| author | bulwahn | 
| Wed, 19 Oct 2011 08:37:27 +0200 | |
| changeset 45181 | c8eb935e2e87 | 
| parent 32960 | 69916a850301 | 
| child 45602 | 2a858377c3d2 | 
| permissions | -rw-r--r-- | 
| 
32960
 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 
wenzelm 
parents: 
24893 
diff
changeset
 | 
1  | 
(* Title: ZF/Univ.thy  | 
| 1478 | 2  | 
Author: Lawrence C Paulson, Cambridge University Computer Laboratory  | 
| 0 | 3  | 
Copyright 1992 University of Cambridge  | 
4  | 
||
| 
32960
 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 
wenzelm 
parents: 
24893 
diff
changeset
 | 
5  | 
Standard notation for Vset(i) is V(i), but users might want V for a  | 
| 
 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 
wenzelm 
parents: 
24893 
diff
changeset
 | 
6  | 
variable.  | 
| 516 | 7  | 
|
8  | 
NOTE: univ(A) could be a translation; would simplify many proofs!  | 
|
| 6093 | 9  | 
But Ind_Syntax.univ refers to the constant "Univ.univ"  | 
| 0 | 10  | 
*)  | 
11  | 
||
| 13356 | 12  | 
header{*The Cumulative Hierarchy and a Small Universe for Recursive Types*}
 | 
13  | 
||
| 16417 | 14  | 
theory Univ imports Epsilon Cardinal begin  | 
| 3923 | 15  | 
|
| 24893 | 16  | 
definition  | 
17  | 
Vfrom :: "[i,i]=>i" where  | 
|
| 13220 | 18  | 
"Vfrom(A,i) == transrec(i, %x f. A Un (\<Union>y\<in>x. Pow(f`y)))"  | 
| 0 | 19  | 
|
| 24892 | 20  | 
abbreviation  | 
21  | 
Vset :: "i=>i" where  | 
|
22  | 
"Vset(x) == Vfrom(0,x)"  | 
|
| 0 | 23  | 
|
| 3923 | 24  | 
|
| 24893 | 25  | 
definition  | 
26  | 
Vrec :: "[i, [i,i]=>i] =>i" where  | 
|
| 13163 | 27  | 
"Vrec(a,H) == transrec(rank(a), %x g. lam z: Vset(succ(x)).  | 
| 
32960
 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 
wenzelm 
parents: 
24893 
diff
changeset
 | 
28  | 
H(z, lam w:Vset(x). g`rank(w)`w)) ` a"  | 
| 13163 | 29  | 
|
| 24893 | 30  | 
definition  | 
31  | 
Vrecursor :: "[[i,i]=>i, i] =>i" where  | 
|
| 13163 | 32  | 
"Vrecursor(H,a) == transrec(rank(a), %x g. lam z: Vset(succ(x)).  | 
| 
32960
 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 
wenzelm 
parents: 
24893 
diff
changeset
 | 
33  | 
H(lam w:Vset(x). g`rank(w)`w, z)) ` a"  | 
| 13163 | 34  | 
|
| 24893 | 35  | 
definition  | 
36  | 
univ :: "i=>i" where  | 
|
| 13163 | 37  | 
"univ(A) == Vfrom(A,nat)"  | 
38  | 
||
39  | 
||
| 13356 | 40  | 
subsection{*Immediate Consequences of the Definition of @{term "Vfrom(A,i)"}*}
 | 
41  | 
||
| 13163 | 42  | 
text{*NOT SUITABLE FOR REWRITING -- RECURSIVE!*}
 | 
| 13220 | 43  | 
lemma Vfrom: "Vfrom(A,i) = A Un (\<Union>j\<in>i. Pow(Vfrom(A,j)))"  | 
| 13269 | 44  | 
by (subst Vfrom_def [THEN def_transrec], simp)  | 
| 13163 | 45  | 
|
46  | 
subsubsection{* Monotonicity *}
 | 
|
47  | 
||
48  | 
lemma Vfrom_mono [rule_format]:  | 
|
| 13220 | 49  | 
"A<=B ==> \<forall>j. i<=j --> Vfrom(A,i) <= Vfrom(B,j)"  | 
| 13163 | 50  | 
apply (rule_tac a=i in eps_induct)  | 
51  | 
apply (rule impI [THEN allI])  | 
|
| 15481 | 52  | 
apply (subst Vfrom [of A])  | 
53  | 
apply (subst Vfrom [of B])  | 
|
| 13163 | 54  | 
apply (erule Un_mono)  | 
55  | 
apply (erule UN_mono, blast)  | 
|
56  | 
done  | 
|
57  | 
||
| 13220 | 58  | 
lemma VfromI: "[| a \<in> Vfrom(A,j); j<i |] ==> a \<in> Vfrom(A,i)"  | 
| 
13203
 
fac77a839aa2
Tidying up.  Mainly moving proofs from Main.thy to other (Isar) theory files.
 
paulson 
parents: 
13185 
diff
changeset
 | 
59  | 
by (blast dest: Vfrom_mono [OF subset_refl le_imp_subset [OF leI]])  | 
| 
 
fac77a839aa2
Tidying up.  Mainly moving proofs from Main.thy to other (Isar) theory files.
 
