeset
  2494
36301
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
  2495
lemma dvd_abs_iff [simp]: "m dvd \<bar>k\<bar> \<longleftrightarrow> m dvd k"
29949
20a506b8256d lemmas abs_dvd_iff, dvd_abs_iff
huffman
parents: 29940
diff changeset
  2496
  by (simp add: abs_if)
29653
ece6a0e9f8af added lemma abs_sng
haftmann
parents: 29465
diff changeset
  2497
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2498
lemma dvd_if_abs_eq: "\<bar>l\<bar> = \<bar>k\<bar> \<Longrightarrow> l dvd k"
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2499
  by (subst abs_dvd_iff [symmetric]) simp
33676
802f5e233e48 moved lemma from Algebra/IntRing to Ring_and_Field
nipkow
parents: 33364
diff changeset
  2500
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2501
text \<open>
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2502
  The following lemmas can be proven in more general structures, but
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2503
  are dangerous as simp rules in absence of @{thm neg_equal_zero},
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2504
  @{thm neg_less_pos}, @{thm neg_less_eq_nonneg}.
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2505
\<close>
54489
03ff4d1e6784 eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents: 54250
diff changeset
  2506
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2507
lemma equation_minus_iff_1 [simp, no_atp]: "1 = - a \<longleftrightarrow> a = - 1"
54489
03ff4d1e6784 eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents: 54250
diff changeset
  2508
  by (fact equation_minus_iff)
03ff4d1e6784 eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents: 54250
diff changeset
  2509
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2510
lemma minus_equation_iff_1 [simp, no_atp]: "- a = 1 \<longleftrightarrow> a = - 1"
54489
03ff4d1e6784 eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents: 54250
diff changeset
  2511
  by (subst minus_equation_iff, auto)
03ff4d1e6784 eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents: 54250
diff changeset
  2512
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2513
lemma le_minus_iff_1 [simp, no_atp]: "1 \<le> - b \<longleftrightarrow> b \<le> - 1"
54489
03ff4d1e6784 eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents: 54250
diff changeset
  2514
  by (fact le_minus_iff)
03ff4d1e6784 eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents: 54250
diff changeset
  2515
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2516
lemma minus_le_iff_1 [simp, no_atp]: "- a \<le> 1 \<longleftrightarrow> - 1 \<le> a"
54489
03ff4d1e6784 eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents: 54250
diff changeset
  2517
  by (fact minus_le_iff)
03ff4d1e6784 eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents: 54250
diff changeset
  2518
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2519
lemma less_minus_iff_1 [simp, no_atp]: "1 < - b \<longleftrightarrow> b < - 1"
54489
03ff4d1e6784 eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents: 54250
diff changeset
  2520
  by (fact less_minus_iff)
03ff4d1e6784 eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents: 54250
diff changeset
  2521
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2522
lemma minus_less_iff_1 [simp, no_atp]: "- a < 1 \<longleftrightarrow> - 1 < a"
54489
03ff4d1e6784 eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents: 54250
diff changeset
  2523
  by (fact minus_less_iff)
03ff4d1e6784 eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents: 54250
diff changeset
  2524
66793
deabce3ccf1f new material about connectedness, etc.
paulson <lp15@cam.ac.uk>
parents: 65811
diff changeset
  2525
lemma add_less_zeroD:
deabce3ccf1f new material about connectedness, etc.
paulson <lp15@cam.ac.uk>
parents: 65811
diff changeset
  2526
  shows "x+y < 0 \<Longrightarrow> x<0 \<or> y<0"
deabce3ccf1f new material about connectedness, etc.
paulson <lp15@cam.ac.uk>
parents: 65811
diff changeset
  2527
  by (auto simp: not_less intro: le_less_trans [of _ "x+y"])
deabce3ccf1f new material about connectedness, etc.
