--- a/src/HOL/Data_Structures/document/root.tex Thu Oct 20 13:53:36 2016 +0200
+++ b/src/HOL/Data_Structures/document/root.tex Thu Oct 20 17:28:09 2016 +0200
@@ -1,6 +1,8 @@
\documentclass[11pt,a4paper]{article}
\usepackage{isabelle,isabellesym}
\usepackage{latexsym}
+\usepackage{amssymb}
+\usepackage{amsmath}
% this should be the last package used
\usepackage{pdfsetup}
--- a/src/HOL/Number_Theory/Number_Theory.thy Thu Oct 20 13:53:36 2016 +0200
+++ b/src/HOL/Number_Theory/Number_Theory.thy Thu Oct 20 17:28:09 2016 +0200
@@ -2,7 +2,7 @@
section \<open>Comprehensive number theory\<close>
theory Number_Theory
-imports Fib Residues Eratosthenes QuadraticReciprocity Pocklington
+imports Fib Residues Eratosthenes Quadratic_Reciprocity Pocklington
begin
end
--- a/src/HOL/Number_Theory/QuadraticReciprocity.thy Thu Oct 20 13:53:36 2016 +0200
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,387 +0,0 @@
-(* Author: Jaime Mendizabal Roche *)
-
-theory QuadraticReciprocity
-imports Gauss
-begin
-
-text {* The proof is based on Gauss's fifth proof, which can be found at http://www.lehigh.edu/~shw2/q-recip/gauss5.pdf *}
-
-locale QR =
- fixes p :: "nat"
- fixes q :: "nat"
-
- assumes p_prime: "prime p"
- assumes p_ge_2: "2 < p"
- assumes q_prime: "prime q"
- assumes q_ge_2: "2 < q"
- assumes pq_neq: "p \<noteq> q"
-begin
-
-lemma odd_p: "odd p" using p_ge_2 p_prime prime_odd_nat by blast
-
-lemma p_ge_0: "0 < int p"
- using p_prime not_prime_0[where 'a = nat] by fastforce+
-
-lemma p_eq2: "int p = (2 * ((int p - 1) div 2)) + 1" using odd_p by simp
-
-lemma odd_q: "odd q" using q_ge_2 q_prime prime_odd_nat by blast
-
-lemma q_ge_0: "0 < int q" using q_prime not_prime_0[where 'a = nat] by fastforce+
-
-lemma q_eq2: "int q = (2 * ((int q - 1) div 2)) + 1" using odd_q by simp
-
-lemma pq_eq2: "int p * int q = (2 * ((int p * int q - 1) div 2)) + 1" using odd_p odd_q by simp
-
-lemma pq_coprime: "coprime p q"
- using pq_neq p_prime primes_coprime_nat q_prime by blast
-
-lemma pq_coprime_int: "coprime (int p) (int q)"
- using pq_coprime transfer_int_nat_gcd(1) by presburger
-
-lemma qp_ineq: "(int p * k \<le> (int p * int q - 1) div 2) = (k \<le> (int q - 1) div 2)"
-proof -
- have "(2 * int p * k \<le> int p * int q - 1) = (2 * k \<le> int q - 1)" using p_ge_0 by auto
- thus ?thesis by auto
-qed
-
-lemma QRqp: "QR q p" using QR_def QR_axioms by simp
-
-lemma pq_commute: "int p * int q = int q * int p" by simp
-
-lemma pq_ge_0: "int p * int q > 0" using p_ge_0 q_ge_0 mult_pos_pos by blast
-
-definition "r = ((p - 1) div 2)*((q - 1) div 2)"
-definition "m = card (GAUSS.E p q)"
-definition "n = card (GAUSS.E q p)"
-
-abbreviation "Res (k::int) \<equiv> {0 .. k - 1}"
-abbreviation "Res_ge_0 (k::int) \<equiv> {0 <.. k - 1}"
-abbreviation "Res_0 (k::int) \<equiv> {0::int}"
-abbreviation "Res_l (k::int) \<equiv> {0 <.. (k - 1) div 2}"
-abbreviation "Res_h (k::int) \<equiv> {(k - 1) div 2 <.. k - 1}"
-
-abbreviation "Sets_pq r0 r1 r2 \<equiv>
- {(x::int). x \<in> r0 (int p * int q) \<and> x mod p \<in> r1 (int p) \<and> x mod q \<in> r2 (int q)}"
-
-definition "A = Sets_pq Res_l Res_l Res_h"
-definition "B = Sets_pq Res_l Res_h Res_l"
-definition "C = Sets_pq Res_h Res_h Res_l"
-definition "D = Sets_pq Res_l Res_h Res_h"
-definition "E = Sets_pq Res_l Res_0 Res_h"
-definition "F = Sets_pq Res_l Res_h Res_0"
-
-definition "a = card A"
-definition "b = card B"
-definition "c = card C"
-definition "d = card D"
-definition "e = card E"
-definition "f = card F"
-
-lemma Gpq: "GAUSS p q" unfolding GAUSS_def
- using p_prime pq_neq p_ge_2 q_prime
- by (auto simp: cong_altdef_int zdvd_int [symmetric] dest: primes_dvd_imp_eq)
-
-lemma Gqp: "GAUSS q p" using QRqp QR.Gpq by simp
-
-lemma QR_lemma_01: "(\<lambda>x. x mod q) ` E = GAUSS.E q p"
-proof
- {
- fix x
- assume a1: "x \<in> E"
- then obtain k where k: "x = int p * k" unfolding E_def by blast
- have "x \<in> Res_l (int p * int q)" using a1 E_def by blast
- hence "k \<in> GAUSS.A q" using Gqp GAUSS.A_def k qp_ineq by (simp add: zero_less_mult_iff)
- hence "x mod q \<in> GAUSS.E q p"
- using GAUSS.C_def[of q p] Gqp k GAUSS.B_def[of q p] a1 GAUSS.E_def[of q p]
- unfolding E_def by force
- hence "x \<in> E \<longrightarrow> x mod int q \<in> GAUSS.E q p" by auto
- }
- thus "(\<lambda>x. x mod int q) ` E \<subseteq> GAUSS.E q p" by auto
-next
- show "GAUSS.E q p \<subseteq> (\<lambda>x. x mod q) ` E"
- proof
