author | wenzelm |
Mon, 18 Sep 2006 19:12:43 +0200 | |
changeset 20571 | cbcca0d536bf |
parent 19762 | 957bcf55c98f |
child 21210 | c17fd2df4e9e |
permissions | -rw-r--r-- |
17441 | 1 |
(* Title: CTT/Arith.thy |
0 | 2 |
ID: $Id$ |
1474 | 3 |
Author: Lawrence C Paulson, Cambridge University Computer Laboratory |
0 | 4 |
Copyright 1991 University of Cambridge |
5 |
*) |
|
6 |
||
19761 | 7 |
header {* Elementary arithmetic *} |
17441 | 8 |
|
9 |
theory Arith |
|
10 |
imports Bool |
|
11 |
begin |
|
0 | 12 |
|
19761 | 13 |
subsection {* Arithmetic operators and their definitions *} |
17441 | 14 |
|
19762 | 15 |
definition |
16 |
add :: "[i,i]=>i" (infixr "#+" 65) |
|
17 |
"a#+b == rec(a, b, %u v. succ(v))" |
|
0 | 18 |
|
19762 | 19 |
diff :: "[i,i]=>i" (infixr "-" 65) |
20 |
"a-b == rec(b, a, %u v. rec(v, 0, %x y. x))" |
|
21 |
||
22 |
absdiff :: "[i,i]=>i" (infixr "|-|" 65) |
|
23 |
"a|-|b == (a-b) #+ (b-a)" |
|
24 |
||
25 |
mult :: "[i,i]=>i" (infixr "#*" 70) |
|
26 |
"a#*b == rec(a, 0, %u v. b #+ v)" |
|
10467
e6e7205e9e91
x-symbol support for Pi, Sigma, -->, : (membership)
paulson
parents:
3837
diff
changeset
|
27 |
|
19762 | 28 |
mod :: "[i,i]=>i" (infixr "mod" 70) |
29 |
"a mod b == rec(a, 0, %u v. rec(succ(v) |-| b, 0, %x y. succ(v)))" |
|
30 |
||
31 |
div :: "[i,i]=>i" (infixr "div" 70) |
|
32 |
"a div b == rec(a, 0, %u v. rec(succ(u) mod b, succ(v), %x y. v))" |
|
33 |
||
10467
e6e7205e9e91
x-symbol support for Pi, Sigma, -->, : (membership)
paulson
parents:
3837
diff
changeset
|
34 |
|
19762 | 35 |
const_syntax (xsymbols) |
36 |
mult (infixr "#\<times>" 70) |
|
37 |
||
38 |
const_syntax (HTML output) |
|
39 |
mult (infixr "#\<times>" 70) |
|
40 |
||
17441 | 41 |
|
19761 | 42 |
lemmas arith_defs = add_def diff_def absdiff_def mult_def mod_def div_def |
43 |
||
44 |
||
45 |
subsection {* Proofs about elementary arithmetic: addition, multiplication, etc. *} |
|
46 |
||
47 |
(** Addition *) |
|
48 |
||
49 |
(*typing of add: short and long versions*) |
|
50 |
||
51 |
lemma add_typing: "[| a:N; b:N |] ==> a #+ b : N" |
|
52 |
apply (unfold arith_defs) |
|
53 |
apply (tactic "typechk_tac []") |
|
54 |
done |
|
55 |
||
56 |
lemma add_typingL: "[| a=c:N; b=d:N |] ==> a #+ b = c #+ d : N" |
|
57 |
apply (unfold arith_defs) |
|
58 |
apply (tactic "equal_tac []") |
|
59 |
done |
|
60 |
||
61 |
||
62 |
(*computation for add: 0 and successor cases*) |
|
63 |
||
64 |
lemma addC0: "b:N ==> 0 #+ b = b : N" |
|
65 |
apply (unfold arith_defs) |
|
66 |
apply (tactic "rew_tac []") |
|
67 |
done |
|
68 |
||
69 |
lemma addC_succ: "[| a:N; b:N |] ==> succ(a) #+ b = succ(a #+ b) : N" |
|
