| author | wenzelm | 
| Tue, 09 Oct 2007 17:10:43 +0200 | |
| changeset 24930 | cc2e0e8c81af | 
| parent 24748 | ee0a0eb6b738 | 
| child 25062 | af5ef0d4d655 | 
| permissions | -rw-r--r-- | 
| 14265 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 1 | (* Title: HOL/Ring_and_Field.thy | 
| 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 2 | ID: $Id$ | 
| 23477 
f4b83f03cac9
tuned and renamed group_eq_simps and ring_eq_simps
 nipkow parents: 
23413diff
changeset | 3 | Author: Gertrud Bauer, Steven Obua, Tobias Nipkow, Lawrence C Paulson, and Markus Wenzel, | 
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 4 | with contributions by Jeremy Avigad | 
| 14265 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 5 | *) | 
| 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 6 | |
| 14738 | 7 | header {* (Ordered) Rings and Fields *}
 | 
| 14265 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 8 | |
| 15229 | 9 | theory Ring_and_Field | 
| 15140 | 10 | imports OrderedGroup | 
| 15131 | 11 | begin | 
| 14504 | 12 | |
| 14738 | 13 | text {*
 | 
| 14 | The theory of partially ordered rings is taken from the books: | |
| 15 |   \begin{itemize}
 | |
| 16 |   \item \emph{Lattice Theory} by Garret Birkhoff, American Mathematical Society 1979 
 | |
| 17 |   \item \emph{Partially Ordered Algebraic Systems}, Pergamon Press 1963
 | |
| 18 |   \end{itemize}
 | |
| 19 | Most of the used notions can also be looked up in | |
| 20 |   \begin{itemize}
 | |
| 14770 | 21 |   \item \url{http://www.mathworld.com} by Eric Weisstein et. al.
 | 
| 14738 | 22 |   \item \emph{Algebra I} by van der Waerden, Springer.
 | 
| 23 |   \end{itemize}
 | |
| 24 | *} | |
| 14504 | 25 | |
| 22390 | 26 | class semiring = ab_semigroup_add + semigroup_mult + | 
| 27 | assumes left_distrib: "(a \<^loc>+ b) \<^loc>* c = a \<^loc>* c \<^loc>+ b \<^loc>* c" | |
| 28 | assumes right_distrib: "a \<^loc>* (b \<^loc>+ c) = a \<^loc>* b \<^loc>+ a \<^loc>* c" | |
| 14504 | 29 | |
| 22390 | 30 | class mult_zero = times + zero + | 
| 31 | assumes mult_zero_left [simp]: "\<^loc>0 \<^loc>* a = \<^loc>0" | |
| 32 | assumes mult_zero_right [simp]: "a \<^loc>* \<^loc>0 = \<^loc>0" | |
| 21199 
2d83f93c3580
* Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
 krauss parents: 
20633diff
changeset | 33 | |
| 22390 | 34 | class semiring_0 = semiring + comm_monoid_add + mult_zero | 
| 21199 
2d83f93c3580
* Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
 krauss parents: 
20633diff
changeset | 35 | |
| 22390 | 36 | class semiring_0_cancel = semiring + comm_monoid_add + cancel_ab_semigroup_add | 
| 14504 | 37 | |
| 21199 
2d83f93c3580
* Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
 krauss parents: 
20633diff
changeset | 38 | instance semiring_0_cancel \<subseteq> semiring_0 | 
| 
2d83f93c3580
* Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
 krauss parents: 
20633diff
changeset | 39 | proof | 
| 
2d83f93c3580
* Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
 krauss parents: 
20633diff
changeset | 40 | fix a :: 'a | 
| 
2d83f93c3580
* Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
 krauss parents: 
20633diff
changeset | 41 | have "0 * a + 0 * a = 0 * a + 0" | 
| 
2d83f93c3580
* Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
 krauss parents: 
20633diff
changeset | 42 | by (simp add: left_distrib [symmetric]) | 
| 
2d83f93c3580
* Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
 krauss parents: 
20633diff
changeset | 43 | thus "0 * a = 0" | 
| 
2d83f93c3580
* Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
 krauss parents: 
20633diff
changeset | 44 | by (simp only: add_left_cancel) | 
| 
2d83f93c3580
* Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
 krauss parents: 
20633diff
changeset | 45 | |
| 
2d83f93c3580
* Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
 krauss parents: 
20633diff
changeset | 46 | have "a * 0 + a * 0 = a * 0 + 0" | 
| 
2d83f93c3580
* Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
 krauss parents: 
20633diff
changeset | 47 | by (simp add: right_distrib [symmetric]) | 
| 