paulson 
parents: 
13185 
diff
changeset
 | 
60  | 
|
| 13163 | 61  | 
|
62  | 
subsubsection{* A fundamental equality: Vfrom does not require ordinals! *}
 | 
|
63  | 
||
| 15481 | 64  | 
|
65  | 
||
| 13163 | 66  | 
lemma Vfrom_rank_subset1: "Vfrom(A,x) <= Vfrom(A,rank(x))"  | 
| 15481 | 67  | 
proof (induct x rule: eps_induct)  | 
68  | 
fix x  | 
|
69  | 
assume "\<forall>y\<in>x. Vfrom(A,y) \<subseteq> Vfrom(A,rank(y))"  | 
|
70  | 
thus "Vfrom(A, x) \<subseteq> Vfrom(A, rank(x))"  | 
|
71  | 
by (simp add: Vfrom [of _ x] Vfrom [of _ "rank(x)"],  | 
|
72  | 
blast intro!: rank_lt [THEN ltD])  | 
|
73  | 
qed  | 
|
| 13163 | 74  | 
|
75  | 
lemma Vfrom_rank_subset2: "Vfrom(A,rank(x)) <= Vfrom(A,x)"  | 
|
76  | 
apply (rule_tac a=x in eps_induct)  | 
|
77  | 
apply (subst Vfrom)  | 
|
| 15481 | 78  | 
apply (subst Vfrom, rule subset_refl [THEN Un_mono])  | 
| 13163 | 79  | 
apply (rule UN_least)  | 
| 13288 | 80  | 
txt{*expand @{text "rank(x1) = (\<Union>y\<in>x1. succ(rank(y)))"} in assumptions*}
 | 
| 13163 | 81  | 
apply (erule rank [THEN equalityD1, THEN subsetD, THEN UN_E])  | 
82  | 
apply (rule subset_trans)  | 
|
83  | 
apply (erule_tac [2] UN_upper)  | 
|
84  | 
apply (rule subset_refl [THEN Vfrom_mono, THEN subset_trans, THEN Pow_mono])  | 
|
85  | 
apply (erule ltI [THEN le_imp_subset])  | 
|
86  | 
apply (rule Ord_rank [THEN Ord_succ])  | 
|
87  | 
apply (erule bspec, assumption)  | 
|
88  | 
done  | 
|
89  | 
||
90  | 
lemma Vfrom_rank_eq: "Vfrom(A,rank(x)) = Vfrom(A,x)"  | 
|
91  | 
apply (rule equalityI)  | 
|
92  | 
apply (rule Vfrom_rank_subset2)  | 
|
93  | 
apply (rule Vfrom_rank_subset1)  | 
|
94  | 
done  | 
|
95  | 
||
96  | 
||
| 13356 | 97  | 
subsection{* Basic Closure Properties *}
 | 
| 13163 | 98  | 
|
| 13220 | 99  | 
lemma zero_in_Vfrom: "y:x ==> 0 \<in> Vfrom(A,x)"  | 
| 13163 | 100  | 
by (subst Vfrom, blast)  | 
101  | 
||
102  | 
lemma i_subset_Vfrom: "i <= Vfrom(A,i)"  | 
|
103  | 
apply (rule_tac a=i in eps_induct)  | 
|
104  | 
apply (subst Vfrom, blast)  | 
|
105  | 
done  | 
|
106  | 
||
107  | 
lemma A_subset_Vfrom: "A <= Vfrom(A,i)"  | 
|
108  | 
apply (subst Vfrom)  | 
|
109  | 
apply (rule Un_upper1)  | 
|
110  | 
done  | 
|
111  | 
||
112  | 
lemmas A_into_Vfrom = A_subset_Vfrom [THEN subsetD]  | 
|
113  | 
||
| 13220 | 114  | 
lemma subset_mem_Vfrom: "a <= Vfrom(A,i) ==> a \<in> Vfrom(A,succ(i))"  | 
| 13163 | 115  | 
by (subst Vfrom, blast)  | 
116  | 
||
117  | 
subsubsection{* Finite sets and ordered pairs *}
 | 
|
118  | 
||
| 13220 | 119  | 
lemma singleton_in_Vfrom: "a \<in> Vfrom(A,i) ==> {a} \<in> Vfrom(A,succ(i))"
 | 
| 13163 | 120  | 
by (rule subset_mem_Vfrom, safe)  | 
121  | 
||
122  | 
lemma doubleton_in_Vfrom:  | 
|
| 13220 | 123  | 
     "[| a \<in> Vfrom(A,i);  b \<in> Vfrom(A,i) |] ==> {a,b} \<in> Vfrom(A,succ(i))"
 | 
| 13163 | 124  | 
by (rule subset_mem_Vfrom, safe)  | 
125  | 
||
126  | 
lemma Pair_in_Vfrom:  | 
|
| 13220 | 127  | 
"[| a \<in> Vfrom(A,i); b \<in> Vfrom(A,i) |] ==> <a,b> \<in> Vfrom(A,succ(succ(i)))"  | 
| 13163 | 128  | 
apply (unfold Pair_def)  | 
129  | 
apply (blast intro: doubleton_in_Vfrom)  | 
|
130  | 
done  | 
|
131  | 
||
| 13220 | 132  | 
lemma succ_in_Vfrom: "a <= Vfrom(A,i) ==> succ(a) \<in> Vfrom(A,succ(succ(i)))"  | 
| 13163 | 133  | 
apply (intro subset_mem_Vfrom succ_subsetI, assumption)  | 
134  | 
apply (erule subset_trans)  | 
|
135  | 
apply (rule Vfrom_mono [OF subset_refl subset_succI])  | 
|
136  | 
done  | 
|
137  | 
||
| 13356 | 138  | 
subsection{* 0, Successor and Limit Equations for @{term Vfrom} *}
 | 
| 13163 | 139  | 
|
140  | 
lemma Vfrom_0: "Vfrom(A,0) = A"  | 
|
141  | 
by (subst Vfrom, blast)  | 
|
142  | 
||
143  | 
lemma Vfrom_succ_lemma: "Ord(i) ==> Vfrom(A,succ(i)) = A Un Pow(Vfrom(A,i))"  | 
|
144  | 
apply (rule Vfrom [THEN trans])  | 
|
145  | 
apply (rule equalityI [THEN subst_context,  | 
|
146  | 
OF _ succI1 [THEN RepFunI, THEN Union_upper]])  | 
|
147  | 
apply (rule UN_least)  | 
|
148  | 
apply (rule subset_refl [THEN Vfrom_mono, THEN Pow_mono])  | 
|
149  | 
apply (erule ltI [THEN le_imp_subset])  | 
|
150  | 
apply (erule Ord_succ)  | 
|
151  | 
done  | 
|
152  | 
||
153  | 
lemma Vfrom_succ: "Vfrom(A,succ(i)) = A Un Pow(Vfrom(A,i))"  | 
|
154  | 
apply (rule_tac x1 = "succ (i)" in Vfrom_rank_eq [THEN subst])  | 
|
| 13784 | 155  | 
apply (rule_tac x1 = i in Vfrom_rank_eq [THEN subst])  | 
| 13163 | 156  | 
apply (subst rank_succ)  | 
157  | 
apply (rule Ord_rank [THEN Vfrom_succ_lemma])  | 
|
158  | 
done  | 
|
159  | 
||
160  | 
(*The premise distinguishes this from Vfrom(A,0); allowing X=0 forces  | 
|
| 13220 | 161  | 
the conclusion to be Vfrom(A,Union(X)) = A Un (\<Union>y\<in>X. Vfrom(A,y)) *)  | 
162  | 
lemma Vfrom_Union: "y:X ==> Vfrom(A,Union(X)) = (\<Union>y\<in>X. Vfrom(A,y))"  | 
|
| 13163 | 163  | 
apply (subst Vfrom)  | 
164  | 
apply (rule equalityI)  | 
|
165  | 
txt{*first inclusion*}
 | 
|
166  | 
apply (rule Un_least)  | 
|
167  | 
apply (rule A_subset_Vfrom [THEN subset_trans])  | 
|
168  | 
apply (rule UN_upper, assumption)  | 
|
169  | 
apply (rule UN_least)  | 
|
170  | 
apply (erule UnionE)  | 
|
171  | 
apply (rule subset_trans)  | 
|
172  | 
apply (erule_tac [2] UN_upper,  | 
|
173  | 
subst Vfrom, erule subset_trans [OF UN_upper Un_upper2])  | 
|
174  | 
txt{*opposite inclusion*}
 | 
|
175  | 
apply (rule UN_least)  | 
|
176  | 
apply (subst Vfrom, blast)  | 
|
177  | 
done  | 
|
178  | 
||
| 13356 | 179  | 
subsection{* @{term Vfrom} applied to Limit Ordinals *}
 | 
| 13163 | 180  | 
|
181  | 
(*NB. limit ordinals are non-empty:  | 
|
| 13220 | 182  | 
Vfrom(A,0) = A = A Un (\<Union>y\<in>0. Vfrom(A,y)) *)  | 
| 13163 | 183  | 
lemma Limit_Vfrom_eq:  | 
| 13220 | 184  | 
"Limit(i) ==> Vfrom(A,i) = (\<Union>y\<in>i. Vfrom(A,y))"  | 
| 13163 | 185  | 
apply (rule Limit_has_0 [THEN ltD, THEN Vfrom_Union, THEN subst], assumption)  | 
186  | 
apply (simp add: Limit_Union_eq)  | 
|
187  | 
done  | 
|
188  | 
||
189  | 
lemma Limit_VfromE:  | 
|
| 13220 | 190  | 
"[| a \<in> Vfrom(A,i); ~R ==> Limit(i);  | 
191  | 
!!x. [| x<i; a \<in> Vfrom(A,x) |] ==> R  | 
|
| 13163 | 192  | 
|] ==> R"  | 
193  | 
apply (rule classical)  | 
|
194  | 
apply (rule Limit_Vfrom_eq [THEN equalityD1, THEN subsetD, THEN UN_E])  | 
|
| 
13203
 
fac77a839aa2
Tidying up.  Mainly moving proofs from Main.thy to other (Isar) theory files.
 
