src/HOL/Number_Theory/Quadratic_Reciprocity.thy
author traytel
Fri, 28 Feb 2020 21:23:11 +0100
changeset 71494 cbe0b6b0bed8
parent 68707 5b269897df9d
child 72302 d7d90ed4c74e
permissions -rw-r--r--
tuned lift_bnf's user interface for quotients
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
65413
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
     1
(*  Title:      HOL/Number_Theory/Quadratic_Reciprocity.thy
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
     2
    Author:     Jaime Mendizabal Roche
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
     3
*)
64282
261d42f0bfac Removed Old_Number_Theory; all theories ported (thanks to Jaime Mendizabal Roche)
eberlm <eberlm@in.tum.de>
parents:
diff changeset
     4
64318
1e92b5c35615 Repaired LaTeX in HOL-Data_Structures
eberlm <eberlm@in.tum.de>
parents: 64282
diff changeset
     5
theory Quadratic_Reciprocity
64282
261d42f0bfac Removed Old_Number_Theory; all theories ported (thanks to Jaime Mendizabal Roche)
eberlm <eberlm@in.tum.de>
parents:
diff changeset
     6
imports Gauss
261d42f0bfac Removed Old_Number_Theory; all theories ported (thanks to Jaime Mendizabal Roche)
eberlm <eberlm@in.tum.de>
parents:
diff changeset
     7
begin
261d42f0bfac Removed Old_Number_Theory; all theories ported (thanks to Jaime Mendizabal Roche)
eberlm <eberlm@in.tum.de>
parents:
diff changeset
     8
65413
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
     9
text \<open>
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
    10
  The proof is based on Gauss's fifth proof, which can be found at
68224
1f7308050349 prefer HTTPS;
wenzelm
parents: 67118
diff changeset
    11
  \<^url>\<open>https://www.lehigh.edu/~shw2/q-recip/gauss5.pdf\<close>.
65413
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
    12
\<close>
64282
261d42f0bfac Removed Old_Number_Theory; all theories ported (thanks to Jaime Mendizabal Roche)
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    13
261d42f0bfac Removed Old_Number_Theory; all theories ported (thanks to Jaime Mendizabal Roche)
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    14
locale QR =
261d42f0bfac Removed Old_Number_Theory; all theories ported (thanks to Jaime Mendizabal Roche)
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    15
  fixes p :: "nat"
261d42f0bfac Removed Old_Number_Theory; all theories ported (thanks to Jaime Mendizabal Roche)
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    16
  fixes q :: "nat"
261d42f0bfac Removed Old_Number_Theory; all theories ported (thanks to Jaime Mendizabal Roche)
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    17
  assumes p_prime: "prime p"
261d42f0bfac Removed Old_Number_Theory; all theories ported (thanks to Jaime Mendizabal Roche)
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    18
  assumes p_ge_2: "2 < p"
261d42f0bfac Removed Old_Number_Theory; all theories ported (thanks to Jaime Mendizabal Roche)
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    19
  assumes q_prime: "prime q"
261d42f0bfac Removed Old_Number_Theory; all theories ported (thanks to Jaime Mendizabal Roche)
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    20
  assumes q_ge_2: "2 < q"
261d42f0bfac Removed Old_Number_Theory; all theories ported (thanks to Jaime Mendizabal Roche)
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    21
  assumes pq_neq: "p \<noteq> q"
261d42f0bfac Removed Old_Number_Theory; all theories ported (thanks to Jaime Mendizabal Roche)
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    22
begin
261d42f0bfac Removed Old_Number_Theory; all theories ported (thanks to Jaime Mendizabal Roche)
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    23
65413
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
    24
lemma odd_p: "odd p"
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
    25
  using p_ge_2 p_prime prime_odd_nat by blast
64282
261d42f0bfac Removed Old_Number_Theory; all theories ported (thanks to Jaime Mendizabal Roche)
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    26
261d42f0bfac Removed Old_Number_Theory; all theories ported (thanks to Jaime Mendizabal Roche)
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    27
lemma p_ge_0: "0 < int p"
67118
ccab07d1196c more simplification rules
haftmann
parents: 66888
diff changeset
    28
  by (simp add: p_prime prime_gt_0_nat)
ccab07d1196c more simplification rules
haftmann
parents: 66888
diff changeset
    29
  
65413
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
    30
lemma p_eq2: "int p = (2 * ((int p - 1) div 2)) + 1"
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
    31
  using odd_p by simp
64282
261d42f0bfac Removed Old_Number_Theory; all theories ported (thanks to Jaime Mendizabal Roche)
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    32
65413
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
    33
lemma odd_q: "odd q"
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
    34
  using q_ge_2 q_prime prime_odd_nat by blast
64282
261d42f0bfac Removed Old_Number_Theory; all theories ported (thanks to Jaime Mendizabal Roche)
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    35
65413
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
    36
lemma q_ge_0: "0 < int q"
67118
ccab07d1196c more simplification rules
haftmann
parents: 66888
diff changeset
    37
  by (simp add: q_prime prime_gt_0_nat)
64282
261d42f0bfac Removed Old_Number_Theory; all theories ported (thanks to Jaime Mendizabal Roche)
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    38
65413
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
    39
lemma q_eq2: "int q = (2 * ((int q - 1) div 2)) + 1"
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
    40
  using odd_q by simp
64282
261d42f0bfac Removed Old_Number_Theory; all theories ported (thanks to Jaime Mendizabal Roche)
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    41
65413
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
    42
lemma pq_eq2: "int p * int q = (2 * ((int p * int q - 1) div 2)) + 1"
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
    43
  using odd_p odd_q by simp
64282
261d42f0bfac Removed Old_Number_Theory; all theories ported (thanks to Jaime Mendizabal Roche)
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    44
261d42f0bfac Removed Old_Number_Theory; all theories ported (thanks to Jaime Mendizabal Roche)
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    45
lemma pq_coprime: "coprime p q"
261d42f0bfac Removed Old_Number_Theory; all theories ported (thanks to Jaime Mendizabal Roche)
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    46
  using pq_neq p_prime primes_coprime_nat q_prime by blast
261d42f0bfac Removed Old_Number_Theory; all theories ported (thanks to Jaime Mendizabal Roche)
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    47
261d42f0bfac Removed Old_Number_Theory; all theories ported (thanks to Jaime Mendizabal Roche)
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    48
lemma pq_coprime_int: "coprime (int p) (int q)"
66837
6ba663ff2b1c tuned proofs
haftmann
parents: 66801
diff changeset
    49
  by (simp add: gcd_int_def pq_coprime)
64282
261d42f0bfac Removed Old_Number_Theory; all theories ported (thanks to Jaime Mendizabal Roche)
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    50
65413
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
    51
lemma qp_ineq: "int p * k \<le> (int p * int q - 1) div 2 \<longleftrightarrow> k \<le> (int q - 1) div 2"
64282
261d42f0bfac Removed Old_Number_Theory; all theories ported (thanks to Jaime Mendizabal Roche)
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    52
proof -
65413
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
    53
  have "2 * int p * k \<le> int p * int q - 1 \<longleftrightarrow> 2 * k \<le> int q - 1"
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
    54
    using p_ge_0 by auto
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
    55
  then show ?thesis by auto
64282
261d42f0bfac Removed Old_Number_Theory; all theories ported (thanks to Jaime Mendizabal Roche)
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    56
qed
261d42f0bfac Removed Old_Number_Theory; all theories ported (thanks to Jaime Mendizabal Roche)
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    57
