author | nipkow |
Tue, 09 May 1995 22:10:08 +0200 | |
changeset 1114 | c8dfb56a7e95 |
parent 980 | 33e3054b2871 |
child 1279 | f59b4f9f2cdc |
permissions | -rw-r--r-- |
923 | 1 |
(* Title: HOL/datatype.ML |
2 |
ID: $Id$ |
|
3 |
Author: Max Breitling, Carsten Clasohm, Tobias Nipkow, Norbert Voelker |
|
4 |
Copyright 1995 TU Muenchen |
|
5 |
*) |
|
6 |
||
7 |
||
8 |
(*used for constructor parameters*) |
|
9 |
datatype dt_type = dtVar of string | |
|
10 |
dtTyp of dt_type list * string | |
|
11 |
dtRek of dt_type list * string; |
|
12 |
||
13 |
structure Datatype = |
|
14 |
struct |
|
15 |
local |
|
16 |
||
17 |
val mysort = sort; |
|
18 |
open ThyParse HOLogic; |
|
19 |
exception Impossible; |
|
20 |
exception RecError of string; |
|
21 |
||
22 |
val is_dtRek = (fn dtRek _ => true | _ => false); |
|
23 |
fun opt_parens s = if s = "" then "" else enclose "(" ")" s; |
|
24 |
||
25 |
(* ----------------------------------------------------------------------- *) |
|
26 |
(* Derivation of the primrec combinator application from the equations *) |
|
27 |
||
28 |
(* substitute fname(ls,xk,rs) by yk(ls,rs) in t for (xk,yk) in pairs *) |
|
29 |
||
30 |
fun subst_apps (_,_) [] t = t |
|
31 |
| subst_apps (fname,rpos) pairs t = |
|
32 |
let |
|
33 |
fun subst (Abs(a,T,t)) = Abs(a,T,subst t) |
|
34 |
| subst (funct $ body) = |
|
35 |
let val (f,b) = strip_comb (funct$body) |
|
36 |
in |
|
37 |
if is_Const f andalso fst(dest_Const f) = fname |
|
38 |
then |
|
39 |
let val (ls,rest) = (take(rpos,b), drop(rpos,b)); |
|
40 |
val (xk,rs) = (hd rest,tl rest) |
|
41 |
handle LIST _ => raise RecError "not enough arguments \ |
|
42 |
\ in recursive application on rhs" |
|
43 |
in |
|
44 |
(case assoc (pairs,xk) of |
|
45 |
None => raise RecError |
|
46 |
("illegal occurence of " ^ fname ^ " on rhs") |
|
47 |
| Some(U) => list_comb(U,map subst (ls @ rs))) |
|
48 |
end |
|
49 |
else list_comb(f, map subst b) |
|
50 |
end |
|
51 |
| subst(t) = t |
|
52 |
in subst t end; |
|
53 |
||
54 |
(* abstract rhs *) |
|
55 |
||
56 |
fun abst_rec (fname,rpos,tc,ls,cargs,rs,rhs) = |
|
57 |
let val rargs = (map fst o |
|
58 |
(filter (fn (a,T) => is_dtRek T))) (cargs ~~ tc); |
|
59 |
val subs = map (fn (s,T) => (s,dummyT)) |
|
60 |
(rev(rename_wrt_term rhs rargs)); |
|
61 |
val subst_rhs = subst_apps (fname,rpos) |
|
62 |
(map Free rargs ~~ map Free subs) rhs; |
|
63 |
in |
|
64 |
list_abs_free (cargs @ subs @ ls @ rs, subst_rhs) |
|
65 |
end; |
|
66 |
||
67 |
(* parsing the prim rec equations *) |
|
68 |
||
69 |
fun dest_eq ( Const("Trueprop",_) $ (Const ("op =",_) $ lhs $ rhs)) |
|
70 |
= (lhs, rhs) |
|
71 |
| dest_eq _ = raise RecError "not a proper equation"; |
|
72 |
||
73 |
fun dest_rec eq = |
|
74 |
let val (lhs,rhs) = dest_eq eq; |
|
75 |
val (name,args) = strip_comb lhs; |
|
76 |
val (ls',rest) = take_prefix is_Free args; |
|
77 |
val (middle,rs') = take_suffix is_Free rest; |
|
78 |
val rpos = length ls'; |
|
79 |
