author | traytel |
Fri, 28 Feb 2020 21:23:11 +0100 | |
changeset 71494 | cbe0b6b0bed8 |
parent 70723 | 4e39d87c9737 |
child 80914 | d97fdabd9e2b |
permissions | -rw-r--r-- |
62479 | 1 |
(* Title: HOL/Nonstandard_Analysis/HLim.thy |
41589 | 2 |
Author: Jacques D. Fleuriot, University of Cambridge |
3 |
Author: Lawrence C Paulson |
|
27468 | 4 |
*) |
5 |
||
64435 | 6 |
section \<open>Limits and Continuity (Nonstandard)\<close> |
27468 | 7 |
|
8 |
theory HLim |
|
63579 | 9 |
imports Star |
10 |
abbrevs "--->" = "\<midarrow>\<rightarrow>\<^sub>N\<^sub>S" |
|
27468 | 11 |
begin |
12 |
||
64435 | 13 |
text \<open>Nonstandard Definitions.\<close> |
27468 | 14 |
|
64435 | 15 |
definition NSLIM :: "('a::real_normed_vector \<Rightarrow> 'b::real_normed_vector) \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> bool" |
16 |
("((_)/ \<midarrow>(_)/\<rightarrow>\<^sub>N\<^sub>S (_))" [60, 0, 60] 60) |
|
17 |
where "f \<midarrow>a\<rightarrow>\<^sub>N\<^sub>S L \<longleftrightarrow> (\<forall>x. x \<noteq> star_of a \<and> x \<approx> star_of a \<longrightarrow> ( *f* f) x \<approx> star_of L)" |
|
27468 | 18 |
|
64435 | 19 |
definition isNSCont :: "('a::real_normed_vector \<Rightarrow> 'b::real_normed_vector) \<Rightarrow> 'a \<Rightarrow> bool" |
20 |
where \<comment> \<open>NS definition dispenses with limit notions\<close> |
|
21 |
"isNSCont f a \<longleftrightarrow> (\<forall>y. y \<approx> star_of a \<longrightarrow> ( *f* f) y \<approx> star_of (f a))" |
|
27468 | 22 |
|
64435 | 23 |
definition isNSUCont :: "('a::real_normed_vector \<Rightarrow> 'b::real_normed_vector) \<Rightarrow> bool" |
24 |
where "isNSUCont f \<longleftrightarrow> (\<forall>x y. x \<approx> y \<longrightarrow> ( *f* f) x \<approx> ( *f* f) y)" |
|
27468 | 25 |
|
26 |
||
61975 | 27 |
subsection \<open>Limits of Functions\<close> |
27468 | 28 |
|
64435 | 29 |
lemma NSLIM_I: "(\<And>x. x \<noteq> star_of a \<Longrightarrow> x \<approx> star_of a \<Longrightarrow> starfun f x \<approx> star_of L) \<Longrightarrow> f \<midarrow>a\<rightarrow>\<^sub>N\<^sub>S L" |
30 |
by (simp add: NSLIM_def) |
|
31 |
||
32 |
lemma NSLIM_D: "f \<midarrow>a\<rightarrow>\<^sub>N\<^sub>S L \<Longrightarrow> x \<noteq> star_of a \<Longrightarrow> x \<approx> star_of a \<Longrightarrow> starfun f x \<approx> star_of L" |
|
33 |
by (simp add: NSLIM_def) |
|
27468 | 34 |
|
64435 | 35 |
text \<open>Proving properties of limits using nonstandard definition. |
36 |
The properties hold for standard limits as well!\<close> |
|
27468 | 37 |
|
64435 | 38 |
lemma NSLIM_mult: "f \<midarrow>x\<rightarrow>\<^sub>N\<^sub>S l \<Longrightarrow> g \<midarrow>x\<rightarrow>\<^sub>N\<^sub>S m \<Longrightarrow> (\<lambda>x. f x * g x) \<midarrow>x\<rightarrow>\<^sub>N\<^sub>S (l * m)" |
39 |
for l m :: "'a::real_normed_algebra" |
|
40 |
by (auto simp add: NSLIM_def intro!: approx_mult_HFinite) |
|
27468 | 41 |
|
64435 | 42 |