65413
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
    58
lemma QRqp: "QR q p"
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
    59
  using QR_def QR_axioms by simp
64282
261d42f0bfac Removed Old_Number_Theory; all theories ported (thanks to Jaime Mendizabal Roche)
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    60
65413
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
    61
lemma pq_commute: "int p * int q = int q * int p"
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
    62
  by simp
64282
261d42f0bfac Removed Old_Number_Theory; all theories ported (thanks to Jaime Mendizabal Roche)
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    63
65413
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
    64
lemma pq_ge_0: "int p * int q > 0"
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
    65
  using p_ge_0 q_ge_0 mult_pos_pos by blast
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
    66
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
    67
definition "r = ((p - 1) div 2) * ((q - 1) div 2)"
64282
261d42f0bfac Removed Old_Number_Theory; all theories ported (thanks to Jaime Mendizabal Roche)
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    68
definition "m = card (GAUSS.E p q)"
261d42f0bfac Removed Old_Number_Theory; all theories ported (thanks to Jaime Mendizabal Roche)
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    69
definition "n = card (GAUSS.E q p)"
261d42f0bfac Removed Old_Number_Theory; all theories ported (thanks to Jaime Mendizabal Roche)
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    70
65413
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
    71
abbreviation "Res k \<equiv> {0 .. k - 1}" for k :: int
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
    72
abbreviation "Res_ge_0 k \<equiv> {0 <.. k - 1}" for k :: int
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
    73
abbreviation "Res_0 k \<equiv> {0::int}" for k :: int
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
    74
abbreviation "Res_l k \<equiv> {0 <.. (k - 1) div 2}" for k :: int
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
    75
abbreviation "Res_h k \<equiv> {(k - 1) div 2 <.. k - 1}" for k :: int
64282
261d42f0bfac Removed Old_Number_Theory; all theories ported (thanks to Jaime Mendizabal Roche)
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    76
261d42f0bfac Removed Old_Number_Theory; all theories ported (thanks to Jaime Mendizabal Roche)
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    77
abbreviation "Sets_pq r0 r1 r2 \<equiv>
261d42f0bfac Removed Old_Number_Theory; all theories ported (thanks to Jaime Mendizabal Roche)
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    78
  {(x::int). x \<in> r0 (int p * int q) \<and> x mod p \<in> r1 (int p) \<and> x mod q \<in> r2 (int q)}"
261d42f0bfac Removed Old_Number_Theory; all theories ported (thanks to Jaime Mendizabal Roche)
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    79
261d42f0bfac Removed Old_Number_Theory; all theories ported (thanks to Jaime Mendizabal Roche)
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    80
definition "A = Sets_pq Res_l Res_l Res_h"
261d42f0bfac Removed Old_Number_Theory; all theories ported (thanks to Jaime Mendizabal Roche)
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    81
definition "B = Sets_pq Res_l Res_h Res_l"
261d42f0bfac Removed Old_Number_Theory; all theories ported (thanks to Jaime Mendizabal Roche)
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    82
definition "C = Sets_pq Res_h Res_h Res_l"
261d42f0bfac Removed Old_Number_Theory; all theories ported (thanks to Jaime Mendizabal Roche)
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    83
definition "D = Sets_pq Res_l Res_h Res_h"
261d42f0bfac Removed Old_Number_Theory; all theories ported (thanks to Jaime Mendizabal Roche)
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    84
definition "E = Sets_pq Res_l Res_0 Res_h"
261d42f0bfac Removed Old_Number_Theory; all theories ported (thanks to Jaime Mendizabal Roche)
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    85
definition "F = Sets_pq Res_l Res_h Res_0"
261d42f0bfac Removed Old_Number_Theory; all theories ported (thanks to Jaime Mendizabal Roche)
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    86
261d42f0bfac Removed Old_Number_Theory; all theories ported (thanks to Jaime Mendizabal Roche)
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    87
definition "a = card A"
261d42f0bfac Removed Old_Number_Theory; all theories ported (thanks to Jaime Mendizabal Roche)
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    88
definition "b = card B"
261d42f0bfac Removed Old_Number_Theory; all theories ported (thanks to Jaime Mendizabal Roche)
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    89
definition "c = card C"
261d42f0bfac Removed Old_Number_Theory; all theories ported (thanks to Jaime Mendizabal Roche)
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    90
definition "d = card D"
261d42f0bfac Removed Old_Number_Theory; all theories ported (thanks to Jaime Mendizabal Roche)
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    91
definition "e = card E"
261d42f0bfac Removed Old_Number_Theory; all theories ported (thanks to Jaime Mendizabal Roche)
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    92
definition "f = card F"
261d42f0bfac Removed Old_Number_Theory; all theories ported (thanks to Jaime Mendizabal Roche)
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    93
65413
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
    94
lemma Gpq: "GAUSS p q"
64282
261d42f0bfac Removed Old_Number_Theory; all theories ported (thanks to Jaime Mendizabal Roche)
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    95
  using p_prime pq_neq p_ge_2 q_prime
68707
5b269897df9d de-applying and removal of obsolete aliases
paulson <lp15@cam.ac.uk>
parents: 68634
diff changeset
    96
  by (auto simp: GAUSS_def cong_iff_dvd_diff dest: primes_dvd_imp_eq)
64282
261d42f0bfac Removed Old_Number_Theory; all theories ported (thanks to Jaime Mendizabal Roche)
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    97
65413
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
    98
lemma Gqp: "GAUSS q p"
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
    99
  by (simp add: QRqp QR.Gpq)
64282
261d42f0bfac Removed Old_Number_Theory; all theories ported (thanks to Jaime Mendizabal Roche)
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   100
261d42f0bfac Removed Old_Number_Theory; all theories ported (thanks to Jaime Mendizabal Roche)
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   101
lemma QR_lemma_01: "(\<lambda>x. x mod q) ` E = GAUSS.E q p"
261d42f0bfac Removed Old_Number_Theory; all theories ported (thanks to Jaime Mendizabal Roche)
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   102
proof
65413
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   103
  have "x \<in> E \<longrightarrow> x mod int q \<in> GAUSS.E q p" if "x \<in> E" for x
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   104
  proof -
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   105
    from that obtain k where k: "x = int p * k"
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   106
      unfolding E_def by blast
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   107
    from that E_def have "x \<in> Res_l (int p * int q)"
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   108
      by blast
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   109
    then have "k \<in> GAUSS.A q"
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   110
      using Gqp GAUSS.A_def k qp_ineq by (simp add: zero_less_mult_iff)
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   111
    then have "x mod q \<in> GAUSS.E q p"
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   112
      using GAUSS.C_def[of q p] Gqp k GAUSS.B_def[of q p] that GAUSS.E_def[of q p]
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   113
      by (force simp: E_def)
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   114
    then show ?thesis by auto
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   115
  qed
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   116