paulson 
parents: 
13185 
diff
changeset
 | 
195  | 
prefer 2 apply assumption  | 
| 
 
fac77a839aa2
Tidying up.  Mainly moving proofs from Main.thy to other (Isar) theory files.
 
paulson 
parents: 
13185 
diff
changeset
 | 
196  | 
apply blast  | 
| 
 
fac77a839aa2
Tidying up.  Mainly moving proofs from Main.thy to other (Isar) theory files.
 
paulson 
parents: 
13185 
diff
changeset
 | 
197  | 
apply (blast intro: ltI Limit_is_Ord)  | 
| 13163 | 198  | 
done  | 
199  | 
||
200  | 
lemma singleton_in_VLimit:  | 
|
| 13220 | 201  | 
    "[| a \<in> Vfrom(A,i);  Limit(i) |] ==> {a} \<in> Vfrom(A,i)"
 | 
| 13163 | 202  | 
apply (erule Limit_VfromE, assumption)  | 
| 
13203
 
fac77a839aa2
Tidying up.  Mainly moving proofs from Main.thy to other (Isar) theory files.
 
paulson 
parents: 
13185 
diff
changeset
 | 
203  | 
apply (erule singleton_in_Vfrom [THEN VfromI])  | 
| 13163 | 204  | 
apply (blast intro: Limit_has_succ)  | 
205  | 
done  | 
|
206  | 
||
207  | 
lemmas Vfrom_UnI1 =  | 
|
208  | 
Un_upper1 [THEN subset_refl [THEN Vfrom_mono, THEN subsetD], standard]  | 
|
209  | 
lemmas Vfrom_UnI2 =  | 
|
210  | 
Un_upper2 [THEN subset_refl [THEN Vfrom_mono, THEN subsetD], standard]  | 
|
211  | 
||
212  | 
text{*Hard work is finding a single j:i such that {a,b}<=Vfrom(A,j)*}
 | 
|
213  | 
lemma doubleton_in_VLimit:  | 
|
| 13220 | 214  | 
    "[| a \<in> Vfrom(A,i);  b \<in> Vfrom(A,i);  Limit(i) |] ==> {a,b} \<in> Vfrom(A,i)"
 | 
| 13163 | 215  | 
apply (erule Limit_VfromE, assumption)  | 
216  | 
apply (erule Limit_VfromE, assumption)  | 
|
| 
13203
 
fac77a839aa2
Tidying up.  Mainly moving proofs from Main.thy to other (Isar) theory files.
 
paulson 
parents: 
13185 
diff
changeset
 | 
217  | 
apply (blast intro: VfromI [OF doubleton_in_Vfrom]  | 
| 13163 | 218  | 
Vfrom_UnI1 Vfrom_UnI2 Limit_has_succ Un_least_lt)  | 
219  | 
done  | 
|
220  | 
||
221  | 
lemma Pair_in_VLimit:  | 
|
| 13220 | 222  | 
"[| a \<in> Vfrom(A,i); b \<in> Vfrom(A,i); Limit(i) |] ==> <a,b> \<in> Vfrom(A,i)"  | 
| 13163 | 223  | 
txt{*Infer that a, b occur at ordinals x,xa < i.*}
 | 
224  | 
apply (erule Limit_VfromE, assumption)  | 
|
225  | 
apply (erule Limit_VfromE, assumption)  | 
|
226  | 
txt{*Infer that succ(succ(x Un xa)) < i *}
 | 
|
| 
13203
 
fac77a839aa2
Tidying up.  Mainly moving proofs from Main.thy to other (Isar) theory files.
 
paulson 
parents: 
13185 
diff
changeset
 | 
227  | 
apply (blast intro: VfromI [OF Pair_in_Vfrom]  | 
| 
 
fac77a839aa2
Tidying up.  Mainly moving proofs from Main.thy to other (Isar) theory files.
 
paulson 
parents: 
13185 
diff
changeset
 | 
228  | 
Vfrom_UnI1 Vfrom_UnI2 Limit_has_succ Un_least_lt)  | 
| 13163 | 229  | 
done  | 
230  | 
||
231  | 
lemma product_VLimit: "Limit(i) ==> Vfrom(A,i) * Vfrom(A,i) <= Vfrom(A,i)"  | 
|
232  | 
by (blast intro: Pair_in_VLimit)  | 
|
233  | 
||
234  | 
lemmas Sigma_subset_VLimit =  | 
|
235  | 
subset_trans [OF Sigma_mono product_VLimit]  | 
|
236  | 
||
237  | 
lemmas nat_subset_VLimit =  | 
|
238  | 
subset_trans [OF nat_le_Limit [THEN le_imp_subset] i_subset_Vfrom]  | 
|
239  | 
||
| 13220 | 240  | 
lemma nat_into_VLimit: "[| n: nat; Limit(i) |] ==> n \<in> Vfrom(A,i)"  | 
| 13163 | 241  | 
by (blast intro: nat_subset_VLimit [THEN subsetD])  | 
242  | 
||
| 13356 | 243  | 
subsubsection{* Closure under Disjoint Union *}
 | 
| 13163 | 244  | 
|
245  | 
lemmas zero_in_VLimit = Limit_has_0 [THEN ltD, THEN zero_in_Vfrom, standard]  | 
|
246  | 
||
| 13220 | 247  | 
lemma one_in_VLimit: "Limit(i) ==> 1 \<in> Vfrom(A,i)"  | 
| 13163 | 248  | 
by (blast intro: nat_into_VLimit)  | 
249  | 
||
250  | 
lemma Inl_in_VLimit:  | 
|
| 13220 | 251  | 
"[| a \<in> Vfrom(A,i); Limit(i) |] ==> Inl(a) \<in> Vfrom(A,i)"  | 
| 13163 | 252  | 
apply (unfold Inl_def)  | 
253  | 
apply (blast intro: zero_in_VLimit Pair_in_VLimit)  | 
|
254  | 
done  | 
|
255  | 
||
256  | 
lemma Inr_in_VLimit:  | 
|
| 13220 | 257  | 
"[| b \<in> Vfrom(A,i); Limit(i) |] ==> Inr(b) \<in> Vfrom(A,i)"  | 
| 13163 | 258  | 
apply (unfold Inr_def)  | 
259  | 
apply (blast intro: one_in_VLimit Pair_in_VLimit)  | 
|
260  | 
done  | 
|
261  | 
||
262  | 
lemma sum_VLimit: "Limit(i) ==> Vfrom(C,i)+Vfrom(C,i) <= Vfrom(C,i)"  | 
|
263  | 
by (blast intro!: Inl_in_VLimit Inr_in_VLimit)  | 
|
264  | 
||
265  | 
lemmas sum_subset_VLimit = subset_trans [OF sum_mono sum_VLimit]  | 
|
266  | 
||
267  | 
||
268  | 
||
| 13356 | 269  | 
subsection{* Properties assuming @{term "Transset(A)"} *}
 | 
| 13163 | 270  | 
|
271  | 
lemma Transset_Vfrom: "Transset(A) ==> Transset(Vfrom(A,i))"  | 
|
272  | 
apply (rule_tac a=i in eps_induct)  | 
|
273  | 
apply (subst Vfrom)  | 
|
274  | 
apply (blast intro!: Transset_Union_family Transset_Un Transset_Pow)  | 
|
275  | 
done  | 
|
276  | 
||
277  | 
lemma Transset_Vfrom_succ:  | 
|
278  | 
"Transset(A) ==> Vfrom(A, succ(i)) = Pow(Vfrom(A,i))"  | 
|
279  | 
apply (rule Vfrom_succ [THEN trans])  | 
|
280  | 
apply (rule equalityI [OF _ Un_upper2])  | 
|
281  | 
apply (rule Un_least [OF _ subset_refl])  | 
|
282  | 
apply (rule A_subset_Vfrom [THEN subset_trans])  | 
|
283  | 
apply (erule Transset_Vfrom [THEN Transset_iff_Pow [THEN iffD1]])  | 
|
284  | 
done  | 
|
285  | 
||
286  | 
lemma Transset_Pair_subset: "[| <a,b> <= C; Transset(C) |] ==> a: C & b: C"  | 
|
287  | 
by (unfold Pair_def Transset_def, blast)  | 
|
288  | 
||
289  | 
lemma Transset_Pair_subset_VLimit:  | 
|
290  | 
"[| <a,b> <= Vfrom(A,i); Transset(A); Limit(i) |]  | 
|
| 13220 | 291  | 
==> <a,b> \<in> Vfrom(A,i)"  | 
| 13163 | 292  | 
apply (erule Transset_Pair_subset [THEN conjE])  | 
293  | 
apply (erule Transset_Vfrom)  | 
|
294  | 
apply (blast intro: Pair_in_VLimit)  | 
|
295  | 
done  | 
|
296  | 
||
297  | 
lemma Union_in_Vfrom:  | 
|
| 13220 | 298  | 
"[| X \<in> Vfrom(A,j); Transset(A) |] ==> Union(X) \<in> Vfrom(A, succ(j))"  | 
| 13163 | 299  | 
apply (drule Transset_Vfrom)  | 
300  | 
apply (rule subset_mem_Vfrom)  | 
|
301  | 
apply (unfold Transset_def, blast)  | 
|
302  | 
done  | 
|
303  | 
||
304  | 
lemma Union_in_VLimit:  | 
|
| 13220 | 305  | 
"[| X \<in> Vfrom(A,i); Limit(i); Transset(A) |] ==> Union(X) \<in> Vfrom(A,i)"  | 
| 13163 | 306  | 
apply (rule Limit_VfromE, assumption+)  | 
| 
13203
 
