author | blanchet |
Tue, 30 Apr 2013 16:29:31 +0200 | |
changeset 51842 | cc0a3185406c |
parent 51540 | eea5c4ca4a0e |
child 52046 | bc01725d7918 |
permissions | -rw-r--r-- |
43158 | 1 |
(* Author: Tobias Nipkow *) |
2 |
||
3 |
theory Sec_Typing imports Sec_Type_Expr |
|
4 |
begin |
|
5 |
||
6 |
subsection "Syntax Directed Typing" |
|
7 |
||
8 |
inductive sec_type :: "nat \<Rightarrow> com \<Rightarrow> bool" ("(_/ \<turnstile> _)" [0,0] 50) where |
|
9 |
Skip: |
|
10 |
"l \<turnstile> SKIP" | |
|
11 |
Assign: |
|
50342 | 12 |
"\<lbrakk> sec x \<ge> sec a; sec x \<ge> l \<rbrakk> \<Longrightarrow> l \<turnstile> x ::= a" | |
47818 | 13 |
Seq: |
43158 | 14 |
"\<lbrakk> l \<turnstile> c\<^isub>1; l \<turnstile> c\<^isub>2 \<rbrakk> \<Longrightarrow> l \<turnstile> c\<^isub>1;c\<^isub>2" | |
15 |
If: |
|
50342 | 16 |
"\<lbrakk> max (sec b) l \<turnstile> c\<^isub>1; max (sec b) l \<turnstile> c\<^isub>2 \<rbrakk> \<Longrightarrow> l \<turnstile> IF b THEN c\<^isub>1 ELSE c\<^isub>2" | |
43158 | 17 |
While: |
50342 | 18 |
"max (sec b) l \<turnstile> c \<Longrightarrow> l \<turnstile> WHILE b DO c" |
43158 | 19 |
|
20 |
code_pred (expected_modes: i => i => bool) sec_type . |
|
21 |
||
22 |
value "0 \<turnstile> IF Less (V ''x1'') (V ''x'') THEN ''x1'' ::= N 0 ELSE SKIP" |
|
23 |
value "1 \<turnstile> IF Less (V ''x1'') (V ''x'') THEN ''x'' ::= N 0 ELSE SKIP" |
|
24 |
value "2 \<turnstile> IF Less (V ''x1'') (V ''x'') THEN ''x1'' ::= N 0 ELSE SKIP" |
|
25 |
||
26 |
inductive_cases [elim!]: |
|
27 |
"l \<turnstile> x ::= a" "l \<turnstile> c\<^isub>1;c\<^isub>2" "l \<turnstile> IF b THEN c\<^isub>1 ELSE c\<^isub>2" "l \<turnstile> WHILE b DO c" |
|
28 |
||
29 |
||
30 |
text{* An important property: anti-monotonicity. *} |
|
31 |
||
32 |
lemma anti_mono: "\<lbrakk> l \<turnstile> c; l' \<le> l \<rbrakk> \<Longrightarrow> l' \<turnstile> c" |
|
45015 | 33 |
apply(induction arbitrary: l' rule: sec_type.induct) |
43158 | 34 |
apply (metis sec_type.intros(1)) |
35 |
apply (metis le_trans sec_type.intros(2)) |
|
36 |
apply (metis sec_type.intros(3)) |
|
37 |
apply (metis If le_refl sup_mono sup_nat_def) |
|
38 |
apply (metis While le_refl sup_mono sup_nat_def) |
|
39 |
done |
|
40 |
||
41 |
lemma confinement: "\<lbrakk> (c,s) \<Rightarrow> t; l \<turnstile> c \<rbrakk> \<Longrightarrow> s = t (< l)" |
|
45015 | 42 |
proof(induction rule: big_step_induct) |
43158 | 43 |
case Skip thus ?case by simp |
44 |
next |
|
45 |
case Assign thus ?case by auto |
|
46 |
next |
|
47818 | 47 |
case Seq thus ?case by auto |
43158 | 48 |
next |
49 |
case (IfTrue b s c1) |
|