lemma starfun_scaleR [simp]: "starfun (\<lambda>x. f x *\<^sub>R g x) = (\<lambda>x. scaleHR (starfun f x) (starfun g x))" |
43 |
by transfer (rule refl) |
|
27468 | 44 |
|
64435 | 45 |
lemma NSLIM_scaleR: "f \<midarrow>x\<rightarrow>\<^sub>N\<^sub>S l \<Longrightarrow> g \<midarrow>x\<rightarrow>\<^sub>N\<^sub>S m \<Longrightarrow> (\<lambda>x. f x *\<^sub>R g x) \<midarrow>x\<rightarrow>\<^sub>N\<^sub>S (l *\<^sub>R m)" |
46 |
by (auto simp add: NSLIM_def intro!: approx_scaleR_HFinite) |
|
27468 | 47 |
|
64435 | 48 |
lemma NSLIM_add: "f \<midarrow>x\<rightarrow>\<^sub>N\<^sub>S l \<Longrightarrow> g \<midarrow>x\<rightarrow>\<^sub>N\<^sub>S m \<Longrightarrow> (\<lambda>x. f x + g x) \<midarrow>x\<rightarrow>\<^sub>N\<^sub>S (l + m)" |
49 |
by (auto simp add: NSLIM_def intro!: approx_add) |
|
27468 | 50 |
|
64435 | 51 |
lemma NSLIM_const [simp]: "(\<lambda>x. k) \<midarrow>x\<rightarrow>\<^sub>N\<^sub>S k" |
52 |
by (simp add: NSLIM_def) |
|
27468 | 53 |
|
64435 | 54 |
lemma NSLIM_minus: "f \<midarrow>a\<rightarrow>\<^sub>N\<^sub>S L \<Longrightarrow> (\<lambda>x. - f x) \<midarrow>a\<rightarrow>\<^sub>N\<^sub>S -L" |
55 |
by (simp add: NSLIM_def) |
|
27468 | 56 |
|
64435 | 57 |
lemma NSLIM_diff: "f \<midarrow>x\<rightarrow>\<^sub>N\<^sub>S l \<Longrightarrow> g \<midarrow>x\<rightarrow>\<^sub>N\<^sub>S m \<Longrightarrow> (\<lambda>x. f x - g x) \<midarrow>x\<rightarrow>\<^sub>N\<^sub>S (l - m)" |
54230
b1d955791529
more simplification rules on unary and binary minus
haftmann
parents:
51525
diff
changeset
|
58 |
by (simp only: NSLIM_add NSLIM_minus diff_conv_add_uminus) |
27468 | 59 |
|
64435 | 60 |
lemma NSLIM_add_minus: "f \<midarrow>x\<rightarrow>\<^sub>N\<^sub>S l \<Longrightarrow> g \<midarrow>x\<rightarrow>\<^sub>N\<^sub>S m \<Longrightarrow> (\<lambda>x. f x + - g x) \<midarrow>x\<rightarrow>\<^sub>N\<^sub>S (l + -m)" |
61 |
by (simp only: NSLIM_add NSLIM_minus) |
|
27468 | 62 |
|
64435 | 63 |
lemma NSLIM_inverse: "f \<midarrow>a\<rightarrow>\<^sub>N\<^sub>S L \<Longrightarrow> L \<noteq> 0 \<Longrightarrow> (\<lambda>x. inverse (f x)) \<midarrow>a\<rightarrow>\<^sub>N\<^sub>S (inverse L)" |
64 |
for L :: "'a::real_normed_div_algebra" |
|
70228
2d5b122aa0ff
De-applying and combining lemmas to make structured proofs
paulson <lp15@cam.ac.uk>
parents:
69597
diff
changeset
|
65 |
unfolding NSLIM_def by (metis (no_types) star_of_approx_inverse star_of_simps(6) starfun_inverse) |
27468 | 66 |
|
67 |
lemma NSLIM_zero: |
|
64435 | 68 |
assumes f: "f \<midarrow>a\<rightarrow>\<^sub>N\<^sub>S l" |
69 |
shows "(\<lambda>x. f(x) - l) \<midarrow>a\<rightarrow>\<^sub>N\<^sub>S 0" |
|
27468 | 70 |
proof - |
61971 | 71 |
have "(\<lambda>x. f x - l) \<midarrow>a\<rightarrow>\<^sub>N\<^sub>S l - l" |
27468 | 72 |
by (rule NSLIM_diff [OF f NSLIM_const]) |
64435 | 73 |
then show ?thesis by simp |
27468 | 74 |
qed |
75 |
||
70228
2d5b122aa0ff
De-applying and combining lemmas to make structured proofs
paulson <lp15@cam.ac.uk>
parents:
69597