- fix x
- assume a1: "x \<in> GAUSS.E q p"
- then obtain ka where ka: "ka \<in> GAUSS.A q" "x = (ka * p) mod q"
- using Gqp GAUSS.B_def GAUSS.C_def GAUSS.E_def by auto
- hence "ka * p \<in> Res_l (int p * int q)"
- using GAUSS.A_def Gqp p_ge_0 qp_ineq by (simp add: Groups.mult_ac(2))
- thus "x \<in> (\<lambda>x. x mod q) ` E" unfolding E_def using ka a1 Gqp GAUSS.E_def q_ge_0 by force
- qed
-qed
-
-lemma QR_lemma_02: "e= n"
-proof -
- {
- fix x y
- assume a: "x \<in> E" "y \<in> E" "x mod q = y mod q"
- obtain p_inv where p_inv: "[int p * p_inv = 1] (mod int q)"
- using pq_coprime_int cong_solve_coprime_int by blast
- obtain kx ky where k: "x = int p * kx" "y = int p * ky" using a E_def dvd_def[of p x] by blast
- hence "0 < x" "int p * kx \<le> (int p * int q - 1) div 2"
- "0 < y" "int p * ky \<le> (int p * int q - 1) div 2"
- using E_def a greaterThanAtMost_iff mem_Collect_eq by blast+
- hence "0 \<le> kx" "kx < q" "0 \<le> ky" "ky < q" using qp_ineq k by (simp add: zero_less_mult_iff)+
- moreover have "(p_inv * (p * kx)) mod q = (p_inv * (p * ky)) mod q"
- using a(3) mod_mult_cong k by blast
- hence "(p * p_inv * kx) mod q = (p * p_inv * ky) mod q" by (simp add:algebra_simps)
- hence "kx mod q = ky mod q"
- using p_inv mod_mult_cong[of "p * p_inv" "q" "1"] cong_int_def by auto
- hence "[kx = ky] (mod q)" using cong_int_def by blast
- ultimately have "x = y" using cong_less_imp_eq_int k by blast
- }
- hence "inj_on (\<lambda>x. x mod q) E" unfolding inj_on_def by auto
- thus ?thesis using QR_lemma_01 card_image e_def n_def by fastforce
-qed
-
-lemma QR_lemma_03: "f = m"
-proof -
- have "F = QR.E q p" unfolding F_def pq_commute using QRqp QR.E_def[of q p] by fastforce
- hence "f = QR.e q p" unfolding f_def using QRqp QR.e_def[of q p] by presburger
- thus ?thesis using QRqp QR.QR_lemma_02 m_def QRqp QR.n_def by presburger
-qed
-
-definition f_1 :: "int \<Rightarrow> int \<times> int" where
- "f_1 x = ((x mod p), (x mod q))"
-
-definition P_1 :: "int \<times> int \<Rightarrow> int \<Rightarrow> bool" where
- "P_1 res x \<longleftrightarrow> x mod p = fst res & x mod q = snd res & x \<in> Res (int p * int q)"
-
-definition g_1 :: "int \<times> int \<Rightarrow> int" where
- "g_1 res = (THE x. P_1 res x)"
-
-lemma P_1_lemma: assumes "0 \<le> fst res" "fst res < p" "0 \<le> snd res" "snd res < q"
- shows "\<exists>! x. P_1 res x"
-proof -
- obtain y k1 k2 where yk: "y = nat (fst res) + k1 * p" "y = nat (snd res) + k2 * q"
- using chinese_remainder[of p q] pq_coprime p_ge_0 q_ge_0 by fastforce
- have h1: "[y = fst res] (mod p)" "[y = snd res] (mod q)"
- using yk(1) assms(1) cong_iff_lin_int[of "fst res"] cong_sym_int apply simp
- using yk(2) assms(3) cong_iff_lin_int[of "snd res"] cong_sym_int by simp
- have "(y mod (int p * int q)) mod int p = fst res" "(y mod (int p * int q)) mod int q = snd res"
- using h1(1) mod_mod_cancel[of "int p"] assms(1) assms(2) cong_int_def apply simp
- using h1(2) mod_mod_cancel[of "int q"] assms(3) assms(4) cong_int_def by simp
- then obtain x where "P_1 res x" unfolding P_1_def
- using Divides.pos_mod_bound Divides.pos_mod_sign pq_ge_0 by fastforce
- moreover {
- fix a b
- assume a: "P_1 res a" "P_1 res b"
- hence "int p * int q dvd a - b"
- using divides_mult[of "int p" "a - b" "int q"] pq_coprime_int zmod_eq_dvd_iff[of a _ b]
- unfolding P_1_def by force
- hence "a = b" using dvd_imp_le_int[of "a - b"] a unfolding P_1_def by fastforce
- }
- ultimately show ?thesis by auto
-qed
-
-lemma g_1_lemma: assumes "0 \<le> fst res" "fst res < p" "0 \<le> snd res" "snd res < q"
- shows "P_1 res (g_1 res)" using assms P_1_lemma theI'[of "P_1 res"] g_1_def by presburger
-
-definition "BuC = Sets_pq Res_ge_0 Res_h Res_l"
-
-lemma QR_lemma_04: "card BuC = card ((Res_h p) \<times> (Res_l q))"
- using card_bij_eq[of f_1 "BuC" "(Res_h p) \<times> (Res_l q)" g_1]
-proof
- {
- fix x y
- assume a: "x \<in> BuC" "y \<in> BuC" "f_1 x = f_1 y"
- hence "int p * int q dvd x - y"
- using f_1_def pq_coprime_int divides_mult[of "int p" "x - y" "int q"]
- zmod_eq_dvd_iff[of x _ y] by auto
- hence "x = y"
- using dvd_imp_le_int[of "x - y" "int p * int q"] a unfolding BuC_def by force
- }
- thus "inj_on f_1 BuC" unfolding inj_on_def by auto
-next
- {
- fix x y
- assume a: "x \<in> (Res_h p) \<times> (Res_l q)" "y \<in> (Res_h p) \<times> (Res_l q)" "g_1 x = g_1 y"
- hence "0 \<le> fst x" "fst x < p" "0 \<le> snd x" "snd x < q"