70 |
apply (unfold arith_defs) |
|
71 |
apply (tactic "rew_tac []") |
|
72 |
done |
|
73 |
||
74 |
||
75 |
(** Multiplication *) |
|
76 |
||
77 |
(*typing of mult: short and long versions*) |
|
78 |
||
79 |
lemma mult_typing: "[| a:N; b:N |] ==> a #* b : N" |
|
80 |
apply (unfold arith_defs) |
|
81 |
apply (tactic {* typechk_tac [thm "add_typing"] *}) |
|
82 |
done |
|
83 |
||
84 |
lemma mult_typingL: "[| a=c:N; b=d:N |] ==> a #* b = c #* d : N" |
|
85 |
apply (unfold arith_defs) |
|
86 |
apply (tactic {* equal_tac [thm "add_typingL"] *}) |
|
87 |
done |
|
88 |
||
89 |
(*computation for mult: 0 and successor cases*) |
|
90 |
||
91 |
lemma multC0: "b:N ==> 0 #* b = 0 : N" |
|
92 |
apply (unfold arith_defs) |
|
93 |
apply (tactic "rew_tac []") |
|
94 |
done |
|
95 |
||
96 |
lemma multC_succ: "[| a:N; b:N |] ==> succ(a) #* b = b #+ (a #* b) : N" |
|
97 |
apply (unfold arith_defs) |
|
98 |
apply (tactic "rew_tac []") |
|
99 |
done |
|
100 |
||
101 |
||
102 |
(** Difference *) |
|
103 |
||
104 |
(*typing of difference*) |
|
105 |
||
106 |
lemma diff_typing: "[| a:N; b:N |] ==> a - b : N" |
|
107 |
apply (unfold arith_defs) |
|
108 |
apply (tactic "typechk_tac []") |
|
109 |
done |
|
110 |
||
111 |
lemma diff_typingL: "[| a=c:N; b=d:N |] ==> a - b = c - d : N" |
|
112 |
apply (unfold arith_defs) |
|
113 |
apply (tactic "equal_tac []") |
|
114 |
done |
|
115 |
||
116 |
||
117 |
(*computation for difference: 0 and successor cases*) |
|
118 |
||
119 |
lemma diffC0: "a:N ==> a - 0 = a : N" |
|
120 |
apply (unfold arith_defs) |
|
121 |
apply (tactic "rew_tac []") |
|
122 |
done |
|
123 |
||
124 |
(*Note: rec(a, 0, %z w.z) is pred(a). *) |
|
125 |
||
126 |
lemma diff_0_eq_0: "b:N ==> 0 - b = 0 : N" |
|
127 |
apply (unfold arith_defs) |
|
128 |
apply (tactic {* NE_tac "b" 1 *}) |
|
129 |
apply (tactic "hyp_rew_tac []") |
|
130 |
done |
|
131 |
||
132 |
||
133 |
(*Essential to simplify FIRST!! (Else we get a critical pair) |
|
134 |
succ(a) - succ(b) rewrites to pred(succ(a) - b) *) |
|
135 |
lemma diff_succ_succ: "[| a:N; b:N |] ==> succ(a) - succ(b) = a - b : N" |
|
136 |
apply (unfold arith_defs) |
|
137 |
apply (tactic "hyp_rew_tac []") |
|
138 |
apply (tactic {* NE_tac "b" 1 *}) |
|
139 |
apply (tactic "hyp_rew_tac []") |
|
140 |
done |
|
141 |
||
142 |
||
143 |
subsection {* Simplification *} |
|
144 |
||
145 |
lemmas arith_typing_rls = add_typing mult_typing diff_typing |
|
146 |
and arith_congr_rls = add_typingL mult_typingL diff_typingL |
|
147 |
lemmas congr_rls = arith_congr_rls intrL2_rls elimL_rls |
|
148 |
||
149 |
lemmas arithC_rls = |
|
150 |
addC0 addC_succ |
|
151 |