val (c,cargs') = strip_comb (hd middle) |
|
80 |
handle LIST "hd" => raise RecError "constructor missing"; |
|
81 |
val (ls,cargs,rs) = (map dest_Free ls', map dest_Free cargs' |
|
82 |
, map dest_Free rs') |
|
83 |
handle TERM ("dest_Free",_) => |
|
84 |
raise RecError "constructor has illegal argument in pattern"; |
|
85 |
in |
|
86 |
if length middle > 1 then |
|
87 |
raise RecError "more than one non-variable in pattern" |
|
88 |
else if not(null(findrep (map fst (ls @ rs @ cargs)))) then |
|
89 |
raise RecError "repeated variable name in pattern" |
|
90 |
else (fst(dest_Const name) handle TERM _ => |
|
91 |
raise RecError "function is not declared as constant in theory" |
|
92 |
,rpos,ls,fst( dest_Const c),cargs,rs,rhs) |
|
93 |
end; |
|
94 |
||
95 |
(* check function specified for all constructors and sort function terms *) |
|
96 |
||
97 |
fun check_and_sort (n,its) = |
|
98 |
if length its = n |
|
99 |
then map snd (mysort (fn ((i : int,_),(j,_)) => i<j) its) |
|
100 |
else raise error "Primrec definition error:\n\ |
|
101 |
\Please give an equation for every constructor"; |
|
102 |
||
103 |
(* translate rec equations into function arguments suitable for rec comb *) |
|
104 |
(* theory parameter needed for printing error messages *) |
|
105 |
||
106 |
fun trans_recs _ _ [] = error("No primrec equations.") |
|
107 |
| trans_recs thy cs' (eq1::eqs) = |
|
108 |
let val (name1,rpos1,ls1,_,_,_,_) = dest_rec eq1 |
|
109 |
handle RecError s => |
|
110 |
error("Primrec definition error: " ^ s ^ ":\n" |
|
111 |
^ " " ^ Sign.string_of_term (sign_of thy) eq1); |
|
112 |
val tcs = map (fn (_,c,T,_,_) => (c,T)) cs'; |
|
113 |
val cs = map fst tcs; |
|
114 |
fun trans_recs' _ [] = [] |
|
115 |
| trans_recs' cis (eq::eqs) = |
|
116 |
let val (name,rpos,ls,c,cargs,rs,rhs) = dest_rec eq; |
|
117 |
val tc = assoc(tcs,c); |
|
118 |
val i = (1 + find (c,cs)) handle LIST "find" => 0; |
|
119 |
in |
|
120 |
if name <> name1 then |
|
121 |
raise RecError "function names inconsistent" |
|
122 |
else if rpos <> rpos1 then |
|
123 |
raise RecError "position of rec. argument inconsistent" |
|
124 |
else if i = 0 then |
|
125 |
raise RecError "illegal argument in pattern" |
|
126 |
else if i mem cis then |
|
127 |
raise RecError "constructor already occured as pattern " |
|
128 |
else (i,abst_rec (name,rpos,the tc,ls,cargs,rs,rhs)) |
|
129 |
:: trans_recs' (i::cis) eqs |
|
130 |
end |
|
131 |
handle RecError s => |
|
132 |
error("Primrec definition error\n" ^ s ^ "\n" |
|
133 |
^ " " ^ Sign.string_of_term (sign_of thy) eq); |
|
134 |
in ( name1, ls1 |
|
135 |
, check_and_sort (length cs, trans_recs' [] (eq1::eqs))) |
|
136 |
end ; |
|
137 |
||
138 |
in |
|
139 |
fun add_datatype (typevars, tname, cons_list') thy = |
|
140 |
let |
|
141 |
fun typid(dtRek(_,id)) = id |
|
142 |
| typid(dtVar s) = implode (tl (explode s)) |
|
143 |
| typid(dtTyp(_,id)) = id; |
|
144 |
||
145 |
fun index_vnames(vn::vns,tab) = |
|
146 |
