src/HOL/datatype.ML
changeset 923 ff1574a81019
child 964 5f690b184f91
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/datatype.ML	Fri Mar 03 12:02:25 1995 +0100
@@ -0,0 +1,488 @@
+(* Title:       HOL/datatype.ML
+   ID:          $Id$
+   Author:      Max Breitling, Carsten Clasohm, Tobias Nipkow, Norbert Voelker
+   Copyright 1995 TU Muenchen
+*)
+
+
+(*used for constructor parameters*)
+datatype dt_type = dtVar of string |
+  dtTyp of dt_type list * string |
+  dtRek of dt_type list * string;
+
+structure Datatype =
+struct
+local 
+
+val mysort = sort;
+open ThyParse HOLogic;
+exception Impossible;
+exception RecError of string;
+
+val is_dtRek = (fn dtRek _ => true  |  _  => false);
+fun opt_parens s = if s = "" then "" else enclose "(" ")" s; 
+
+(* ----------------------------------------------------------------------- *)
+(* Derivation of the primrec combinator application from the equations     *)
+
+(* substitute fname(ls,xk,rs) by yk(ls,rs) in t for (xk,yk) in pairs  *) 
+
+fun subst_apps (_,_) [] t = t
+  | subst_apps (fname,rpos) pairs t =
+    let 
+    fun subst (Abs(a,T,t)) = Abs(a,T,subst t)
+      | subst (funct $ body) = 
+	let val (f,b) = strip_comb (funct$body)
+	in 
+	  if is_Const f andalso fst(dest_Const f) = fname 
+	    then 
+	      let val (ls,rest) = (take(rpos,b), drop(rpos,b));
+		val (xk,rs) = (hd rest,tl rest)
+		  handle LIST _ => raise RecError "not enough arguments \
+		   \ in recursive application on rhs"
+              in 
+		(case assoc (pairs,xk) of 
+		   None => raise RecError 
+		     ("illegal occurence of " ^ fname ^ " on rhs")
+		 | Some(U) => list_comb(U,map subst (ls @ rs)))
+	      end
+	  else list_comb(f, map subst b)
+	end
+      | subst(t) = t
+    in subst t end;
+  
+(* abstract rhs *)
+
+fun abst_rec (fname,rpos,tc,ls,cargs,rs,rhs) =       
+  let val rargs = (map fst o 
+		   (filter (fn (a,T) => is_dtRek T))) (cargs ~~ tc);
+      val subs = map (fn (s,T) => (s,dummyT))
+	           (rev(rename_wrt_term rhs rargs));
+      val subst_rhs = subst_apps (fname,rpos)
+	                (map Free rargs ~~ map Free subs) rhs;
+  in 
+      list_abs_free (cargs @ subs @ ls @ rs, subst_rhs) 
+  end;
+
+(* parsing the prim rec equations *)
+
+fun dest_eq ( Const("Trueprop",_) $ (Const ("op =",_) $ lhs $ rhs))
+                 = (lhs, rhs)
+   | dest_eq _ = raise RecError "not a proper equation"; 
+
+fun dest_rec eq = 
+  let val (lhs,rhs) = dest_eq eq; 
+    val (name,args) = strip_comb lhs; 
+    val (ls',rest)  = take_prefix is_Free args; 
+    val (middle,rs') = take_suffix is_Free rest;
+    val rpos = length ls';
+    val (c,cargs') = strip_comb (hd middle)
+      handle LIST "hd" => raise RecError "constructor missing";
+    val (ls,cargs,rs) = (map dest_Free ls', map dest_Free cargs'
+			 , map dest_Free rs')
+      handle TERM ("dest_Free",_) => 
+	  raise RecError "constructor has illegal argument in pattern";
+  in 
+    if length middle > 1 then 
+      raise RecError "more than one non-variable in pattern"
+    else if not(null(findrep (map fst (ls @ rs @ cargs)))) then 
+      raise RecError "repeated variable name in pattern" 
+	 else (fst(dest_Const name) handle TERM _ => 
+	       raise RecError "function is not declared as constant in theory"
+		 ,rpos,ls,fst( dest_Const c),cargs,rs,rhs)
+  end; 
+
+(* check function specified for all constructors and sort function terms *)
+
+fun check_and_sort (n,its) = 
+  if length its = n 
+    then map snd (mysort (fn ((i : int,_),(j,_)) => i<j) its)
+  else raise error "Primrec definition error:\n\
+   \Please give an equation for every constructor";
+
+(* translate rec equations into function arguments suitable for rec comb *)
+(* theory parameter needed for printing error messages                   *) 
+
+fun trans_recs _ _ [] = error("No primrec equations.")