multC0 multC_succ |
|
152 |
diffC0 diff_0_eq_0 diff_succ_succ |
|
153 |
||
154 |
ML {* |
|
155 |
||
156 |
structure Arith_simp_data: TSIMP_DATA = |
|
157 |
struct |
|
158 |
val refl = thm "refl_elem" |
|
159 |
val sym = thm "sym_elem" |
|
160 |
val trans = thm "trans_elem" |
|
161 |
val refl_red = thm "refl_red" |
|
162 |
val trans_red = thm "trans_red" |
|
163 |
val red_if_equal = thm "red_if_equal" |
|
164 |
val default_rls = thms "arithC_rls" @ thms "comp_rls" |
|
165 |
val routine_tac = routine_tac (thms "arith_typing_rls" @ thms "routine_rls") |
|
166 |
end |
|
167 |
||
168 |
structure Arith_simp = TSimpFun (Arith_simp_data) |
|
169 |
||
170 |
local val congr_rls = thms "congr_rls" in |
|
171 |
||
172 |
fun arith_rew_tac prems = make_rew_tac |
|
173 |
(Arith_simp.norm_tac(congr_rls, prems)) |
|
174 |
||
175 |
fun hyp_arith_rew_tac prems = make_rew_tac |
|
176 |
(Arith_simp.cond_norm_tac(prove_cond_tac, congr_rls, prems)) |
|
17441 | 177 |
|
0 | 178 |
end |
19761 | 179 |
*} |
180 |
||
181 |
||
182 |
subsection {* Addition *} |
|
183 |
||
184 |
(*Associative law for addition*) |
|
185 |
lemma add_assoc: "[| a:N; b:N; c:N |] ==> (a #+ b) #+ c = a #+ (b #+ c) : N" |
|
186 |
apply (tactic {* NE_tac "a" 1 *}) |
|
187 |
apply (tactic "hyp_arith_rew_tac []") |
|
188 |
done |
|
189 |
||
190 |
||
191 |
(*Commutative law for addition. Can be proved using three inductions. |
|
192 |
Must simplify after first induction! Orientation of rewrites is delicate*) |
|
193 |
lemma add_commute: "[| a:N; b:N |] ==> a #+ b = b #+ a : N" |
|
194 |
apply (tactic {* NE_tac "a" 1 *}) |
|
195 |
apply (tactic "hyp_arith_rew_tac []") |
|
196 |
apply (tactic {* NE_tac "b" 2 *}) |
|
197 |
apply (rule sym_elem) |
|
198 |
apply (tactic {* NE_tac "b" 1 *}) |
|
199 |
apply (tactic "hyp_arith_rew_tac []") |
|
200 |
done |
|
201 |
||
202 |
||
203 |
subsection {* Multiplication *} |
|
204 |
||
205 |
(*right annihilation in product*) |
|
206 |
lemma mult_0_right: "a:N ==> a #* 0 = 0 : N" |
|
207 |
apply (tactic {* NE_tac "a" 1 *}) |
|
208 |
apply (tactic "hyp_arith_rew_tac []") |
|
209 |
done |
|
210 |
||
211 |
(*right successor law for multiplication*) |
|
212 |
lemma mult_succ_right: "[| a:N; b:N |] ==> a #* succ(b) = a #+ (a #* b) : N" |
|
213 |
apply (tactic {* NE_tac "a" 1 *}) |
|
214 |
apply (tactic {* hyp_arith_rew_tac [thm "add_assoc" RS thm "sym_elem"] *}) |
|
215 |
apply (assumption | rule add_commute mult_typingL add_typingL intrL_rls refl_elem)+ |
|
216 |
done |
|
217 |
||
218 |
(*Commutative law for multiplication*) |
|
219 |
lemma mult_commute: "[| a:N; b:N |] ==> a #* b = b #* a : N" |
|
220 |