  then show "(\<lambda>x. x mod int q) ` E \<subseteq> GAUSS.E q p"
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   117
    by auto
64282
261d42f0bfac Removed Old_Number_Theory; all theories ported (thanks to Jaime Mendizabal Roche)
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   118
  show "GAUSS.E q p \<subseteq> (\<lambda>x. x mod q) ` E"
261d42f0bfac Removed Old_Number_Theory; all theories ported (thanks to Jaime Mendizabal Roche)
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   119
  proof
261d42f0bfac Removed Old_Number_Theory; all theories ported (thanks to Jaime Mendizabal Roche)
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   120
    fix x
65413
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   121
    assume x: "x \<in> GAUSS.E q p"
64282
261d42f0bfac Removed Old_Number_Theory; all theories ported (thanks to Jaime Mendizabal Roche)
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   122
    then obtain ka where ka: "ka \<in> GAUSS.A q" "x = (ka * p) mod q"
65413
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   123
      by (auto simp: Gqp GAUSS.B_def GAUSS.C_def GAUSS.E_def)
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   124
    then have "ka * p \<in> Res_l (int p * int q)"
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   125
      using Gqp p_ge_0 qp_ineq by (simp add: GAUSS.A_def Groups.mult_ac(2))
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   126
    then show "x \<in> (\<lambda>x. x mod q) ` E"
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   127
      using ka x Gqp q_ge_0 by (force simp: E_def GAUSS.E_def)
64282
261d42f0bfac Removed Old_Number_Theory; all theories ported (thanks to Jaime Mendizabal Roche)
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   128
  qed
261d42f0bfac Removed Old_Number_Theory; all theories ported (thanks to Jaime Mendizabal Roche)
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   129
qed
261d42f0bfac Removed Old_Number_Theory; all theories ported (thanks to Jaime Mendizabal Roche)
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   130
65413
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   131
lemma QR_lemma_02: "e = n"
64282
261d42f0bfac Removed Old_Number_Theory; all theories ported (thanks to Jaime Mendizabal Roche)
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   132
proof -
65413
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   133
  have "x = y" if x: "x \<in> E" and y: "y \<in> E" and mod: "x mod q = y mod q" for x y
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   134
  proof -
64282
261d42f0bfac Removed Old_Number_Theory; all theories ported (thanks to Jaime Mendizabal Roche)
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   135
    obtain p_inv where p_inv: "[int p * p_inv = 1] (mod int q)"
261d42f0bfac Removed Old_Number_Theory; all theories ported (thanks to Jaime Mendizabal Roche)
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   136
      using pq_coprime_int cong_solve_coprime_int by blast
65413
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   137
    from x y E_def obtain kx ky where k: "x = int p * kx" "y = int p * ky"
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   138
      using dvd_def[of p x] by blast
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   139
    with x y E_def have "0 < x" "int p * kx \<le> (int p * int q - 1) div 2"
64282
261d42f0bfac Removed Old_Number_Theory; all theories ported (thanks to Jaime Mendizabal Roche)
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   140
        "0 < y" "int p * ky \<le> (int p * int q - 1) div 2"
65413
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   141
      using greaterThanAtMost_iff mem_Collect_eq by blast+
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   142
    with k have "0 \<le> kx" "kx < q" "0 \<le> ky" "ky < q"
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   143
      using qp_ineq by (simp_all add: zero_less_mult_iff)
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   144
    moreover from mod k have "(p_inv * (p * kx)) mod q = (p_inv * (p * ky)) mod q"
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   145
      using mod_mult_cong by blast
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   146
    then have "(p * p_inv * kx) mod q = (p * p_inv * ky) mod q"
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   147
      by (simp add: algebra_simps)
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   148
    then have "kx mod q = ky mod q"
66888
930abfdf8727 algebraic foundation for congruences
haftmann
parents: 66837
diff changeset
   149
      using p_inv mod_mult_cong[of "p * p_inv" "q" "1"]
930abfdf8727 algebraic foundation for congruences
haftmann
parents: 66837
diff changeset
   150
      by (auto simp: cong_def)
65413
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   151
    then have "[kx = ky] (mod q)"
66888
930abfdf8727 algebraic foundation for congruences
haftmann
parents: 66837
diff changeset
   152
      unfolding cong_def by blast
65413
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   153
    ultimately show ?thesis
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   154
      using cong_less_imp_eq_int k by blast
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   155
  qed
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   156
  then have "inj_on (\<lambda>x. x mod q) E"
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   157
    by (auto simp: inj_on_def)
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   158
  then show ?thesis
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   159
    using QR_lemma_01 card_image e_def n_def by fastforce
64282
261d42f0bfac Removed Old_Number_Theory; all theories ported (thanks to Jaime Mendizabal Roche)
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   160
qed
261d42f0bfac Removed Old_Number_Theory; all theories ported (thanks to Jaime Mendizabal Roche)
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   161
261d42f0bfac Removed Old_Number_Theory; all theories ported (thanks to Jaime Mendizabal Roche)
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   162
lemma QR_lemma_03: "f = m"
261d42f0bfac Removed Old_Number_Theory; all theories ported (thanks to Jaime Mendizabal Roche)
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   163
proof -
65413
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   164
  have "F = QR.E q p"
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   165
    unfolding F_def pq_commute using QRqp QR.E_def[of q p] by fastforce
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   166
  then have "f = QR.e q p"
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   167
    unfolding f_def using QRqp QR.e_def[of q p] by presburger
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   168
  then show ?thesis
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   169
    using QRqp QR.QR_lemma_02 m_def QRqp QR.n_def by presburger
64282
261d42f0bfac Removed Old_Number_Theory; all theories ported (thanks to Jaime Mendizabal Roche)
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   170
qed
261d42f0bfac Removed Old_Number_Theory; all theories ported (thanks to Jaime Mendizabal Roche)
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   171
65413
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   172
definition f_1 :: "int \<Rightarrow> int \<times> int"
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   173
  where "f_1 x = ((x mod p), (x mod q))"
64282
261d42f0bfac Removed Old_Number_Theory; all theories ported (thanks to Jaime Mendizabal Roche)
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   174
65413
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   175
definition P_1 :: "int \<times> int \<Rightarrow> int \<Rightarrow> bool"
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   176
  where "P_1 res x \<longleftrightarrow> x mod p = fst res \<and> x mod q = snd res \<and> x \<in> Res (int p * int q)"
64282
261d42f0bfac Removed Old_Number_Theory; all theories ported (thanks to Jaime Mendizabal Roche)
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   177
65413
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   178
definition g_1 :: "int \<times> int \<Rightarrow> int"