+  | trans_recs thy cs' (eq1::eqs) = 
+    let val (name1,rpos1,ls1,_,_,_,_) = dest_rec eq1
+      handle RecError s =>
+	error("Primrec definition error: " ^ s ^ ":\n" 
+	      ^ "   " ^ Sign.string_of_term (sign_of thy) eq1);
+      val tcs = map (fn (_,c,T,_,_) => (c,T)) cs';  
+      val cs = map fst tcs;
+      fun trans_recs' _ [] = []
+        | trans_recs' cis (eq::eqs) = 
+	  let val (name,rpos,ls,c,cargs,rs,rhs) = dest_rec eq; 
+	    val tc = assoc(tcs,c);
+	    val i = (1 + find (c,cs))  handle LIST "find" => 0; 
+	  in
+	  if name <> name1 then 
+	    raise RecError "function names inconsistent"
+	  else if rpos <> rpos1 then 
+	    raise RecError "position of rec. argument inconsistent"
+	  else if i = 0 then 
+	    raise RecError "illegal argument in pattern" 
+	  else if i mem cis then
+	    raise RecError "constructor already occured as pattern "
+	       else (i,abst_rec (name,rpos,the tc,ls,cargs,rs,rhs))
+		     :: trans_recs' (i::cis) eqs 
+	  end
+	  handle RecError s =>
+	        error("Primrec definition error\n" ^ s ^ "\n" 
+		      ^ "   " ^ Sign.string_of_term (sign_of thy) eq);
+    in (  name1, ls1
+	, check_and_sort (length cs, trans_recs' [] (eq1::eqs)))
+    end ;
+
+in
+  fun add_datatype (typevars, tname, cons_list') thy = 
+    let
+      fun typid(dtRek(_,id)) = id
+        | typid(dtVar s) = implode (tl (explode s))
+        | typid(dtTyp(_,id)) = id;
+
+      fun index_vnames(vn::vns,tab) =
+            (case assoc(tab,vn) of
+               None => if vn mem vns
+                       then (vn^"1") :: index_vnames(vns,(vn,2)::tab)
+                       else vn :: index_vnames(vns,tab)
+             | Some(i) => (vn^(string_of_int i)) ::
+                          index_vnames(vns,(vn,i+1)::tab))
+        | index_vnames([],tab) = [];
+
+      fun mk_var_names types = index_vnames(map typid types,[]);
+
+      (*search for free type variables and convert recursive *)
+      fun analyse_types (cons, types, syn) =
+	let fun analyse(t as dtVar v) =
+                  if t mem typevars then t
+                  else error ("Free type variable " ^ v ^ " on rhs.")
+	      | analyse(dtTyp(typl,s)) =
+		  if tname <> s then dtTyp(analyses typl, s)
+                  else if typevars = typl then dtRek(typl, s)
+                       else error (s ^ " used in different ways")
+	      | analyse(dtRek _) = raise Impossible
+	    and analyses ts = map analyse ts;
+	in (cons, Syntax.const_name cons syn, analyses types,
+            mk_var_names types, syn)
+        end;
+
+     (*test if all elements are recursive, i.e. if the type is empty*)
+      
+      fun non_empty (cs : ('a * 'b * dt_type list * 'c *'d) list) = 
+	not(forall (exists is_dtRek o #3) cs) orelse
+	error("Empty datatype not allowed!");
+
+      val cons_list = map analyse_types cons_list';
+      val dummy = non_empty cons_list;
+      val num_of_cons = length cons_list;
+
+     (* Auxiliary functions to construct argument and equation lists *)
+
+     (*generate 'var_n, ..., var_m'*)
+      fun Args(var, delim, n, m) = 
+	space_implode delim (map (fn n => var^string_of_int(n)) (n upto m));
+
+      fun C_exp name vns = name ^ opt_parens(space_implode ") (" vns);
+
+     (*Arg_eqs([x1,...,xn],[y1,...,yn]) = "x1 = y1 & ... & xn = yn" *)
+      fun arg_eqs vns vns' =
+        let fun mkeq(x,x') = x ^ "=" ^ x'
+        in space_implode " & " (map mkeq (vns~~vns')) end;
+
+     (*Pretty printers for type lists;
