| author | bulwahn | 
| Wed, 23 Sep 2009 16:20:12 +0200 | |
| changeset 32670 | cc0bae788b7e | 
| parent 23746 | a455e69c31cc | 
| child 32960 | 69916a850301 | 
| permissions | -rw-r--r-- | 
| 11251 | 1 | (* Title: HOL/Auth/OtwayRees | 
| 2 | ID: $Id$ | |
| 3 | Author: Lawrence C Paulson, Cambridge University Computer Laboratory | |
| 4 | Copyright 1996 University of Cambridge | |
| 1941 | 5 | *) | 
| 6 | ||
| 14207 
f20fbb141673
Conversion of all main protocols from "Shared" to "Public".
 paulson parents: 
14200diff
changeset | 7 | header{*The Original Otway-Rees Protocol*}
 | 
| 
f20fbb141673
Conversion of all main protocols from "Shared" to "Public".
 paulson parents: 
14200diff
changeset | 8 | |
| 16417 | 9 | theory OtwayRees imports Public begin | 
| 13907 | 10 | |
| 14207 
f20fbb141673
Conversion of all main protocols from "Shared" to "Public".
 paulson parents: 
14200diff
changeset | 11 | text{* From page 244 of
 | 
| 
f20fbb141673
Conversion of all main protocols from "Shared" to "Public".
 paulson parents: 
14200diff
changeset | 12 | Burrows, Abadi and Needham (1989). A Logic of Authentication. | 
| 
f20fbb141673
Conversion of all main protocols from "Shared" to "Public".
 paulson parents: 
14200diff
changeset | 13 | Proc. Royal Soc. 426 | 
| 1941 | 14 | |
| 14207 
f20fbb141673
Conversion of all main protocols from "Shared" to "Public".
 paulson parents: 
14200diff
changeset | 15 | This is the original version, which encrypts Nonce NB.*} | 
| 6308 
76f3865a2b1d
Added Bella's "Gets" model for Otway_Rees.  Also affects some other theories.
 paulson parents: 
5434diff
changeset | 16 | |
| 23746 | 17 | inductive_set otway :: "event list set" | 
| 18 | where | |
| 1941 | 19 | (*Initial trace is empty*) | 
| 11251 | 20 | Nil: "[] \<in> otway" | 
| 5434 
9b4bed3f394c
Got rid of not_Says_to_self and most uses of ~= in definitions and theorems
 paulson parents: 
5359diff
changeset | 21 | |
| 2032 | 22 | (*The spy MAY say anything he CAN say. We do not expect him to | 
| 1941 | 23 | invent new nonces here, but he can also use NS1. Common to | 
| 24 | all similar protocols.*) | |
| 23746 | 25 | | Fake: "[| evsf \<in> otway; X \<in> synth (analz (knows Spy evsf)) |] | 
| 11251 | 26 | ==> Says Spy B X # evsf \<in> otway" | 
| 6308 
76f3865a2b1d
Added Bella's "Gets" model for Otway_Rees.  Also affects some other theories.
 paulson parents: 
5434diff
changeset | 27 | |
| 
76f3865a2b1d
Added Bella's "Gets" model for Otway_Rees.  Also affects some other theories.
 paulson parents: 
5434diff
changeset | 28 | (*A message that has been sent can be received by the | 
| 
76f3865a2b1d
Added Bella's "Gets" model for Otway_Rees.  Also affects some other theories.
 paulson parents: 
5434diff
changeset | 29 | intended recipient.*) | 
| 23746 | 30 | | Reception: "[| evsr \<in> otway; Says A B X \<in>set evsr |] | 
| 11251 | 31 | ==> Gets B X # evsr \<in> otway" | 
| 1941 | 32 | |
| 33 | (*Alice initiates a protocol run*) | |
| 23746 | 34 | | OR1: "[| evs1 \<in> otway; Nonce NA \<notin> used evs1 |] | 
| 11251 | 35 |           ==> Says A B {|Nonce NA, Agent A, Agent B,
 | 
| 36 |                          Crypt (shrK A) {|Nonce NA, Agent A, Agent B|} |}
 | |
| 3659 
eddedfe2f3f8
Renamed "evs" to "evs1", "evs2", etc. in protocol inductive definition
 paulson parents: 
3519diff
changeset | 37 | # evs1 : otway" | 
| 1941 | 38 | |
| 6333 | 39 | (*Bob's response to Alice's message. Note that NB is encrypted.*) | 
| 23746 | 40 | | OR2: "[| evs2 \<in> otway; Nonce NB \<notin> used evs2; | 
| 6308 
76f3865a2b1d
Added Bella's "Gets" model for Otway_Rees.  Also affects some other theories.