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   179
  where "g_1 res = (THE x. P_1 res x)"
64282
261d42f0bfac Removed Old_Number_Theory; all theories ported (thanks to Jaime Mendizabal Roche)
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   180
65413
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   181
lemma P_1_lemma:
65416
f707dbcf11e3 more approproiate placement of theories MiscAlgebra and Multiplicate_Group
haftmann
parents: 65413
diff changeset
   182
  fixes res :: "int \<times> int"
65413
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   183
  assumes "0 \<le> fst res" "fst res < p" "0 \<le> snd res" "snd res < q"
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   184
  shows "\<exists>!x. P_1 res x"
64282
261d42f0bfac Removed Old_Number_Theory; all theories ported (thanks to Jaime Mendizabal Roche)
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   185
proof -
261d42f0bfac Removed Old_Number_Theory; all theories ported (thanks to Jaime Mendizabal Roche)
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   186
  obtain y k1 k2 where yk: "y = nat (fst res) + k1 * p" "y = nat (snd res) + k2 * q"
261d42f0bfac Removed Old_Number_Theory; all theories ported (thanks to Jaime Mendizabal Roche)
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   187
    using chinese_remainder[of p q] pq_coprime p_ge_0 q_ge_0 by fastforce
66888
930abfdf8727 algebraic foundation for congruences
haftmann
parents: 66837
diff changeset
   188
  have "fst res = int (y - k1 * p)"
930abfdf8727 algebraic foundation for congruences
haftmann
parents: 66837
diff changeset
   189
    using \<open>0 \<le> fst res\<close> yk(1) by simp
930abfdf8727 algebraic foundation for congruences
haftmann
parents: 66837
diff changeset
   190
  moreover have "snd res = int (y - k2 * q)"
930abfdf8727 algebraic foundation for congruences
haftmann
parents: 66837
diff changeset
   191
    using \<open>0 \<le> snd res\<close> yk(2) by simp
930abfdf8727 algebraic foundation for congruences
haftmann
parents: 66837
diff changeset
   192
  ultimately have res: "res = (int (y - k1 * p), int (y - k2 * q))"
930abfdf8727 algebraic foundation for congruences
haftmann
parents: 66837
diff changeset
   193
    by (simp add: prod_eq_iff)
930abfdf8727 algebraic foundation for congruences
haftmann
parents: 66837
diff changeset
   194
  have y: "k1 * p \<le> y" "k2 * q \<le> y"
930abfdf8727 algebraic foundation for congruences
haftmann
parents: 66837
diff changeset
   195
    using yk by simp_all
930abfdf8727 algebraic foundation for congruences
haftmann
parents: 66837
diff changeset
   196
  from y have *: "[y = nat (fst res)] (mod p)" "[y = nat (snd res)] (mod q)"
930abfdf8727 algebraic foundation for congruences
haftmann
parents: 66837
diff changeset
   197
    by (auto simp add: res cong_le_nat intro: exI [of _ k1] exI [of _ k2])
930abfdf8727 algebraic foundation for congruences
haftmann
parents: 66837
diff changeset
   198
  from * have "(y mod (int p * int q)) mod int p = fst res" "(y mod (int p * int q)) mod int q = snd res"
930abfdf8727 algebraic foundation for congruences
haftmann
parents: 66837
diff changeset
   199
    using y apply (auto simp add: res of_nat_mult [symmetric] of_nat_mod [symmetric] mod_mod_cancel simp del: of_nat_mult)
930abfdf8727 algebraic foundation for congruences
haftmann
parents: 66837
diff changeset
   200
     apply (metis \<open>fst res = int (y - k1 * p)\<close> assms(1) assms(2) cong_def mod_pos_pos_trivial nat_int of_nat_mod)
930abfdf8727 algebraic foundation for congruences
haftmann
parents: 66837
diff changeset
   201
    apply (metis \<open>snd res = int (y - k2 * q)\<close> assms(3) assms(4) cong_def mod_pos_pos_trivial nat_int of_nat_mod)
930abfdf8727 algebraic foundation for congruences
haftmann
parents: 66837
diff changeset
   202
    done
65413
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   203
  then obtain x where "P_1 res x"
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   204
    unfolding P_1_def
64282
261d42f0bfac Removed Old_Number_Theory; all theories ported (thanks to Jaime Mendizabal Roche)
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   205
    using Divides.pos_mod_bound Divides.pos_mod_sign pq_ge_0 by fastforce
65413
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   206
  moreover have "a = b" if "P_1 res a" "P_1 res b" for a b
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   207
  proof -
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   208
    from that have "int p * int q dvd a - b"
64593
50c715579715 reoriented congruence rules in non-explosive direction
haftmann
parents: 64318
diff changeset
   209
      using divides_mult[of "int p" "a - b" "int q"] pq_coprime_int mod_eq_dvd_iff [of a _ b]
64282
261d42f0bfac Removed Old_Number_Theory; all theories ported (thanks to Jaime Mendizabal Roche)
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   210
      unfolding P_1_def by force
65413
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   211
    with that show ?thesis
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   212
      using dvd_imp_le_int[of "a - b"] unfolding P_1_def by fastforce
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   213
  qed
64282
261d42f0bfac Removed Old_Number_Theory; all theories ported (thanks to Jaime Mendizabal Roche)
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   214
  ultimately show ?thesis by auto
261d42f0bfac Removed Old_Number_Theory; all theories ported (thanks to Jaime Mendizabal Roche)
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   215
qed
261d42f0bfac Removed Old_Number_Theory; all theories ported (thanks to Jaime Mendizabal Roche)
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   216
65413
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   217
lemma g_1_lemma:
65416
f707dbcf11e3 more approproiate placement of theories MiscAlgebra and Multiplicate_Group
haftmann
parents: 65413
diff changeset
   218
  fixes res :: "int \<times> int"
65413
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   219
  assumes "0 \<le> fst res" "fst res < p" "0 \<le> snd res" "snd res < q"
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   220
  shows "P_1 res (g_1 res)"
65416
f707dbcf11e3 more approproiate placement of theories MiscAlgebra and Multiplicate_Group
haftmann
parents: 65413
diff changeset
   221
  using assms P_1_lemma [of res] theI' [of "P_1 res"] g_1_def
f707dbcf11e3 more approproiate placement of theories MiscAlgebra and Multiplicate_Group
haftmann
parents: 65413
diff changeset
   222
  by auto
64282
261d42f0bfac Removed Old_Number_Theory; all theories ported (thanks to Jaime Mendizabal Roche)
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   223
261d42f0bfac Removed Old_Number_Theory; all theories ported (thanks to Jaime Mendizabal Roche)
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   224
definition "BuC = Sets_pq Res_ge_0 Res_h Res_l"
261d42f0bfac Removed Old_Number_Theory; all theories ported (thanks to Jaime Mendizabal Roche)
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   225
65416
f707dbcf11e3 more approproiate placement of theories MiscAlgebra and Multiplicate_Group
haftmann
parents: 65413
diff changeset
   226
lemma finite_BuC [simp]:
f707dbcf11e3 more approproiate placement of theories MiscAlgebra and Multiplicate_Group
haftmann
parents: 65413
diff changeset
   227
  "finite BuC"
f707dbcf11e3 more approproiate placement of theories MiscAlgebra and Multiplicate_Group
haftmann
parents: 65413
diff changeset
   228
proof -
f707dbcf11e3 more approproiate placement of theories MiscAlgebra and Multiplicate_Group
haftmann
parents: 65413
diff changeset
   229
  {
f707dbcf11e3 more approproiate placement of theories MiscAlgebra and Multiplicate_Group
haftmann
parents: 65413
diff changeset
   230
    fix p q :: nat
f707dbcf11e3 more approproiate placement of theories MiscAlgebra and Multiplicate_Group
haftmann
parents: 65413
diff changeset
   231
    have "finite {x. 0 < x \<and> x < int p * int q}"
f707dbcf11e3 more approproiate placement of theories MiscAlgebra and Multiplicate_Group
haftmann
parents: 65413
diff changeset
   232
      by simp
f707dbcf11e3 more approproiate placement of theories MiscAlgebra and Multiplicate_Group
haftmann
parents: 65413
diff changeset
   233
    then have "finite {x.