fac77a839aa2
Tidying up.  Mainly moving proofs from Main.thy to other (Isar) theory files.
 
paulson 
parents: 
13185 
diff
changeset
 | 
307  | 
apply (blast intro: Limit_has_succ VfromI Union_in_Vfrom)  | 
| 13163 | 308  | 
done  | 
309  | 
||
310  | 
||
311  | 
(*** Closure under product/sum applied to elements -- thus Vfrom(A,i)  | 
|
312  | 
is a model of simple type theory provided A is a transitive set  | 
|
313  | 
and i is a limit ordinal  | 
|
314  | 
***)  | 
|
315  | 
||
316  | 
text{*General theorem for membership in Vfrom(A,i) when i is a limit ordinal*}
 | 
|
317  | 
lemma in_VLimit:  | 
|
| 13220 | 318  | 
"[| a \<in> Vfrom(A,i); b \<in> Vfrom(A,i); Limit(i);  | 
319  | 
!!x y j. [| j<i; 1:j; x \<in> Vfrom(A,j); y \<in> Vfrom(A,j) |]  | 
|
320  | 
==> EX k. h(x,y) \<in> Vfrom(A,k) & k<i |]  | 
|
321  | 
==> h(a,b) \<in> Vfrom(A,i)"  | 
|
| 13163 | 322  | 
txt{*Infer that a, b occur at ordinals x,xa < i.*}
 | 
323  | 
apply (erule Limit_VfromE, assumption)  | 
|
324  | 
apply (erule Limit_VfromE, assumption, atomize)  | 
|
325  | 
apply (drule_tac x=a in spec)  | 
|
326  | 
apply (drule_tac x=b in spec)  | 
|
327  | 
apply (drule_tac x="x Un xa Un 2" in spec)  | 
|
| 
13203
 
fac77a839aa2
Tidying up.  Mainly moving proofs from Main.thy to other (Isar) theory files.
 
paulson 
parents: 
13185 
diff
changeset
 | 
328  | 
apply (simp add: Un_least_lt_iff lt_Ord Vfrom_UnI1 Vfrom_UnI2)  | 
| 
 
fac77a839aa2
Tidying up.  Mainly moving proofs from Main.thy to other (Isar) theory files.
 