apply (tactic {* NE_tac "a" 1 *}) |
|
221 |
apply (tactic {* hyp_arith_rew_tac [thm "mult_0_right", thm "mult_succ_right"] *}) |
|
222 |
done |
|
223 |
||
224 |
(*addition distributes over multiplication*) |
|
225 |
lemma add_mult_distrib: "[| a:N; b:N; c:N |] ==> (a #+ b) #* c = (a #* c) #+ (b #* c) : N" |
|
226 |
apply (tactic {* NE_tac "a" 1 *}) |
|
227 |
apply (tactic {* hyp_arith_rew_tac [thm "add_assoc" RS thm "sym_elem"] *}) |
|
228 |
done |
|
229 |
||
230 |
(*Associative law for multiplication*) |
|
231 |
lemma mult_assoc: "[| a:N; b:N; c:N |] ==> (a #* b) #* c = a #* (b #* c) : N" |
|
232 |
apply (tactic {* NE_tac "a" 1 *}) |
|
233 |
apply (tactic {* hyp_arith_rew_tac [thm "add_mult_distrib"] *}) |
|
234 |
done |
|
235 |
||
236 |
||
237 |
subsection {* Difference *} |
|
238 |
||
239 |
text {* |
|
240 |
Difference on natural numbers, without negative numbers |
|
241 |
a - b = 0 iff a<=b a - b = succ(c) iff a>b *} |
|
242 |
||
243 |
lemma diff_self_eq_0: "a:N ==> a - a = 0 : N" |
|
244 |
apply (tactic {* NE_tac "a" 1 *}) |
|
245 |
apply (tactic "hyp_arith_rew_tac []") |
|
246 |
done |
|
247 |
||
248 |
||
249 |
lemma add_0_right: "[| c : N; 0 : N; c : N |] ==> c #+ 0 = c : N" |
|
250 |
by (rule addC0 [THEN [3] add_commute [THEN trans_elem]]) |
|
251 |
||
252 |
(*Addition is the inverse of subtraction: if b<=x then b#+(x-b) = x. |
|
253 |
An example of induction over a quantified formula (a product). |
|
254 |
Uses rewriting with a quantified, implicative inductive hypothesis.*) |
|
255 |
lemma add_diff_inverse_lemma: "b:N ==> ?a : PROD x:N. Eq(N, b-x, 0) --> Eq(N, b #+ (x-b), x)" |
|
256 |
apply (tactic {* NE_tac "b" 1 *}) |
|
257 |
(*strip one "universal quantifier" but not the "implication"*) |
|
258 |
apply (rule_tac [3] intr_rls) |
|
259 |
(*case analysis on x in |
|
260 |
(succ(u) <= x) --> (succ(u)#+(x-succ(u)) = x) *) |
|
261 |
apply (tactic {* NE_tac "x" 4 *}, tactic "assume_tac 4") |
|
262 |
(*Prepare for simplification of types -- the antecedent succ(u)<=x *) |
|
263 |
apply (rule_tac [5] replace_type) |
|
264 |
apply (rule_tac [4] replace_type) |
|
265 |
apply (tactic "arith_rew_tac []") |
|
266 |
(*Solves first 0 goal, simplifies others. Two sugbgoals remain. |
|
267 |
Both follow by rewriting, (2) using quantified induction hyp*) |
|
268 |
apply (tactic "intr_tac []") (*strips remaining PRODs*) |
|
269 |
apply (tactic {* hyp_arith_rew_tac [thm "add_0_right"] *}) |
|
270 |
apply assumption |
|
271 |
done |
|
272 |
||
273 |
||
274 |
(*Version of above with premise b-a=0 i.e. a >= b. |
|
275 |
Using ProdE does not work -- for ?B(?a) is ambiguous. |
|
276 |