 paulson parents: 
5434diff
changeset | 41 |              Gets B {|Nonce NA, Agent A, Agent B, X|} : set evs2 |]
 | 
| 11251 | 42 | ==> Says B Server | 
| 43 |                   {|Nonce NA, Agent A, Agent B, X,
 | |
| 2451 
ce85a2aafc7a
Extensive tidying and simplification, largely stemming from
 paulson parents: 
2378diff
changeset | 44 | Crypt (shrK B) | 
| 2516 
4d68fbe6378b
Now with Andy Gordon's treatment of freshness to replace newN/K
 paulson parents: 
2451diff
changeset | 45 |                       {|Nonce NA, Nonce NB, Agent A, Agent B|}|}
 | 
| 3659 
eddedfe2f3f8
Renamed "evs" to "evs1", "evs2", etc. in protocol inductive definition
 paulson parents: 
3519diff
changeset | 46 | # evs2 : otway" | 
| 1941 | 47 | |
| 48 | (*The Server receives Bob's message and checks that the three NAs | |
| 49 | match. Then he sends a new session key to Bob with a packet for | |
| 50 | forwarding to Alice.*) | |
| 23746 | 51 | | OR3: "[| evs3 \<in> otway; Key KAB \<notin> used evs3; | 
| 11251 | 52 | Gets Server | 
| 53 |                   {|Nonce NA, Agent A, Agent B,
 | |
| 54 |                     Crypt (shrK A) {|Nonce NA, Agent A, Agent B|},
 | |
| 2284 
80ebd1a213fd
Swapped arguments of Crypt (for clarity and because it is conventional)
 paulson parents: 
2135diff
changeset | 55 |                     Crypt (shrK B) {|Nonce NA, Nonce NB, Agent A, Agent B|}|}
 | 
| 3659 
eddedfe2f3f8
Renamed "evs" to "evs1", "evs2", etc. in protocol inductive definition
 paulson parents: 
3519diff
changeset | 56 | : set evs3 |] | 
| 11251 | 57 | ==> Says Server B | 
| 58 |                   {|Nonce NA,
 | |
| 2516 
4d68fbe6378b
Now with Andy Gordon's treatment of freshness to replace newN/K
 paulson parents: 
2451diff
changeset | 59 |                     Crypt (shrK A) {|Nonce NA, Key KAB|},
 | 
| 
4d68fbe6378b
Now with Andy Gordon's treatment of freshness to replace newN/K
 paulson parents: 
2451diff
changeset | 60 |                     Crypt (shrK B) {|Nonce NB, Key KAB|}|}
 | 
| 3659 
eddedfe2f3f8
Renamed "evs" to "evs1", "evs2", etc. in protocol inductive definition
 paulson parents: 
3519diff
changeset | 61 | # evs3 : otway" | 
| 1941 | 62 | |
| 63 | (*Bob receives the Server's (?) message and compares the Nonces with | |
| 5434 
9b4bed3f394c
Got rid of not_Says_to_self and most uses of ~= in definitions and theorems
 paulson parents: 
5359diff
changeset | 64 | those in the message he previously sent the Server. | 
| 11251 | 65 | Need B \<noteq> Server because we allow messages to self.*) | 
| 23746 | 66 | | OR4: "[| evs4 \<in> otway; B \<noteq> Server; | 
| 11251 | 67 |              Says B Server {|Nonce NA, Agent A, Agent B, X',
 | 
| 2284 
80ebd1a213fd
Swapped arguments of Crypt (for clarity and because it is conventional)
 paulson parents: 
2135diff
changeset | 68 | Crypt (shrK B) | 
| 
80ebd1a213fd
Swapped arguments of Crypt (for clarity and because it is conventional)
 paulson parents: 
2135diff
changeset | 69 |                                    {|Nonce NA, Nonce NB, Agent A, Agent B|}|}
 | 
| 3659 
eddedfe2f3f8
Renamed "evs" to "evs1", "evs2", etc. in protocol inductive definition
 paulson parents: 
3519diff
changeset | 70 | : set evs4; | 
| 6308 
76f3865a2b1d
Added Bella's "Gets" model for Otway_Rees.  Also affects some other theories.