paulson 
parents: 
13185 
diff
changeset
 | 
329  | 
apply (blast intro: Limit_has_0 Limit_has_succ VfromI)  | 
| 13163 | 330  | 
done  | 
331  | 
||
| 13356 | 332  | 
subsubsection{* Products *}
 | 
| 13163 | 333  | 
|
334  | 
lemma prod_in_Vfrom:  | 
|
| 13220 | 335  | 
"[| a \<in> Vfrom(A,j); b \<in> Vfrom(A,j); Transset(A) |]  | 
336  | 
==> a*b \<in> Vfrom(A, succ(succ(succ(j))))"  | 
|
| 13163 | 337  | 
apply (drule Transset_Vfrom)  | 
338  | 
apply (rule subset_mem_Vfrom)  | 
|
339  | 
apply (unfold Transset_def)  | 
|
340  | 
apply (blast intro: Pair_in_Vfrom)  | 
|
341  | 
done  | 
|
342  | 
||
343  | 
lemma prod_in_VLimit:  | 
|
| 13220 | 344  | 
"[| a \<in> Vfrom(A,i); b \<in> Vfrom(A,i); Limit(i); Transset(A) |]  | 
345  | 
==> a*b \<in> Vfrom(A,i)"  | 
|
| 13163 | 346  | 
apply (erule in_VLimit, assumption+)  | 
347  | 
apply (blast intro: prod_in_Vfrom Limit_has_succ)  | 
|
348  | 
done  | 
|
349  | 
||
| 13356 | 350  | 
subsubsection{* Disjoint Sums, or Quine Ordered Pairs *}
 | 
| 13163 | 351  | 
|
352  | 
lemma sum_in_Vfrom:  | 
|
| 13220 | 353  | 
"[| a \<in> Vfrom(A,j); b \<in> Vfrom(A,j); Transset(A); 1:j |]  | 
354  | 
==> a+b \<in> Vfrom(A, succ(succ(succ(j))))"  | 
|
| 13163 | 355  | 
apply (unfold sum_def)  | 
356  | 
apply (drule Transset_Vfrom)  | 
|
357  | 
apply (rule subset_mem_Vfrom)  | 
|
358  | 
apply (unfold Transset_def)  | 
|
359  | 
apply (blast intro: zero_in_Vfrom Pair_in_Vfrom i_subset_Vfrom [THEN subsetD])  | 
|
360  | 
done  | 
|
361  | 
||
362  | 
lemma sum_in_VLimit:  | 
|
| 13220 | 363  | 
"[| a \<in> Vfrom(A,i); b \<in> Vfrom(A,i); Limit(i); Transset(A) |]  | 
364  | 
==> a+b \<in> Vfrom(A,i)"  | 
|
| 13163 | 365  | 
apply (erule in_VLimit, assumption+)  | 
366  | 
apply (blast intro: sum_in_Vfrom Limit_has_succ)  | 
|
367  | 
done  | 
|
368  | 
||
| 13356 | 369  | 
subsubsection{* Function Space! *}
 | 
| 13163 | 370  | 
|
371  | 
lemma fun_in_Vfrom:  | 
|
| 13220 | 372  | 
"[| a \<in> Vfrom(A,j); b \<in> Vfrom(A,j); Transset(A) |] ==>  | 
373  | 
a->b \<in> Vfrom(A, succ(succ(succ(succ(j)))))"  | 
|
| 13163 | 374  | 
apply (unfold Pi_def)  | 
375  | 
apply (drule Transset_Vfrom)  | 
|
376  | 
apply (rule subset_mem_Vfrom)  | 
|
377  | 
apply (rule Collect_subset [THEN subset_trans])  | 
|
378  | 
apply (subst Vfrom)  | 
|
379  | 
apply (rule subset_trans [THEN subset_trans])  | 
|
380  | 
apply (rule_tac [3] Un_upper2)  | 
|
381  | 
apply (rule_tac [2] succI1 [THEN UN_upper])  | 
|
382  | 
apply (rule Pow_mono)  | 
|
383  | 
apply (unfold Transset_def)  | 
|
384  | 
apply (blast intro: Pair_in_Vfrom)  | 
|
385  | 
done  | 
|
386  | 
||
387  | 
lemma fun_in_VLimit:  | 
|
| 13220 | 388  | 
"[| a \<in> Vfrom(A,i); b \<in> Vfrom(A,i); Limit(i); Transset(A) |]  | 
389  | 
==> a->b \<in> Vfrom(A,i)"  | 
|
| 13163 | 390  | 
apply (erule in_VLimit, assumption+)  | 
391  | 
apply (blast intro: fun_in_Vfrom Limit_has_succ)  | 
|
392  | 
done  | 
|
393  | 
||
394  | 
lemma Pow_in_Vfrom:  | 
|
| 13220 | 395  | 
"[| a \<in> Vfrom(A,j); Transset(A) |] ==> Pow(a) \<in> Vfrom(A, succ(succ(j)))"  | 
| 13163 | 396  | 
apply (drule Transset_Vfrom)  | 
397  | 
apply (rule subset_mem_Vfrom)  | 
|
398  | 
apply (unfold Transset_def)  | 
|
399  | 
apply (subst Vfrom, blast)  | 
|
400  | 
done  | 
|
401  | 
||
402  | 
lemma Pow_in_VLimit:  | 
|
| 13220 | 403  | 
"[| a \<in> Vfrom(A,i); Limit(i); Transset(A) |] ==> Pow(a) \<in> Vfrom(A,i)"  | 
| 
13203
 
fac77a839aa2
Tidying up.  Mainly moving proofs from Main.thy to other (Isar) theory files.
 
paulson 
parents: 
13185 
diff
changeset
 | 
404  | 
by (blast elim: Limit_VfromE intro: Limit_has_succ Pow_in_Vfrom VfromI)  | 
| 13163 | 405  | 
|
406  | 
||
| 13356 | 407  | 
subsection{* The Set @{term "Vset(i)"} *}
 | 
| 13163 | 408  | 
|
| 13220 | 409  | 
lemma Vset: "Vset(i) = (\<Union>j\<in>i. Pow(Vset(j)))"  | 
| 13163 | 410  | 
by (subst Vfrom, blast)  | 
411  | 
||
412  | 
lemmas Vset_succ = Transset_0 [THEN Transset_Vfrom_succ, standard]  | 
|
413  | 
lemmas Transset_Vset = Transset_0 [THEN Transset_Vfrom, standard]  | 
|
414  | 
||
| 13356 | 415  | 
subsubsection{* Characterisation of the elements of @{term "Vset(i)"} *}
 | 
| 13163 | 416  | 
|
| 13220 | 417  | 
lemma VsetD [rule_format]: "Ord(i) ==> \<forall>b. b \<in> Vset(i) --> rank(b) < i"  | 
| 13163 | 418  | 
apply (erule trans_induct)  | 
419  | 
apply (subst Vset, safe)  | 
|
420  | 
apply (subst rank)  | 
|
421  | 
apply (blast intro: ltI UN_succ_least_lt)  | 
|
422  | 
done  | 
|
423  | 
||
424  | 
lemma VsetI_lemma [rule_format]:  | 
|
| 13220 | 425  | 
"Ord(i) ==> \<forall>b. rank(b) \<in> i --> b \<in> Vset(i)"  | 
| 13163 | 426  | 
apply (erule trans_induct)  | 
427  | 
apply (rule allI)  | 
|
428  | 
apply (subst Vset)  | 
|
429  | 
apply (blast intro!: rank_lt [THEN ltD])  | 
|
430  | 
done  | 
|
431  | 
||
| 13220 | 432  | 
lemma VsetI: "rank(x)<i ==> x \<in> Vset(i)"  | 
| 13163 | 433  | 
by (blast intro: VsetI_lemma elim: ltE)  | 
434  | 
||
435  | 
text{*Merely a lemma for the next result*}
 | 
|
| 13220 | 436  | 
lemma Vset_Ord_rank_iff: "Ord(i) ==> b \<in> Vset(i) <-> rank(b) < i"  | 
| 13163 | 437  | 
by (blast intro: VsetD VsetI)  | 
438  | 
||
| 13220 | 439  | 
lemma Vset_rank_iff [simp]: "b \<in> Vset(a) <-> rank(b) < rank(a)"  | 
| 13163 | 440  | 
apply (rule Vfrom_rank_eq [THEN subst])  | 
441  | 
apply (rule Ord_rank [THEN Vset_Ord_rank_iff])  | 
|
442  | 
done  | 
|
443  | 
||
444  | 
text{*This is rank(rank(a)) = rank(a) *}
 | 
|
445  | 
declare Ord_rank [THEN rank_of_Ord, simp]  | 
|
446  | 
||
447  | 
lemma rank_Vset: "Ord(i) ==> rank(Vset(i)) = i"  | 
|
448  | 
apply (subst rank)  | 
|
449  | 
apply (rule equalityI, safe)  | 
|
450  | 
apply (blast intro: VsetD [THEN ltD])  | 
|
451  | 
apply (blast intro: VsetD [THEN ltD] Ord_trans)  | 
|
452  | 
apply (blast intro: i_subset_Vfrom [THEN subsetD]  | 
|
453  | 
Ord_in_Ord [THEN rank_of_Ord, THEN ssubst])  | 
|
454  | 
done  | 
|
455  | 
||
| 13269 | 456  | 
lemma Finite_Vset: "i \<in> nat ==> Finite(Vset(i))";  | 
457  | 
apply (erule nat_induct)  | 
|
458  | 
apply (simp add: Vfrom_0)  | 
|
459  | 
apply (simp add: Vset_succ)  | 
|
460  | 
done  | 
|
461  | 
||
| 13356 | 462  | 
subsubsection{* Reasoning about Sets in Terms of Their Elements' Ranks *}
 | 
| 0 | 463  | 
|
| 13163 | 464  | 
lemma arg_subset_Vset_rank: "a <= Vset(rank(a))"  | 
465  | 
apply (rule subsetI)  | 
|
466  | 
apply (erule rank_lt [THEN VsetI])  | 
|
467  | 
done  | 
|
468  | 
||
469  | 
lemma Int_Vset_subset:  | 
|
470  | 
"[| !!i. Ord(i) ==> a Int Vset(i) <= b |] ==> a <= b"  | 
|
471  | 
apply (rule subset_trans)  | 
|
472  | 
apply (rule Int_greatest [OF subset_refl arg_subset_Vset_rank])  | 
|
473  | 
apply (blast intro: Ord_rank)  | 
|
474  | 
done  | 
|
475  | 
||
| 13356 | 476  | 
subsubsection{* Set Up an Environment for Simplification *}
 | 
| 13163 | 477  | 
|
478  | 
lemma rank_Inl: "rank(a) < rank(Inl(a))"  | 
|
479  | 
apply (unfold Inl_def)  | 
|
480  | 
apply (rule rank_pair2)  | 
|
481  | 
done  | 
|
482  | 
||
483  | 
lemma rank_Inr: "rank(a) < rank(Inr(a))"  | 
|
484  | 
apply (unfold Inr_def)  | 
|
485  | 
apply (rule rank_pair2)  | 
|
486  | 
done  | 
|
487  | 
||
488  | 
lemmas rank_rls = rank_Inl rank_Inr rank_pair1 rank_pair2  | 
|
489  | 
||
| 13356 | 490  | 
subsubsection{* Recursion over Vset Levels! *}
 | 
| 13163 | 491  | 
|
492  | 
text{*NOT SUITABLE FOR REWRITING: recursive!*}
 | 
|
493  | 
lemma Vrec: "Vrec(a,H) = H(a, lam x:Vset(rank(a)). Vrec(x,H))"  | 
|
494  | 
apply (unfold Vrec_def)  | 
|
| 13269 | 495  | 
apply (subst transrec, simp)  | 
| 
13175
 