paulson <lp15@cam.ac.uk>
parents: 65811
diff changeset
  2528
25917
d6c920623afc further localization
haftmann
parents: 25762
diff changeset
  2529
end
25230
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
  2530
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60690
diff changeset
  2531
text \<open>Reasoning about inequalities with division\<close>
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  2532
35028
108662d50512 more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents: 34146
diff changeset
  2533
context linordered_semidom
25193
e2e1a4b00de3 various localizations
haftmann
parents: 25186
diff changeset
  2534
begin
e2e1a4b00de3 various localizations
haftmann
parents: 25186
diff changeset
  2535
e2e1a4b00de3 various localizations
haftmann
parents: 25186
diff changeset
  2536
lemma less_add_one: "a < a + 1"
14293
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  2537
proof -
25193
e2e1a4b00de3 various localizations
haftmann
parents: 25186
diff changeset
  2538
  have "a + 0 < a + 1"
23482
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  2539
    by (blast intro: zero_less_one add_strict_left_mono)
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2540
  then show ?thesis by simp
14293
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  2541
qed
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  2542
25193
e2e1a4b00de3 various localizations
haftmann
parents: 25186
diff changeset
  2543
end
14365
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  2544
36301
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
  2545
context linordered_idom
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
  2546
begin
15234
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
  2547
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2548
lemma mult_right_le_one_le: "0 \<le> x \<Longrightarrow> 0 \<le> y \<Longrightarrow> y \<le> 1 \<Longrightarrow> x * y \<le> x"
59833
ab828c2c5d67 clarified no_zero_devisors: makes only sense in a semiring;
haftmann
parents: 59832
diff changeset
  2549
  by (rule mult_left_le)
36301
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
  2550
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2551
lemma mult_left_le_one_le: "0 \<le> x \<Longrightarrow> 0 \<le> y \<Longrightarrow> y \<le> 1 \<Longrightarrow> y * x \<le> x"
36301
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
  2552
  by (auto simp add: mult_le_cancel_right2)
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
  2553
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
  2554
end
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
  2555
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60690
diff changeset
  2556
text \<open>Absolute Value\<close>
14293
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  2557
35028
108662d50512 more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents: 34146
diff changeset
  2558
context linordered_idom
25304
7491c00f0915 removed subclass edge ordered_ring < lordered_ring
haftmann
parents: 25267
diff changeset
  2559
begin
7491c00f0915 removed subclass edge ordered_ring < lordered_ring
haftmann
parents: 25267
diff changeset
  2560
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2561
lemma mult_sgn_abs: "sgn x * \<bar>x\<bar> = x"
64290
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
  2562
  by (fact sgn_mult_abs)
25304
7491c00f0915 removed subclass edge ordered_ring < lordered_ring
haftmann
parents: 25267
diff changeset
  2563
64290
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
  2564
lemma abs_one: "\<bar>1\<bar> = 1"
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
  2565
  by (fact abs_1)
36301
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
  2566
25304
7491c00f0915 removed subclass edge ordered_ring < lordered_ring
haftmann
parents: 25267
diff changeset
  2567
end
24491
8d194c9198ae added constant sgn
nipkow
parents: 24427
diff changeset
  2568
35028
108662d50512 more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents: 34146
diff changeset
  2569
class ordered_ring_abs = ordered_ring + ordered_ab_group_add_abs +
25304
7491c00f0915 removed subclass edge ordered_ring < lordered_ring
haftmann
parents: 25267
diff changeset
  2570
  assumes abs_eq_mult:
7491c00f0915 removed subclass edge ordered_ring < lordered_ring
haftmann
parents: 25267
diff changeset
  2571
    "(0 \<le> a \<or> a \<le> 0) \<and> (0 \<le> b \<or> b \<le> 0) \<Longrightarrow> \<bar>a * b\<bar> = \<bar>a\<bar> * \<bar>b\<bar>"
7491c00f0915 removed subclass edge ordered_ring < lordered_ring
haftmann
parents: 25267
diff changeset
  2572
35028
108662d50512 more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents: 34146
diff changeset
  2573
context linordered_idom
30961
541bfff659af more localisation
haftmann
parents: 30692
diff changeset
  2574
begin
541bfff659af more localisation
haftmann
parents: 30692
diff changeset
  2575
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2576
subclass ordered_ring_abs
63588
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
  2577
  by standard (auto simp: abs_if not_less mult_less_0_iff)
30961
541bfff659af more localisation
haftmann
parents: 30692
diff changeset
  2578
67051
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  2579
lemma abs_mult_self: "\<bar>a\<bar> * \<bar>a\<bar> = a * a"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  2580
  by (fact abs_mult_self_eq)
30961
541bfff659af more localisation
haftmann
parents: 30692
diff changeset
  2581
14294
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  2582
lemma abs_mult_less:
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2583
  assumes ac: "\<bar>a\<bar> < c"