 paulson parents: 
5434diff
changeset | 71 |              Gets B {|Nonce NA, X, Crypt (shrK B) {|Nonce NB, Key K|}|}
 | 
| 3659 
eddedfe2f3f8
Renamed "evs" to "evs1", "evs2", etc. in protocol inductive definition
 paulson parents: 
3519diff
changeset | 72 | : set evs4 |] | 
| 
eddedfe2f3f8
Renamed "evs" to "evs1", "evs2", etc. in protocol inductive definition
 paulson parents: 
3519diff
changeset | 73 |           ==> Says B A {|Nonce NA, X|} # evs4 : otway"
 | 
| 1941 | 74 | |
| 2135 | 75 | (*This message models possible leaks of session keys. The nonces | 
| 76 | identify the protocol run.*) | |
| 23746 | 77 | | Oops: "[| evso \<in> otway; | 
| 2284 
80ebd1a213fd
Swapped arguments of Crypt (for clarity and because it is conventional)
 paulson parents: 
2135diff
changeset | 78 |              Says Server B {|Nonce NA, X, Crypt (shrK B) {|Nonce NB, Key K|}|}
 | 
| 3659 
eddedfe2f3f8
Renamed "evs" to "evs1", "evs2", etc. in protocol inductive definition
 paulson parents: 
3519diff
changeset | 79 | : set evso |] | 
| 4537 
4e835bd9fada
Expressed most Oops rules using Notes instead of Says, and other tidying
 paulson parents: 
3683diff
changeset | 80 |           ==> Notes Spy {|Nonce NA, Nonce NB, Key K|} # evso : otway"
 | 
| 1941 | 81 | |
| 11251 | 82 | |
| 18570 | 83 | declare Says_imp_analz_Spy [dest] | 
| 11251 | 84 | declare parts.Body [dest] | 
| 85 | declare analz_into_parts [dest] | |
| 86 | declare Fake_parts_insert_in_Un [dest] | |
| 87 | ||
| 88 | ||
| 13907 | 89 | text{*A "possibility property": there are traces that reach the end*}
 | 
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
13907diff
changeset | 90 | lemma "[| B \<noteq> Server; Key K \<notin> used [] |] | 
| 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
13907diff
changeset | 91 | ==> \<exists>evs \<in> otway. | 
| 11251 | 92 |              Says B A {|Nonce NA, Crypt (shrK A) {|Nonce NA, Key K|}|}
 | 
| 93 | \<in> set evs" | |
| 94 | apply (intro exI bexI) | |
| 95 | apply (rule_tac [2] otway.Nil | |
| 96 | [THEN otway.OR1, THEN otway.Reception, | |
| 97 | THEN otway.OR2, THEN otway.Reception, | |
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
13907diff
changeset | 98 | THEN otway.OR3, THEN otway.Reception, THEN otway.OR4]) | 
| 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
13907diff
changeset | 99 | apply (possibility, simp add: used_Cons) | 
| 11251 | 100 | done | 
| 101 | ||
| 102 | lemma Gets_imp_Says [dest!]: | |
| 103 | "[| Gets B X \<in> set evs; evs \<in> otway |] ==> \<exists>A. Says A B X \<in> set evs" | |
| 104 | apply (erule rev_mp) | |
| 13507 | 105 | apply (erule otway.induct, auto) | 
| 11251 | 106 | done | 
| 107 | ||
| 108 | ||
| 109 | (** For reasoning about the encrypted portion of messages **) | |
| 110 | ||
| 111 | lemma OR2_analz_knows_Spy: | |
| 112 |      "[| Gets B {|N, Agent A, Agent B, X|} \<in> set evs;  evs \<in> otway |]
 | |
| 113 | ==> X \<in> analz (knows Spy evs)" | |
| 114 | by blast | |
| 115 | ||
| 116 | lemma OR4_analz_knows_Spy: | |
| 117 |      "[| Gets B {|N, X, Crypt (shrK B) X'|} \<in> set evs;  evs \<in> otway |]
 | |
| 118 | ==> X \<in> analz (knows Spy evs)" | |
| 119 | by blast | |
| 120 | ||
| 121 | (*These lemmas assist simplification by removing forwarded X-variables. | |