+       pp_typlist1: parentheses, pp_typlist2: brackets*)
+      fun pp_typ (dtVar s) = s
+        | pp_typ (dtTyp (typvars, id)) =
+	  if null typvars then id else (pp_typlist1 typvars) ^ id
+        | pp_typ (dtRek (typvars, id)) = (pp_typlist1 typvars) ^ id
+      and
+	pp_typlist' ts = commas (map pp_typ ts)
+      and
+	pp_typlist1 ts = if null ts then "" else parens (pp_typlist' ts);
+
+      fun pp_typlist2 ts = if null ts then "" else brackets (pp_typlist' ts);
+
+     (* Generate syntax translation for case rules *)
+      fun calc_xrules c_nr y_nr ((_, name, _, vns, _) :: cs) = 
+	let val arity = length vns;
+	  val body  = "z" ^ string_of_int(c_nr);
+	  val args1 = if arity=0 then ""
+		      else parens (Args ("y", ") (", y_nr, y_nr+arity-1));
+	  val args2 = if arity=0 then ""
+		      else "% " ^ Args ("y", " ", y_nr, y_nr+arity-1) 
+			^ ". ";
+	  val (rest1,rest2) = 
+	    if null cs then ("","")
+	    else let val (h1, h2) = calc_xrules (c_nr+1) (y_nr+arity) cs
+	    in (" | " ^ h1, " " ^ h2) end;
+	in (name ^ args1 ^ " => " ^ body ^ rest1,
+            "(" ^ args2 ^ body ^ rest2 ^ ")")
+        end
+        | calc_xrules _ _ [] = raise Impossible;
+      
+      val xrules =
+	let val (first_part, scnd_part) = calc_xrules 1 1 cons_list
+	in  [("logic", "case x of " ^ first_part) <->
+	     ("logic", tname ^ "_case (" ^ scnd_part ^ ") x" )]
+	end;
+
+     (*type declarations for constructors*)
+      fun const_type (id, _, typlist, _, syn) =
+	(id,  
+	 (if null typlist then "" else pp_typlist2 typlist ^ " => ") ^
+	    pp_typlist1 typevars ^ tname, syn);
+
+
+      fun assumpt (dtRek _ :: ts, v :: vs ,found) =
+	let val h = if found then ";P(" ^ v ^ ")" else "[| P(" ^ v ^ ")"
+	in h ^ (assumpt (ts, vs, true)) end
+        | assumpt (t :: ts, v :: vs, found) = assumpt (ts, vs, found)
+      | assumpt ([], [], found) = if found then "|] ==>" else ""
+        | assumpt _ = raise Impossible;
+
+      fun t_inducting ((_, name, types, vns, _) :: cs) =
+	let
+	  val h = if null types then " P(" ^ name ^ ")"
+		  else " !!" ^ (space_implode " " vns) ^ "." ^
+		    (assumpt (types, vns, false)) ^
+                    "P(" ^ C_exp name vns ^ ")";
+	  val rest = t_inducting cs;
+	in if rest = "" then h else h ^ "; " ^ rest end
+        | t_inducting [] = "";
+
+      fun t_induct cl typ_name =
+        "[|" ^ t_inducting cl ^ "|] ==> P(" ^ typ_name ^ ")";
+
+      fun gen_typlist typevar f ((_, _, ts, _, _) :: cs) =
+	let val h = if (length ts) > 0
+		      then pp_typlist2(f ts) ^ "=>"
+		    else ""
+	in h ^ typevar ^  "," ^ (gen_typlist typevar f cs) end
+        | gen_typlist _ _ [] = "";
+
+
+(* -------------------------------------------------------------------- *)
+(* The case constant and rules 	        				*)
+ 		
+      val t_case = tname ^ "_case";
+
+      fun case_rule n (id, name, _, vns, _) =
+	let val args =  opt_parens(space_implode ") (" vns)
+	in (t_case ^ "_" ^ id,
+	    t_case ^ "(" ^ Args("f", ") (", 1, num_of_cons)
+	    ^ ") (" ^ name ^ args ^ ") = f"^string_of_int(n) ^ args)
+	end
+
+      fun case_rules n (c :: cs) = case_rule n c :: case_rules(n+1) cs
+        | case_rules _ [] = [];
+
+      val datatype_arity = length typevars;
+
+      val types = [(tname, datatype_arity, NoSyn)];
+
+      val arities = 
+        let val term_list = replicate datatype_arity termS;
+        in [(tname, term_list, termS)] 
+	end;
+
+      val datatype_name = pp_typlist1 typevars ^ tname;
+