- "0 \<le> fst y" "fst y < p" "0 \<le> snd y" "snd y < q"
- using mem_Sigma_iff prod.collapse by fastforce+
- hence "x = y" using g_1_lemma[of x] g_1_lemma[of y] a P_1_def by fastforce
- }
- thus "inj_on g_1 ((Res_h p) \<times> (Res_l q))" unfolding inj_on_def by auto
-next
- show "g_1 ` ((Res_h p) \<times> (Res_l q)) \<subseteq> BuC"
- proof
- fix y
- assume "y \<in> g_1 ` ((Res_h p) \<times> (Res_l q))"
- then obtain x where x: "y = g_1 x" "x \<in> ((Res_h p) \<times> (Res_l q))" by blast
- hence "P_1 x y" using g_1_lemma by fastforce
- thus "y \<in> BuC" unfolding P_1_def BuC_def mem_Collect_eq using x SigmaE prod.sel by fastforce
- qed
-qed (auto simp: BuC_def finite_subset f_1_def)
-
-lemma QR_lemma_05: "card ((Res_h p) \<times> (Res_l q)) = r"
-proof -
- have "card (Res_l q) = (q - 1) div 2" "card (Res_h p) = (p - 1) div 2" using p_eq2 by force+
- thus ?thesis unfolding r_def using card_cartesian_product[of "Res_h p" "Res_l q"] by presburger
-qed
-
-lemma QR_lemma_06: "b + c = r"
-proof -
- have "B \<inter> C = {}" "finite B" "finite C" "B \<union> C = BuC" unfolding B_def C_def BuC_def by fastforce+
- thus ?thesis
- unfolding b_def c_def using card_empty card_Un_Int QR_lemma_04 QR_lemma_05 by fastforce
-qed
-
-definition f_2:: "int \<Rightarrow> int" where
- "f_2 x = (int p * int q) - x"
-
-lemma f_2_lemma_1: "\<And>x. f_2 (f_2 x) = x" unfolding f_2_def by simp
-
-lemma f_2_lemma_2: "[f_2 x = int p - x] (mod p)" unfolding f_2_def using cong_altdef_int by simp
-
-lemma f_2_lemma_3: "f_2 x \<in> S \<Longrightarrow> x \<in> f_2 ` S"
- using f_2_lemma_1[of x] image_eqI[of x f_2 "f_2 x" S] by presburger
-
-lemma QR_lemma_07: "f_2 ` Res_l (int p * int q) = Res_h (int p * int q)"
- "f_2 ` Res_h (int p * int q) = Res_l (int p * int q)"
-proof -
- have h1: "f_2 ` Res_l (int p * int q) \<subseteq> Res_h (int p * int q)" using f_2_def by force
- have h2: "f_2 ` Res_h (int p * int q) \<subseteq> Res_l (int p * int q)" using f_2_def pq_eq2 by fastforce
- have h3: "Res_h (int p * int q) \<subseteq> f_2 ` Res_l (int p * int q)" using h2 f_2_lemma_3 by blast
- have h4: "Res_l (int p * int q) \<subseteq> f_2 ` Res_h (int p * int q)" using h1 f_2_lemma_3 by blast
- show "f_2 ` Res_l (int p * int q) = Res_h (int p * int q)" using h1 h3 by blast
- show "f_2 ` Res_h (int p * int q) = Res_l (int p * int q)" using h2 h4 by blast
-qed
-
-lemma QR_lemma_08: "(f_2 x mod p \<in> Res_l p) = (x mod p \<in> Res_h p)"
- "(f_2 x mod p \<in> Res_h p) = (x mod p \<in> Res_l p)"
- using f_2_lemma_2[of x] cong_int_def[of "f_2 x" "p - x" p] minus_mod_self2[of x p]
- zmod_zminus1_eq_if[of x p] p_eq2 by auto
-
-lemma QR_lemma_09: "(f_2 x mod q \<in> Res_l q) = (x mod q \<in> Res_h q)"
- "(f_2 x mod q \<in> Res_h q) = (x mod q \<in> Res_l q)"
- using QRqp QR.QR_lemma_08 f_2_def QR.f_2_def pq_commute by auto+
-
-lemma QR_lemma_10: "a = c" unfolding a_def c_def apply (rule card_bij_eq[of f_2 A C f_2])
- unfolding A_def C_def
- using QR_lemma_07 QR_lemma_08 QR_lemma_09 apply ((simp add: inj_on_def f_2_def),blast)+
- by fastforce+
-
-definition "BuD = Sets_pq Res_l Res_h Res_ge_0"
-definition "BuDuF = Sets_pq Res_l Res_h Res"
-
-definition f_3 :: "int \<Rightarrow> int \<times> int" where
- "f_3 x = (x mod p, x div p + 1)"
-
-definition g_3 :: "int \<times> int \<Rightarrow> int" where
- "g_3 x = fst x + (snd x - 1) * p"
-
-lemma QR_lemma_11: "card BuDuF = card ((Res_h p) \<times> (Res_l q))"
- using card_bij_eq[of f_3 BuDuF "(Res_h p) \<times> (Res_l q)" g_3]
-proof
- show "f_3 ` BuDuF \<subseteq> (Res_h p) \<times> (Res_l q)"
- proof
- fix y
- assume "y \<in> f_3 ` BuDuF"
- then obtain x where x: "y = f_3 x" "x \<in> BuDuF" by blast
- hence "x \<le> int p * (int q - 1) div 2 + (int p - 1) div 2"
- unfolding BuDuF_def using p_eq2 int_distrib(4) by auto
- moreover have "(int p - 1) div 2 \<le> - 1 + x mod p" using x BuDuF_def by auto
- moreover have "int p * (int q - 1) div 2 = int p * ((int q - 1) div 2)"
- using zdiv_zmult1_eq odd_q by auto
- hence "p * (int q - 1) div 2 = p * ((int q + 1) div 2 - 1)" by fastforce
- ultimately have "x \<le> p * ((int q + 1) div 2 - 1) - 1 + x mod p" by linarith
- hence "x div p < (int q + 1) div 2 - 1"
- using mult.commute[of "int p" "x div p"] p_ge_0 div_mult_mod_eq[of x p]
- mult_less_cancel_left_pos[of p "x div p" "(int q + 1) div 2 - 1"] by linarith
- moreover have "0 < x div p + 1"
- using pos_imp_zdiv_neg_iff[of p x] p_ge_0 x mem_Collect_eq BuDuF_def by auto