Instead, add_diff_inverse_lemma states the desired induction scheme |
|
277 |
the use of RS below instantiates Vars in ProdE automatically. *) |
|
278 |
lemma add_diff_inverse: "[| a:N; b:N; b-a = 0 : N |] ==> b #+ (a-b) = a : N" |
|
279 |
apply (rule EqE) |
|
280 |
apply (rule add_diff_inverse_lemma [THEN ProdE, THEN ProdE]) |
|
281 |
apply (assumption | rule EqI)+ |
|
282 |
done |
|
283 |
||
284 |
||
285 |
subsection {* Absolute difference *} |
|
286 |
||
287 |
(*typing of absolute difference: short and long versions*) |
|
288 |
||
289 |
lemma absdiff_typing: "[| a:N; b:N |] ==> a |-| b : N" |
|
290 |
apply (unfold arith_defs) |
|
291 |
apply (tactic "typechk_tac []") |
|
292 |
done |
|
293 |
||
294 |
lemma absdiff_typingL: "[| a=c:N; b=d:N |] ==> a |-| b = c |-| d : N" |
|
295 |
apply (unfold arith_defs) |
|
296 |
apply (tactic "equal_tac []") |
|
297 |
done |
|
298 |
||
299 |
lemma absdiff_self_eq_0: "a:N ==> a |-| a = 0 : N" |
|
300 |
apply (unfold absdiff_def) |
|
301 |
apply (tactic {* arith_rew_tac [thm "diff_self_eq_0"] *}) |
|
302 |
done |
|
303 |
||
304 |
lemma absdiffC0: "a:N ==> 0 |-| a = a : N" |
|
305 |
apply (unfold absdiff_def) |
|
306 |
apply (tactic "hyp_arith_rew_tac []") |
|
307 |
done |
|
308 |
||
309 |
||
310 |
lemma absdiff_succ_succ: "[| a:N; b:N |] ==> succ(a) |-| succ(b) = a |-| b : N" |
|
311 |
apply (unfold absdiff_def) |
|
312 |
apply (tactic "hyp_arith_rew_tac []") |
|
313 |
done |
|
314 |
||
315 |
(*Note how easy using commutative laws can be? ...not always... *) |
|
316 |
lemma absdiff_commute: "[| a:N; b:N |] ==> a |-| b = b |-| a : N" |
|
317 |
apply (unfold absdiff_def) |
|
318 |
apply (rule add_commute) |
|
319 |
apply (tactic {* typechk_tac [thm "diff_typing"] *}) |
|
320 |
done |
|
321 |
||
322 |
(*If a+b=0 then a=0. Surprisingly tedious*) |
|
323 |
lemma add_eq0_lemma: "[| a:N; b:N |] ==> ?c : PROD u: Eq(N,a#+b,0) . Eq(N,a,0)" |
|
324 |
apply (tactic {* NE_tac "a" 1 *}) |
|
325 |
apply (rule_tac [3] replace_type) |
|
326 |
apply (tactic "arith_rew_tac []") |
|
327 |
apply (tactic "intr_tac []") (*strips remaining PRODs*) |
|
328 |
apply (rule_tac [2] zero_ne_succ [THEN FE]) |
|
329 |
apply (erule_tac [3] EqE [THEN sym_elem]) |
|
330 |
apply (tactic {* typechk_tac [thm "add_typing"] *}) |
|
331 |
done |
|
332 |
||
333 |
(*Version of above with the premise a+b=0. |
|
334 |
Again, resolution instantiates variables in ProdE *) |
|
335 |
lemma add_eq0: "[| a:N; b:N; a #+ b = 0 : N |] ==> a = 0 : N" |
|
336 |
apply (rule EqE) |
|
337 |
apply (rule add_eq0_lemma [THEN ProdE]) |
|
338 |
apply (rule_tac [3] EqI) |
|
339 |
apply (tactic "typechk_tac []") |