50342 | 50 |
hence "max (sec b) l \<turnstile> c1" by auto |
43158 | 51 |
hence "l \<turnstile> c1" by (metis le_maxI2 anti_mono) |
45015 | 52 |
thus ?case using IfTrue.IH by metis |
43158 | 53 |
next |
54 |
case (IfFalse b s c2) |
|
50342 | 55 |
hence "max (sec b) l \<turnstile> c2" by auto |
43158 | 56 |
hence "l \<turnstile> c2" by (metis le_maxI2 anti_mono) |
45015 | 57 |
thus ?case using IfFalse.IH by metis |
43158 | 58 |
next |
59 |
case WhileFalse thus ?case by auto |
|
60 |
next |
|
61 |
case (WhileTrue b s1 c) |
|
50342 | 62 |
hence "max (sec b) l \<turnstile> c" by auto |
43158 | 63 |
hence "l \<turnstile> c" by (metis le_maxI2 anti_mono) |
64 |
thus ?case using WhileTrue by metis |
|
65 |
qed |
|
66 |
||
67 |
||
68 |
theorem noninterference: |
|
69 |
"\<lbrakk> (c,s) \<Rightarrow> s'; (c,t) \<Rightarrow> t'; 0 \<turnstile> c; s = t (\<le> l) \<rbrakk> |
|
70 |
\<Longrightarrow> s' = t' (\<le> l)" |
|
45015 | 71 |
proof(induction arbitrary: t t' rule: big_step_induct) |
43158 | 72 |
case Skip thus ?case by auto |
73 |
next |
|
74 |
case (Assign x a s) |
|
75 |
have [simp]: "t' = t(x := aval a t)" using Assign by auto |
|
50342 | 76 |
have "sec x >= sec a" using `0 \<turnstile> x ::= a` by auto |
43158 | 77 |
show ?case |
78 |
proof auto |
|
79 |
assume "sec x \<le> l" |
|
50342 | 80 |
with `sec x >= sec a` have "sec a \<le> l" by arith |
43158 | 81 |
thus "aval a s = aval a t" |
82 |
by (rule aval_eq_if_eq_le[OF `s = t (\<le> l)`]) |
|
83 |
next |
|
84 |
fix y assume "y \<noteq> x" "sec y \<le> l" |
|
85 |
thus "s y = t y" using `s = t (\<le> l)` by simp |
|
86 |
qed |
|
87 |
next |
|
47818 | 88 |
case Seq thus ?case by blast |
43158 | 89 |
next |
90 |
case (IfTrue b s c1 s' c2) |
|
50342 | 91 |
have "sec b \<turnstile> c1" "sec b \<turnstile> c2" using IfTrue.prems(2) by auto |
43158 | 92 |
show ?case |
93 |
proof cases |
|
50342 | 94 |
assume "sec b \<le> l" |
95 |
hence "s = t (\<le> sec b)" using `s = t (\<le> l)` by auto |
|
43158 | 96 |
hence "bval b t" using `bval b s` by(simp add: bval_eq_if_eq_le) |
50342 | 97 |
with IfTrue.IH IfTrue.prems(1,3) `sec b \<turnstile> c1` anti_mono |
43158 | 98 |
show ?thesis by auto |
99 |
next |
|
50342 | 100 |
assume "\<not> sec b \<le> l" |
101 |
have 1: "sec b \<turnstile> IF b THEN c1 ELSE c2" |
|
102 |
by(rule sec_type.intros)(simp_all add: `sec b \<turnstile> c1` `sec b \<turnstile> c2`) |
|
103 |
from confinement[OF IfTrue.hyps(2) `sec b \<turnstile> c1`] `\<not> sec b \<le> l` |
|
43158 | 104 |
have "s = s' (\<le> l)" by auto |
105 |
moreover |
|
50342 | 106 |
from confinement[OF IfTrue.prems(1) 1] `\<not> sec b \<le> l` |