f707dbcf11e3 more approproiate placement of theories MiscAlgebra and Multiplicate_Group
haftmann
parents: 65413
diff changeset
   234
      0 < x \<and>
f707dbcf11e3 more approproiate placement of theories MiscAlgebra and Multiplicate_Group
haftmann
parents: 65413
diff changeset
   235
      x < int p * int q \<and>
f707dbcf11e3 more approproiate placement of theories MiscAlgebra and Multiplicate_Group
haftmann
parents: 65413
diff changeset
   236
      (int p - 1) div 2
f707dbcf11e3 more approproiate placement of theories MiscAlgebra and Multiplicate_Group
haftmann
parents: 65413
diff changeset
   237
      < x mod int p \<and>
f707dbcf11e3 more approproiate placement of theories MiscAlgebra and Multiplicate_Group
haftmann
parents: 65413
diff changeset
   238
      x mod int p < int p \<and>
f707dbcf11e3 more approproiate placement of theories MiscAlgebra and Multiplicate_Group
haftmann
parents: 65413
diff changeset
   239
      0 < x mod int q \<and>
f707dbcf11e3 more approproiate placement of theories MiscAlgebra and Multiplicate_Group
haftmann
parents: 65413
diff changeset
   240
      x mod int q \<le> (int q - 1) div 2}"
f707dbcf11e3 more approproiate placement of theories MiscAlgebra and Multiplicate_Group
haftmann
parents: 65413
diff changeset
   241
      by (auto intro: rev_finite_subset)
f707dbcf11e3 more approproiate placement of theories MiscAlgebra and Multiplicate_Group
haftmann
parents: 65413
diff changeset
   242
  }
f707dbcf11e3 more approproiate placement of theories MiscAlgebra and Multiplicate_Group
haftmann
parents: 65413
diff changeset
   243
  then show ?thesis
f707dbcf11e3 more approproiate placement of theories MiscAlgebra and Multiplicate_Group
haftmann
parents: 65413
diff changeset
   244
    by (simp add: BuC_def)
f707dbcf11e3 more approproiate placement of theories MiscAlgebra and Multiplicate_Group
haftmann
parents: 65413
diff changeset
   245
qed
f707dbcf11e3 more approproiate placement of theories MiscAlgebra and Multiplicate_Group
haftmann
parents: 65413
diff changeset
   246
65413
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   247
lemma QR_lemma_04: "card BuC = card (Res_h p \<times> Res_l q)"
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   248
  using card_bij_eq[of f_1 "BuC" "Res_h p \<times> Res_l q" g_1]
64282
261d42f0bfac Removed Old_Number_Theory; all theories ported (thanks to Jaime Mendizabal Roche)
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   249
proof
65413
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   250
  show "inj_on f_1 BuC"
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   251
  proof
64282
261d42f0bfac Removed Old_Number_Theory; all theories ported (thanks to Jaime Mendizabal Roche)
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   252
    fix x y
65413
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   253
    assume *: "x \<in> BuC" "y \<in> BuC" "f_1 x = f_1 y"
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   254
    then have "int p * int q dvd x - y"
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   255
      using f_1_def pq_coprime_int divides_mult[of "int p" "x - y" "int q"]
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   256
        mod_eq_dvd_iff[of x _ y]
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   257
      by auto
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   258
    with * show "x = y"
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   259
      using dvd_imp_le_int[of "x - y" "int p * int q"] unfolding BuC_def by force
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   260
  qed
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   261
  show "inj_on g_1 (Res_h p \<times> Res_l q)"
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   262
  proof
64282
261d42f0bfac Removed Old_Number_Theory; all theories ported (thanks to Jaime Mendizabal Roche)
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   263
    fix x y
65413
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   264
    assume *: "x \<in> Res_h p \<times> Res_l q" "y \<in> Res_h p \<times> Res_l q" "g_1 x = g_1 y"
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   265
    then have "0 \<le> fst x" "fst x < p" "0 \<le> snd x" "snd x < q"
64282
261d42f0bfac Removed Old_Number_Theory; all theories ported (thanks to Jaime Mendizabal Roche)
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   266
        "0 \<le> fst y" "fst y < p" "0 \<le> snd y" "snd y < q"
261d42f0bfac Removed Old_Number_Theory; all theories ported (thanks to Jaime Mendizabal Roche)
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   267
      using mem_Sigma_iff prod.collapse by fastforce+
65413
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   268
    with * show "x = y"
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   269
      using g_1_lemma[of x] g_1_lemma[of y] P_1_def by fastforce
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   270
  qed
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   271
  show "g_1 ` (Res_h p \<times> Res_l q) \<subseteq> BuC"
64282
261d42f0bfac Removed Old_Number_Theory; all theories ported (thanks to Jaime Mendizabal Roche)
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   272
  proof
261d42f0bfac Removed Old_Number_Theory; all theories ported (thanks to Jaime Mendizabal Roche)
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   273
    fix y
65413
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   274
    assume "y \<in> g_1 ` (Res_h p \<times> Res_l q)"
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   275
    then obtain x where x: "y = g_1 x" "x \<in> Res_h p \<times> Res_l q"
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   276
      by blast
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   277
    then have "P_1 x y"
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   278
      using g_1_lemma by fastforce
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   279
    with x show "y \<in> BuC"
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   280
      unfolding P_1_def BuC_def mem_Collect_eq using SigmaE prod.sel by fastforce
64282
261d42f0bfac Removed Old_Number_Theory; all theories ported (thanks to Jaime Mendizabal Roche)
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   281
  qed
65416
f707dbcf11e3 more approproiate placement of theories MiscAlgebra and Multiplicate_Group
haftmann
parents: 65413
diff changeset
   282
qed (auto simp: finite_subset f_1_def, simp_all add: BuC_def)
64282
261d42f0bfac Removed Old_Number_Theory; all theories ported (thanks to Jaime Mendizabal Roche)
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   283
65413
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   284
lemma QR_lemma_05: "card (Res_h p \<times> Res_l q) = r"
64282
261d42f0bfac Removed Old_Number_Theory; all theories ported (thanks to Jaime Mendizabal Roche)
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   285
proof -
65413
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   286
  have "card (Res_l q) = (q - 1) div 2" "card (Res_h p) = (p - 1) div 2"
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   287
    using p_eq2 by force+
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   288
  then show ?thesis
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   289
    unfolding r_def using card_cartesian_product[of "Res_h p" "Res_l q"] by presburger
64282
261d42f0bfac Removed Old_Number_Theory; all theories ported (thanks to Jaime Mendizabal Roche)
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   290
qed
261d42f0bfac Removed Old_Number_Theory; all theories ported (thanks to Jaime Mendizabal Roche)
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   291
261d42f0bfac Removed Old_Number_Theory; all theories ported (thanks to Jaime Mendizabal Roche)
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   292
lemma QR_lemma_06: "b + c = r"
261d42f0bfac Removed Old_Number_Theory; all theories ported (thanks to Jaime Mendizabal Roche)
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   293
proof -
65413
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   294
  have "B \<inter> C = {}" "finite B" "finite C" "B \<union> C = BuC"
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   295
    unfolding B_def C_def BuC_def by fastforce+
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   296
  then show ?thesis
64282
261d42f0bfac Removed Old_Number_Theory; all theories ported (thanks to Jaime Mendizabal Roche)
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   297
    unfolding b_def c_def using card_empty card_Un_Int QR_lemma_04 QR_lemma_05 by fastforce
261d42f0bfac Removed Old_Number_Theory; all theories ported (thanks to Jaime Mendizabal Roche)
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   298
qed
261d42f0bfac Removed Old_Number_Theory; all theories ported (thanks to Jaime Mendizabal Roche)
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   299
65413
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   300
definition f_2:: "int \<Rightarrow> int"