(case assoc(tab,vn) of |
|
147 |
None => if vn mem vns |
|
148 |
then (vn^"1") :: index_vnames(vns,(vn,2)::tab) |
|
149 |
else vn :: index_vnames(vns,tab) |
|
150 |
| Some(i) => (vn^(string_of_int i)) :: |
|
151 |
index_vnames(vns,(vn,i+1)::tab)) |
|
152 |
| index_vnames([],tab) = []; |
|
153 |
||
154 |
fun mk_var_names types = index_vnames(map typid types,[]); |
|
155 |
||
156 |
(*search for free type variables and convert recursive *) |
|
157 |
fun analyse_types (cons, types, syn) = |
|
158 |
let fun analyse(t as dtVar v) = |
|
159 |
if t mem typevars then t |
|
160 |
else error ("Free type variable " ^ v ^ " on rhs.") |
|
161 |
| analyse(dtTyp(typl,s)) = |
|
162 |
if tname <> s then dtTyp(analyses typl, s) |
|
163 |
else if typevars = typl then dtRek(typl, s) |
|
164 |
else error (s ^ " used in different ways") |
|
165 |
| analyse(dtRek _) = raise Impossible |
|
166 |
and analyses ts = map analyse ts; |
|
167 |
in (cons, Syntax.const_name cons syn, analyses types, |
|
168 |
mk_var_names types, syn) |
|
169 |
end; |
|
170 |
||
171 |
(*test if all elements are recursive, i.e. if the type is empty*) |
|
172 |
||
173 |
fun non_empty (cs : ('a * 'b * dt_type list * 'c *'d) list) = |
|
174 |
not(forall (exists is_dtRek o #3) cs) orelse |
|
175 |
error("Empty datatype not allowed!"); |
|
176 |
||
177 |
val cons_list = map analyse_types cons_list'; |
|
178 |
val dummy = non_empty cons_list; |
|
179 |
val num_of_cons = length cons_list; |
|
180 |
||
181 |
(* Auxiliary functions to construct argument and equation lists *) |
|
182 |
||
183 |
(*generate 'var_n, ..., var_m'*) |
|
184 |
fun Args(var, delim, n, m) = |
|
185 |
space_implode delim (map (fn n => var^string_of_int(n)) (n upto m)); |
|
186 |
||
187 |
fun C_exp name vns = name ^ opt_parens(space_implode ") (" vns); |
|
188 |
||
189 |
(*Arg_eqs([x1,...,xn],[y1,...,yn]) = "x1 = y1 & ... & xn = yn" *) |
|
190 |
fun arg_eqs vns vns' = |
|
191 |
let fun mkeq(x,x') = x ^ "=" ^ x' |
|
192 |
in space_implode " & " (map mkeq (vns~~vns')) end; |
|
193 |
||
194 |
(*Pretty printers for type lists; |
|
195 |
pp_typlist1: parentheses, pp_typlist2: brackets*) |
|
196 |
fun pp_typ (dtVar s) = s |
|
197 |
| pp_typ (dtTyp (typvars, id)) = |
|
198 |
if null typvars then id else (pp_typlist1 typvars) ^ id |
|
199 |
| pp_typ (dtRek (typvars, id)) = (pp_typlist1 typvars) ^ id |
|
200 |
and |
|
201 |
pp_typlist' ts = commas (map pp_typ ts) |
|
202 |
and |
|
203 |
pp_typlist1 ts = if null ts then "" else parens (pp_typlist' ts); |
|
204 |
||
205 |
fun pp_typlist2 ts = if null ts then "" else brackets (pp_typlist' ts); |
|
206 |
||
207 |
(* Generate syntax translation for case rules *) |
|
208 |
fun calc_xrules c_nr y_nr ((_, name, _, vns, _) :: cs) = |
|
209 |
let val arity = length vns; |
|
210 |
val body = "z" ^ string_of_int(c_nr); |
|
211 |
val args1 = if arity=0 then "" |
|
980
33e3054b2871
removed unnecessary parentheses from the generated rules
clasohm
parents:
964
diff
changeset
|
212 |
else " " ^ Args ("y", " ", y_nr, y_nr+arity-1); |
923 | 213 |
val args2 = if arity=0 then "" |
964 | 214 |
else "(% " ^ Args ("y", " ", y_nr, y_nr+arity-1) |
923 | 215 |
^ ". "; |
216 |
val (rest1,rest2) = |
|
217 |
if null cs then ("","") |
|
218 |
else let val (h1, h2) = calc_xrules (c_nr+1) (y_nr+arity) cs |
|
219 |
in (" | " ^ h1, " " ^ h2) end; |
|
220 |
in (name ^ args1 ^ " => " ^ body ^ rest1, |
|
964 | 221 |
args2 ^ body ^ (if args2 = "" then "" else ")") ^ rest2) |
923 | 222 |
end |
223 |
| calc_xrules _ _ [] = raise Impossible; |
|
224 |
||
225 |
val xrules = |
|
226 |
let val (first_part, scnd_part) = calc_xrules 1 1 cons_list |
|
980
33e3054b2871
removed unnecessary parentheses from the generated rules
clasohm
parents:
964
diff
changeset
|
227 |
in [("logic", "case x of " ^ first_part) <-> |
33e3054b2871
removed unnecessary parentheses from the generated rules
clasohm
parents:
964
diff
changeset
|
228 |
("logic", tname ^ "_case " ^ scnd_part ^ " x")] |
923 | 229 |
end; |
230 |
||
231 |
(*type declarations for constructors*) |
|
232 |
fun const_type (id, _, typlist, _, syn) = |
|
233 |
(id, |
|
234 |
(if null typlist then "" else pp_typlist2 typlist ^ " => ") ^ |
|
235 |
pp_typlist1 typevars ^ tname, syn); |
|
236 |
||
237 |
||
238 |
fun assumpt (dtRek _ :: ts, v :: vs ,found) = |
|
239 |
let val h = if found then ";P(" ^ v ^ ")" else "[| P(" ^ v ^ ")" |
|
240 |
in h ^ (assumpt (ts, vs, true)) end |
|
241 |
| assumpt (t :: ts, v :: vs, found) = assumpt (ts, vs, found) |
|
242 |
| assumpt ([], [], found) = if found then "|] ==>" else "" |
|
243 |
| assumpt _ = raise Impossible; |
|
244 |
||
245 |
fun t_inducting ((_, name, types, vns, _) :: cs) = |
|
246 |
let |
|
247 |
val h = if null types then " P(" ^ name ^ ")" |
|
248 |
else " !!" ^ (space_implode " " vns) ^ "." ^ |
|
249 |
(assumpt (types, vns, false)) ^ |
|
250 |
"P(" ^ C_exp name vns ^ ")"; |
|
251 |
val rest = t_inducting cs; |
|
252 |
in if rest = "" then h else h ^ "; " ^ rest end |
|
253 |
| t_inducting [] = ""; |
|
254 |
||
255 |
fun t_induct cl typ_name = |
|
256 |
"[|" ^ t_inducting cl ^ "|] ==> P(" ^ typ_name ^ ")"; |
|
257 |
||
258 |
fun gen_typlist typevar f ((_, _, ts, _, _) :: cs) = |
|
259 |
let val h = if (length ts) > 0 |
|
260 |
then pp_typlist2(f ts) ^ "=>" |
|
261 |
else "" |
|
262 |
in h ^ typevar ^ "," ^ (gen_typlist typevar f cs) end |
|
263 |
| gen_typlist _ _ [] = ""; |
|
264 |
||
265 |
||
266 |
(* -------------------------------------------------------------------- *) |
|
267 |
(* The case constant and rules *) |
|
268 |
||
269 |
val t_case = tname ^ "_case"; |
|
270 |
||
271 |
fun case_rule n (id, name, _, vns, _) = |
|
980
33e3054b2871
removed unnecessary parentheses from the generated rules
clasohm
parents:
964
diff
changeset
|
272 |
let val args = if vns = [] then "" else " " ^ space_implode " " vns |
923 | 273 |
in (t_case ^ "_" ^ id, |
980
33e3054b2871