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2584
    and bd: "\<bar>b\<bar> < d"
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2585
  shows "\<bar>a\<bar> * \<bar>b\<bar> < c * d"
14294
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  2586
proof -
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2587
  from ac have "0 < c"
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2588
    by (blast intro: le_less_trans abs_ge_zero)
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2589
  with bd show ?thesis by (simp add: ac mult_strict_mono)
14294
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  2590
qed
14293
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  2591
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2592
lemma abs_less_iff: "\<bar>a\<bar> < b \<longleftrightarrow> a < b \<and> - a < b"
36301
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
  2593
  by (simp add: less_le abs_le_iff) (auto simp add: abs_if)
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2594
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2595
lemma abs_mult_pos: "0 \<le> x \<Longrightarrow> \<bar>y\<bar> * x = \<bar>y * x\<bar>"
36301
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
  2596
  by (simp add: abs_mult)
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
  2597
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2598
lemma abs_diff_less_iff: "\<bar>x - a\<bar> < r \<longleftrightarrow> a - r < x \<and> x < a + r"
51520
e9b361845809 move real_isLub_unique to isLub_unique in Lubs; real_sum_of_halves to RealDef; abs_diff_less_iff to Rings
hoelzl
parents: 50420
diff changeset
  2599
  by (auto simp add: diff_less_eq ac_simps abs_less_iff)
e9b361845809 move real_isLub_unique to isLub_unique in Lubs; real_sum_of_halves to RealDef; abs_diff_less_iff to Rings
hoelzl
parents: 50420
diff changeset
  2600
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2601
lemma abs_diff_le_iff: "\<bar>x - a\<bar> \<le> r \<longleftrightarrow> a - r \<le> x \<and> x \<le> a + r"
59865
8a20dd967385 rationalised and generalised some theorems concerning abs and x^2.
paulson <lp15@cam.ac.uk>
parents: 59833
diff changeset
  2602
  by (auto simp add: diff_le_eq ac_simps abs_le_iff)
8a20dd967385 rationalised and generalised some theorems concerning abs and x^2.
paulson <lp15@cam.ac.uk>
parents: 59833
diff changeset
  2603
62626
de25474ce728 Contractible sets. Also removal of obsolete theorems and refactoring
paulson <lp15@cam.ac.uk>
parents: 62608
diff changeset
  2604
lemma abs_add_one_gt_zero: "0 < 1 + \<bar>x\<bar>"
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2605
  by (auto simp: abs_if not_less intro: zero_less_one add_strict_increasing less_trans)
62626
de25474ce728 Contractible sets. Also removal of obsolete theorems and refactoring
paulson <lp15@cam.ac.uk>
parents: 62608
diff changeset
  2606
36301
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
  2607
end
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  2608
70145
f07b8fb99818 more document structure
haftmann
parents: 70144
diff changeset
  2609
62376
85f38d5f8807 Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
hoelzl
parents: 62366
diff changeset
  2610
subsection \<open>Dioids\<close>
85f38d5f8807 Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
hoelzl
parents: 62366
diff changeset
  2611
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2612
text \<open>
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2613
  Dioids are the alternative extensions of semirings, a semiring can
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2614
  either be a ring or a dioid but never both.
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2615
\<close>
62376
85f38d5f8807 Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
hoelzl
parents: 62366
diff changeset
  2616
85f38d5f8807 Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
hoelzl
parents: 62366
diff changeset
  2617
class dioid = semiring_1 + canonically_ordered_monoid_add
85f38d5f8807 Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
hoelzl
parents: 62366
diff changeset
  2618
begin
85f38d5f8807 Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
hoelzl
parents: 62366
diff changeset
  2619
85f38d5f8807 Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
hoelzl
parents: 62366
diff changeset
  2620
subclass ordered_semiring
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2621
  by standard (auto simp: le_iff_add distrib_left distrib_right)
62376
85f38d5f8807 Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
hoelzl
parents: 62366
diff changeset
  2622
85f38d5f8807 Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
hoelzl
parents: 62366
diff changeset
  2623
end
85f38d5f8807 Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
hoelzl
parents: 62366
diff changeset
  2624
85f38d5f8807 Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
hoelzl
parents: 62366
diff changeset
  2625
59557
ebd8ecacfba6 establish unique preferred fact names
haftmann
parents: 59555
diff changeset
  2626
hide_fact (open) comm_mult_left_mono comm_mult_strict_left_mono distrib
ebd8ecacfba6 establish unique preferred fact names
haftmann
parents: 59555
diff changeset
  2627
52435
6646bb548c6b migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
haftmann
parents: 51520
diff changeset
  2628
code_identifier
6646bb548c6b migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
haftmann
parents: 51520
diff changeset
  2629
  code_module Rings \<rightharpoonup> (SML) Arith and (OCaml) Arith and (Haskell) Arith
33364
2bd12592c5e8 tuned code setup
haftmann
parents: 33319
diff changeset
  2630
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
  2631
end