2d83f93c3580
* Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
 krauss parents: 
20633diff
changeset | 48 | thus "a * 0 = 0" | 
| 
2d83f93c3580
* Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
 krauss parents: 
20633diff
changeset | 49 | by (simp only: add_left_cancel) | 
| 
2d83f93c3580
* Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
 krauss parents: 
20633diff
changeset | 50 | qed | 
| 14940 | 51 | |
| 22390 | 52 | class comm_semiring = ab_semigroup_add + ab_semigroup_mult + | 
| 53 | assumes distrib: "(a \<^loc>+ b) \<^loc>* c = a \<^loc>* c \<^loc>+ b \<^loc>* c" | |
| 14504 | 54 | |
| 14738 | 55 | instance comm_semiring \<subseteq> semiring | 
| 56 | proof | |
| 57 | fix a b c :: 'a | |
| 58 | show "(a + b) * c = a * c + b * c" by (simp add: distrib) | |
| 59 | have "a * (b + c) = (b + c) * a" by (simp add: mult_ac) | |
| 60 | also have "... = b * a + c * a" by (simp only: distrib) | |
| 61 | also have "... = a * b + a * c" by (simp add: mult_ac) | |
| 62 | finally show "a * (b + c) = a * b + a * c" by blast | |
| 14504 | 63 | qed | 
| 64 | ||
| 22390 | 65 | class comm_semiring_0 = comm_semiring + comm_monoid_add + mult_zero | 
| 14504 | 66 | |
| 14738 | 67 | instance comm_semiring_0 \<subseteq> semiring_0 .. | 
| 14504 | 68 | |
| 22390 | 69 | class comm_semiring_0_cancel = comm_semiring + comm_monoid_add + cancel_ab_semigroup_add | 
| 14940 | 70 | |
| 71 | instance comm_semiring_0_cancel \<subseteq> semiring_0_cancel .. | |
| 72 | ||
| 21199 
2d83f93c3580
* Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
 krauss parents: 
20633diff
changeset | 73 | instance comm_semiring_0_cancel \<subseteq> comm_semiring_0 .. | 
| 
2d83f93c3580
* Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
 krauss parents: 
20633diff
changeset | 74 | |
| 22390 | 75 | class zero_neq_one = zero + one + | 
| 76 | assumes zero_neq_one [simp]: "\<^loc>0 \<noteq> \<^loc>1" | |
| 14265 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 77 | |
| 22390 | 78 | class semiring_1 = zero_neq_one + semiring_0 + monoid_mult | 
| 14504 | 79 | |
| 22390 | 80 | class comm_semiring_1 = zero_neq_one + comm_semiring_0 + comm_monoid_mult | 
| 81 | (*previously almost_semiring*) | |
| 14738 | 82 | |
| 83 | instance comm_semiring_1 \<subseteq> semiring_1 .. | |
| 14421 
ee97b6463cb4
new Ring_and_Field hierarchy, eliminating redundant axioms
 paulson parents: 
14398diff
changeset | 84 | |
| 22390 | 85 | class no_zero_divisors = zero + times + | 
| 86 | assumes no_zero_divisors: "a \<noteq> \<^loc>0 \<Longrightarrow> b \<noteq> \<^loc>0 \<Longrightarrow> a \<^loc>* b \<noteq> \<^loc>0" | |
| 14504 | 87 | |
| 22390 | 88 | class semiring_1_cancel = semiring + comm_monoid_add + zero_neq_one | 
| 89 | + cancel_ab_semigroup_add + monoid_mult | |
| 14940 | 90 | |
| 91 | instance semiring_1_cancel \<subseteq> semiring_0_cancel .. | |
| 92 | ||
| 21199 
2d83f93c3580
* Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
 krauss parents: 
20633diff
changeset | 93 | instance semiring_1_cancel \<subseteq> semiring_1 .. | 
| 
2d83f93c3580
* Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
 krauss parents: 
20633diff
changeset | 94 | |
| 22390 | 95 | class comm_semiring_1_cancel = comm_semiring + comm_monoid_add + comm_monoid_mult | 
| 96 | + zero_neq_one + cancel_ab_semigroup_add | |
| 14738 | 97 | |
| 14940 | 98 | instance comm_semiring_1_cancel \<subseteq> semiring_1_cancel .. | 
| 99 | ||
| 100 | instance comm_semiring_1_cancel \<subseteq> comm_semiring_0_cancel .. | |
| 101 | ||
| 21199 
2d83f93c3580
* Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
 krauss parents: 
20633diff
changeset | 102 | instance comm_semiring_1_cancel \<subseteq> comm_semiring_1 .. | 
| 
2d83f93c3580
* Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
 krauss parents: 
20633diff
changeset | 103 | |
| 22390 | 104 | class ring = semiring + ab_group_add | 
| 14738 | 105 | |
| 14940 | 106 | instance ring \<subseteq> semiring_0_cancel .. | 
| 14504 | 107 | |
| 22390 | 108 | class comm_ring = comm_semiring + ab_group_add | 
| 14738 | 109 | |
| 110 | instance comm_ring \<subseteq> ring .. | |