| 122 | We can replace them by rewriting with parts_insert2 and proving using | |
| 123 | dest: parts_cut, but the proofs become more difficult.*) | |
| 124 | lemmas OR2_parts_knows_Spy = | |
| 125 | OR2_analz_knows_Spy [THEN analz_into_parts, standard] | |
| 126 | ||
| 127 | (*There could be OR4_parts_knows_Spy and Oops_parts_knows_Spy, but for | |
| 128 | some reason proofs work without them!*) | |
| 129 | ||
| 130 | ||
| 14225 | 131 | text{*Theorems of the form @{term "X \<notin> parts (spies evs)"} imply that
 | 
| 132 | NOBODY sends messages containing X! *} | |
| 11251 | 133 | |
| 14225 | 134 | text{*Spy never sees a good agent's shared key!*}
 | 
| 11251 | 135 | lemma Spy_see_shrK [simp]: | 
| 136 | "evs \<in> otway ==> (Key (shrK A) \<in> parts (knows Spy evs)) = (A \<in> bad)" | |
| 13907 | 137 | by (erule otway.induct, force, | 
| 138 | drule_tac [4] OR2_parts_knows_Spy, simp_all, blast+) | |
| 139 | ||
| 11251 | 140 | |
| 141 | lemma Spy_analz_shrK [simp]: | |
| 142 | "evs \<in> otway ==> (Key (shrK A) \<in> analz (knows Spy evs)) = (A \<in> bad)" | |
| 143 | by auto | |
| 144 | ||
| 145 | lemma Spy_see_shrK_D [dest!]: | |
| 146 | "[|Key (shrK A) \<in> parts (knows Spy evs); evs \<in> otway|] ==> A \<in> bad" | |
| 147 | by (blast dest: Spy_see_shrK) | |
| 148 | ||
| 149 | ||
| 13907 | 150 | subsection{*Towards Secrecy: Proofs Involving @{term analz}*}
 | 
| 11251 | 151 | |
| 152 | (*Describes the form of K and NA when the Server sends this message. Also | |
| 153 | for Oops case.*) | |
| 154 | lemma Says_Server_message_form: | |
| 155 |      "[| Says Server B {|NA, X, Crypt (shrK B) {|NB, Key K|}|} \<in> set evs;
 | |
| 156 | evs \<in> otway |] | |
| 157 | ==> K \<notin> range shrK & (\<exists>i. NA = Nonce i) & (\<exists>j. NB = Nonce j)" | |
| 17778 | 158 | by (erule rev_mp, erule otway.induct, simp_all) | 
| 11251 | 159 | |
| 160 | ||
| 161 | (**** | |
| 162 | The following is to prove theorems of the form | |
| 163 | ||
| 164 | Key K \<in> analz (insert (Key KAB) (knows Spy evs)) ==> | |
| 165 | Key K \<in> analz (knows Spy evs) | |
| 166 | ||
| 167 | A more general formula must be proved inductively. | |
| 168 | ****) | |
| 169 | ||
| 170 | ||
| 13907 | 171 | text{*Session keys are not used to encrypt other session keys*}
 | 
| 11251 | 172 | |
| 14225 | 173 | text{*The equality makes the induction hypothesis easier to apply*}
 | 
| 11251 | 174 | lemma analz_image_freshK [rule_format]: | 
| 175 | "evs \<in> otway ==> | |
| 176 | \<forall>K KK. KK <= -(range shrK) --> | |
| 177 | (Key K \<in> analz (Key`KK Un (knows Spy evs))) = | |
| 178 | (K \<in> KK | Key K \<in> analz (knows Spy evs))" | |
| 14207 
f20fbb141673
Conversion of all main protocols from "Shared" to "Public".
 paulson parents: 
14200diff
changeset | 179 | apply (erule otway.induct) | 
| 
f20fbb141673
Conversion of all main protocols from "Shared" to "Public".
 paulson parents: 
14200diff
changeset | 180 | apply (frule_tac [8] Says_Server_message_form) | 
| 
f20fbb141673
Conversion of all main protocols from "Shared" to "Public".
 paulson parents: 
14200diff
changeset | 181 | apply (drule_tac [7] OR4_analz_knows_Spy) | 
| 
f20fbb141673
Conversion of all main protocols from "Shared" to "Public".