|
340 |
done |
|
341 |
||
342 |
(*Here is a lemma to infer a-b=0 and b-a=0 from a|-|b=0, below. *) |
|
343 |
lemma absdiff_eq0_lem: |
|
344 |
"[| a:N; b:N; a |-| b = 0 : N |] ==> |
|
345 |
?a : SUM v: Eq(N, a-b, 0) . Eq(N, b-a, 0)" |
|
346 |
apply (unfold absdiff_def) |
|
347 |
apply (tactic "intr_tac []") |
|
348 |
apply (tactic eqintr_tac) |
|
349 |
apply (rule_tac [2] add_eq0) |
|
350 |
apply (rule add_eq0) |
|
351 |
apply (rule_tac [6] add_commute [THEN trans_elem]) |
|
352 |
apply (tactic {* typechk_tac [thm "diff_typing"] *}) |
|
353 |
done |
|
354 |
||
355 |
(*if a |-| b = 0 then a = b |
|
356 |
proof: a-b=0 and b-a=0, so b = a+(b-a) = a+0 = a*) |
|
357 |
lemma absdiff_eq0: "[| a |-| b = 0 : N; a:N; b:N |] ==> a = b : N" |
|
358 |
apply (rule EqE) |
|
359 |
apply (rule absdiff_eq0_lem [THEN SumE]) |
|
360 |
apply (tactic "TRYALL assume_tac") |
|
361 |
apply (tactic eqintr_tac) |
|
362 |
apply (rule add_diff_inverse [THEN sym_elem, THEN trans_elem]) |
|
363 |
apply (rule_tac [3] EqE, tactic "assume_tac 3") |
|
364 |
apply (tactic {* hyp_arith_rew_tac [thm "add_0_right"] *}) |
|
365 |
done |
|
366 |
||
367 |
||
368 |
subsection {* Remainder and Quotient *} |
|
369 |
||
370 |
(*typing of remainder: short and long versions*) |
|
371 |
||
372 |
lemma mod_typing: "[| a:N; b:N |] ==> a mod b : N" |
|
373 |
apply (unfold mod_def) |
|
374 |
apply (tactic {* typechk_tac [thm "absdiff_typing"] *}) |
|
375 |
done |
|
376 |
||
377 |
lemma mod_typingL: "[| a=c:N; b=d:N |] ==> a mod b = c mod d : N" |
|
378 |
apply (unfold mod_def) |
|
379 |
apply (tactic {* equal_tac [thm "absdiff_typingL"] *}) |
|
380 |
done |
|
381 |
||
382 |
||
383 |
(*computation for mod : 0 and successor cases*) |
|
384 |
||
385 |
lemma modC0: "b:N ==> 0 mod b = 0 : N" |
|
386 |
apply (unfold mod_def) |
|
387 |
apply (tactic {* rew_tac [thm "absdiff_typing"] *}) |
|
388 |
done |
|
389 |
||
390 |
lemma modC_succ: |
|
391 |
"[| a:N; b:N |] ==> succ(a) mod b = rec(succ(a mod b) |-| b, 0, %x y. succ(a mod b)) : N" |
|
392 |
apply (unfold mod_def) |
|
393 |
apply (tactic {* rew_tac [thm "absdiff_typing"] *}) |
|
394 |
done |
|
395 |
||
396 |
||
397 |
(*typing of quotient: short and long versions*) |
|
398 |
||
399 |
lemma div_typing: "[| a:N; b:N |] ==> a div b : N" |
|
400 |
apply (unfold div_def) |
|
401 |
apply (tactic {* typechk_tac [thm "absdiff_typing", thm "mod_typing"] *}) |
|
402 |
done |
|
403 |
||
404 |
lemma div_typingL: "[| a=c:N; b=d:N |] ==> a div b = c div d : N" |
|
405 |
apply (unfold div_def) |
|
406 |
apply (tactic {* equal_tac [thm "absdiff_typingL", thm "mod_typingL"] *}) |