| 14504 | 111 | |
| 14940 | 112 | instance comm_ring \<subseteq> comm_semiring_0_cancel .. | 
| 14738 | 113 | |
| 22390 | 114 | class ring_1 = ring + zero_neq_one + monoid_mult | 
| 14265 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 115 | |
| 14940 | 116 | instance ring_1 \<subseteq> semiring_1_cancel .. | 
| 117 | ||
| 22390 | 118 | class comm_ring_1 = comm_ring + zero_neq_one + comm_monoid_mult | 
| 119 | (*previously ring*) | |
| 14738 | 120 | |
| 121 | instance comm_ring_1 \<subseteq> ring_1 .. | |
| 14421 
ee97b6463cb4
new Ring_and_Field hierarchy, eliminating redundant axioms
 paulson parents: 
14398diff
changeset | 122 | |
| 14738 | 123 | instance comm_ring_1 \<subseteq> comm_semiring_1_cancel .. | 
| 14265 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 124 | |
| 22990 
775e9de3db48
added classes ring_no_zero_divisors and dom (non-commutative version of idom);
 huffman parents: 
22987diff
changeset | 125 | class ring_no_zero_divisors = ring + no_zero_divisors | 
| 
775e9de3db48
added classes ring_no_zero_divisors and dom (non-commutative version of idom);
 huffman parents: 
22987diff
changeset | 126 | |
| 23544 | 127 | class ring_1_no_zero_divisors = ring_1 + ring_no_zero_divisors | 
| 22990 
775e9de3db48
added classes ring_no_zero_divisors and dom (non-commutative version of idom);
 huffman parents: 
22987diff
changeset | 128 | |
| 22390 | 129 | class idom = comm_ring_1 + no_zero_divisors | 
| 14421 
ee97b6463cb4
new Ring_and_Field hierarchy, eliminating redundant axioms
 paulson parents: 
14398diff
changeset | 130 | |
| 23544 | 131 | instance idom \<subseteq> ring_1_no_zero_divisors .. | 
| 22990 
775e9de3db48
added classes ring_no_zero_divisors and dom (non-commutative version of idom);
 huffman parents: 
22987diff
changeset | 132 | |
| 22390 | 133 | class division_ring = ring_1 + inverse + | 
| 134 | assumes left_inverse [simp]: "a \<noteq> \<^loc>0 \<Longrightarrow> inverse a \<^loc>* a = \<^loc>1" | |
| 135 | assumes right_inverse [simp]: "a \<noteq> \<^loc>0 \<Longrightarrow> a \<^loc>* inverse a = \<^loc>1" | |
| 20496 
23eb6034c06d
added axclass division_ring (like field without commutativity; includes e.g. quaternions) and generalized some theorems from field to division_ring
 huffman parents: 
19404diff
changeset | 136 | |
| 23544 | 137 | instance division_ring \<subseteq> ring_1_no_zero_divisors | 
| 22987 
550709aa8e66
instance division_ring < no_zero_divisors; clean up field instance proofs
 huffman parents: 
22842diff
changeset | 138 | proof | 
| 
550709aa8e66
instance division_ring < no_zero_divisors; clean up field instance proofs
 huffman parents: 
22842diff
changeset | 139 | fix a b :: 'a | 
| 
550709aa8e66
instance division_ring < no_zero_divisors; clean up field instance proofs
 huffman parents: 
22842diff
changeset | 140 | assume a: "a \<noteq> 0" and b: "b \<noteq> 0" | 
| 
550709aa8e66
instance division_ring < no_zero_divisors; clean up field instance proofs
 huffman parents: 
22842diff
changeset | 141 | show "a * b \<noteq> 0" | 
| 
550709aa8e66
instance division_ring < no_zero_divisors; clean up field instance proofs
 huffman parents: 
22842diff
changeset | 142 | proof | 
| 
550709aa8e66
instance division_ring < no_zero_divisors; clean up field instance proofs
 huffman parents: 
22842diff
changeset | 143 | assume ab: "a * b = 0" | 
| 
550709aa8e66
instance division_ring < no_zero_divisors; clean up field instance proofs
 huffman parents: 
22842diff
changeset | 144 | hence "0 = inverse a * (a * b) * inverse b" | 
| 
550709aa8e66
instance division_ring < no_zero_divisors; clean up field instance proofs
 huffman parents: 
22842diff
changeset | 145 | by simp | 
| 
550709aa8e66
instance division_ring < no_zero_divisors; clean up field instance proofs
 huffman parents: 
22842diff
changeset | 146 | also have "\<dots> = (inverse a * a) * (b * inverse b)" | 
| 
550709aa8e66
instance division_ring < no_zero_divisors; clean up field instance proofs
 huffman parents: 
22842diff
changeset | 147 | by (simp only: mult_assoc) | 
| 
550709aa8e66