- ultimately show "y \<in> (Res_h p) \<times> (Res_l q)" using x BuDuF_def f_3_def by auto
- qed
-next
- have h1: "\<And>x. x \<in> ((Res_h p) \<times> (Res_l q)) \<Longrightarrow> f_3 (g_3 x) = x"
- proof -
- fix x
- assume a: "x \<in> ((Res_h p) \<times> (Res_l q))"
- moreover have h: "(fst x + (snd x - 1) * int p) mod int p = fst x" using a by force
- ultimately have "(fst x + (snd x - 1) * int p) div int p + 1 = snd x"
- by (auto simp: semiring_numeral_div_class.div_less)
- with h show "f_3 (g_3 x) = x" unfolding f_3_def g_3_def by simp
- qed
- show "inj_on g_3 ((Res_h p) \<times> (Res_l q))" apply (rule inj_onI[of "(Res_h p) \<times> (Res_l q)" g_3])
- proof -
- fix x y
- assume "x \<in> ((Res_h p) \<times> (Res_l q))" "y \<in> ((Res_h p) \<times> (Res_l q))" "g_3 x = g_3 y"
- thus "x = y" using h1[of x] h1[of y] by presburger
- qed
-next
- show "g_3 ` ((Res_h p) \<times> (Res_l q)) \<subseteq> BuDuF"
- proof
- fix y
- assume "y \<in> g_3 ` ((Res_h p) \<times> (Res_l q))"
- then obtain x where x: "y = g_3 x" "x \<in> (Res_h p) \<times> (Res_l q)" by blast
- hence "snd x \<le> (int q - 1) div 2" by force
- moreover have "int p * ((int q - 1) div 2) = (int p * int q - int p) div 2"
- using int_distrib(4) zdiv_zmult1_eq[of "int p" "int q - 1" 2] odd_q by fastforce
- ultimately have "(snd x) * int p \<le> (int q * int p - int p) div 2"
- using mult_right_mono[of "snd x" "(int q - 1) div 2" p] mult.commute[of "(int q - 1) div 2" p]
- pq_commute by presburger
- hence "(snd x - 1) * int p \<le> (int q * int p - 1) div 2 - int p"
- using p_ge_0 int_distrib(3) by auto
- moreover have "fst x \<le> int p - 1" using x by force
- ultimately have "fst x + (snd x - 1) * int p \<le> (int p * int q - 1) div 2"
- using pq_commute by linarith
- moreover have "0 < fst x" "0 \<le> (snd x - 1) * p" using x(2) by fastforce+
- ultimately show "y \<in> BuDuF" unfolding BuDuF_def using q_ge_0 x g_3_def x(1) by auto
- qed
-next
- show "finite BuDuF" unfolding BuDuF_def by fastforce
-qed (simp add: inj_on_inverseI[of BuDuF g_3] f_3_def g_3_def QR_lemma_05)+
-
-lemma QR_lemma_12: "b + d + m = r"
-proof -
- have "B \<inter> D = {}" "finite B" "finite D" "B \<union> D = BuD" unfolding B_def D_def BuD_def by fastforce+
- hence "b + d = card BuD" unfolding b_def d_def using card_Un_Int by fastforce
- moreover have "BuD \<inter> F = {}" "finite BuD" "finite F" unfolding BuD_def F_def by fastforce+
- moreover have "BuD \<union> F = BuDuF" unfolding BuD_def F_def BuDuF_def
- using q_ge_0 ivl_disj_un_singleton(5)[of 0 "int q - 1"] by auto
- ultimately show ?thesis using QR_lemma_03 QR_lemma_05 QR_lemma_11 card_Un_disjoint[of BuD F]
- unfolding b_def d_def f_def by presburger
-qed
-
-lemma QR_lemma_13: "a + d + n = r"
-proof -
- have "A = QR.B q p" unfolding A_def pq_commute using QRqp QR.B_def[of q p] by blast
- hence "a = QR.b q p" using a_def QRqp QR.b_def[of q p] by presburger
- moreover have "D = QR.D q p" unfolding D_def pq_commute using QRqp QR.D_def[of q p] by blast
- hence "d = QR.d q p" using d_def QRqp QR.d_def[of q p] by presburger
- moreover have "n = QR.m q p" using n_def QRqp QR.m_def[of q p] by presburger
- moreover have "r = QR.r q p" unfolding r_def using QRqp QR.r_def[of q p] by auto
- ultimately show ?thesis using QRqp QR.QR_lemma_12 by presburger
-qed
-
-lemma QR_lemma_14: "(-1::int) ^ (m + n) = (-1) ^ r"
-proof -
- have "m + n + 2 * d = r" using QR_lemma_06 QR_lemma_10 QR_lemma_12 QR_lemma_13 by auto
- thus ?thesis using power_add[of "-1::int" "m + n" "2 * d"] by fastforce
-qed
-
-lemma Quadratic_Reciprocity:
- "(Legendre p q) * (Legendre q p) = (-1::int) ^ ((p - 1) div 2 * ((q - 1) div 2))"
- using Gpq Gqp GAUSS.gauss_lemma power_add[of "-1::int" m n] QR_lemma_14
- unfolding r_def m_def n_def by auto
-
-end
-
-theorem Quadratic_Reciprocity: assumes "prime p" "2 < p" "prime q" "2 < q" "p \<noteq> q"
- shows "(Legendre p q) * (Legendre q p) = (-1::int) ^ ((p - 1) div 2 * ((q - 1) div 2))"
- using QR.Quadratic_Reciprocity QR_def assms by blast
-
-theorem Quadratic_Reciprocity_int: assumes "prime (nat p)" "2 < p" "prime (nat q)" "2 < q" "p \<noteq> q"
- shows "(Legendre p q) * (Legendre q p) = (-1::int) ^ (nat ((p - 1) div 2 * ((q - 1) div 2)))"
-proof -
- have "0 \<le> (p - 1) div 2" using assms by simp
- moreover have "(nat p - 1) div 2 = nat ((p - 1) div 2)" "(nat q - 1) div 2 = nat ((q - 1) div 2)"
- by fastforce+