+      val new_tvar_name = variant (map (fn dtVar s => s) typevars) "'z";
+
+      val case_const =
+	(t_case,
+	 "[" ^ gen_typlist new_tvar_name I cons_list 
+	 ^  pp_typlist1 typevars ^ tname ^ "] =>" ^ new_tvar_name,
+	 NoSyn);
+
+      val rules_case = case_rules 1 cons_list;
+
+(* -------------------------------------------------------------------- *)
+(* The prim-rec combinator						*) 
+
+      val t_rec = tname ^ "_rec"
+
+(* adding type variables for dtRek types to end of list of dt_types      *)   
+
+      fun add_reks ts = 
+	ts @ map (fn _ => dtVar new_tvar_name) (filter is_dtRek ts); 
+
+(* positions of the dtRek types in a list of dt_types, starting from 1  *)
+      fun rek_vars ts vns = map snd (filter (is_dtRek o fst) (ts ~~ vns))
+
+      fun rec_rule n (id,name,ts,vns,_) = 
+	let val args = space_implode ") (" vns
+	  val fargs = Args("f",") (",1,num_of_cons)
+	  fun rarg vn = ") (" ^ t_rec ^ parens(fargs ^ ") (" ^ vn)
+	  val rargs = implode (map rarg (rek_vars ts vns))
+	in
+	  ( t_rec ^ "_" ^ id
+	   , t_rec ^ parens(fargs ^  ") (" ^ name ^ (opt_parens args)) ^ " = f"
+	   ^ string_of_int(n) ^ opt_parens (args ^ rargs)) 
+	end
+
+      fun rec_rules n (c::cs) = rec_rule n c :: rec_rules (n+1) cs 
+	| rec_rules _ [] = [];
+
+      val rec_const =
+	(t_rec,
+	 "[" ^ (gen_typlist new_tvar_name add_reks cons_list) 
+	 ^ (pp_typlist1 typevars) ^ tname ^ "] =>" ^ new_tvar_name,
+	 NoSyn);
+
+      val rules_rec = rec_rules 1 cons_list
+
+(* -------------------------------------------------------------------- *)
+      val consts = 
+	map const_type cons_list
+	@ (if num_of_cons < dtK then []
+	   else [(tname ^ "_ord", datatype_name ^ "=>nat", NoSyn)])
+	@ [case_const,rec_const];
+
+
+      fun Ci_ing ((id, name, _, vns, _) :: cs) =
+	   if null vns then Ci_ing cs
+	   else let val vns' = variantlist(vns,vns)
+                in ("inject_" ^ id,
+		    "(" ^ (C_exp name vns) ^ "=" ^ (C_exp name vns')
+		    ^ ") = (" ^ (arg_eqs vns vns') ^ ")") :: (Ci_ing cs)
+                end
+	| Ci_ing [] = [];
+
+      fun Ci_negOne (id1,name1,_,vns1,_) (id2,name2,_,vns2,_) =
+            let val vns2' = variantlist(vns2,vns1)
+                val ax = C_exp name1 vns1 ^ "~=" ^ C_exp name2 vns2'
+	in (id1 ^ "_not_" ^ id2, ax) end;
+
+      fun Ci_neg1 [] = []
+	| Ci_neg1 (c1::cs) = (map (Ci_negOne c1) cs) @ Ci_neg1 cs;
+
+      fun suc_expr n = 
+	if n=0 then "0" else "Suc(" ^ suc_expr(n-1) ^ ")";
+
+      fun Ci_neg2() =
+	let val ord_t = tname ^ "_ord";
+	  val cis = cons_list ~~ (0 upto (num_of_cons - 1))
+	  fun Ci_neg2equals ((id, name, _, vns, _), n) =
+	    let val ax = ord_t ^ "(" ^ (C_exp name vns) ^ ") = " ^ (suc_expr n)
+	    in (ord_t ^ "_" ^ id, ax) end
+	in (ord_t ^ "_distinct", ord_t^"(x) ~= "^ord_t^"(y) ==> x ~= y") ::
+	  (map Ci_neg2equals cis)
+	end;
+
+      val rules_distinct = if num_of_cons < dtK then Ci_neg1 cons_list
+			   else Ci_neg2();
+
+      val rules_inject = Ci_ing cons_list;
+
+      val rule_induct = (tname ^ "_induct", t_induct cons_list tname);
+
+      val rules = rule_induct ::
+	(rules_inject @ rules_distinct @ rules_case @ rules_rec);
+
+      fun add_primrec eqns thy =
+	let val rec_comb = Const(t_rec,dummyT)
+	  val teqns = map (fn neq => snd(read_axm (sign_of thy) neq)) eqns
+	  val (fname,ls,fns) = trans_recs thy cons_list teqns
+	  val rhs = 
+	    list_abs_free
+	    (ls @ [(tname,dummyT)]
+	     ,list_comb(rec_comb
+			, fns @ map Bound (0 ::(length ls downto 1))));