 paulson parents: 
14200diff
changeset | 182 | apply (drule_tac [5] OR2_analz_knows_Spy, analz_freshK, spy_analz, auto) | 
| 11251 | 183 | done | 
| 184 | ||
| 185 | lemma analz_insert_freshK: | |
| 186 | "[| evs \<in> otway; KAB \<notin> range shrK |] ==> | |
| 11655 | 187 | (Key K \<in> analz (insert (Key KAB) (knows Spy evs))) = | 
| 11251 | 188 | (K = KAB | Key K \<in> analz (knows Spy evs))" | 
| 189 | by (simp only: analz_image_freshK analz_image_freshK_simps) | |
| 190 | ||
| 191 | ||
| 14225 | 192 | text{*The Key K uniquely identifies the Server's  message. *}
 | 
| 11251 | 193 | lemma unique_session_keys: | 
| 194 |      "[| Says Server B {|NA, X, Crypt (shrK B) {|NB, K|}|}   \<in> set evs;
 | |
| 195 |          Says Server B' {|NA',X',Crypt (shrK B') {|NB',K|}|} \<in> set evs;
 | |
| 196 | evs \<in> otway |] ==> X=X' & B=B' & NA=NA' & NB=NB'" | |
| 197 | apply (erule rev_mp) | |
| 198 | apply (erule rev_mp) | |
| 199 | apply (erule otway.induct, simp_all) | |
| 14225 | 200 | apply blast+  --{*OR3 and OR4*}
 | 
| 11251 | 201 | done | 
| 202 | ||
| 203 | ||
| 13907 | 204 | subsection{*Authenticity properties relating to NA*}
 | 
| 11251 | 205 | |
| 14225 | 206 | text{*Only OR1 can have caused such a part of a message to appear.*}
 | 
| 11251 | 207 | lemma Crypt_imp_OR1 [rule_format]: | 
| 208 | "[| A \<notin> bad; evs \<in> otway |] | |
| 209 |   ==> Crypt (shrK A) {|NA, Agent A, Agent B|} \<in> parts (knows Spy evs) -->
 | |
| 210 |       Says A B {|NA, Agent A, Agent B,
 | |
| 211 |                  Crypt (shrK A) {|NA, Agent A, Agent B|}|}
 | |
| 212 | \<in> set evs" | |
| 14225 | 213 | by (erule otway.induct, force, | 
| 214 | drule_tac [4] OR2_parts_knows_Spy, simp_all, blast+) | |
| 11251 | 215 | |
| 216 | lemma Crypt_imp_OR1_Gets: | |
| 217 |      "[| Gets B {|NA, Agent A, Agent B,
 | |
| 218 |                   Crypt (shrK A) {|NA, Agent A, Agent B|}|} \<in> set evs;
 | |
| 219 | A \<notin> bad; evs \<in> otway |] | |
| 220 |        ==> Says A B {|NA, Agent A, Agent B,
 | |
| 221 |                       Crypt (shrK A) {|NA, Agent A, Agent B|}|}
 | |
| 222 | \<in> set evs" | |
| 223 | by (blast dest: Crypt_imp_OR1) | |
| 224 | ||
| 225 | ||
| 13907 | 226 | text{*The Nonce NA uniquely identifies A's message*}
 | 
| 11251 | 227 | lemma unique_NA: | 
| 228 |      "[| Crypt (shrK A) {|NA, Agent A, Agent B|} \<in> parts (knows Spy evs);
 | |
| 229 |          Crypt (shrK A) {|NA, Agent A, Agent C|} \<in> parts (knows Spy evs);
 | |
| 230 | evs \<in> otway; A \<notin> bad |] | |
| 231 | ==> B = C" | |
| 232 | apply (erule rev_mp, erule rev_mp) | |
| 233 | apply (erule otway.induct, force, | |
| 13507 | 234 | drule_tac [4] OR2_parts_knows_Spy, simp_all, blast+) | 
| 11251 | 235 | done | 
| 236 | ||
| 237 | ||
| 14225 | 238 | text{*It is impossible to re-use a nonce in both OR1 and OR2.  This holds because
 | 
| 11251 | 239 | OR2 encrypts Nonce NB. It prevents the attack that can occur in the | 
| 17411 | 240 |   over-simplified version of this protocol: see @{text OtwayRees_Bad}.*}
 | 
| 11251 | 241 | lemma no_nonce_OR1_OR2: | 
| 242 |    "[| Crypt (shrK A) {|NA, Agent A, Agent B|} \<in> parts (knows Spy evs);
 | |
| 243 | A \<notin> bad; evs \<in> otway |] | |
| 244 |     ==> Crypt (shrK A) {|NA', NA, Agent A', Agent A|} \<notin> parts (knows Spy evs)"
 | |
| 245 | apply (erule rev_mp) | |
| 246 | apply (erule otway.induct, force, | |
| 13507 | 247 | drule_tac [4] OR2_parts_knows_Spy, simp_all, blast+) | 
| 11251 | 248 | done | 
| 249 | ||
| 14225 | 250 | text{*Crucial property: If the encrypted message appears, and A has used NA