- ultimately have "(nat p - 1) div 2 * ((nat q - 1) div 2) = nat ((p - 1) div 2 * ((q - 1) div 2))"
- using nat_mult_distrib by presburger
- moreover have "2 < nat p" "2 < nat q" "nat p \<noteq> nat q" "int (nat p) = p" "int (nat q) = q"
- using assms by linarith+
- ultimately show ?thesis using Quadratic_Reciprocity[of "nat p" "nat q"] assms by presburger
-qed
-
-end
\ No newline at end of file
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Number_Theory/Quadratic_Reciprocity.thy Thu Oct 20 17:28:09 2016 +0200
@@ -0,0 +1,387 @@
+(* Author: Jaime Mendizabal Roche *)
+
+theory Quadratic_Reciprocity
+imports Gauss
+begin
+
+text {* The proof is based on Gauss's fifth proof, which can be found at http://www.lehigh.edu/~shw2/q-recip/gauss5.pdf *}
+
+locale QR =
+ fixes p :: "nat"
+ fixes q :: "nat"
+
+ assumes p_prime: "prime p"
+ assumes p_ge_2: "2 < p"
+ assumes q_prime: "prime q"
+ assumes q_ge_2: "2 < q"
+ assumes pq_neq: "p \<noteq> q"
+begin
+
+lemma odd_p: "odd p" using p_ge_2 p_prime prime_odd_nat by blast
+
+lemma p_ge_0: "0 < int p"
+ using p_prime not_prime_0[where 'a = nat] by fastforce+
+
+lemma p_eq2: "int p = (2 * ((int p - 1) div 2)) + 1" using odd_p by simp
+
+lemma odd_q: "odd q" using q_ge_2 q_prime prime_odd_nat by blast
+
+lemma q_ge_0: "0 < int q" using q_prime not_prime_0[where 'a = nat] by fastforce+
+
+lemma q_eq2: "int q = (2 * ((int q - 1) div 2)) + 1" using odd_q by simp
+
+lemma pq_eq2: "int p * int q = (2 * ((int p * int q - 1) div 2)) + 1" using odd_p odd_q by simp
+
+lemma pq_coprime: "coprime p q"
+ using pq_neq p_prime primes_coprime_nat q_prime by blast
+
+lemma pq_coprime_int: "coprime (int p) (int q)"
+ using pq_coprime transfer_int_nat_gcd(1) by presburger
+
+lemma qp_ineq: "(int p * k \<le> (int p * int q - 1) div 2) = (k \<le> (int q - 1) div 2)"
+proof -
+ have "(2 * int p * k \<le> int p * int q - 1) = (2 * k \<le> int q - 1)" using p_ge_0 by auto
+ thus ?thesis by auto
+qed
+
+lemma QRqp: "QR q p" using QR_def QR_axioms by simp
+
+lemma pq_commute: "int p * int q = int q * int p" by simp
+
+lemma pq_ge_0: "int p * int q > 0" using p_ge_0 q_ge_0 mult_pos_pos by blast
+
+definition "r = ((p - 1) div 2)*((q - 1) div 2)"
+definition "m = card (GAUSS.E p q)"
+definition "n = card (GAUSS.E q p)"
+
+abbreviation "Res (k::int) \<equiv> {0 .. k - 1}"
+abbreviation "Res_ge_0 (k::int) \<equiv> {0 <.. k - 1}"
+abbreviation "Res_0 (k::int) \<equiv> {0::int}"
+abbreviation "Res_l (k::int) \<equiv> {0 <.. (k - 1) div 2}"
+abbreviation "Res_h (k::int) \<equiv> {(k - 1) div 2 <.. k - 1}"
+
+abbreviation "Sets_pq r0 r1 r2 \<equiv>
+ {(x::int). x \<in> r0 (int p * int q) \<and> x mod p \<in> r1 (int p) \<and> x mod q \<in> r2 (int q)}"
+
+definition "A = Sets_pq Res_l Res_l Res_h"
+definition "B = Sets_pq Res_l Res_h Res_l"
+definition "C = Sets_pq Res_h Res_h Res_l"
+definition "D = Sets_pq Res_l Res_h Res_h"
+definition "E = Sets_pq Res_l Res_0 Res_h"
+definition "F = Sets_pq Res_l Res_h Res_0"
+
+definition "a = card A"
+definition "b = card B"
+definition "c = card C"
+definition "d = card D"
+definition "e = card E"
+definition "f = card F"
+
+lemma Gpq: "GAUSS p q" unfolding GAUSS_def
+ using p_prime pq_neq p_ge_2 q_prime
+ by (auto simp: cong_altdef_int zdvd_int [symmetric] dest: primes_dvd_imp_eq)
+
+lemma Gqp: "GAUSS q p" using QRqp QR.Gpq by simp
+
+lemma QR_lemma_01: "(\<lambda>x. x mod q) ` E = GAUSS.E q p"
+proof
+ {
+ fix x
+ assume a1: "x \<in> E"
+ then obtain k where k: "x = int p * k" unfolding E_def by blast
+ have "x \<in> Res_l (int p * int q)" using a1 E_def by blast
+ hence "k \<in> GAUSS.A q" using Gqp GAUSS.A_def k qp_ineq by (simp add: zero_less_mult_iff)
+ hence "x mod q \<in> GAUSS.E q p"
+ using GAUSS.C_def[of q p] Gqp k GAUSS.B_def[of q p] a1 GAUSS.E_def[of q p]
+ unfolding E_def by force
+ hence "x \<in> E \<longrightarrow> x mod int q \<in> GAUSS.E q p" by auto
+ }
+ thus "(\<lambda>x. x mod int q) ` E \<subseteq> GAUSS.E q p" by auto
+next
+ show "GAUSS.E q p \<subseteq> (\<lambda>x. x mod q) ` E"
+ proof
+ fix x
+ assume a1: "x \<in> GAUSS.E q p"
+ then obtain ka where ka: "ka \<in> GAUSS.A q" "x = (ka * p) mod q"
+ using Gqp GAUSS.B_def GAUSS.C_def GAUSS.E_def by auto
+ hence "ka * p \<in> Res_l (int p * int q)"
+ using GAUSS.A_def Gqp p_ge_0 qp_ineq by (simp add: Groups.mult_ac(2))
+ thus "x \<in> (\<lambda>x. x mod q) ` E" unfolding E_def using ka a1 Gqp GAUSS.E_def q_ge_0 by force