diff
changeset
|
76 |
lemma NSLIM_zero_cancel: |
2d5b122aa0ff
De-applying and combining lemmas to make structured proofs
paulson <lp15@cam.ac.uk>
parents:
69597
diff
changeset
|
77 |
assumes "(\<lambda>x. f x - l) \<midarrow>x\<rightarrow>\<^sub>N\<^sub>S 0" |
2d5b122aa0ff
De-applying and combining lemmas to make structured proofs
paulson <lp15@cam.ac.uk>
parents:
69597
diff
changeset
|
78 |
shows "f \<midarrow>x\<rightarrow>\<^sub>N\<^sub>S l" |
2d5b122aa0ff
De-applying and combining lemmas to make structured proofs
paulson <lp15@cam.ac.uk>
parents:
69597
diff
changeset
|
79 |
proof - |
2d5b122aa0ff
De-applying and combining lemmas to make structured proofs
paulson <lp15@cam.ac.uk>
parents:
69597
diff
changeset
|
80 |
have "(\<lambda>x. f x - l + l) \<midarrow>x\<rightarrow>\<^sub>N\<^sub>S 0 + l" |
2d5b122aa0ff
De-applying and combining lemmas to make structured proofs
paulson <lp15@cam.ac.uk>
parents:
69597
diff
changeset
|
81 |
by (fast intro: assms NSLIM_const NSLIM_add) |
2d5b122aa0ff
De-applying and combining lemmas to make structured proofs
paulson <lp15@cam.ac.uk>
parents:
69597
diff
changeset
|
82 |
then show ?thesis |
2d5b122aa0ff
De-applying and combining lemmas to make structured proofs
paulson <lp15@cam.ac.uk>
parents:
69597
diff
changeset
|
83 |
by simp |
2d5b122aa0ff
De-applying and combining lemmas to make structured proofs
paulson <lp15@cam.ac.uk>
parents:
69597
diff
changeset
|
84 |
qed |
27468 | 85 |
|
70228
2d5b122aa0ff
De-applying and combining lemmas to make structured proofs
paulson <lp15@cam.ac.uk>
parents:
69597
diff
changeset
|
86 |
lemma NSLIM_const_eq: |
2d5b122aa0ff
De-applying and combining lemmas to make structured proofs
paulson <lp15@cam.ac.uk>
parents:
69597
diff
changeset
|
87 |
fixes a :: "'a::real_normed_algebra_1" |
2d5b122aa0ff
De-applying and combining lemmas to make structured proofs
paulson <lp15@cam.ac.uk>
parents:
69597
diff
changeset
|
88 |
assumes "(\<lambda>x. k) \<midarrow>a\<rightarrow>\<^sub>N\<^sub>S l" |
2d5b122aa0ff
De-applying and combining lemmas to make structured proofs
paulson <lp15@cam.ac.uk>
parents:
69597
diff
changeset
|
89 |
shows "k = l" |
2d5b122aa0ff
De-applying and combining lemmas to make structured proofs
paulson <lp15@cam.ac.uk>
parents:
69597
diff
changeset
|
90 |
proof - |
2d5b122aa0ff
De-applying and combining lemmas to make structured proofs
paulson <lp15@cam.ac.uk>
parents:
69597
diff
changeset
|
91 |
have "\<not> (\<lambda>x. k) \<midarrow>a\<rightarrow>\<^sub>N\<^sub>S l" if "k \<noteq> l" |
2d5b122aa0ff
De-applying and combining lemmas to make structured proofs
paulson <lp15@cam.ac.uk>
parents:
69597
diff
changeset
|
92 |
proof - |
2d5b122aa0ff
De-applying and combining lemmas to make structured proofs
paulson <lp15@cam.ac.uk>
parents:
69597
diff
changeset
|
93 |
have "star_of a + of_hypreal \<epsilon> \<approx> star_of a" |
2d5b122aa0ff
De-applying and combining lemmas to make structured proofs
paulson <lp15@cam.ac.uk>