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   301
  where "f_2 x = (int p * int q) - x"
64282
261d42f0bfac Removed Old_Number_Theory; all theories ported (thanks to Jaime Mendizabal Roche)
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   302
65413
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   303
lemma f_2_lemma_1: "f_2 (f_2 x) = x"
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   304
  by (simp add: f_2_def)
64282
261d42f0bfac Removed Old_Number_Theory; all theories ported (thanks to Jaime Mendizabal Roche)
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   305
65413
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   306
lemma f_2_lemma_2: "[f_2 x = int p - x] (mod p)"
68707
5b269897df9d de-applying and removal of obsolete aliases
paulson <lp15@cam.ac.uk>
parents: 68634
diff changeset
   307
  by (simp add: f_2_def cong_iff_dvd_diff)
64282
261d42f0bfac Removed Old_Number_Theory; all theories ported (thanks to Jaime Mendizabal Roche)
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   308
261d42f0bfac Removed Old_Number_Theory; all theories ported (thanks to Jaime Mendizabal Roche)
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   309
lemma f_2_lemma_3: "f_2 x \<in> S \<Longrightarrow> x \<in> f_2 ` S"
261d42f0bfac Removed Old_Number_Theory; all theories ported (thanks to Jaime Mendizabal Roche)
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   310
  using f_2_lemma_1[of x] image_eqI[of x f_2 "f_2 x" S] by presburger
261d42f0bfac Removed Old_Number_Theory; all theories ported (thanks to Jaime Mendizabal Roche)
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   311
65413
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   312
lemma QR_lemma_07:
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   313
  "f_2 ` Res_l (int p * int q) = Res_h (int p * int q)"
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   314
  "f_2 ` Res_h (int p * int q) = Res_l (int p * int q)"
64282
261d42f0bfac Removed Old_Number_Theory; all theories ported (thanks to Jaime Mendizabal Roche)
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   315
proof -
65413
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   316
  have 1: "f_2 ` Res_l (int p * int q) \<subseteq> Res_h (int p * int q)"
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   317
    by (force simp: f_2_def)
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   318
  have 2: "f_2 ` Res_h (int p * int q) \<subseteq> Res_l (int p * int q)"
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   319
    using pq_eq2 by (fastforce simp: f_2_def)
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   320
  from 2 have 3: "Res_h (int p * int q) \<subseteq> f_2 ` Res_l (int p * int q)"
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   321
    using f_2_lemma_3 by blast
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   322
  from 1 have 4: "Res_l (int p * int q) \<subseteq> f_2 ` Res_h (int p * int q)"
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   323
    using f_2_lemma_3 by blast
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   324
  from 1 3 show "f_2 ` Res_l (int p * int q) = Res_h (int p * int q)"
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   325
    by blast
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   326
  from 2 4 show "f_2 ` Res_h (int p * int q) = Res_l (int p * int q)"
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   327
    by blast
64282
261d42f0bfac Removed Old_Number_Theory; all theories ported (thanks to Jaime Mendizabal Roche)
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   328
qed
261d42f0bfac Removed Old_Number_Theory; all theories ported (thanks to Jaime Mendizabal Roche)
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   329
65413
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   330
lemma QR_lemma_08:
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   331
    "f_2 x mod p \<in> Res_l p \<longleftrightarrow> x mod p \<in> Res_h p"
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   332
    "f_2 x mod p \<in> Res_h p \<longleftrightarrow> x mod p \<in> Res_l p"
66888
930abfdf8727 algebraic foundation for congruences
haftmann
parents: 66837
diff changeset
   333
  using f_2_lemma_2[of x] cong_def[of "f_2 x" "p - x" p] minus_mod_self2[of x p]
65413
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   334
    zmod_zminus1_eq_if[of x p] p_eq2
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   335
  by auto
64282
261d42f0bfac Removed Old_Number_Theory; all theories ported (thanks to Jaime Mendizabal Roche)
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   336
65413
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   337
lemma QR_lemma_09:
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   338
    "f_2 x mod q \<in> Res_l q \<longleftrightarrow> x mod q \<in> Res_h q"
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   339
    "f_2 x mod q \<in> Res_h q \<longleftrightarrow> x mod q \<in> Res_l q"
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   340
  using QRqp QR.QR_lemma_08 f_2_def QR.f_2_def pq_commute by auto
64282
261d42f0bfac Removed Old_Number_Theory; all theories ported (thanks to Jaime Mendizabal Roche)
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   341
65413
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   342
lemma QR_lemma_10: "a = c"
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   343
  unfolding a_def c_def
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   344
  apply (rule card_bij_eq[of f_2 A C f_2])
64282
261d42f0bfac Removed Old_Number_Theory; all theories ported (thanks to Jaime Mendizabal Roche)
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   345
  unfolding A_def C_def
65413
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   346
  using QR_lemma_07 QR_lemma_08 QR_lemma_09 apply ((simp add: inj_on_def f_2_def), blast)+
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   347
  apply fastforce+
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   348
  done
64282
261d42f0bfac Removed Old_Number_Theory; all theories ported (thanks to Jaime Mendizabal Roche)
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   349
261d42f0bfac Removed Old_Number_Theory; all theories ported (thanks to Jaime Mendizabal Roche)
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   350
definition "BuD = Sets_pq Res_l Res_h Res_ge_0"
261d42f0bfac Removed Old_Number_Theory; all theories ported (thanks to Jaime Mendizabal Roche)
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   351
definition "BuDuF = Sets_pq Res_l Res_h Res"
261d42f0bfac Removed Old_Number_Theory; all theories ported (thanks to Jaime Mendizabal Roche)
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   352
65413
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   353
definition f_3 :: "int \<Rightarrow> int \<times> int"
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   354
  where "f_3 x = (x mod p, x div p + 1)"
64282
261d42f0bfac Removed Old_Number_Theory; all theories ported (thanks to Jaime Mendizabal Roche)
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   355
65413
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   356
definition g_3 :: "int \<times> int \<Rightarrow> int"
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   357
  where "g_3 x = fst x + (snd x - 1) * p"
64282
261d42f0bfac Removed Old_Number_Theory; all theories ported (thanks to Jaime Mendizabal Roche)
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   358
65413
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   359
lemma QR_lemma_11: "card BuDuF = card (Res_h p \<times> Res_l q)"
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   360
  using card_bij_eq[of f_3 BuDuF "Res_h p \<times> Res_l q" g_3]
64282
261d42f0bfac Removed Old_Number_Theory; all theories ported (thanks to Jaime Mendizabal Roche)
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   361
proof
65413
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   362
  show "f_3 ` BuDuF \<subseteq> Res_h p \<times> Res_l q"
64282
261d42f0bfac Removed Old_Number_Theory; all theories ported (thanks to Jaime Mendizabal Roche)
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   363
  proof
261d42f0bfac Removed Old_Number_Theory; all theories ported (thanks to Jaime Mendizabal Roche)
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   364
    fix y
261d42f0bfac Removed Old_Number_Theory; all theories ported (thanks to Jaime Mendizabal Roche)
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   365
    assume "y \<in> f_3 ` BuDuF"
65413
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   366
    then obtain x where x: "y = f_3 x" "x \<in> BuDuF"
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   367
      by blast
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   368
    then have "x \<le> int p * (int q - 1) div 2 + (int p - 1) div 2"
64282
261d42f0bfac Removed Old_Number_Theory; all theories ported (thanks to Jaime Mendizabal Roche)