81082cfa5618
new definition of "apply" and new simprule "beta_if"
 
paulson 
parents: 
13163 
diff
changeset
 | 
496  | 
apply (rule refl [THEN lam_cong, THEN subst_context], simp add: lt_def)  | 
| 13163 | 497  | 
done  | 
498  | 
||
499  | 
text{*This form avoids giant explosions in proofs.  NOTE USE OF == *}
 | 
|
500  | 
lemma def_Vrec:  | 
|
501  | 
"[| !!x. h(x)==Vrec(x,H) |] ==>  | 
|
502  | 
h(a) = H(a, lam x: Vset(rank(a)). h(x))"  | 
|
503  | 
apply simp  | 
|
504  | 
apply (rule Vrec)  | 
|
505  | 
done  | 
|
506  | 
||
507  | 
text{*NOT SUITABLE FOR REWRITING: recursive!*}
 | 
|
508  | 
lemma Vrecursor:  | 
|
509  | 
"Vrecursor(H,a) = H(lam x:Vset(rank(a)). Vrecursor(H,x), a)"  | 
|
510  | 
apply (unfold Vrecursor_def)  | 
|
511  | 
apply (subst transrec, simp)  | 
|
| 
13175
 
81082cfa5618
new definition of "apply" and new simprule "beta_if"
 