+ qed
+qed
+
+lemma QR_lemma_02: "e= n"
+proof -
+ {
+ fix x y
+ assume a: "x \<in> E" "y \<in> E" "x mod q = y mod q"
+ obtain p_inv where p_inv: "[int p * p_inv = 1] (mod int q)"
+ using pq_coprime_int cong_solve_coprime_int by blast
+ obtain kx ky where k: "x = int p * kx" "y = int p * ky" using a E_def dvd_def[of p x] by blast
+ hence "0 < x" "int p * kx \<le> (int p * int q - 1) div 2"
+ "0 < y" "int p * ky \<le> (int p * int q - 1) div 2"
+ using E_def a greaterThanAtMost_iff mem_Collect_eq by blast+
+ hence "0 \<le> kx" "kx < q" "0 \<le> ky" "ky < q" using qp_ineq k by (simp add: zero_less_mult_iff)+
+ moreover have "(p_inv * (p * kx)) mod q = (p_inv * (p * ky)) mod q"
+ using a(3) mod_mult_cong k by blast
+ hence "(p * p_inv * kx) mod q = (p * p_inv * ky) mod q" by (simp add:algebra_simps)
+ hence "kx mod q = ky mod q"
+ using p_inv mod_mult_cong[of "p * p_inv" "q" "1"] cong_int_def by auto
+ hence "[kx = ky] (mod q)" using cong_int_def by blast
+ ultimately have "x = y" using cong_less_imp_eq_int k by blast
+ }
+ hence "inj_on (\<lambda>x. x mod q) E" unfolding inj_on_def by auto
+ thus ?thesis using QR_lemma_01 card_image e_def n_def by fastforce
+qed
+
+lemma QR_lemma_03: "f = m"
+proof -
+ have "F = QR.E q p" unfolding F_def pq_commute using QRqp QR.E_def[of q p] by fastforce
+ hence "f = QR.e q p" unfolding f_def using QRqp QR.e_def[of q p] by presburger
+ thus ?thesis using QRqp QR.QR_lemma_02 m_def QRqp QR.n_def by presburger
+qed
+
+definition f_1 :: "int \<Rightarrow> int \<times> int" where
+ "f_1 x = ((x mod p), (x mod q))"
+
+definition P_1 :: "int \<times> int \<Rightarrow> int \<Rightarrow> bool" where
+ "P_1 res x \<longleftrightarrow> x mod p = fst res & x mod q = snd res & x \<in> Res (int p * int q)"
+
+definition g_1 :: "int \<times> int \<Rightarrow> int" where
+ "g_1 res = (THE x. P_1 res x)"
+
+lemma P_1_lemma: assumes "0 \<le> fst res" "fst res < p" "0 \<le> snd res" "snd res < q"
+ shows "\<exists>! x. P_1 res x"
+proof -
+ obtain y k1 k2 where yk: "y = nat (fst res) + k1 * p" "y = nat (snd res) + k2 * q"
+ using chinese_remainder[of p q] pq_coprime p_ge_0 q_ge_0 by fastforce
+ have h1: "[y = fst res] (mod p)" "[y = snd res] (mod q)"
+ using yk(1) assms(1) cong_iff_lin_int[of "fst res"] cong_sym_int apply simp
+ using yk(2) assms(3) cong_iff_lin_int[of "snd res"] cong_sym_int by simp
+ have "(y mod (int p * int q)) mod int p = fst res" "(y mod (int p * int q)) mod int q = snd res"
+ using h1(1) mod_mod_cancel[of "int p"] assms(1) assms(2) cong_int_def apply simp
+ using h1(2) mod_mod_cancel[of "int q"] assms(3) assms(4) cong_int_def by simp
+ then obtain x where "P_1 res x" unfolding P_1_def
+ using Divides.pos_mod_bound Divides.pos_mod_sign pq_ge_0 by fastforce
+ moreover {
+ fix a b
+ assume a: "P_1 res a" "P_1 res b"
+ hence "int p * int q dvd a - b"
+ using divides_mult[of "int p" "a - b" "int q"] pq_coprime_int zmod_eq_dvd_iff[of a _ b]
+ unfolding P_1_def by force
+ hence "a = b" using dvd_imp_le_int[of "a - b"] a unfolding P_1_def by fastforce
+ }
+ ultimately show ?thesis by auto
+qed
+
+lemma g_1_lemma: assumes "0 \<le> fst res" "fst res < p" "0 \<le> snd res" "snd res < q"
+ shows "P_1 res (g_1 res)" using assms P_1_lemma theI'[of "P_1 res"] g_1_def by presburger
+
+definition "BuC = Sets_pq Res_ge_0 Res_h Res_l"
+
+lemma QR_lemma_04: "card BuC = card ((Res_h p) \<times> (Res_l q))"
+ using card_bij_eq[of f_1 "BuC" "(Res_h p) \<times> (Res_l q)" g_1]
+proof
+ {
+ fix x y
+ assume a: "x \<in> BuC" "y \<in> BuC" "f_1 x = f_1 y"
+ hence "int p * int q dvd x - y"
+ using f_1_def pq_coprime_int divides_mult[of "int p" "x - y" "int q"]
+ zmod_eq_dvd_iff[of x _ y] by auto
+ hence "x = y"
+ using dvd_imp_le_int[of "x - y" "int p * int q"] a unfolding BuC_def by force
+ }
+ thus "inj_on f_1 BuC" unfolding inj_on_def by auto
+next
+ {
+ fix x y
+ assume a: "x \<in> (Res_h p) \<times> (Res_l q)" "y \<in> (Res_h p) \<times> (Res_l q)" "g_1 x = g_1 y"
+ hence "0 \<le> fst x" "fst x < p" "0 \<le> snd x" "snd x < q"
+ "0 \<le> fst y" "fst y < p" "0 \<le> snd y" "snd y < q"
+ using mem_Sigma_iff prod.collapse by fastforce+
+ hence "x = y" using g_1_lemma[of x] g_1_lemma[of y] a P_1_def by fastforce
+ }
+ thus "inj_on g_1 ((Res_h p) \<times> (Res_l q))" unfolding inj_on_def by auto
+next
+ show "g_1 ` ((Res_h p) \<times> (Res_l q)) \<subseteq> BuC"
+ proof
+ fix y