 | 
| 251 | to start a run, then it originated with the Server!*} | |
| 11251 | 252 | lemma NA_Crypt_imp_Server_msg [rule_format]: | 
| 253 | "[| A \<notin> bad; evs \<in> otway |] | |
| 254 |       ==> Says A B {|NA, Agent A, Agent B,
 | |
| 255 |                      Crypt (shrK A) {|NA, Agent A, Agent B|}|} \<in> set evs -->
 | |
| 256 |           Crypt (shrK A) {|NA, Key K|} \<in> parts (knows Spy evs)
 | |
| 257 | --> (\<exists>NB. Says Server B | |
| 258 |                          {|NA,
 | |
| 259 |                            Crypt (shrK A) {|NA, Key K|},
 | |
| 260 |                            Crypt (shrK B) {|NB, Key K|}|} \<in> set evs)"
 | |
| 261 | apply (erule otway.induct, force, | |
| 13507 | 262 | drule_tac [4] OR2_parts_knows_Spy, simp_all, blast) | 
| 14225 | 263 | apply blast  --{*OR1: by freshness*}
 | 
| 264 | apply (blast dest!: no_nonce_OR1_OR2 intro: unique_NA)  --{*OR3*}
 | |
| 265 | apply (blast intro!: Crypt_imp_OR1)  --{*OR4*}
 | |
| 11251 | 266 | done | 
| 267 | ||
| 268 | ||
| 14225 | 269 | text{*Corollary: if A receives B's OR4 message and the nonce NA agrees
 | 
| 11251 | 270 | then the key really did come from the Server! CANNOT prove this of the | 
| 271 | bad form of this protocol, even though we can prove | |
| 17411 | 272 |   @{text Spy_not_see_encrypted_key} *}
 | 
| 11251 | 273 | lemma A_trusts_OR4: | 
| 274 |      "[| Says A  B {|NA, Agent A, Agent B,
 | |
| 275 |                      Crypt (shrK A) {|NA, Agent A, Agent B|}|} \<in> set evs;
 | |
| 276 |          Says B' A {|NA, Crypt (shrK A) {|NA, Key K|}|} \<in> set evs;
 | |
| 277 | A \<notin> bad; evs \<in> otway |] | |
| 278 | ==> \<exists>NB. Says Server B | |
| 279 |                {|NA,
 | |
| 280 |                  Crypt (shrK A) {|NA, Key K|},
 | |
| 281 |                  Crypt (shrK B) {|NB, Key K|}|}
 | |
| 282 | \<in> set evs" | |
| 283 | by (blast intro!: NA_Crypt_imp_Server_msg) | |
| 284 | ||
| 285 | ||
| 14225 | 286 | text{*Crucial secrecy property: Spy does not see the keys sent in msg OR3
 | 
| 11251 | 287 | Does not in itself guarantee security: an attack could violate | 
| 14225 | 288 |     the premises, e.g. by having @{term "A=Spy"}*}
 | 
| 11251 | 289 | lemma secrecy_lemma: | 
| 290 | "[| A \<notin> bad; B \<notin> bad; evs \<in> otway |] | |
| 291 | ==> Says Server B | |
| 292 |         {|NA, Crypt (shrK A) {|NA, Key K|},
 | |
| 293 |           Crypt (shrK B) {|NB, Key K|}|} \<in> set evs -->
 | |
| 294 |       Notes Spy {|NA, NB, Key K|} \<notin> set evs -->
 | |
| 295 | Key K \<notin> analz (knows Spy evs)" | |
| 296 | apply (erule otway.induct, force) | |
| 297 | apply (frule_tac [7] Says_Server_message_form) | |
| 298 | apply (drule_tac [6] OR4_analz_knows_Spy) | |
| 299 | apply (drule_tac [4] OR2_analz_knows_Spy) | |
| 14225 | 300 | apply (simp_all add: analz_insert_eq analz_insert_freshK pushes) | 
| 301 | apply spy_analz  --{*Fake*}
 | |
| 302 | apply (blast dest: unique_session_keys)+  --{*OR3, OR4, Oops*}
 | |
| 11251 | 303 | done | 
| 304 | ||
| 13907 | 305 | theorem Spy_not_see_encrypted_key: | 
| 11251 | 306 | "[| Says Server B | 
| 307 |           {|NA, Crypt (shrK A) {|NA, Key K|},
 | |
| 308 |                 Crypt (shrK B) {|NB, Key K|}|} \<in> set evs;
 | |
| 309 |          Notes Spy {|NA, NB, Key K|} \<notin> set evs;
 | |
| 310 | A \<notin> bad; B \<notin> bad; evs \<in> otway |] | |
| 311 | ==> Key K \<notin> analz (knows Spy evs)" | |
| 312 | by (blast dest: Says_Server_message_form secrecy_lemma) | |
| 313 | ||
| 13907 | 314 | text{*This form is an immediate consequence of the previous result.  It is 