parents:
69597
diff
changeset
|
94 |
by (simp add: approx_def) |
2d5b122aa0ff
De-applying and combining lemmas to make structured proofs
paulson <lp15@cam.ac.uk>
parents:
69597
diff
changeset
|
95 |
then show ?thesis |
70723
4e39d87c9737
imported new material mostly due to Sébastien Gouëzel
paulson <lp15@cam.ac.uk>
parents:
70228
diff
changeset
|
96 |
using epsilon_not_zero that by (force simp add: NSLIM_def) |
70228
2d5b122aa0ff
De-applying and combining lemmas to make structured proofs
paulson <lp15@cam.ac.uk>
parents:
69597
diff
changeset
|
97 |
qed |
2d5b122aa0ff
De-applying and combining lemmas to make structured proofs
paulson <lp15@cam.ac.uk>
parents:
69597
diff
changeset
|
98 |
with assms show ?thesis by metis |
2d5b122aa0ff
De-applying and combining lemmas to make structured proofs
paulson <lp15@cam.ac.uk>
parents:
69597
diff
changeset
|
99 |
qed |
27468 | 100 |
|
70228
2d5b122aa0ff
De-applying and combining lemmas to make structured proofs
paulson <lp15@cam.ac.uk>
parents:
69597
diff
changeset
|
101 |
lemma NSLIM_unique: "f \<midarrow>a\<rightarrow>\<^sub>N\<^sub>S l \<Longrightarrow> f \<midarrow>a\<rightarrow>\<^sub>N\<^sub>S M \<Longrightarrow> l = M" |
64435 | 102 |
for a :: "'a::real_normed_algebra_1" |
103 |
by (drule (1) NSLIM_diff) (auto dest!: NSLIM_const_eq) |
|
27468 | 104 |
|
64435 | 105 |
lemma NSLIM_mult_zero: "f \<midarrow>x\<rightarrow>\<^sub>N\<^sub>S 0 \<Longrightarrow> g \<midarrow>x\<rightarrow>\<^sub>N\<^sub>S 0 \<Longrightarrow> (\<lambda>x. f x * g x) \<midarrow>x\<rightarrow>\<^sub>N\<^sub>S 0" |
106 |
for f g :: "'a::real_normed_vector \<Rightarrow> 'b::real_normed_algebra" |
|
107 |
by (drule NSLIM_mult) auto |
|
27468 | 108 |
|
64435 | 109 |
lemma NSLIM_self: "(\<lambda>x. x) \<midarrow>a\<rightarrow>\<^sub>N\<^sub>S a" |
110 |
by (simp add: NSLIM_def) |
|
27468 | 111 |
|
112 |
||
69597 | 113 |
subsubsection \<open>Equivalence of \<^term>\<open>filterlim\<close> and \<^term>\<open>NSLIM\<close>\<close> |
27468 | 114 |
|
115 |
lemma LIM_NSLIM: |
|
64435 | 116 |
assumes f: "f \<midarrow>a\<rightarrow> L" |
117 |
shows "f \<midarrow>a\<rightarrow>\<^sub>N\<^sub>S L" |
|
27468 | 118 |
proof (rule NSLIM_I) |
119 |
fix x |
|
120 |
assume neq: "x \<noteq> star_of a" |
|
121 |
assume approx: "x \<approx> star_of a" |
|
122 |
have "starfun f x - star_of L \<in> Infinitesimal" |
|
123 |
proof (rule InfinitesimalI2) |
|
64435 | 124 |
fix r :: real |
125 |
assume r: "0 < r" |
|
126 |
from LIM_D [OF f r] obtain s |
|
127 |
where s: "0 < s" and less_r: "\<And>x. x \<noteq> a \<Longrightarrow> norm (x - a) < s \<Longrightarrow> norm (f x - L) < r" |
|
27468 | 128 |
by fast |
129 |
from less_r have less_r': |
|
64435 | 130 |
"\<And>x. x \<noteq> star_of a \<Longrightarrow> hnorm (x - star_of a) < star_of s \<Longrightarrow> |
131 |
hnorm (starfun f x - star_of L) < star_of r" |
|
27468 | 132 |
by transfer |
133 |
from approx have "x - star_of a \<in> Infinitesimal" |
