(* Title: HOL/datatype.ML
ID: $Id$
Author: Max Breitling, Carsten Clasohm, Tobias Nipkow, Norbert Voelker
Copyright 1995 TU Muenchen
*)
(*used for constructor parameters*)
datatype dt_type = dtVar of string |
dtTyp of dt_type list * string |
dtRek of dt_type list * string;
structure Datatype =
struct
local
val mysort = sort;
open ThyParse HOLogic;
exception Impossible;
exception RecError of string;
val is_dtRek = (fn dtRek _ => true | _ => false);
fun opt_parens s = if s = "" then "" else enclose "(" ")" s;
(* ----------------------------------------------------------------------- *)
(* Derivation of the primrec combinator application from the equations *)
(* substitute fname(ls,xk,rs) by yk(ls,rs) in t for (xk,yk) in pairs *)
fun subst_apps (_,_) [] t = t
| subst_apps (fname,rpos) pairs t =
let
fun subst (Abs(a,T,t)) = Abs(a,T,subst t)
| subst (funct $ body) =
let val (f,b) = strip_comb (funct$body)
in
if is_Const f andalso fst(dest_Const f) = fname
then
let val (ls,rest) = (take(rpos,b), drop(rpos,b));
val (xk,rs) = (hd rest,tl rest)
handle LIST _ => raise RecError "not enough arguments \
\ in recursive application on rhs"
in
(case assoc (pairs,xk) of
None => raise RecError
("illegal occurence of " ^ fname ^ " on rhs")
| Some(U) => list_comb(U,map subst (ls @ rs)))
end
else list_comb(f, map subst b)
end
| subst(t) = t
in subst t end;
(* abstract rhs *)
fun abst_rec (fname,rpos,tc,ls,cargs,rs,rhs) =
let val rargs = (map fst o
(filter (fn (a,T) => is_dtRek T))) (cargs ~~ tc);
val subs = map (fn (s,T) => (s,dummyT))
(rev(rename_wrt_term rhs rargs));
val subst_rhs = subst_apps (fname,rpos)
(map Free rargs ~~ map Free subs) rhs;
in
list_abs_free (cargs @ subs @ ls @ rs, subst_rhs)
end;
(* parsing the prim rec equations *)
fun dest_eq ( Const("Trueprop",_) $ (Const ("op =",_) $ lhs $ rhs))
= (lhs, rhs)
| dest_eq _ = raise RecError "not a proper equation";
fun dest_rec eq =
let val (lhs,rhs) = dest_eq eq;
val (name,args) = strip_comb lhs;
val (ls',rest) = take_prefix is_Free args;
val (middle,rs') = take_suffix is_Free rest;
val rpos = length ls';
val (c,cargs') = strip_comb (hd middle)
handle LIST "hd" => raise RecError "constructor missing";
val (ls,cargs,rs) = (map dest_Free ls', map dest_Free cargs'
, map dest_Free rs')
handle TERM ("dest_Free",_) =>
raise RecError "constructor has illegal argument in pattern";
in
if length middle > 1 then
raise RecError "more than one non-variable in pattern"
else if not(null(findrep (map fst (ls @ rs @ cargs)))) then
raise RecError "repeated variable name in pattern"
else (fst(dest_Const name) handle TERM _ =>
raise RecError "function is not declared as constant in theory"
,rpos,ls,fst( dest_Const c),cargs,rs,rhs)
end;
(* check function specified for all constructors and sort function terms *)
fun check_and_sort (n,its) =
if length its = n
then map snd (mysort (fn ((i : int,_),(j,_)) => i<j) its)
else raise error "Primrec definition error:\n\
\Please give an equation for every constructor";
(* translate rec equations into function arguments suitable for rec comb *)
(* theory parameter needed for printing error messages *)
fun trans_recs _ _ [] = error("No primrec equations.")