 | 
| 315 | similar to the assertions established by other methods. It is equivalent | |
| 316 | to the previous result in that the Spy already has @{term analz} and
 | |
| 317 | @{term synth} at his disposal.  However, the conclusion 
 | |
| 318 | @{term "Key K \<notin> knows Spy evs"} appears not to be inductive: all the cases
 | |
| 319 | other than Fake are trivial, while Fake requires | |
| 320 | @{term "Key K \<notin> analz (knows Spy evs)"}. *}
 | |
| 321 | lemma Spy_not_know_encrypted_key: | |
| 322 | "[| Says Server B | |
| 323 |           {|NA, Crypt (shrK A) {|NA, Key K|},
 | |
| 324 |                 Crypt (shrK B) {|NB, Key K|}|} \<in> set evs;
 | |
| 325 |          Notes Spy {|NA, NB, Key K|} \<notin> set evs;
 | |
| 326 | A \<notin> bad; B \<notin> bad; evs \<in> otway |] | |
| 327 | ==> Key K \<notin> knows Spy evs" | |
| 328 | by (blast dest: Spy_not_see_encrypted_key) | |
| 329 | ||
| 11251 | 330 | |
| 14225 | 331 | text{*A's guarantee.  The Oops premise quantifies over NB because A cannot know
 | 
| 332 | what it is.*} | |
| 11251 | 333 | lemma A_gets_good_key: | 
| 334 |      "[| Says A  B {|NA, Agent A, Agent B,
 | |
| 335 |                      Crypt (shrK A) {|NA, Agent A, Agent B|}|} \<in> set evs;
 | |
| 336 |          Says B' A {|NA, Crypt (shrK A) {|NA, Key K|}|} \<in> set evs;
 | |
| 337 |          \<forall>NB. Notes Spy {|NA, NB, Key K|} \<notin> set evs;
 | |
| 338 | A \<notin> bad; B \<notin> bad; evs \<in> otway |] | |
| 339 | ==> Key K \<notin> analz (knows Spy evs)" | |
| 340 | by (blast dest!: A_trusts_OR4 Spy_not_see_encrypted_key) | |
| 341 | ||
| 342 | ||
| 13907 | 343 | subsection{*Authenticity properties relating to NB*}
 | 
| 11251 | 344 | |
| 14225 | 345 | text{*Only OR2 can have caused such a part of a message to appear.  We do not
 | 
| 346 | know anything about X: it does NOT have to have the right form.*} | |
| 11251 | 347 | lemma Crypt_imp_OR2: | 
| 348 |      "[| Crypt (shrK B) {|NA, NB, Agent A, Agent B|} \<in> parts (knows Spy evs);
 | |
| 349 | B \<notin> bad; evs \<in> otway |] | |
| 350 | ==> \<exists>X. Says B Server | |
| 351 |                  {|NA, Agent A, Agent B, X,
 | |
| 352 |                    Crypt (shrK B) {|NA, NB, Agent A, Agent B|}|}
 | |
| 353 | \<in> set evs" | |
| 354 | apply (erule rev_mp) | |
| 355 | apply (erule otway.induct, force, | |
| 13507 | 356 | drule_tac [4] OR2_parts_knows_Spy, simp_all, blast+) | 
| 11251 | 357 | done | 
| 358 | ||
| 359 | ||
| 13907 | 360 | text{*The Nonce NB uniquely identifies B's  message*}
 | 
| 11251 | 361 | lemma unique_NB: | 
| 362 |      "[| Crypt (shrK B) {|NA, NB, Agent A, Agent B|} \<in> parts(knows Spy evs);
 | |
| 363 |          Crypt (shrK B) {|NC, NB, Agent C, Agent B|} \<in> parts(knows Spy evs);
 | |
| 364 | evs \<in> otway; B \<notin> bad |] | |
| 365 | ==> NC = NA & C = A" | |
| 366 | apply (erule rev_mp, erule rev_mp) | |
| 367 | apply (erule otway.induct, force, | |
| 368 | drule_tac [4] OR2_parts_knows_Spy, simp_all) | |
| 14225 | 369 | apply blast+  --{*Fake, OR2*}
 | 
| 11251 | 370 | done | 
| 371 | ||
| 14225 | 372 | text{*If the encrypted message appears, and B has used Nonce NB,
 | 
| 373 | then it originated with the Server! Quite messy proof.*} | |
| 11251 | 374 | lemma NB_Crypt_imp_Server_msg [rule_format]: | 
| 375 | "[| B \<notin> bad; evs \<in> otway |] | |
| 376 |   ==> Crypt (shrK B) {|NB, Key K|} \<in> parts (knows Spy evs)
 | |
| 377 | --> (\<forall>X'. Says B Server | |
| 378 |                      {|NA, Agent A, Agent B, X',
 | |
| 379 |                        Crypt (shrK B) {|NA, NB, Agent A, Agent B|}|}