removed unnecessary parentheses from the generated rules
clasohm
parents:
964
diff
changeset
|
274 |
t_case ^ " " ^ Args("f", " ", 1, num_of_cons) |
33e3054b2871
removed unnecessary parentheses from the generated rules
clasohm
parents:
964
diff
changeset
|
275 |
^ " (" ^ name ^ args ^ ") = f"^string_of_int(n) ^ args) |
923 | 276 |
end |
277 |
||
278 |
fun case_rules n (c :: cs) = case_rule n c :: case_rules(n+1) cs |
|
279 |
| case_rules _ [] = []; |
|
280 |
||
281 |
val datatype_arity = length typevars; |
|
282 |
||
283 |
val types = [(tname, datatype_arity, NoSyn)]; |
|
284 |
||
285 |
val arities = |
|
286 |
let val term_list = replicate datatype_arity termS; |
|
287 |
in [(tname, term_list, termS)] |
|
288 |
end; |
|
289 |
||
290 |
val datatype_name = pp_typlist1 typevars ^ tname; |
|
291 |
||
292 |
val new_tvar_name = variant (map (fn dtVar s => s) typevars) "'z"; |
|
293 |
||
294 |
val case_const = |
|
295 |
(t_case, |
|
296 |
"[" ^ gen_typlist new_tvar_name I cons_list |
|
297 |
^ pp_typlist1 typevars ^ tname ^ "] =>" ^ new_tvar_name, |
|
298 |
NoSyn); |
|
299 |
||
300 |
val rules_case = case_rules 1 cons_list; |
|
301 |
||
302 |
(* -------------------------------------------------------------------- *) |
|
303 |
(* The prim-rec combinator *) |
|
304 |
||
305 |
val t_rec = tname ^ "_rec" |
|
306 |
||
307 |
(* adding type variables for dtRek types to end of list of dt_types *) |
|
308 |
||
309 |
fun add_reks ts = |
|
310 |
ts @ map (fn _ => dtVar new_tvar_name) (filter is_dtRek ts); |
|
311 |
||
312 |
(* positions of the dtRek types in a list of dt_types, starting from 1 *) |
|
313 |
fun rek_vars ts vns = map snd (filter (is_dtRek o fst) (ts ~~ vns)) |
|
314 |
||
315 |
fun rec_rule n (id,name,ts,vns,_) = |
|
964 | 316 |
let val args = opt_parens(space_implode ") (" vns) |
317 |
val fargs = opt_parens(Args("f", ") (", 1, num_of_cons)) |
|
318 |
fun rarg vn = t_rec ^ fargs ^ " (" ^ vn ^ ")" |
|
319 |
val rargs = opt_parens(space_implode ") (" |
|
320 |
(map rarg (rek_vars ts vns))) |
|
923 | 321 |
in |
964 | 322 |
(t_rec ^ "_" ^ id, |
323 |
t_rec ^ fargs ^ " (" ^ name ^ args ^ ") = f" |
|
324 |
^ string_of_int(n) ^ args ^ rargs) |
|
923 | 325 |
end |
326 |
||
327 |
fun rec_rules n (c::cs) = rec_rule n c :: rec_rules (n+1) cs |
|
328 |
| rec_rules _ [] = []; |
|
329 |
||
330 |
val rec_const = |
|
331 |
(t_rec, |
|
332 |
"[" ^ (gen_typlist new_tvar_name add_reks cons_list) |
|
333 |
^ (pp_typlist1 typevars) ^ tname ^ "] =>" ^ new_tvar_name, |
|
334 |
NoSyn); |
|
335 |
||
336 |
val rules_rec = rec_rules 1 cons_list |
|
337 |
||
338 |
(* -------------------------------------------------------------------- *) |
|
339 |
val consts = |
|
340 |
map const_type cons_list |
|
341 |
@ (if num_of_cons < dtK then [] |
|
342 |
else [(tname ^ "_ord", datatype_name ^ "=>nat", NoSyn)]) |
|
343 |
@ [case_const,rec_const]; |
|
344 |
||
345 |
||
346 |
fun Ci_ing ((id, name, _, vns, _) :: cs) = |
|
347 |