paulson 
parents: 
13163 
diff
changeset
 | 
512  | 
apply (rule refl [THEN lam_cong, THEN subst_context], simp add: lt_def)  | 
| 13163 | 513  | 
done  | 
514  | 
||
515  | 
text{*This form avoids giant explosions in proofs.  NOTE USE OF == *}
 | 
|
516  | 
lemma def_Vrecursor:  | 
|
517  | 
"h == Vrecursor(H) ==> h(a) = H(lam x: Vset(rank(a)). h(x), a)"  | 
|
518  | 
apply simp  | 
|
519  | 
apply (rule Vrecursor)  | 
|
520  | 
done  | 
|
521  | 
||
522  | 
||
| 13356 | 523  | 
subsection{* The Datatype Universe: @{term "univ(A)"} *}
 | 
| 13163 | 524  | 
|
525  | 
lemma univ_mono: "A<=B ==> univ(A) <= univ(B)"  | 
|
526  | 
apply (unfold univ_def)  | 
|
527  | 
apply (erule Vfrom_mono)  | 
|
528  | 
apply (rule subset_refl)  | 
|
529  | 
done  | 
|
530  | 
||
531  | 
lemma Transset_univ: "Transset(A) ==> Transset(univ(A))"  | 
|
532  | 
apply (unfold univ_def)  | 
|
533  | 
apply (erule Transset_Vfrom)  | 
|
534  | 
done  | 
|
535  | 
||
| 13356 | 536  | 
subsubsection{* The Set @{term"univ(A)"} as a Limit *}
 | 
| 13163 | 537  | 
|
| 13220 | 538  | 
lemma univ_eq_UN: "univ(A) = (\<Union>i\<in>nat. Vfrom(A,i))"  | 
| 13163 | 539  | 
apply (unfold univ_def)  | 
540  | 
apply (rule Limit_nat [THEN Limit_Vfrom_eq])  | 
|
541  | 
done  | 
|
542  | 
||
| 13220 | 543  | 
lemma subset_univ_eq_Int: "c <= univ(A) ==> c = (\<Union>i\<in>nat. c Int Vfrom(A,i))"  | 
| 13163 | 544  | 
apply (rule subset_UN_iff_eq [THEN iffD1])  | 
545  | 
apply (erule univ_eq_UN [THEN subst])  | 
|
546  | 
done  | 
|
547  | 
||
548  | 
lemma univ_Int_Vfrom_subset:  | 
|
549  | 
"[| a <= univ(X);  | 
|
550  | 
!!i. i:nat ==> a Int Vfrom(X,i) <= b |]  | 
|
551  | 
==> a <= b"  | 
|
552  | 
apply (subst subset_univ_eq_Int, assumption)  | 
|
553  | 
apply (rule UN_least, simp)  | 
|
554  | 
done  | 
|
555  | 
||
556  | 
lemma univ_Int_Vfrom_eq:  | 
|
557  | 
"[| a <= univ(X); b <= univ(X);  | 
|
558  | 
!!i. i:nat ==> a Int Vfrom(X,i) = b Int Vfrom(X,i)  | 
|
559  | 
|] ==> a = b"  | 
|
560  | 
apply (rule equalityI)  | 
|
561  | 
apply (rule univ_Int_Vfrom_subset, assumption)  | 
|
562  | 
apply (blast elim: equalityCE)  | 
|
563  | 
apply (rule univ_Int_Vfrom_subset, assumption)  | 
|
564  | 
apply (blast elim: equalityCE)  | 
|
565  | 
done  | 
|
566  | 
||
| 13356 | 567  | 
subsection{* Closure Properties for @{term "univ(A)"}*}
 | 
| 13163 | 568  | 
|
| 13220 | 569  | 
lemma zero_in_univ: "0 \<in> univ(A)"  | 
| 13163 | 570  | 
apply (unfold univ_def)  | 
571  | 
apply (rule nat_0I [THEN zero_in_Vfrom])  | 
|
572  | 
done  | 
|
573  | 
||
| 13255 | 574  | 
lemma zero_subset_univ: "{0} <= univ(A)"
 | 
575  | 
by (blast intro: zero_in_univ)  | 
|
576  | 
||
| 13163 | 577  | 
lemma A_subset_univ: "A <= univ(A)"  | 
578  | 
apply (unfold univ_def)  | 
|
579  | 
apply (rule A_subset_Vfrom)  | 
|
580  | 
done  | 
|
581  | 
||
582  | 
lemmas A_into_univ = A_subset_univ [THEN subsetD, standard]  | 
|
583  | 
||
| 13356 | 584  | 
subsubsection{* Closure under Unordered and Ordered Pairs *}
 | 
| 13163 | 585  | 
|
| 13220 | 586  | 
lemma singleton_in_univ: "a: univ(A) ==> {a} \<in> univ(A)"
 | 
| 13163 | 587  | 
apply (unfold univ_def)  | 
588  | 
apply (blast intro: singleton_in_VLimit Limit_nat)  | 
|
589  | 
done  | 
|
590  | 
||
591  | 
lemma doubleton_in_univ:  | 
|
| 13220 | 592  | 
    "[| a: univ(A);  b: univ(A) |] ==> {a,b} \<in> univ(A)"
 | 
| 13163 | 593  | 
apply (unfold univ_def)  | 
594  | 
apply (blast intro: doubleton_in_VLimit Limit_nat)  | 
|
595  | 
done  | 
|
596  | 
||
597  | 
lemma Pair_in_univ:  | 
|
| 13220 | 598  | 
"[| a: univ(A); b: univ(A) |] ==> <a,b> \<in> univ(A)"  | 
| 13163 | 599  | 
apply (unfold univ_def)  | 
600  | 
apply (blast intro: Pair_in_VLimit Limit_nat)  | 
|
601  | 
done  | 
|
602  | 
||
603  | 
lemma Union_in_univ:  | 
|
| 13220 | 604  | 
"[| X: univ(A); Transset(A) |] ==> Union(X) \<in> univ(A)"  | 
| 13163 | 605  | 
apply (unfold univ_def)  | 
606  | 
apply (blast intro: Union_in_VLimit Limit_nat)  | 
|
607  | 
done  | 
|
608  | 
||
609  | 
lemma product_univ: "univ(A)*univ(A) <= univ(A)"  | 
|
610  | 
apply (unfold univ_def)  | 
|
611  | 
apply (rule Limit_nat [THEN product_VLimit])  | 
|
612  | 
done  | 
|
613  | 
||
614  | 
||
| 13356 | 615  | 
subsubsection{* The Natural Numbers *}
 | 
| 13163 | 616  | 
|
617  | 
lemma nat_subset_univ: "nat <= univ(A)"  | 
|
618  | 
apply (unfold univ_def)  | 
|
619  | 
apply (rule i_subset_Vfrom)  | 
|
620  | 
done  | 
|
621  | 
||
622  | 
text{* n:nat ==> n:univ(A) *}
 | 
|
623  | 
lemmas nat_into_univ = nat_subset_univ [THEN subsetD, standard]  | 
|
624  | 
||
| 13356 | 625  | 
subsubsection{* Instances for 1 and 2 *}
 | 
| 13163 | 626  | 
|
| 13220 | 627  | 
lemma one_in_univ: "1 \<in> univ(A)"  | 
| 13163 | 628  | 
apply (unfold univ_def)  | 
629  | 
apply (rule Limit_nat [THEN one_in_VLimit])  | 
|
630  | 
done  | 
|
631  | 
||
632  | 
text{*unused!*}
 | 
|
| 13220 | 633  | 
lemma two_in_univ: "2 \<in> univ(A)"  | 
| 13163 | 634  | 
by (blast intro: nat_into_univ)  | 
635  | 
||
636  | 
lemma bool_subset_univ: "bool <= univ(A)"  | 
|
637  | 
apply (unfold bool_def)  | 
|
638  | 
apply (blast intro!: zero_in_univ one_in_univ)  | 
|
639  | 
done  | 
|
640  | 
||
641  | 
lemmas bool_into_univ = bool_subset_univ [THEN subsetD, standard]  | 
|
642  | 
||
643  | 
||
| 13356 | 644  | 
subsubsection{* Closure under Disjoint Union *}
 | 
| 13163 | 645  | 
|
| 13220 | 646  | 
lemma Inl_in_univ: "a: univ(A) ==> Inl(a) \<in> univ(A)"  | 
| 13163 | 647  | 
apply (unfold univ_def)  | 
648  | 
apply (erule Inl_in_VLimit [OF _ Limit_nat])  | 
|
649  | 
done  | 
|
650  | 
||
| 13220 | 651  | 
lemma Inr_in_univ: "b: univ(A) ==> Inr(b) \<in> univ(A)"  | 
| 13163 | 652  | 
apply (unfold univ_def)  | 
653  | 
apply (erule Inr_in_VLimit [OF _ Limit_nat])  | 
|
654  | 
done  | 
|
655  | 
||
656  | 
lemma sum_univ: "univ(C)+univ(C) <= univ(C)"  | 
|
657  | 
apply (unfold univ_def)  | 
|
658  | 
apply (rule Limit_nat [THEN sum_VLimit])  | 
|
659  | 
done  | 
|
660  | 
||
661  | 
lemmas sum_subset_univ = subset_trans [OF sum_mono sum_univ]  | 
|
662  | 
||
| 13255 | 663  | 
lemma Sigma_subset_univ:  | 