|
64435 | 134 |
by (simp only: approx_def) |
135 |
then have "hnorm (x - star_of a) < star_of s" |
|
27468 | 136 |
using s by (rule InfinitesimalD2) |
137 |
with neq show "hnorm (starfun f x - star_of L) < star_of r" |
|
138 |
by (rule less_r') |
|
139 |
qed |
|
64435 | 140 |
then show "starfun f x \<approx> star_of L" |
27468 | 141 |
by (unfold approx_def) |
142 |
qed |
|
143 |
||
144 |
lemma NSLIM_LIM: |
|
64435 | 145 |
assumes f: "f \<midarrow>a\<rightarrow>\<^sub>N\<^sub>S L" |
146 |
shows "f \<midarrow>a\<rightarrow> L" |
|
27468 | 147 |
proof (rule LIM_I) |
64435 | 148 |
fix r :: real |
149 |
assume r: "0 < r" |
|
150 |
have "\<exists>s>0. \<forall>x. x \<noteq> star_of a \<and> hnorm (x - star_of a) < s \<longrightarrow> |
|
151 |
hnorm (starfun f x - star_of L) < star_of r" |
|
27468 | 152 |
proof (rule exI, safe) |
64435 | 153 |
show "0 < \<epsilon>" |
70723
4e39d87c9737
imported new material mostly due to Sébastien Gouëzel
paulson <lp15@cam.ac.uk>
parents:
70228
diff
changeset
|
154 |
by (rule epsilon_gt_zero) |
27468 | 155 |
next |
64435 | 156 |
fix x |
157 |
assume neq: "x \<noteq> star_of a" |
|
61981 | 158 |
assume "hnorm (x - star_of a) < \<epsilon>" |
64435 | 159 |
with Infinitesimal_epsilon have "x - star_of a \<in> Infinitesimal" |
27468 | 160 |
by (rule hnorm_less_Infinitesimal) |
64435 | 161 |
then have "x \<approx> star_of a" |
27468 | 162 |
by (unfold approx_def) |
163 |
with f neq have "starfun f x \<approx> star_of L" |
|
164 |
by (rule NSLIM_D) |
|
64435 | 165 |
then have "starfun f x - star_of L \<in> Infinitesimal" |
27468 | 166 |
by (unfold approx_def) |
64435 | 167 |
then show "hnorm (starfun f x - star_of L) < star_of r" |
27468 | 168 |
using r by (rule InfinitesimalD2) |
169 |
qed |
|
64435 | 170 |
then show "\<exists>s>0. \<forall>x. x \<noteq> a \<and> norm (x - a) < s \<longrightarrow> norm (f x - L) < r" |
27468 | 171 |
by transfer |
172 |
qed |
|
173 |
||
64435 | 174 |
theorem LIM_NSLIM_iff: "f \<midarrow>x\<rightarrow> L \<longleftrightarrow> f \<midarrow>x\<rightarrow>\<^sub>N\<^sub>S L" |
175 |
by (blast intro: LIM_NSLIM NSLIM_LIM) |
|
27468 | 176 |
|
177 |
||
61975 | 178 |
subsection \<open>Continuity\<close> |
27468 | 179 |
|
64435 | 180 |
lemma isNSContD: "isNSCont f a \<Longrightarrow> y \<approx> star_of a \<Longrightarrow> ( *f* f) y \<approx> star_of (f a)" |
181 |
by (simp add: isNSCont_def) |
|
182 |
||
183 |
lemma isNSCont_NSLIM: "isNSCont f a \<Longrightarrow> f \<midarrow>a\<rightarrow>\<^sub>N\<^sub>S (f a)" |
|
184 |
by (simp add: isNSCont_def NSLIM_def) |
|
27468 | 185 |
|
64435 | 186 |
lemma NSLIM_isNSCont: "f \<midarrow>a\<rightarrow>\<^sub>N\<^sub>S (f a) \<Longrightarrow> isNSCont f a" |
70228
2d5b122aa0ff
De-applying and combining lemmas to make structured proofs
paulson <lp15@cam.ac.uk>
parents:
69597
diff
changeset
|
187 |
by (force simp add: isNSCont_def NSLIM_def) |
27468 | 188 |
|
64435 | 189 |