43158 | 107 |
have "t = t' (\<le> l)" by auto |
108 |
ultimately show "s' = t' (\<le> l)" using `s = t (\<le> l)` by auto |
|
109 |
qed |
|
110 |
next |
|
111 |
case (IfFalse b s c2 s' c1) |
|
50342 | 112 |
have "sec b \<turnstile> c1" "sec b \<turnstile> c2" using IfFalse.prems(2) by auto |
43158 | 113 |
show ?case |
114 |
proof cases |
|
50342 | 115 |
assume "sec b \<le> l" |
116 |
hence "s = t (\<le> sec b)" using `s = t (\<le> l)` by auto |
|
43158 | 117 |
hence "\<not> bval b t" using `\<not> bval b s` by(simp add: bval_eq_if_eq_le) |
50342 | 118 |
with IfFalse.IH IfFalse.prems(1,3) `sec b \<turnstile> c2` anti_mono |
43158 | 119 |
show ?thesis by auto |
120 |
next |
|
50342 | 121 |
assume "\<not> sec b \<le> l" |
122 |
have 1: "sec b \<turnstile> IF b THEN c1 ELSE c2" |
|
123 |
by(rule sec_type.intros)(simp_all add: `sec b \<turnstile> c1` `sec b \<turnstile> c2`) |
|
124 |
from confinement[OF big_step.IfFalse[OF IfFalse(1,2)] 1] `\<not> sec b \<le> l` |
|
43158 | 125 |
have "s = s' (\<le> l)" by auto |
126 |
moreover |
|
50342 | 127 |
from confinement[OF IfFalse.prems(1) 1] `\<not> sec b \<le> l` |
43158 | 128 |
have "t = t' (\<le> l)" by auto |
129 |
ultimately show "s' = t' (\<le> l)" using `s = t (\<le> l)` by auto |
|
130 |
qed |
|
131 |
next |
|
132 |
case (WhileFalse b s c) |
|
50342 | 133 |
have "sec b \<turnstile> c" using WhileFalse.prems(2) by auto |
43158 | 134 |
show ?case |
135 |
proof cases |
|
50342 | 136 |
assume "sec b \<le> l" |
137 |
hence "s = t (\<le> sec b)" using `s = t (\<le> l)` by auto |
|
43158 | 138 |
hence "\<not> bval b t" using `\<not> bval b s` by(simp add: bval_eq_if_eq_le) |
139 |
with WhileFalse.prems(1,3) show ?thesis by auto |
|
140 |
next |
|
50342 | 141 |
assume "\<not> sec b \<le> l" |
142 |
have 1: "sec b \<turnstile> WHILE b DO c" |
|
143 |
by(rule sec_type.intros)(simp_all add: `sec b \<turnstile> c`) |
|
144 |
from confinement[OF WhileFalse.prems(1) 1] `\<not> sec b \<le> l` |
|
43158 | 145 |
have "t = t' (\<le> l)" by auto |
146 |
thus "s = t' (\<le> l)" using `s = t (\<le> l)` by auto |
|
147 |
qed |
|
148 |
next |
|
149 |
case (WhileTrue b s1 c s2 s3 t1 t3) |
|
150 |
let ?w = "WHILE b DO c" |
|
50342 | 151 |
have "sec b \<turnstile> c" using WhileTrue.prems(2) by auto |
43158 | 152 |
show ?case |
153 |
proof cases |
|
50342 | 154 |
assume "sec b \<le> l" |
155 |
hence "s1 = t1 (\<le> sec b)" using `s1 = t1 (\<le> l)` by auto |
|
43158 | 156 |
hence "bval b t1" |
157 |
using `bval b s1` by(simp add: bval_eq_if_eq_le) |
|
158 |
then obtain t2 where "(c,t1) \<Rightarrow> t2" "(?w,t2) \<Rightarrow> t3" |