+ assume "y \<in> g_1 ` ((Res_h p) \<times> (Res_l q))"
+ then obtain x where x: "y = g_1 x" "x \<in> ((Res_h p) \<times> (Res_l q))" by blast
+ hence "P_1 x y" using g_1_lemma by fastforce
+ thus "y \<in> BuC" unfolding P_1_def BuC_def mem_Collect_eq using x SigmaE prod.sel by fastforce
+ qed
+qed (auto simp: BuC_def finite_subset f_1_def)
+
+lemma QR_lemma_05: "card ((Res_h p) \<times> (Res_l q)) = r"
+proof -
+ have "card (Res_l q) = (q - 1) div 2" "card (Res_h p) = (p - 1) div 2" using p_eq2 by force+
+ thus ?thesis unfolding r_def using card_cartesian_product[of "Res_h p" "Res_l q"] by presburger
+qed
+
+lemma QR_lemma_06: "b + c = r"
+proof -
+ have "B \<inter> C = {}" "finite B" "finite C" "B \<union> C = BuC" unfolding B_def C_def BuC_def by fastforce+
+ thus ?thesis
+ unfolding b_def c_def using card_empty card_Un_Int QR_lemma_04 QR_lemma_05 by fastforce
+qed
+
+definition f_2:: "int \<Rightarrow> int" where
+ "f_2 x = (int p * int q) - x"
+
+lemma f_2_lemma_1: "\<And>x. f_2 (f_2 x) = x" unfolding f_2_def by simp
+
+lemma f_2_lemma_2: "[f_2 x = int p - x] (mod p)" unfolding f_2_def using cong_altdef_int by simp
+
+lemma f_2_lemma_3: "f_2 x \<in> S \<Longrightarrow> x \<in> f_2 ` S"
+ using f_2_lemma_1[of x] image_eqI[of x f_2 "f_2 x" S] by presburger
+
+lemma QR_lemma_07: "f_2 ` Res_l (int p * int q) = Res_h (int p * int q)"
+ "f_2 ` Res_h (int p * int q) = Res_l (int p * int q)"
+proof -
+ have h1: "f_2 ` Res_l (int p * int q) \<subseteq> Res_h (int p * int q)" using f_2_def by force
+ have h2: "f_2 ` Res_h (int p * int q) \<subseteq> Res_l (int p * int q)" using f_2_def pq_eq2 by fastforce
+ have h3: "Res_h (int p * int q) \<subseteq> f_2 ` Res_l (int p * int q)" using h2 f_2_lemma_3 by blast
+ have h4: "Res_l (int p * int q) \<subseteq> f_2 ` Res_h (int p * int q)" using h1 f_2_lemma_3 by blast
+ show "f_2 ` Res_l (int p * int q) = Res_h (int p * int q)" using h1 h3 by blast
+ show "f_2 ` Res_h (int p * int q) = Res_l (int p * int q)" using h2 h4 by blast
+qed
+
+lemma QR_lemma_08: "(f_2 x mod p \<in> Res_l p) = (x mod p \<in> Res_h p)"
+ "(f_2 x mod p \<in> Res_h p) = (x mod p \<in> Res_l p)"
+ using f_2_lemma_2[of x] cong_int_def[of "f_2 x" "p - x" p] minus_mod_self2[of x p]
+ zmod_zminus1_eq_if[of x p] p_eq2 by auto
+
+lemma QR_lemma_09: "(f_2 x mod q \<in> Res_l q) = (x mod q \<in> Res_h q)"
+ "(f_2 x mod q \<in> Res_h q) = (x mod q \<in> Res_l q)"
+ using QRqp QR.QR_lemma_08 f_2_def QR.f_2_def pq_commute by auto+
+
+lemma QR_lemma_10: "a = c" unfolding a_def c_def apply (rule card_bij_eq[of f_2 A C f_2])
+ unfolding A_def C_def
+ using QR_lemma_07 QR_lemma_08 QR_lemma_09 apply ((simp add: inj_on_def f_2_def),blast)+
+ by fastforce+
+
+definition "BuD = Sets_pq Res_l Res_h Res_ge_0"
+definition "BuDuF = Sets_pq Res_l Res_h Res"
+
+definition f_3 :: "int \<Rightarrow> int \<times> int" where
+ "f_3 x = (x mod p, x div p + 1)"
+
+definition g_3 :: "int \<times> int \<Rightarrow> int" where
+ "g_3 x = fst x + (snd x - 1) * p"
+
+lemma QR_lemma_11: "card BuDuF = card ((Res_h p) \<times> (Res_l q))"
+ using card_bij_eq[of f_3 BuDuF "(Res_h p) \<times> (Res_l q)" g_3]
+proof
+ show "f_3 ` BuDuF \<subseteq> (Res_h p) \<times> (Res_l q)"
+ proof
+ fix y
+ assume "y \<in> f_3 ` BuDuF"
+ then obtain x where x: "y = f_3 x" "x \<in> BuDuF" by blast
+ hence "x \<le> int p * (int q - 1) div 2 + (int p - 1) div 2"
+ unfolding BuDuF_def using p_eq2 int_distrib(4) by auto
+ moreover have "(int p - 1) div 2 \<le> - 1 + x mod p" using x BuDuF_def by auto
+ moreover have "int p * (int q - 1) div 2 = int p * ((int q - 1) div 2)"
+ using zdiv_zmult1_eq odd_q by auto
+ hence "p * (int q - 1) div 2 = p * ((int q + 1) div 2 - 1)" by fastforce
+ ultimately have "x \<le> p * ((int q + 1) div 2 - 1) - 1 + x mod p" by linarith
+ hence "x div p < (int q + 1) div 2 - 1"
+ using mult.commute[of "int p" "x div p"] p_ge_0 div_mult_mod_eq[of x p]
+ mult_less_cancel_left_pos[of p "x div p" "(int q + 1) div 2 - 1"] by linarith
+ moreover have "0 < x div p + 1"
+ using pos_imp_zdiv_neg_iff[of p x] p_ge_0 x mem_Collect_eq BuDuF_def by auto
+ ultimately show "y \<in> (Res_h p) \<times> (Res_l q)" using x BuDuF_def f_3_def by auto
+ qed
+next
+ have h1: "\<And>x. x \<in> ((Res_h p) \<times> (Res_l q)) \<Longrightarrow> f_3 (g_3 x) = x"
+ proof -
+ fix x
+ assume a: "x \<in> ((Res_h p) \<times> (Res_l q))"
+ moreover have h: "(fst x + (snd x - 1) * int p) mod int p = fst x" using a by force