text \<open>NS continuity can be defined using NS Limit in |
190 |
similar fashion to standard definition of continuity.\<close> |
|
191 |
lemma isNSCont_NSLIM_iff: "isNSCont f a \<longleftrightarrow> f \<midarrow>a\<rightarrow>\<^sub>N\<^sub>S (f a)" |
|
192 |
by (blast intro: isNSCont_NSLIM NSLIM_isNSCont) |
|
27468 | 193 |
|
64435 | 194 |
text \<open>Hence, NS continuity can be given in terms of standard limit.\<close> |
195 |
lemma isNSCont_LIM_iff: "(isNSCont f a) = (f \<midarrow>a\<rightarrow> (f a))" |
|
196 |
by (simp add: LIM_NSLIM_iff isNSCont_NSLIM_iff) |
|
27468 | 197 |
|
64435 | 198 |
text \<open>Moreover, it's trivial now that NS continuity |
199 |
is equivalent to standard continuity.\<close> |
|
200 |
lemma isNSCont_isCont_iff: "isNSCont f a \<longleftrightarrow> isCont f a" |
|
201 |
by (simp add: isCont_def) (rule isNSCont_LIM_iff) |
|
27468 | 202 |
|
64435 | 203 |
text \<open>Standard continuity \<open>\<Longrightarrow>\<close> NS continuity.\<close> |
204 |
lemma isCont_isNSCont: "isCont f a \<Longrightarrow> isNSCont f a" |
|
205 |
by (erule isNSCont_isCont_iff [THEN iffD2]) |
|
27468 | 206 |
|
64604 | 207 |
text \<open>NS continuity \<open>\<Longrightarrow>\<close> Standard continuity.\<close> |
208 |
lemma isNSCont_isCont: "isNSCont f a \<Longrightarrow> isCont f a" |
|
64435 | 209 |
by (erule isNSCont_isCont_iff [THEN iffD1]) |
27468 | 210 |
|
64435 | 211 |
|
212 |
text \<open>Alternative definition of continuity.\<close> |
|
27468 | 213 |
|
64435 | 214 |
text \<open>Prove equivalence between NS limits -- |
215 |
seems easier than using standard definition.\<close> |
|
70228
2d5b122aa0ff
De-applying and combining lemmas to make structured proofs
paulson <lp15@cam.ac.uk>
parents:
69597
diff
changeset
|
216 |
lemma NSLIM_at0_iff: "f \<midarrow>a\<rightarrow>\<^sub>N\<^sub>S L \<longleftrightarrow> (\<lambda>h. f (a + h)) \<midarrow>0\<rightarrow>\<^sub>N\<^sub>S L" |
2d5b122aa0ff
De-applying and combining lemmas to make structured proofs
paulson <lp15@cam.ac.uk>
parents:
69597
diff
changeset
|
217 |
proof |
2d5b122aa0ff
De-applying and combining lemmas to make structured proofs
paulson <lp15@cam.ac.uk>
parents:
69597
diff
changeset
|
218 |
assume "f \<midarrow>a\<rightarrow>\<^sub>N\<^sub>S L" |
2d5b122aa0ff
De-applying and combining lemmas to make structured proofs
paulson <lp15@cam.ac.uk>
parents:
69597
diff
changeset
|
219 |
then show "(\<lambda>h. f (a + h)) \<midarrow>0\<rightarrow>\<^sub>N\<^sub>S L" |
2d5b122aa0ff
De-applying and combining lemmas to make structured proofs
paulson <lp15@cam.ac.uk>
parents:
69597
diff
changeset
|
220 |
by (simp add: NSLIM_def) (metis (no_types) add_cancel_left_right approx_add_left_iff starfun_lambda_cancel) |
2d5b122aa0ff
De-applying and combining lemmas to make structured proofs
paulson <lp15@cam.ac.uk>
parents:
69597
diff
changeset
|
221 |
next |
2d5b122aa0ff
De-applying and combining lemmas to make structured proofs
paulson <lp15@cam.ac.uk>
parents:
69597