|
159 |
using `(?w,t1) \<Rightarrow> t3` by auto |
|
45015 | 160 |
from WhileTrue.IH(2)[OF `(?w,t2) \<Rightarrow> t3` `0 \<turnstile> ?w` |
50342 | 161 |
WhileTrue.IH(1)[OF `(c,t1) \<Rightarrow> t2` anti_mono[OF `sec b \<turnstile> c`] |
43158 | 162 |
`s1 = t1 (\<le> l)`]] |
163 |
show ?thesis by simp |
|
164 |
next |
|
50342 | 165 |
assume "\<not> sec b \<le> l" |
166 |
have 1: "sec b \<turnstile> ?w" by(rule sec_type.intros)(simp_all add: `sec b \<turnstile> c`) |
|
167 |
from confinement[OF big_step.WhileTrue[OF WhileTrue.hyps] 1] `\<not> sec b \<le> l` |
|
43158 | 168 |
have "s1 = s3 (\<le> l)" by auto |
169 |
moreover |
|
50342 | 170 |
from confinement[OF WhileTrue.prems(1) 1] `\<not> sec b \<le> l` |
43158 | 171 |
have "t1 = t3 (\<le> l)" by auto |
172 |
ultimately show "s3 = t3 (\<le> l)" using `s1 = t1 (\<le> l)` by auto |
|
173 |
qed |
|
174 |
qed |
|
175 |
||
176 |
||
177 |
subsection "The Standard Typing System" |
|
178 |
||
179 |
text{* The predicate @{prop"l \<turnstile> c"} is nicely intuitive and executable. The |
|
180 |
standard formulation, however, is slightly different, replacing the maximum |
|
181 |
computation by an antimonotonicity rule. We introduce the standard system now |
|
182 |
and show the equivalence with our formulation. *} |
|
183 |
||
184 |
inductive sec_type' :: "nat \<Rightarrow> com \<Rightarrow> bool" ("(_/ \<turnstile>'' _)" [0,0] 50) where |
|
185 |
Skip': |
|
186 |
"l \<turnstile>' SKIP" | |
|
187 |
Assign': |
|
50342 | 188 |
"\<lbrakk> sec x \<ge> sec a; sec x \<ge> l \<rbrakk> \<Longrightarrow> l \<turnstile>' x ::= a" | |
47818 | 189 |
Seq': |
43158 | 190 |
"\<lbrakk> l \<turnstile>' c\<^isub>1; l \<turnstile>' c\<^isub>2 \<rbrakk> \<Longrightarrow> l \<turnstile>' c\<^isub>1;c\<^isub>2" | |
191 |
If': |
|
50342 | 192 |
"\<lbrakk> sec b \<le> l; l \<turnstile>' c\<^isub>1; l \<turnstile>' c\<^isub>2 \<rbrakk> \<Longrightarrow> l \<turnstile>' IF b THEN c\<^isub>1 ELSE c\<^isub>2" | |
43158 | 193 |
While': |
50342 | 194 |
"\<lbrakk> sec b \<le> l; l \<turnstile>' c \<rbrakk> \<Longrightarrow> l \<turnstile>' WHILE b DO c" | |
43158 | 195 |
anti_mono': |
196 |
"\<lbrakk> l \<turnstile>' c; l' \<le> l \<rbrakk> \<Longrightarrow> l' \<turnstile>' c" |
|
197 |
||
198 |
lemma sec_type_sec_type': "l \<turnstile> c \<Longrightarrow> l \<turnstile>' c" |
|
45015 | 199 |
apply(induction rule: sec_type.induct) |
43158 | 200 |
apply (metis Skip') |
201 |
apply (metis Assign') |
|
47818 | 202 |
apply (metis Seq') |
43158 | 203 |
apply (metis min_max.inf_sup_ord(3) min_max.sup_absorb2 nat_le_linear If' anti_mono') |