+          val sg = sign_of thy;
+          val defpair =  mk_defpair (Const(fname,dummyT),rhs)
+	  val defpairT as (_, _ $ Const(_,T) $ _ ) = inferT_axm sg defpair;
+	  val varT = Type.varifyT T;
+          val ftyp = the (Sign.const_type sg fname);
+	in
+	  if Type.typ_instance (#tsig(Sign.rep_sg sg), ftyp, varT)
+	  then add_defs_i [defpairT] thy
+	  else error("Primrec definition error: \ntype of " ^ fname 
+		     ^ " is not instance of type deduced from equations")
+	end;
+
+    in 
+      (thy
+      |> add_types types
+      |> add_arities arities
+      |> add_consts consts
+      |> add_trrules xrules
+      |> add_axioms rules,add_primrec)
+    end
+end
+end
+
+(*
+Informal description of functions used in datatype.ML for the Isabelle/HOL
+implementation of prim. rec. function definitions. (N. Voelker, Feb. 1995) 
+
+* subst_apps (fname,rpos) pairs t:
+   substitute the term 
+       fname(ls,xk,rs) 
+   by 
+      yk(ls,rs) 
+   in t for (xk,yk) in pairs, where rpos = length ls. 
+   Applied with : 
+     fname = function name 
+     rpos = position of recursive argument 
+     pairs = list of pairs (xk,yk), where 
+          xk are the rec. arguments of the constructor in the pattern,
+          yk is a variable with name derived from xk 
+     t = rhs of equation 
+
+* abst_rec (fname,rpos,tc,ls,cargs,rs,rhs)
+  - filter recursive arguments from constructor arguments cargs,
+  - perform substitutions on rhs, 
+  - derive list subs of new variable names yk for use in subst_apps, 
+  - abstract rhs with respect to cargs, subs, ls and rs. 
+
+* dest_eq t 
+  destruct a term denoting an equation into lhs and rhs. 
+
+* dest_req eq 
+  destruct an equation of the form 
+      name (vl1..vlrpos, Ci(vi1..vin), vr1..vrn) = rhs
+  into 
+  - function name  (name) 
+  - position of the first non-variable parameter  (rpos)
+  - the list of first rpos parameters (ls = [vl1..vlrpos]) 
+  - the constructor (fst( dest_Const c) = Ci)
+  - the arguments of the constructor (cargs = [vi1..vin])
+  - the rest of the variables in the pattern (rs = [vr1..vrn])
+  - the right hand side of the equation (rhs).  
+ 
+* check_and_sort (n,its)
+  check that  n = length its holds, and sort elements of its by 
+  first component. 
+
+* trans_recs thy cs' (eq1::eqs)
+  destruct eq1 into name1, rpos1, ls1, etc.. 
+  get constructor list with and without type (tcs resp. cs) from cs',  
+  for every equation:  
+    destruct it into (name,rpos,ls,c,cargs,rs,rhs)
+    get typed constructor tc from c and tcs 
+    determine the index i of the constructor 
+    check function name and position of rec. argument by comparison
+    with first equation 
+    check for repeated variable names in pattern
+    derive function term f_i which is used as argument of the rec. combinator
+    sort the terms f_i according to i and return them together
+      with the function name and the parameter of the definition (ls). 
+
+* Application:
+
+  The rec. combinator is applied to the function terms resulting from
+  trans_rec. This results in a function which takes the recursive arg. 
+  as first parameter and then the arguments corresponding to ls. The
+  order of parameters is corrected by setting the rhs equal to 
+
+  list_abs_free
+	    (ls @ [(tname,dummyT)]
+	     ,list_comb(rec_comb
+			, fns @ map Bound (0 ::(length ls downto 1))));
+
+  Note the de-Bruijn indices counting the number of lambdas between the
+  variable and its binding. 
+*)