| trans_recs thy cs' (eq1::eqs) =
let val (name1,rpos1,ls1,_,_,_,_) = dest_rec eq1
handle RecError s =>
error("Primrec definition error: " ^ s ^ ":\n"
^ " " ^ Sign.string_of_term (sign_of thy) eq1);
val tcs = map (fn (_,c,T,_,_) => (c,T)) cs';
val cs = map fst tcs;
fun trans_recs' _ [] = []
| trans_recs' cis (eq::eqs) =
let val (name,rpos,ls,c,cargs,rs,rhs) = dest_rec eq;
val tc = assoc(tcs,c);
val i = (1 + find (c,cs)) handle LIST "find" => 0;
in
if name <> name1 then
raise RecError "function names inconsistent"
else if rpos <> rpos1 then
raise RecError "position of rec. argument inconsistent"
else if i = 0 then
raise RecError "illegal argument in pattern"
else if i mem cis then
raise RecError "constructor already occured as pattern "
else (i,abst_rec (name,rpos,the tc,ls,cargs,rs,rhs))
:: trans_recs' (i::cis) eqs
end
handle RecError s =>
error("Primrec definition error\n" ^ s ^ "\n"
^ " " ^ Sign.string_of_term (sign_of thy) eq);
in ( name1, ls1
, check_and_sort (length cs, trans_recs' [] (eq1::eqs)))
end ;
in
fun add_datatype (typevars, tname, cons_list') thy =
let
fun typid(dtRek(_,id)) = id
| typid(dtVar s) = implode (tl (explode s))
| typid(dtTyp(_,id)) = id;
fun index_vnames(vn::vns,tab) =
(case assoc(tab,vn) of
None => if vn mem vns
then (vn^"1") :: index_vnames(vns,(vn,2)::tab)
else vn :: index_vnames(vns,tab)
| Some(i) => (vn^(string_of_int i)) ::
index_vnames(vns,(vn,i+1)::tab))
| index_vnames([],tab) = [];
fun mk_var_names types = index_vnames(map typid types,[]);
(*search for free type variables and convert recursive *)
fun analyse_types (cons, types, syn) =
let fun analyse(t as dtVar v) =
if t mem typevars then t
else error ("Free type variable " ^ v ^ " on rhs.")
| analyse(dtTyp(typl,s)) =
if tname <> s then dtTyp(analyses typl, s)
else if typevars = typl then dtRek(typl, s)
else error (s ^ " used in different ways")
| analyse(dtRek _) = raise Impossible
and analyses ts = map analyse ts;
in (cons, Syntax.const_name cons syn, analyses types,
mk_var_names types, syn)
end;
(*test if all elements are recursive, i.e. if the type is empty*)
fun non_empty (cs : ('a * 'b * dt_type list * 'c *'d) list) =
not(forall (exists is_dtRek o #3) cs) orelse
error("Empty datatype not allowed!");
val cons_list = map analyse_types cons_list';
val dummy = non_empty cons_list;
val num_of_cons = length cons_list;
(* Auxiliary functions to construct argument and equation lists *)
(*generate 'var_n, ..., var_m'*)
fun Args(var, delim, n, m) =
space_implode delim (map (fn n => var^string_of_int(n)) (n upto m));
fun C_exp name vns = name ^ opt_parens(space_implode ") (" vns);
(*Arg_eqs([x1,...,xn],[y1,...,yn]) = "x1 = y1 & ... & xn = yn" *)
fun arg_eqs vns vns' =
let fun mkeq(x,x') = x ^ "=" ^ x'
in space_implode " & " (map mkeq (vns~~vns')) end;
(*Pretty printers for type lists;
pp_typlist1: parentheses, pp_typlist2: brackets*)
fun pp_typ (dtVar s) = s
| pp_typ (dtTyp (typvars, id)) =
if null typvars then id else (pp_typlist1 typvars) ^ id
| pp_typ (dtRek (typvars, id)) = (pp_typlist1 typvars) ^ id
and
pp_typlist' ts = commas (map pp_typ ts)
and
pp_typlist1 ts = if null ts then "" else parens (pp_typlist' ts);
fun pp_typlist2 ts = if null ts then "" else brackets (pp_typlist' ts);
(* Generate syntax translation for case rules *)
fun calc_xrules c_nr y_nr ((_, name, _, vns, _) :: cs) =
let val arity = length vns;
val body = "z" ^ string_of_int(c_nr);
val args1 = if arity=0 then ""
else parens (Args ("y", ") (", y_nr, y_nr+arity-1));
val args2 = if arity=0 then ""
else "% " ^ Args ("y", " ", y_nr, y_nr+arity-1)
^ ". ";
val (rest1,rest2) =
if null cs then ("","")
else let val (h1, h2) = calc_xrules (c_nr+1) (y_nr+arity) cs
in (" | " ^ h1, " " ^ h2) end;
in (name ^ args1 ^ " => " ^ body ^ rest1,
"(" ^ args2 ^ body ^ rest2 ^ ")")
end
| calc_xrules _ _ [] = raise Impossible;
val xrules =
let val (first_part, scnd_part) = calc_xrules 1 1 cons_list
in [("logic", "case x of " ^ first_part) <->