204 |
by (metis less_or_eq_imp_le min_max.sup_absorb1 min_max.sup_absorb2 nat_le_linear While' anti_mono') |
|
205 |
||
206 |
||
207 |
lemma sec_type'_sec_type: "l \<turnstile>' c \<Longrightarrow> l \<turnstile> c" |
|
45015 | 208 |
apply(induction rule: sec_type'.induct) |
43158 | 209 |
apply (metis Skip) |
210 |
apply (metis Assign) |
|
47818 | 211 |
apply (metis Seq) |
43158 | 212 |
apply (metis min_max.sup_absorb2 If) |
213 |
apply (metis min_max.sup_absorb2 While) |
|
214 |
by (metis anti_mono) |
|
215 |
||
216 |
subsection "A Bottom-Up Typing System" |
|
217 |
||
218 |
inductive sec_type2 :: "com \<Rightarrow> level \<Rightarrow> bool" ("(\<turnstile> _ : _)" [0,0] 50) where |
|
219 |
Skip2: |
|
220 |
"\<turnstile> SKIP : l" | |
|
221 |
Assign2: |
|
50342 | 222 |
"sec x \<ge> sec a \<Longrightarrow> \<turnstile> x ::= a : sec x" | |
47818 | 223 |
Seq2: |
43158 | 224 |
"\<lbrakk> \<turnstile> c\<^isub>1 : l\<^isub>1; \<turnstile> c\<^isub>2 : l\<^isub>2 \<rbrakk> \<Longrightarrow> \<turnstile> c\<^isub>1;c\<^isub>2 : min l\<^isub>1 l\<^isub>2 " | |
225 |
If2: |
|
50342 | 226 |
"\<lbrakk> sec b \<le> min l\<^isub>1 l\<^isub>2; \<turnstile> c\<^isub>1 : l\<^isub>1; \<turnstile> c\<^isub>2 : l\<^isub>2 \<rbrakk> |
43158 | 227 |
\<Longrightarrow> \<turnstile> IF b THEN c\<^isub>1 ELSE c\<^isub>2 : min l\<^isub>1 l\<^isub>2" | |
228 |
While2: |
|
50342 | 229 |
"\<lbrakk> sec b \<le> l; \<turnstile> c : l \<rbrakk> \<Longrightarrow> \<turnstile> WHILE b DO c : l" |
43158 | 230 |
|
231 |
||
232 |
lemma sec_type2_sec_type': "\<turnstile> c : l \<Longrightarrow> l \<turnstile>' c" |
|
45015 | 233 |
apply(induction rule: sec_type2.induct) |
43158 | 234 |
apply (metis Skip') |
235 |
apply (metis Assign' eq_imp_le) |
|
51540
eea5c4ca4a0e
explicit sublocale dependency for Min/Max yields more appropriate Min/Max prefix for a couple of facts
haftmann
parents:
51455
diff
changeset
|
236 |
apply (metis Seq' anti_mono' min_max.inf_le1 min_max.inf_le2) |
43158 | 237 |
apply (metis If' anti_mono' min_max.inf_absorb2 min_max.le_iff_inf nat_le_linear) |
238 |
by (metis While') |
|
239 |
||
240 |
lemma sec_type'_sec_type2: "l \<turnstile>' c \<Longrightarrow> \<exists> l' \<ge> l. \<turnstile> c : l'" |
|
45015 | 241 |
apply(induction rule: sec_type'.induct) |
43158 | 242 |
apply (metis Skip2 le_refl) |
243 |
apply (metis Assign2) |
|
47818 | 244 |
apply (metis Seq2 min_max.inf_greatest) |
43158 | 245 |
apply (metis If2 inf_greatest inf_nat_def le_trans) |
246 |
apply (metis While2 le_trans) |
|
247 |
by (metis le_trans) |
|
248 |
||
249 |
end |