if null vns then Ci_ing cs |
|
348 |
else let val vns' = variantlist(vns,vns) |
|
349 |
in ("inject_" ^ id, |
|
350 |
"(" ^ (C_exp name vns) ^ "=" ^ (C_exp name vns') |
|
351 |
^ ") = (" ^ (arg_eqs vns vns') ^ ")") :: (Ci_ing cs) |
|
352 |
end |
|
353 |
| Ci_ing [] = []; |
|
354 |
||
355 |
fun Ci_negOne (id1,name1,_,vns1,_) (id2,name2,_,vns2,_) = |
|
356 |
let val vns2' = variantlist(vns2,vns1) |
|
357 |
val ax = C_exp name1 vns1 ^ "~=" ^ C_exp name2 vns2' |
|
358 |
in (id1 ^ "_not_" ^ id2, ax) end; |
|
359 |
||
360 |
fun Ci_neg1 [] = [] |
|
361 |
| Ci_neg1 (c1::cs) = (map (Ci_negOne c1) cs) @ Ci_neg1 cs; |
|
362 |
||
363 |
fun suc_expr n = |
|
364 |
if n=0 then "0" else "Suc(" ^ suc_expr(n-1) ^ ")"; |
|
365 |
||
366 |
fun Ci_neg2() = |
|
367 |
let val ord_t = tname ^ "_ord"; |
|
368 |
val cis = cons_list ~~ (0 upto (num_of_cons - 1)) |
|
369 |
fun Ci_neg2equals ((id, name, _, vns, _), n) = |
|
370 |
let val ax = ord_t ^ "(" ^ (C_exp name vns) ^ ") = " ^ (suc_expr n) |
|
371 |
in (ord_t ^ "_" ^ id, ax) end |
|
372 |
in (ord_t ^ "_distinct", ord_t^"(x) ~= "^ord_t^"(y) ==> x ~= y") :: |
|
373 |
(map Ci_neg2equals cis) |
|
374 |
end; |
|
375 |
||
376 |
val rules_distinct = if num_of_cons < dtK then Ci_neg1 cons_list |
|
377 |
else Ci_neg2(); |
|
378 |
||
379 |
val rules_inject = Ci_ing cons_list; |
|
380 |
||
381 |
val rule_induct = (tname ^ "_induct", t_induct cons_list tname); |
|
382 |
||
383 |
val rules = rule_induct :: |
|
384 |
(rules_inject @ rules_distinct @ rules_case @ rules_rec); |
|
385 |
||
386 |
fun add_primrec eqns thy = |
|
387 |
let val rec_comb = Const(t_rec,dummyT) |
|
388 |
val teqns = map (fn neq => snd(read_axm (sign_of thy) neq)) eqns |
|
389 |
val (fname,ls,fns) = trans_recs thy cons_list teqns |
|
390 |
val rhs = |
|
391 |
list_abs_free |
|
392 |
(ls @ [(tname,dummyT)] |
|
393 |
,list_comb(rec_comb |
|
394 |
, fns @ map Bound (0 ::(length ls downto 1)))); |
|
395 |
val sg = sign_of thy; |
|
396 |
val defpair = mk_defpair (Const(fname,dummyT),rhs) |
|
397 |
val defpairT as (_, _ $ Const(_,T) $ _ ) = inferT_axm sg defpair; |
|
398 |
val varT = Type.varifyT T; |
|
399 |
val ftyp = the (Sign.const_type sg fname); |
|
400 |
in |
|
401 |
if Type.typ_instance (#tsig(Sign.rep_sg sg), ftyp, varT) |
|
402 |
then add_defs_i [defpairT] thy |
|
403 |
else error("Primrec definition error: \ntype of " ^ fname |
|
404 |
^ " is not instance of type deduced from equations") |
|
405 |
end; |
|
406 |
||
407 |
in |
|
408 |
(thy |
|
409 |
|> add_types types |
|
410 |
|> add_arities arities |
|
411 |
|> add_consts consts |
|
412 |
|> add_trrules xrules |
|
413 |
|> add_axioms rules,add_primrec) |
|
414 |
end |
|
415 |
end |
|
416 |
end |
|
417 |
||
418 |
(* |
|
419 |
Informal description of functions used in datatype.ML for the Isabelle/HOL |
|
420 |
implementation of prim. rec. function definitions. (N. Voelker, Feb. 1995) |
|
421 |
||
422 |
* subst_apps (fname,rpos) pairs t: |
|
423 |
substitute the term |