("logic", tname ^ "_case (" ^ scnd_part ^ ") x" )]
end;
(*type declarations for constructors*)
fun const_type (id, _, typlist, _, syn) =
(id,
(if null typlist then "" else pp_typlist2 typlist ^ " => ") ^
pp_typlist1 typevars ^ tname, syn);
fun assumpt (dtRek _ :: ts, v :: vs ,found) =
let val h = if found then ";P(" ^ v ^ ")" else "[| P(" ^ v ^ ")"
in h ^ (assumpt (ts, vs, true)) end
| assumpt (t :: ts, v :: vs, found) = assumpt (ts, vs, found)
| assumpt ([], [], found) = if found then "|] ==>" else ""
| assumpt _ = raise Impossible;
fun t_inducting ((_, name, types, vns, _) :: cs) =
let
val h = if null types then " P(" ^ name ^ ")"
else " !!" ^ (space_implode " " vns) ^ "." ^
(assumpt (types, vns, false)) ^
"P(" ^ C_exp name vns ^ ")";
val rest = t_inducting cs;
in if rest = "" then h else h ^ "; " ^ rest end
| t_inducting [] = "";
fun t_induct cl typ_name =
"[|" ^ t_inducting cl ^ "|] ==> P(" ^ typ_name ^ ")";
fun gen_typlist typevar f ((_, _, ts, _, _) :: cs) =
let val h = if (length ts) > 0
then pp_typlist2(f ts) ^ "=>"
else ""
in h ^ typevar ^ "," ^ (gen_typlist typevar f cs) end
| gen_typlist _ _ [] = "";
(* -------------------------------------------------------------------- *)
(* The case constant and rules *)
val t_case = tname ^ "_case";
fun case_rule n (id, name, _, vns, _) =
let val args = opt_parens(space_implode ") (" vns)
in (t_case ^ "_" ^ id,
t_case ^ "(" ^ Args("f", ") (", 1, num_of_cons)
^ ") (" ^ name ^ args ^ ") = f"^string_of_int(n) ^ args)
end
fun case_rules n (c :: cs) = case_rule n c :: case_rules(n+1) cs
| case_rules _ [] = [];
val datatype_arity = length typevars;
val types = [(tname, datatype_arity, NoSyn)];
val arities =
let val term_list = replicate datatype_arity termS;
in [(tname, term_list, termS)]
end;
val datatype_name = pp_typlist1 typevars ^ tname;
val new_tvar_name = variant (map (fn dtVar s => s) typevars) "'z";
val case_const =
(t_case,
"[" ^ gen_typlist new_tvar_name I cons_list
^ pp_typlist1 typevars ^ tname ^ "] =>" ^ new_tvar_name,
NoSyn);
val rules_case = case_rules 1 cons_list;
(* -------------------------------------------------------------------- *)
(* The prim-rec combinator *)
val t_rec = tname ^ "_rec"
(* adding type variables for dtRek types to end of list of dt_types *)
fun add_reks ts =
ts @ map (fn _ => dtVar new_tvar_name) (filter is_dtRek ts);
(* positions of the dtRek types in a list of dt_types, starting from 1 *)
fun rek_vars ts vns = map snd (filter (is_dtRek o fst) (ts ~~ vns))
fun rec_rule n (id,name,ts,vns,_) =
let val args = space_implode ") (" vns
val fargs = Args("f",") (",1,num_of_cons)
fun rarg vn = ") (" ^ t_rec ^ parens(fargs ^ ") (" ^ vn)
val rargs = implode (map rarg (rek_vars ts vns))
in
( t_rec ^ "_" ^ id
, t_rec ^ parens(fargs ^ ") (" ^ name ^ (opt_parens args)) ^ " = f"
^ string_of_int(n) ^ opt_parens (args ^ rargs))
end
fun rec_rules n (c::cs) = rec_rule n c :: rec_rules (n+1) cs
| rec_rules _ [] = [];
val rec_const =
(t_rec,
"[" ^ (gen_typlist new_tvar_name add_reks cons_list)
^ (pp_typlist1 typevars) ^ tname ^ "] =>" ^ new_tvar_name,
NoSyn);
val rules_rec = rec_rules 1 cons_list
(* -------------------------------------------------------------------- *)
val consts =
map const_type cons_list
@ (if num_of_cons < dtK then []
else [(tname ^ "_ord", datatype_name ^ "=>nat", NoSyn)])
@ [case_const,rec_const];
fun Ci_ing ((id, name, _, vns, _) :: cs) =
if null vns then Ci_ing cs
else let val vns' = variantlist(vns,vns)
in ("inject_" ^ id,
"(" ^ (C_exp name vns) ^ "=" ^ (C_exp name vns')
^ ") = (" ^ (arg_eqs vns vns') ^ ")") :: (Ci_ing cs)
end
| Ci_ing [] = [];
fun Ci_negOne (id1,name1,_,vns1,_) (id2,name2,_,vns2,_) =
let val vns2' = variantlist(vns2,vns1)
val ax = C_exp name1 vns1 ^ "~=" ^ C_exp name2 vns2'
in (id1 ^ "_not_" ^ id2, ax) end;
fun Ci_neg1 [] = []
| Ci_neg1 (c1::cs) = (map (Ci_negOne c1) cs) @ Ci_neg1 cs;
fun suc_expr n =
if n=0 then "0" else "Suc(" ^ suc_expr(n-1) ^ ")";
fun Ci_neg2() =