|
407 |
done |
|
408 |
||
409 |
lemmas div_typing_rls = mod_typing div_typing absdiff_typing |
|
410 |
||
411 |
||
412 |
(*computation for quotient: 0 and successor cases*) |
|
413 |
||
414 |
lemma divC0: "b:N ==> 0 div b = 0 : N" |
|
415 |
apply (unfold div_def) |
|
416 |
apply (tactic {* rew_tac [thm "mod_typing", thm "absdiff_typing"] *}) |
|
417 |
done |
|
418 |
||
419 |
lemma divC_succ: |
|
420 |
"[| a:N; b:N |] ==> succ(a) div b = |
|
421 |
rec(succ(a) mod b, succ(a div b), %x y. a div b) : N" |
|
422 |
apply (unfold div_def) |
|
423 |
apply (tactic {* rew_tac [thm "mod_typing"] *}) |
|
424 |
done |
|
425 |
||
426 |
||
427 |
(*Version of above with same condition as the mod one*) |
|
428 |
lemma divC_succ2: "[| a:N; b:N |] ==> |
|
429 |
succ(a) div b =rec(succ(a mod b) |-| b, succ(a div b), %x y. a div b) : N" |
|
430 |
apply (rule divC_succ [THEN trans_elem]) |
|
431 |
apply (tactic {* rew_tac (thms "div_typing_rls" @ [thm "modC_succ"]) *}) |
|
432 |
apply (tactic {* NE_tac "succ (a mod b) |-|b" 1 *}) |
|
433 |
apply (tactic {* rew_tac [thm "mod_typing", thm "div_typing", thm "absdiff_typing"] *}) |
|
434 |
done |
|
435 |
||
436 |
(*for case analysis on whether a number is 0 or a successor*) |
|
437 |
lemma iszero_decidable: "a:N ==> rec(a, inl(eq), %ka kb. inr(<ka, eq>)) : |
|
438 |
Eq(N,a,0) + (SUM x:N. Eq(N,a, succ(x)))" |
|
439 |
apply (tactic {* NE_tac "a" 1 *}) |
|
440 |
apply (rule_tac [3] PlusI_inr) |
|
441 |
apply (rule_tac [2] PlusI_inl) |
|
442 |
apply (tactic eqintr_tac) |
|
443 |
apply (tactic "equal_tac []") |
|
444 |
done |
|
445 |
||
446 |
(*Main Result. Holds when b is 0 since a mod 0 = a and a div 0 = 0 *) |
|
447 |
lemma mod_div_equality: "[| a:N; b:N |] ==> a mod b #+ (a div b) #* b = a : N" |
|
448 |
apply (tactic {* NE_tac "a" 1 *}) |
|
449 |
apply (tactic {* arith_rew_tac (thms "div_typing_rls" @ |
|
450 |
[thm "modC0", thm "modC_succ", thm "divC0", thm "divC_succ2"]) *}) |
|
451 |
apply (rule EqE) |
|
452 |
(*case analysis on succ(u mod b)|-|b *) |
|
453 |
apply (rule_tac a1 = "succ (u mod b) |-| b" in iszero_decidable [THEN PlusE]) |
|
454 |
apply (erule_tac [3] SumE) |
|
455 |
apply (tactic {* hyp_arith_rew_tac (thms "div_typing_rls" @ |
|
456 |
[thm "modC0", thm "modC_succ", thm "divC0", thm "divC_succ2"]) *}) |
|
457 |
(*Replace one occurence of b by succ(u mod b). Clumsy!*) |
|
458 |
apply (rule add_typingL [THEN trans_elem]) |
|
459 |
apply (erule EqE [THEN absdiff_eq0, THEN sym_elem]) |
|
460 |
apply (rule_tac [3] refl_elem) |
|
461 |
apply (tactic {* hyp_arith_rew_tac (thms "div_typing_rls") *}) |
|
462 |
done |
|
463 |
||
464 |
end |