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   369
      unfolding BuDuF_def using p_eq2 int_distrib(4) by auto
65413
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   370
    moreover from x have "(int p - 1) div 2 \<le> - 1 + x mod p"
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   371
      by (auto simp: BuDuF_def)
64282
261d42f0bfac Removed Old_Number_Theory; all theories ported (thanks to Jaime Mendizabal Roche)
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   372
    moreover have "int p * (int q - 1) div 2 = int p * ((int q - 1) div 2)"
68634
db0980691ef4 more de-applying and a fix
paulson <lp15@cam.ac.uk>
parents: 68631
diff changeset
   373
      by (subst div_mult1_eq) (simp add: odd_q)
65413
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   374
    then have "p * (int q - 1) div 2 = p * ((int q + 1) div 2 - 1)"
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   375
      by fastforce
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   376
    ultimately have "x \<le> p * ((int q + 1) div 2 - 1) - 1 + x mod p"
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   377
      by linarith
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   378
    then have "x div p < (int q + 1) div 2 - 1"
64282
261d42f0bfac Removed Old_Number_Theory; all theories ported (thanks to Jaime Mendizabal Roche)
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   379
      using mult.commute[of "int p" "x div p"] p_ge_0 div_mult_mod_eq[of x p]
65413
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   380
        and mult_less_cancel_left_pos[of p "x div p" "(int q + 1) div 2 - 1"]
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   381
      by linarith
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   382
    moreover from x have "0 < x div p + 1"
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   383
      using pos_imp_zdiv_neg_iff[of p x] p_ge_0 by (auto simp: BuDuF_def)
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   384
    ultimately show "y \<in> Res_h p \<times> Res_l q"
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   385
      using x by (auto simp: BuDuF_def f_3_def)
64282
261d42f0bfac Removed Old_Number_Theory; all theories ported (thanks to Jaime Mendizabal Roche)
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   386
  qed
65413
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   387
  show "inj_on g_3 (Res_h p \<times> Res_l q)"
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   388
  proof
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   389
    have *: "f_3 (g_3 x) = x" if "x \<in> Res_h p \<times> Res_l q" for x
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   390
    proof -
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   391
      from that have *: "(fst x + (snd x - 1) * int p) mod int p = fst x"
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   392
        by force
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   393
      from that have "(fst x + (snd x - 1) * int p) div int p + 1 = snd x"
66888
930abfdf8727 algebraic foundation for congruences
haftmann
parents: 66837
diff changeset
   394
        by auto
65413
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   395
      with * show "f_3 (g_3 x) = x"
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   396
        by (simp add: f_3_def g_3_def)
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   397
    qed
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   398
    fix x y
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   399
    assume "x \<in> Res_h p \<times> Res_l q" "y \<in> Res_h p \<times> Res_l q" "g_3 x = g_3 y"
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   400
    from this *[of x] *[of y] show "x = y"
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   401
      by presburger
64282
261d42f0bfac Removed Old_Number_Theory; all theories ported (thanks to Jaime Mendizabal Roche)
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   402
  qed
65413
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   403
  show "g_3 ` (Res_h p \<times> Res_l q) \<subseteq> BuDuF"
64282
261d42f0bfac Removed Old_Number_Theory; all theories ported (thanks to Jaime Mendizabal Roche)
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   404
  proof
261d42f0bfac Removed Old_Number_Theory; all theories ported (thanks to Jaime Mendizabal Roche)
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   405
    fix y
65413
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   406
    assume "y \<in> g_3 ` (Res_h p \<times> Res_l q)"
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   407
    then obtain x where x: "x \<in> Res_h p \<times> Res_l q" and y: "y = g_3 x"
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   408
      by blast
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   409
    then have "snd x \<le> (int q - 1) div 2"
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   410
      by force
64282
261d42f0bfac Removed Old_Number_Theory; all theories ported (thanks to Jaime Mendizabal Roche)
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   411
    moreover have "int p * ((int q - 1) div 2) = (int p * int q - int p) div 2"
68631
bc1369804692 de-applying
paulson <lp15@cam.ac.uk>
parents: 68224
diff changeset
   412
      using int_distrib(4) div_mult1_eq[of "int p" "int q - 1" 2] odd_q by fastforce
64282
261d42f0bfac Removed Old_Number_Theory; all theories ported (thanks to Jaime Mendizabal Roche)
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   413
    ultimately have "(snd x) * int p \<le> (int q * int p - int p) div 2"
261d42f0bfac Removed Old_Number_Theory; all theories ported (thanks to Jaime Mendizabal Roche)
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   414
      using mult_right_mono[of "snd x" "(int q - 1) div 2" p] mult.commute[of "(int q - 1) div 2" p]
65413
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   415
        pq_commute
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   416
      by presburger
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   417
    then have "(snd x - 1) * int p \<le> (int q * int p - 1) div 2 - int p"
64282
261d42f0bfac Removed Old_Number_Theory; all theories ported (thanks to Jaime Mendizabal Roche)
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   418
      using p_ge_0 int_distrib(3) by auto
65413
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   419
    moreover from x have "fst x \<le> int p - 1" by force
64282
261d42f0bfac Removed Old_Number_Theory; all theories ported (thanks to Jaime Mendizabal Roche)
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   420
    ultimately have "fst x + (snd x - 1) * int p \<le> (int p * int q - 1) div 2"
261d42f0bfac Removed Old_Number_Theory; all theories ported (thanks to Jaime Mendizabal Roche)
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   421
      using pq_commute by linarith
65413
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   422
    moreover from x have "0 < fst x" "0 \<le> (snd x - 1) * p"
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   423
      by fastforce+
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   424
    ultimately show "y \<in> BuDuF"
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   425
      unfolding BuDuF_def using q_ge_0 x g_3_def y by auto
64282
261d42f0bfac Removed Old_Number_Theory; all theories ported (thanks to Jaime Mendizabal Roche)
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   426
  qed
261d42f0bfac Removed Old_Number_Theory; all theories ported (thanks to Jaime Mendizabal Roche)
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   427
  show "finite BuDuF" unfolding BuDuF_def by fastforce
261d42f0bfac Removed Old_Number_Theory; all theories ported (thanks to Jaime Mendizabal Roche)
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   428
qed (simp add: inj_on_inverseI[of BuDuF g_3] f_3_def g_3_def QR_lemma_05)+
261d42f0bfac Removed Old_Number_Theory; all theories ported (thanks to Jaime Mendizabal Roche)
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   429
261d42f0bfac Removed Old_Number_Theory; all theories ported (thanks to Jaime Mendizabal Roche)
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   430
lemma QR_lemma_12: "b + d + m = r"
261d42f0bfac Removed Old_Number_Theory; all theories ported (thanks to Jaime Mendizabal Roche)
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   431
proof -
65413
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   432
  have "B \<inter> D = {}" "finite B" "finite D" "B \<union> D = BuD"
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   433
    unfolding B_def D_def BuD_def by fastforce+
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   434
  then have "b + d = card BuD"
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   435
    unfolding b_def d_def using card_Un_Int by fastforce
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   436
  moreover have "BuD \<inter> F = {}" "finite BuD" "finite F"