 | |
| 380 | \<in> set evs | |
| 381 | --> Says Server B | |
| 382 |                 {|NA, Crypt (shrK A) {|NA, Key K|},
 | |
| 383 |                       Crypt (shrK B) {|NB, Key K|}|}
 | |
| 384 | \<in> set evs)" | |
| 385 | apply simp | |
| 386 | apply (erule otway.induct, force, | |
| 14225 | 387 | drule_tac [4] OR2_parts_knows_Spy, simp_all) | 
| 388 | apply blast  --{*Fake*}
 | |
| 389 | apply blast  --{*OR2*}
 | |
| 390 | apply (blast dest: unique_NB dest!: no_nonce_OR1_OR2)  --{*OR3*}
 | |
| 391 | apply (blast dest!: Crypt_imp_OR2)  --{*OR4*}
 | |
| 11251 | 392 | done | 
| 393 | ||
| 394 | ||
| 13907 | 395 | text{*Guarantee for B: if it gets a message with matching NB then the Server
 | 
| 396 | has sent the correct message.*} | |
| 397 | theorem B_trusts_OR3: | |
| 11251 | 398 |      "[| Says B Server {|NA, Agent A, Agent B, X',
 | 
| 399 |                          Crypt (shrK B) {|NA, NB, Agent A, Agent B|} |}
 | |
| 400 | \<in> set evs; | |
| 401 |          Gets B {|NA, X, Crypt (shrK B) {|NB, Key K|}|} \<in> set evs;
 | |
| 402 | B \<notin> bad; evs \<in> otway |] | |
| 403 | ==> Says Server B | |
| 404 |                {|NA,
 | |
| 405 |                  Crypt (shrK A) {|NA, Key K|},
 | |
| 406 |                  Crypt (shrK B) {|NB, Key K|}|}
 | |
| 407 | \<in> set evs" | |
| 408 | by (blast intro!: NB_Crypt_imp_Server_msg) | |
| 409 | ||
| 410 | ||
| 14225 | 411 | text{*The obvious combination of @{text B_trusts_OR3} with 
 | 
| 412 |       @{text Spy_not_see_encrypted_key}*}
 | |
| 11251 | 413 | lemma B_gets_good_key: | 
| 414 |      "[| Says B Server {|NA, Agent A, Agent B, X',
 | |
| 415 |                          Crypt (shrK B) {|NA, NB, Agent A, Agent B|} |}
 | |
| 416 | \<in> set evs; | |
| 417 |          Gets B {|NA, X, Crypt (shrK B) {|NB, Key K|}|} \<in> set evs;
 | |
| 418 |          Notes Spy {|NA, NB, Key K|} \<notin> set evs;
 | |
| 419 | A \<notin> bad; B \<notin> bad; evs \<in> otway |] | |
| 420 | ==> Key K \<notin> analz (knows Spy evs)" | |
| 421 | by (blast dest!: B_trusts_OR3 Spy_not_see_encrypted_key) | |
| 422 | ||
| 423 | ||
| 424 | lemma OR3_imp_OR2: | |
| 425 | "[| Says Server B | |
| 426 |               {|NA, Crypt (shrK A) {|NA, Key K|},
 | |
| 427 |                 Crypt (shrK B) {|NB, Key K|}|} \<in> set evs;
 | |
| 428 | B \<notin> bad; evs \<in> otway |] | |
| 429 |   ==> \<exists>X. Says B Server {|NA, Agent A, Agent B, X,
 | |
| 430 |                             Crypt (shrK B) {|NA, NB, Agent A, Agent B|} |}
 | |
| 431 | \<in> set evs" | |
| 432 | apply (erule rev_mp) | |
| 433 | apply (erule otway.induct, simp_all) | |
| 434 | apply (blast dest!: Crypt_imp_OR2)+ | |
| 435 | done | |
| 436 | ||
| 437 | ||
| 13907 | 438 | text{*After getting and checking OR4, agent A can trust that B has been active.
 | 
| 11251 | 439 | We could probably prove that X has the expected form, but that is not | 
| 13907 | 440 | strictly necessary for authentication.*} | 
| 441 | theorem A_auths_B: | |
| 11251 | 442 |      "[| Says B' A {|NA, Crypt (shrK A) {|NA, Key K|}|} \<in> set evs;
 | 
| 443 |          Says A  B {|NA, Agent A, Agent B,
 | |
| 444 |                      Crypt (shrK A) {|NA, Agent A, Agent B|}|} \<in> set evs;
 | |
| 445 | A \<notin> bad; B \<notin> bad; evs \<in> otway |] | |
| 446 |   ==> \<exists>NB X. Says B Server {|NA, Agent A, Agent B, X,
 | |
| 447 |                                Crypt (shrK B)  {|NA, NB, Agent A, Agent B|} |}
 | |
| 448 | \<in> set evs" | |
| 449 | by (blast dest!: A_trusts_OR4 OR3_imp_OR2) | |
| 450 | ||
| 1941 | 451 | end |