+ ultimately have "(fst x + (snd x - 1) * int p) div int p + 1 = snd x"
+ by (auto simp: semiring_numeral_div_class.div_less)
+ with h show "f_3 (g_3 x) = x" unfolding f_3_def g_3_def by simp
+ qed
+ show "inj_on g_3 ((Res_h p) \<times> (Res_l q))" apply (rule inj_onI[of "(Res_h p) \<times> (Res_l q)" g_3])
+ proof -
+ fix x y
+ assume "x \<in> ((Res_h p) \<times> (Res_l q))" "y \<in> ((Res_h p) \<times> (Res_l q))" "g_3 x = g_3 y"
+ thus "x = y" using h1[of x] h1[of y] by presburger
+ qed
+next
+ show "g_3 ` ((Res_h p) \<times> (Res_l q)) \<subseteq> BuDuF"
+ proof
+ fix y
+ assume "y \<in> g_3 ` ((Res_h p) \<times> (Res_l q))"
+ then obtain x where x: "y = g_3 x" "x \<in> (Res_h p) \<times> (Res_l q)" by blast
+ hence "snd x \<le> (int q - 1) div 2" by force
+ moreover have "int p * ((int q - 1) div 2) = (int p * int q - int p) div 2"
+ using int_distrib(4) zdiv_zmult1_eq[of "int p" "int q - 1" 2] odd_q by fastforce
+ ultimately have "(snd x) * int p \<le> (int q * int p - int p) div 2"
+ using mult_right_mono[of "snd x" "(int q - 1) div 2" p] mult.commute[of "(int q - 1) div 2" p]
+ pq_commute by presburger
+ hence "(snd x - 1) * int p \<le> (int q * int p - 1) div 2 - int p"
+ using p_ge_0 int_distrib(3) by auto
+ moreover have "fst x \<le> int p - 1" using x by force
+ ultimately have "fst x + (snd x - 1) * int p \<le> (int p * int q - 1) div 2"
+ using pq_commute by linarith
+ moreover have "0 < fst x" "0 \<le> (snd x - 1) * p" using x(2) by fastforce+
+ ultimately show "y \<in> BuDuF" unfolding BuDuF_def using q_ge_0 x g_3_def x(1) by auto
+ qed
+next
+ show "finite BuDuF" unfolding BuDuF_def by fastforce
+qed (simp add: inj_on_inverseI[of BuDuF g_3] f_3_def g_3_def QR_lemma_05)+
+
+lemma QR_lemma_12: "b + d + m = r"
+proof -
+ have "B \<inter> D = {}" "finite B" "finite D" "B \<union> D = BuD" unfolding B_def D_def BuD_def by fastforce+
+ hence "b + d = card BuD" unfolding b_def d_def using card_Un_Int by fastforce
+ moreover have "BuD \<inter> F = {}" "finite BuD" "finite F" unfolding BuD_def F_def by fastforce+
+ moreover have "BuD \<union> F = BuDuF" unfolding BuD_def F_def BuDuF_def
+ using q_ge_0 ivl_disj_un_singleton(5)[of 0 "int q - 1"] by auto
+ ultimately show ?thesis using QR_lemma_03 QR_lemma_05 QR_lemma_11 card_Un_disjoint[of BuD F]
+ unfolding b_def d_def f_def by presburger
+qed
+
+lemma QR_lemma_13: "a + d + n = r"
+proof -
+ have "A = QR.B q p" unfolding A_def pq_commute using QRqp QR.B_def[of q p] by blast
+ hence "a = QR.b q p" using a_def QRqp QR.b_def[of q p] by presburger
+ moreover have "D = QR.D q p" unfolding D_def pq_commute using QRqp QR.D_def[of q p] by blast
+ hence "d = QR.d q p" using d_def QRqp QR.d_def[of q p] by presburger
+ moreover have "n = QR.m q p" using n_def QRqp QR.m_def[of q p] by presburger
+ moreover have "r = QR.r q p" unfolding r_def using QRqp QR.r_def[of q p] by auto
+ ultimately show ?thesis using QRqp QR.QR_lemma_12 by presburger
+qed
+
+lemma QR_lemma_14: "(-1::int) ^ (m + n) = (-1) ^ r"
+proof -
+ have "m + n + 2 * d = r" using QR_lemma_06 QR_lemma_10 QR_lemma_12 QR_lemma_13 by auto
+ thus ?thesis using power_add[of "-1::int" "m + n" "2 * d"] by fastforce
+qed
+
+lemma Quadratic_Reciprocity:
+ "(Legendre p q) * (Legendre q p) = (-1::int) ^ ((p - 1) div 2 * ((q - 1) div 2))"
+ using Gpq Gqp GAUSS.gauss_lemma power_add[of "-1::int" m n] QR_lemma_14
+ unfolding r_def m_def n_def by auto
+
+end
+
+theorem Quadratic_Reciprocity: assumes "prime p" "2 < p" "prime q" "2 < q" "p \<noteq> q"
+ shows "(Legendre p q) * (Legendre q p) = (-1::int) ^ ((p - 1) div 2 * ((q - 1) div 2))"
+ using QR.Quadratic_Reciprocity QR_def assms by blast
+
+theorem Quadratic_Reciprocity_int: assumes "prime (nat p)" "2 < p" "prime (nat q)" "2 < q" "p \<noteq> q"
+ shows "(Legendre p q) * (Legendre q p) = (-1::int) ^ (nat ((p - 1) div 2 * ((q - 1) div 2)))"
+proof -
+ have "0 \<le> (p - 1) div 2" using assms by simp
+ moreover have "(nat p - 1) div 2 = nat ((p - 1) div 2)" "(nat q - 1) div 2 = nat ((q - 1) div 2)"
+ by fastforce+
+ ultimately have "(nat p - 1) div 2 * ((nat q - 1) div 2) = nat ((p - 1) div 2 * ((q - 1) div 2))"
+ using nat_mult_distrib by presburger
+ moreover have "2 < nat p" "2 < nat q" "nat p \<noteq> nat q" "int (nat p) = p" "int (nat q) = q"
+ using assms by linarith+
+ ultimately show ?thesis using Quadratic_Reciprocity[of "nat p" "nat q"] assms by presburger
+qed
+
+end