664  | 
"[|A \<subseteq> univ(D); \<And>x. x \<in> A \<Longrightarrow> B(x) \<subseteq> univ(D)|] ==> Sigma(A,B) \<subseteq> univ(D)"  | 
|
665  | 
apply (simp add: univ_def)  | 
|
666  | 
apply (blast intro: Sigma_subset_VLimit del: subsetI)  | 
|
667  | 
done  | 
|
| 13163 | 668  | 
|
| 13255 | 669  | 
|
670  | 
(*Closure under binary union -- use Un_least  | 
|
671  | 
Closure under Collect -- use Collect_subset [THEN subset_trans]  | 
|
672  | 
Closure under RepFun -- use RepFun_subset *)  | 
|
| 13163 | 673  | 
|
674  | 
||
675  | 
subsection{* Finite Branching Closure Properties *}
 | 
|
676  | 
||
| 13356 | 677  | 
subsubsection{* Closure under Finite Powerset *}
 | 
| 13163 | 678  | 
|
679  | 
lemma Fin_Vfrom_lemma:  | 
|
680  | 
"[| b: Fin(Vfrom(A,i)); Limit(i) |] ==> EX j. b <= Vfrom(A,j) & j<i"  | 
|
681  | 
apply (erule Fin_induct)  | 
|
682  | 
apply (blast dest!: Limit_has_0, safe)  | 
|
683  | 
apply (erule Limit_VfromE, assumption)  | 
|
684  | 
apply (blast intro!: Un_least_lt intro: Vfrom_UnI1 Vfrom_UnI2)  | 
|
685  | 
done  | 
|
| 0 | 686  | 
|
| 13163 | 687  | 
lemma Fin_VLimit: "Limit(i) ==> Fin(Vfrom(A,i)) <= Vfrom(A,i)"  | 
688  | 
apply (rule subsetI)  | 
|
689  | 
apply (drule Fin_Vfrom_lemma, safe)  | 
|
690  | 
apply (rule Vfrom [THEN ssubst])  | 
|
691  | 
apply (blast dest!: ltD)  | 
|
692  | 
done  | 
|
693  | 
||
694  | 
lemmas Fin_subset_VLimit = subset_trans [OF Fin_mono Fin_VLimit]  | 
|
695  | 
||
696  | 
lemma Fin_univ: "Fin(univ(A)) <= univ(A)"  | 
|
697  | 
apply (unfold univ_def)  | 
|
698  | 
apply (rule Limit_nat [THEN Fin_VLimit])  | 
|
699  | 
done  | 
|
700  | 
||
| 13356 | 701  | 
subsubsection{* Closure under Finite Powers: Functions from a Natural Number *}
 | 
| 13163 | 702  | 
|
703  | 
lemma nat_fun_VLimit:  | 
|
704  | 
"[| n: nat; Limit(i) |] ==> n -> Vfrom(A,i) <= Vfrom(A,i)"  | 
|
705  | 
apply (erule nat_fun_subset_Fin [THEN subset_trans])  | 
|
706  | 
apply (blast del: subsetI  | 
|
707  | 
intro: subset_refl Fin_subset_VLimit Sigma_subset_VLimit nat_subset_VLimit)  | 
|
708  | 
done  | 
|
709  | 
||
710  | 
lemmas nat_fun_subset_VLimit = subset_trans [OF Pi_mono nat_fun_VLimit]  | 
|
711  | 
||
712  | 
lemma nat_fun_univ: "n: nat ==> n -> univ(A) <= univ(A)"  | 
|
713  | 
apply (unfold univ_def)  | 
|
714  | 
apply (erule nat_fun_VLimit [OF _ Limit_nat])  | 
|
715  | 
done  | 
|
716  | 
||
717  | 
||
| 13356 | 718  | 
subsubsection{* Closure under Finite Function Space *}
 | 
| 13163 | 719  | 
|
720  | 
text{*General but seldom-used version; normally the domain is fixed*}
 | 
|
721  | 
lemma FiniteFun_VLimit1:  | 
|
722  | 
"Limit(i) ==> Vfrom(A,i) -||> Vfrom(A,i) <= Vfrom(A,i)"  | 
|
723  | 
apply (rule FiniteFun.dom_subset [THEN subset_trans])  | 
|
724  | 
apply (blast del: subsetI  | 
|
725  | 
intro: Fin_subset_VLimit Sigma_subset_VLimit subset_refl)  | 
|
726  | 
done  | 
|
727  | 
||
728  | 
lemma FiniteFun_univ1: "univ(A) -||> univ(A) <= univ(A)"  | 
|
729  | 
apply (unfold univ_def)  | 
|
730  | 
apply (rule Limit_nat [THEN FiniteFun_VLimit1])  | 
|
731  | 
done  | 
|
732  | 
||
733  | 
text{*Version for a fixed domain*}
 | 
|
734  | 
lemma FiniteFun_VLimit:  | 
|
735  | 
"[| W <= Vfrom(A,i); Limit(i) |] ==> W -||> Vfrom(A,i) <= Vfrom(A,i)"  | 
|
736  | 
apply (rule subset_trans)  | 
|
737  | 
apply (erule FiniteFun_mono [OF _ subset_refl])  | 
|
738  | 
apply (erule FiniteFun_VLimit1)  | 
|
739  | 
done  | 
|
740  | 
||
741  | 
lemma FiniteFun_univ:  | 
|
742  | 
"W <= univ(A) ==> W -||> univ(A) <= univ(A)"  | 
|
743  | 
apply (unfold univ_def)  | 
|
744  | 
apply (erule FiniteFun_VLimit [OF _ Limit_nat])  | 
|
745  | 
done  | 
|
746  | 
||
747  | 
lemma FiniteFun_in_univ:  | 
|
| 13220 | 748  | 
"[| f: W -||> univ(A); W <= univ(A) |] ==> f \<in> univ(A)"  | 
| 13163 | 749  | 
by (erule FiniteFun_univ [THEN subsetD], assumption)  | 
750  | 
||
751  | 
text{*Remove <= from the rule above*}
 | 
|
752  | 
lemmas FiniteFun_in_univ' = FiniteFun_in_univ [OF _ subsetI]  | 
|
753  | 
||
754  | 
||
755  | 
subsection{** For QUniv.  Properties of Vfrom analogous to the "take-lemma" **}
 | 
|
756  | 
||
| 13356 | 757  | 
text{* Intersecting a*b with Vfrom... *}
 | 
| 13163 | 758  | 
|
759  | 
text{*This version says a, b exist one level down, in the smaller set Vfrom(X,i)*}
 | 
|
760  | 
lemma doubleton_in_Vfrom_D:  | 
|
| 13220 | 761  | 
     "[| {a,b} \<in> Vfrom(X,succ(i));  Transset(X) |]
 | 
762  | 
==> a \<in> Vfrom(X,i) & b \<in> Vfrom(X,i)"  | 
|
| 13163 | 763  | 
by (drule Transset_Vfrom_succ [THEN equalityD1, THEN subsetD, THEN PowD],  | 
764  | 
assumption, fast)  | 
|
765  | 
||
766  | 
text{*This weaker version says a, b exist at the same level*}
 | 
|
767  | 
lemmas Vfrom_doubleton_D = Transset_Vfrom [THEN Transset_doubleton_D, standard]  | 
|
768  | 
||
| 13220 | 769  | 
(** Using only the weaker theorem would prove <a,b> \<in> Vfrom(X,i)  | 
770  | 
implies a, b \<in> Vfrom(X,i), which is useless for induction.  | 
|
771  | 
Using only the stronger theorem would prove <a,b> \<in> Vfrom(X,succ(succ(i)))  | 
|
772  | 
implies a, b \<in> Vfrom(X,i), leaving the succ(i) case untreated.  | 
|
| 13163 | 773  | 
The combination gives a reduction by precisely one level, which is  | 
774  | 
most convenient for proofs.  | 
|
775  | 
**)  | 
|
776  | 
||
777  | 
lemma Pair_in_Vfrom_D:  | 
|
| 13220 | 778  | 
"[| <a,b> \<in> Vfrom(X,succ(i)); Transset(X) |]  | 
779  | 
==> a \<in> Vfrom(X,i) & b \<in> Vfrom(X,i)"  | 
|
| 13163 | 780  | 
apply (unfold Pair_def)  | 
781  | 
apply (blast dest!: doubleton_in_Vfrom_D Vfrom_doubleton_D)  | 
|
782  | 
done  | 
|
783  | 
||
784  | 
lemma product_Int_Vfrom_subset:  | 
|
785  | 
"Transset(X) ==>  | 
|
786  | 
(a*b) Int Vfrom(X, succ(i)) <= (a Int Vfrom(X,i)) * (b Int Vfrom(X,i))"  | 
|
787  | 
by (blast dest!: Pair_in_Vfrom_D)  | 
|
788  | 
||
789  | 
||
790  | 
ML  | 
|
791  | 
{*
 | 
|
| 24893 | 792  | 
val rank_ss = @{simpset} addsimps [@{thm VsetI}] 
 | 
793  | 
              addsimps @{thms rank_rls} @ (@{thms rank_rls} RLN (2, [@{thm lt_trans}]));
 | 
|
| 13163 | 794  | 
*}  | 
| 0 | 795  | 
|
796  | 
end  |