diff
changeset
|
222 |
assume *: "(\<lambda>h. f (a + h)) \<midarrow>0\<rightarrow>\<^sub>N\<^sub>S L" |
2d5b122aa0ff
De-applying and combining lemmas to make structured proofs
paulson <lp15@cam.ac.uk>
parents:
69597
diff
changeset
|
223 |
show "f \<midarrow>a\<rightarrow>\<^sub>N\<^sub>S L" |
2d5b122aa0ff
De-applying and combining lemmas to make structured proofs
paulson <lp15@cam.ac.uk>
parents:
69597
diff
changeset
|
224 |
proof (clarsimp simp: NSLIM_def) |
2d5b122aa0ff
De-applying and combining lemmas to make structured proofs
paulson <lp15@cam.ac.uk>
parents:
69597
diff
changeset
|
225 |
fix x |
2d5b122aa0ff
De-applying and combining lemmas to make structured proofs
paulson <lp15@cam.ac.uk>
parents:
69597
diff
changeset
|
226 |
assume "x \<noteq> star_of a" "x \<approx> star_of a" |
2d5b122aa0ff
De-applying and combining lemmas to make structured proofs
paulson <lp15@cam.ac.uk>
parents:
69597
diff
changeset
|
227 |
then have "(*f* (\<lambda>h. f (a + h))) (- star_of a + x) \<approx> star_of L" |
2d5b122aa0ff
De-applying and combining lemmas to make structured proofs
paulson <lp15@cam.ac.uk>
parents:
69597
diff
changeset
|
228 |
by (metis (no_types, lifting) "*" NSLIM_D add.right_neutral add_minus_cancel approx_minus_iff2 star_zero_def) |
2d5b122aa0ff
De-applying and combining lemmas to make structured proofs
paulson <lp15@cam.ac.uk>
parents:
69597
diff
changeset
|
229 |
then show "(*f* f) x \<approx> star_of L" |
2d5b122aa0ff
De-applying and combining lemmas to make structured proofs
paulson <lp15@cam.ac.uk>
parents:
69597
diff
changeset
|
230 |
by (simp add: starfun_lambda_cancel) |
2d5b122aa0ff
De-applying and combining lemmas to make structured proofs
paulson <lp15@cam.ac.uk>
parents:
69597
diff
changeset
|
231 |
qed |
2d5b122aa0ff
De-applying and combining lemmas to make structured proofs
paulson <lp15@cam.ac.uk>
parents:
69597
diff
changeset
|
232 |
qed |
27468 | 233 |
|
64435 | 234 |
lemma isNSCont_minus: "isNSCont f a \<Longrightarrow> isNSCont (\<lambda>x. - f x) a" |
235 |
by (simp add: isNSCont_def) |
|
27468 | 236 |
|
64435 | 237 |
lemma isNSCont_inverse: "isNSCont f x \<Longrightarrow> f x \<noteq> 0 \<Longrightarrow> isNSCont (\<lambda>x. inverse (f x)) x" |
238 |
for f :: "'a::real_normed_vector \<Rightarrow> 'b::real_normed_div_algebra" |
|
68611 | 239 |
using NSLIM_inverse NSLIM_isNSCont isNSCont_NSLIM by blast |
27468 | 240 |
|
64435 | 241 |
lemma isNSCont_const [simp]: "isNSCont (\<lambda>x. k) a" |
242 |
by (simp add: isNSCont_def) |
|
27468 | 243 |
|
64435 | 244 |
lemma isNSCont_abs [simp]: "isNSCont abs a" |
245 |
for a :: real |
|
246 |
by (auto simp: isNSCont_def intro: approx_hrabs simp: starfun_rabs_hrabs) |
|
27468 | 247 |
|
248 |
||
61975 | 249 |
subsection \<open>Uniform Continuity\<close> |
27468 | 250 |
|
64435 | 251 |
lemma isNSUContD: "isNSUCont f \<Longrightarrow> x \<approx> y \<Longrightarrow> ( *f* f) x \<approx> ( *f* f) y" |
252 |
by (simp add: isNSUCont_def) |