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   437
    unfolding BuD_def F_def by fastforce+
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   438
  moreover have "BuD \<union> F = BuDuF"
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   439
    unfolding BuD_def F_def BuDuF_def
64282
261d42f0bfac Removed Old_Number_Theory; all theories ported (thanks to Jaime Mendizabal Roche)
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   440
    using q_ge_0 ivl_disj_un_singleton(5)[of 0 "int q - 1"] by auto
65413
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   441
  ultimately show ?thesis
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   442
    using QR_lemma_03 QR_lemma_05 QR_lemma_11 card_Un_disjoint[of BuD F]
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   443
    unfolding b_def d_def f_def
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   444
    by presburger
64282
261d42f0bfac Removed Old_Number_Theory; all theories ported (thanks to Jaime Mendizabal Roche)
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   445
qed
261d42f0bfac Removed Old_Number_Theory; all theories ported (thanks to Jaime Mendizabal Roche)
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   446
261d42f0bfac Removed Old_Number_Theory; all theories ported (thanks to Jaime Mendizabal Roche)
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   447
lemma QR_lemma_13: "a + d + n = r"
261d42f0bfac Removed Old_Number_Theory; all theories ported (thanks to Jaime Mendizabal Roche)
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   448
proof -
65413
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   449
  have "A = QR.B q p"
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   450
    unfolding A_def pq_commute using QRqp QR.B_def[of q p] by blast
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   451
  then have "a = QR.b q p"
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   452
    using a_def QRqp QR.b_def[of q p] by presburger
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   453
  moreover have "D = QR.D q p"
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   454
    unfolding D_def pq_commute using QRqp QR.D_def[of q p] by blast
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   455
  then have "d = QR.d q p"
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   456
    using d_def  QRqp QR.d_def[of q p] by presburger
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   457
  moreover have "n = QR.m q p"
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   458
    using n_def QRqp QR.m_def[of q p] by presburger
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   459
  moreover have "r = QR.r q p"
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   460
    unfolding r_def using QRqp QR.r_def[of q p] by auto
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   461
  ultimately show ?thesis
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   462
    using QRqp QR.QR_lemma_12 by presburger
64282
261d42f0bfac Removed Old_Number_Theory; all theories ported (thanks to Jaime Mendizabal Roche)
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   463
qed
261d42f0bfac Removed Old_Number_Theory; all theories ported (thanks to Jaime Mendizabal Roche)
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   464
261d42f0bfac Removed Old_Number_Theory; all theories ported (thanks to Jaime Mendizabal Roche)
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   465
lemma QR_lemma_14: "(-1::int) ^ (m + n) = (-1) ^ r"
261d42f0bfac Removed Old_Number_Theory; all theories ported (thanks to Jaime Mendizabal Roche)
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   466
proof -
65413
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   467
  have "m + n + 2 * d = r"
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   468
    using QR_lemma_06 QR_lemma_10 QR_lemma_12 QR_lemma_13 by auto
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   469
  then show ?thesis
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   470
    using power_add[of "-1::int" "m + n" "2 * d"] by fastforce
64282
261d42f0bfac Removed Old_Number_Theory; all theories ported (thanks to Jaime Mendizabal Roche)
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   471
qed
261d42f0bfac Removed Old_Number_Theory; all theories ported (thanks to Jaime Mendizabal Roche)
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   472
261d42f0bfac Removed Old_Number_Theory; all theories ported (thanks to Jaime Mendizabal Roche)
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   473
lemma Quadratic_Reciprocity:
65413
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   474
  "Legendre p q * Legendre q p = (-1::int) ^ ((p - 1) div 2 * ((q - 1) div 2))"
64282
261d42f0bfac Removed Old_Number_Theory; all theories ported (thanks to Jaime Mendizabal Roche)
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   475
  using Gpq Gqp GAUSS.gauss_lemma power_add[of "-1::int" m n] QR_lemma_14
261d42f0bfac Removed Old_Number_Theory; all theories ported (thanks to Jaime Mendizabal Roche)
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   476
  unfolding r_def m_def n_def by auto
261d42f0bfac Removed Old_Number_Theory; all theories ported (thanks to Jaime Mendizabal Roche)
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   477
261d42f0bfac Removed Old_Number_Theory; all theories ported (thanks to Jaime Mendizabal Roche)
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   478
end
261d42f0bfac Removed Old_Number_Theory; all theories ported (thanks to Jaime Mendizabal Roche)
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   479
65413
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   480
theorem Quadratic_Reciprocity:
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   481
  assumes "prime p" "2 < p" "prime q" "2 < q" "p \<noteq> q"
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   482
  shows "Legendre p q * Legendre q p = (-1::int) ^ ((p - 1) div 2 * ((q - 1) div 2))"
64282
261d42f0bfac Removed Old_Number_Theory; all theories ported (thanks to Jaime Mendizabal Roche)
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   483
  using QR.Quadratic_Reciprocity QR_def assms by blast
261d42f0bfac Removed Old_Number_Theory; all theories ported (thanks to Jaime Mendizabal Roche)
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   484
65413
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   485
theorem Quadratic_Reciprocity_int:
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   486
  assumes "prime (nat p)" "2 < p" "prime (nat q)" "2 < q" "p \<noteq> q"
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   487
  shows "Legendre p q * Legendre q p = (-1::int) ^ (nat ((p - 1) div 2 * ((q - 1) div 2)))"
64282
261d42f0bfac Removed Old_Number_Theory; all theories ported (thanks to Jaime Mendizabal Roche)
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   488
proof -
65413
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   489
  from assms have "0 \<le> (p - 1) div 2" by simp
64282
261d42f0bfac Removed Old_Number_Theory; all theories ported (thanks to Jaime Mendizabal Roche)
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   490
  moreover have "(nat p - 1) div 2 = nat ((p - 1) div 2)" "(nat q - 1) div 2 = nat ((q - 1) div 2)"
261d42f0bfac Removed Old_Number_Theory; all theories ported (thanks to Jaime Mendizabal Roche)
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   491
    by fastforce+
261d42f0bfac Removed Old_Number_Theory; all theories ported (thanks to Jaime Mendizabal Roche)
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   492
  ultimately have "(nat p - 1) div 2 * ((nat q - 1) div 2) = nat ((p - 1) div 2 * ((q - 1) div 2))"
261d42f0bfac Removed Old_Number_Theory; all theories ported (thanks to Jaime Mendizabal Roche)
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   493
    using nat_mult_distrib by presburger
261d42f0bfac Removed Old_Number_Theory; all theories ported (thanks to Jaime Mendizabal Roche)
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   494
  moreover have "2 < nat p" "2 < nat q" "nat p \<noteq> nat q" "int (nat p) = p" "int (nat q) = q"
261d42f0bfac Removed Old_Number_Theory; all theories ported (thanks to Jaime Mendizabal Roche)
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   495
    using assms by linarith+
65413
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   496
  ultimately show ?thesis
cb7f9d7d35e6 misc tuning and modernization;
wenzelm
parents: 64911
diff changeset
   497
    using Quadratic_Reciprocity[of "nat p" "nat q"] assms by presburger
64282
261d42f0bfac Removed Old_Number_Theory; all theories ported (thanks to Jaime Mendizabal Roche)
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   498
qed
261d42f0bfac Removed Old_Number_Theory; all theories ported (thanks to Jaime Mendizabal Roche)
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   499
64318
1e92b5c35615 Repaired LaTeX in HOL-Data_Structures
eberlm <eberlm@in.tum.de>
parents: 64282
diff changeset
   500
end