|
424 |
fname(ls,xk,rs) |
|
425 |
by |
|
426 |
yk(ls,rs) |
|
427 |
in t for (xk,yk) in pairs, where rpos = length ls. |
|
428 |
Applied with : |
|
429 |
fname = function name |
|
430 |
rpos = position of recursive argument |
|
431 |
pairs = list of pairs (xk,yk), where |
|
432 |
xk are the rec. arguments of the constructor in the pattern, |
|
433 |
yk is a variable with name derived from xk |
|
434 |
t = rhs of equation |
|
435 |
||
436 |
* abst_rec (fname,rpos,tc,ls,cargs,rs,rhs) |
|
437 |
- filter recursive arguments from constructor arguments cargs, |
|
438 |
- perform substitutions on rhs, |
|
439 |
- derive list subs of new variable names yk for use in subst_apps, |
|
440 |
- abstract rhs with respect to cargs, subs, ls and rs. |
|
441 |
||
442 |
* dest_eq t |
|
443 |
destruct a term denoting an equation into lhs and rhs. |
|
444 |
||
445 |
* dest_req eq |
|
446 |
destruct an equation of the form |
|
447 |
name (vl1..vlrpos, Ci(vi1..vin), vr1..vrn) = rhs |
|
448 |
into |
|
449 |
- function name (name) |
|
450 |
- position of the first non-variable parameter (rpos) |
|
451 |
- the list of first rpos parameters (ls = [vl1..vlrpos]) |
|
452 |
- the constructor (fst( dest_Const c) = Ci) |
|
453 |
- the arguments of the constructor (cargs = [vi1..vin]) |
|
454 |
- the rest of the variables in the pattern (rs = [vr1..vrn]) |
|
455 |
- the right hand side of the equation (rhs). |
|
456 |
||
457 |
* check_and_sort (n,its) |
|
458 |
check that n = length its holds, and sort elements of its by |
|
459 |
first component. |
|
460 |
||
461 |
* trans_recs thy cs' (eq1::eqs) |
|
462 |
destruct eq1 into name1, rpos1, ls1, etc.. |
|
463 |
get constructor list with and without type (tcs resp. cs) from cs', |
|
464 |
for every equation: |
|
465 |
destruct it into (name,rpos,ls,c,cargs,rs,rhs) |
|
466 |
get typed constructor tc from c and tcs |
|
467 |
determine the index i of the constructor |
|
468 |
check function name and position of rec. argument by comparison |
|
469 |
with first equation |
|
470 |
check for repeated variable names in pattern |
|
471 |
derive function term f_i which is used as argument of the rec. combinator |
|
472 |
sort the terms f_i according to i and return them together |
|
473 |
with the function name and the parameter of the definition (ls). |
|
474 |
||
475 |
* Application: |
|
476 |
||
477 |
The rec. combinator is applied to the function terms resulting from |
|
478 |
trans_rec. This results in a function which takes the recursive arg. |
|
479 |
as first parameter and then the arguments corresponding to ls. The |
|
480 |
order of parameters is corrected by setting the rhs equal to |
|
481 |
||
482 |
list_abs_free |
|
483 |
(ls @ [(tname,dummyT)] |
|
484 |
,list_comb(rec_comb |
|
485 |
, fns @ map Bound (0 ::(length ls downto 1)))); |
|
486 |
||
487 |
Note the de-Bruijn indices counting the number of lambdas between the |
|
488 |
variable and its binding. |
|
489 |
*) |