|
27468 | 253 |
|
254 |
lemma isUCont_isNSUCont: |
|
255 |
fixes f :: "'a::real_normed_vector \<Rightarrow> 'b::real_normed_vector" |
|
64435 | 256 |
assumes f: "isUCont f" |
257 |
shows "isNSUCont f" |
|
258 |
unfolding isNSUCont_def |
|
259 |
proof safe |
|
27468 | 260 |
fix x y :: "'a star" |
261 |
assume approx: "x \<approx> y" |
|
262 |
have "starfun f x - starfun f y \<in> Infinitesimal" |
|
263 |
proof (rule InfinitesimalI2) |
|
64435 | 264 |
fix r :: real |
265 |
assume r: "0 < r" |
|
266 |
with f obtain s where s: "0 < s" |
|
267 |
and less_r: "\<And>x y. norm (x - y) < s \<Longrightarrow> norm (f x - f y) < r" |
|
31338
d41a8ba25b67
generalize constants from Lim.thy to class metric_space
huffman
parents:
28562
diff
changeset
|
268 |
by (auto simp add: isUCont_def dist_norm) |
27468 | 269 |
from less_r have less_r': |
64435 | 270 |
"\<And>x y. hnorm (x - y) < star_of s \<Longrightarrow> hnorm (starfun f x - starfun f y) < star_of r" |
27468 | 271 |
by transfer |
272 |
from approx have "x - y \<in> Infinitesimal" |
|
273 |
by (unfold approx_def) |
|
64435 | 274 |
then have "hnorm (x - y) < star_of s" |
27468 | 275 |
using s by (rule InfinitesimalD2) |
64435 | 276 |
then show "hnorm (starfun f x - starfun f y) < star_of r" |
27468 | 277 |
by (rule less_r') |
278 |
qed |
|
64435 | 279 |
then show "starfun f x \<approx> starfun f y" |
27468 | 280 |
by (unfold approx_def) |
281 |
qed |
|
282 |
||
283 |
lemma isNSUCont_isUCont: |
|
284 |
fixes f :: "'a::real_normed_vector \<Rightarrow> 'b::real_normed_vector" |
|
64435 | 285 |
assumes f: "isNSUCont f" |
286 |
shows "isUCont f" |
|
287 |
unfolding isUCont_def dist_norm |
|
288 |
proof safe |
|
289 |
fix r :: real |
|
290 |
assume r: "0 < r" |
|
291 |
have "\<exists>s>0. \<forall>x y. hnorm (x - y) < s \<longrightarrow> hnorm (starfun f x - starfun f y) < star_of r" |
|
27468 | 292 |
proof (rule exI, safe) |
64435 | 293 |
show "0 < \<epsilon>" |
70723
4e39d87c9737
imported new material mostly due to Sébastien Gouëzel
paulson <lp15@cam.ac.uk>
parents:
70228
diff
changeset
|
294 |
by (rule epsilon_gt_zero) |
27468 | 295 |
next |
296 |
fix x y :: "'a star" |
|
61981 | 297 |
assume "hnorm (x - y) < \<epsilon>" |
64435 | 298 |
with Infinitesimal_epsilon have "x - y \<in> Infinitesimal" |
27468 | 299 |
by (rule hnorm_less_Infinitesimal) |
64435 | 300 |
then have "x \<approx> y" |
27468 | 301 |
by (unfold approx_def) |
302 |
with f have "starfun f x \<approx> starfun f y" |
|
303 |
by (simp add: isNSUCont_def) |
|
64435 | 304 |
then have "starfun f x - starfun f y \<in> Infinitesimal" |
27468 | 305 |
by (unfold approx_def) |
64435 | 306 |
then show "hnorm (starfun f x - starfun f y) < star_of r" |
27468 | 307 |
using r by (rule InfinitesimalD2) |
308 |
qed |
|
64435 | 309 |
then show "\<exists>s>0. \<forall>x y. norm (x - y) < s \<longrightarrow> norm (f x - f y) < r" |
27468 | 310 |
by transfer |
311 |
qed |
|
312 |
||
313 |
end |