let val ord_t = tname ^ "_ord";
val cis = cons_list ~~ (0 upto (num_of_cons - 1))
fun Ci_neg2equals ((id, name, _, vns, _), n) =
let val ax = ord_t ^ "(" ^ (C_exp name vns) ^ ") = " ^ (suc_expr n)
in (ord_t ^ "_" ^ id, ax) end
in (ord_t ^ "_distinct", ord_t^"(x) ~= "^ord_t^"(y) ==> x ~= y") ::
(map Ci_neg2equals cis)
end;
val rules_distinct = if num_of_cons < dtK then Ci_neg1 cons_list
else Ci_neg2();
val rules_inject = Ci_ing cons_list;
val rule_induct = (tname ^ "_induct", t_induct cons_list tname);
val rules = rule_induct ::
(rules_inject @ rules_distinct @ rules_case @ rules_rec);
fun add_primrec eqns thy =
let val rec_comb = Const(t_rec,dummyT)
val teqns = map (fn neq => snd(read_axm (sign_of thy) neq)) eqns
val (fname,ls,fns) = trans_recs thy cons_list teqns
val rhs =
list_abs_free
(ls @ [(tname,dummyT)]
,list_comb(rec_comb
, fns @ map Bound (0 ::(length ls downto 1))));
val sg = sign_of thy;
val defpair = mk_defpair (Const(fname,dummyT),rhs)
val defpairT as (_, _ $ Const(_,T) $ _ ) = inferT_axm sg defpair;
val varT = Type.varifyT T;
val ftyp = the (Sign.const_type sg fname);
in
if Type.typ_instance (#tsig(Sign.rep_sg sg), ftyp, varT)
then add_defs_i [defpairT] thy
else error("Primrec definition error: \ntype of " ^ fname
^ " is not instance of type deduced from equations")
end;
in
(thy
|> add_types types
|> add_arities arities
|> add_consts consts
|> add_trrules xrules
|> add_axioms rules,add_primrec)
end
end
end
(*
Informal description of functions used in datatype.ML for the Isabelle/HOL
implementation of prim. rec. function definitions. (N. Voelker, Feb. 1995)
* subst_apps (fname,rpos) pairs t:
substitute the term
fname(ls,xk,rs)
by
yk(ls,rs)
in t for (xk,yk) in pairs, where rpos = length ls.
Applied with :
fname = function name
rpos = position of recursive argument
pairs = list of pairs (xk,yk), where
xk are the rec. arguments of the constructor in the pattern,
yk is a variable with name derived from xk
t = rhs of equation
* abst_rec (fname,rpos,tc,ls,cargs,rs,rhs)
- filter recursive arguments from constructor arguments cargs,
- perform substitutions on rhs,
- derive list subs of new variable names yk for use in subst_apps,
- abstract rhs with respect to cargs, subs, ls and rs.
* dest_eq t
destruct a term denoting an equation into lhs and rhs.
* dest_req eq
destruct an equation of the form
name (vl1..vlrpos, Ci(vi1..vin), vr1..vrn) = rhs
into
- function name (name)
- position of the first non-variable parameter (rpos)
- the list of first rpos parameters (ls = [vl1..vlrpos])
- the constructor (fst( dest_Const c) = Ci)
- the arguments of the constructor (cargs = [vi1..vin])
- the rest of the variables in the pattern (rs = [vr1..vrn])
- the right hand side of the equation (rhs).
* check_and_sort (n,its)
check that n = length its holds, and sort elements of its by
first component.
* trans_recs thy cs' (eq1::eqs)
destruct eq1 into name1, rpos1, ls1, etc..
get constructor list with and without type (tcs resp. cs) from cs',
for every equation:
destruct it into (name,rpos,ls,c,cargs,rs,rhs)
get typed constructor tc from c and tcs
determine the index i of the constructor
check function name and position of rec. argument by comparison
with first equation
check for repeated variable names in pattern
derive function term f_i which is used as argument of the rec. combinator
sort the terms f_i according to i and return them together
with the function name and the parameter of the definition (ls).
* Application:
The rec. combinator is applied to the function terms resulting from
trans_rec. This results in a function which takes the recursive arg.
as first parameter and then the arguments corresponding to ls. The
order of parameters is corrected by setting the rhs equal to
list_abs_free
(ls @ [(tname,dummyT)]
,list_comb(rec_comb
, fns @ map Bound (0 ::(length ls downto 1))));
Note the de-Bruijn indices counting the number of lambdas between the
variable and its binding.
*)