instance division_ring < no_zero_divisors; clean up field instance proofs
 huffman parents: 
22842diff
changeset | 148 | also have "\<dots> = 1" | 
| 
550709aa8e66
instance division_ring < no_zero_divisors; clean up field instance proofs
 huffman parents: 
22842diff
changeset | 149 | using a b by simp | 
| 
550709aa8e66
instance division_ring < no_zero_divisors; clean up field instance proofs
 huffman parents: 
22842diff
changeset | 150 | finally show False | 
| 
550709aa8e66
instance division_ring < no_zero_divisors; clean up field instance proofs
 huffman parents: 
22842diff
changeset | 151 | by simp | 
| 
550709aa8e66
instance division_ring < no_zero_divisors; clean up field instance proofs
 huffman parents: 
22842diff
changeset | 152 | qed | 
| 
550709aa8e66
instance division_ring < no_zero_divisors; clean up field instance proofs
 huffman parents: 
22842diff
changeset | 153 | qed | 
| 20496 
23eb6034c06d
added axclass division_ring (like field without commutativity; includes e.g. quaternions) and generalized some theorems from field to division_ring
 huffman parents: 
19404diff
changeset | 154 | |
| 22987 
550709aa8e66
instance division_ring < no_zero_divisors; clean up field instance proofs
 huffman parents: 
22842diff
changeset | 155 | class field = comm_ring_1 + inverse + | 
| 24748 | 156 | assumes field_inverse: "a \<noteq> \<^loc>0 \<Longrightarrow> inverse a \<^loc>* a = \<^loc>1" | 
| 22987 
550709aa8e66
instance division_ring < no_zero_divisors; clean up field instance proofs
 huffman parents: 
22842diff
changeset | 157 | assumes divide_inverse: "a \<^loc>/ b = a \<^loc>* inverse b" | 
| 20496 
23eb6034c06d
added axclass division_ring (like field without commutativity; includes e.g. quaternions) and generalized some theorems from field to division_ring
 huffman parents: 
19404diff
changeset | 158 | |
| 
23eb6034c06d
added axclass division_ring (like field without commutativity; includes e.g. quaternions) and generalized some theorems from field to division_ring
 huffman parents: 
19404diff
changeset | 159 | instance field \<subseteq> division_ring | 
| 22987 
550709aa8e66
instance division_ring < no_zero_divisors; clean up field instance proofs
 huffman parents: 
22842diff
changeset | 160 | proof | 
| 
550709aa8e66
instance division_ring < no_zero_divisors; clean up field instance proofs
 huffman parents: 
22842diff
changeset | 161 | fix a :: 'a | 
| 
550709aa8e66
instance division_ring < no_zero_divisors; clean up field instance proofs
 huffman parents: 
22842diff
changeset | 162 | assume "a \<noteq> 0" | 
| 
550709aa8e66
instance division_ring < no_zero_divisors; clean up field instance proofs
 huffman parents: 
22842diff
changeset | 163 | thus "inverse a * a = 1" by (rule field_inverse) | 
| 
550709aa8e66
instance division_ring < no_zero_divisors; clean up field instance proofs
 huffman parents: 
22842diff
changeset | 164 | thus "a * inverse a = 1" by (simp only: mult_commute) | 
| 14738 | 165 | qed | 
| 166 | ||
| 22987 
550709aa8e66
instance division_ring < no_zero_divisors; clean up field instance proofs
 huffman parents: 
22842diff
changeset | 167 | instance field \<subseteq> idom .. | 
| 20496 
23eb6034c06d
added axclass division_ring (like field without commutativity; includes e.g. quaternions) and generalized some theorems from field to division_ring
 huffman parents: 
19404diff
changeset | 168 | |
| 22390 | 169 | class division_by_zero = zero + inverse + | 
| 170 | assumes inverse_zero [simp]: "inverse \<^loc>0 = \<^loc>0" | |
| 14265 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 171 | |
| 23389 | 172 | |
| 14265 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 173 | subsection {* Distribution rules *}
 | 
| 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 174 | |
| 14272 
5efbb548107d
Tidying of the integer development; towards removing the
 paulson parents: 
14270diff
changeset | 175 | text{*For the @{text combine_numerals} simproc*}
 | 
| 14421 
ee97b6463cb4
new Ring_and_Field hierarchy, eliminating redundant axioms
 paulson parents: 
14398diff
changeset | 176 | lemma combine_common_factor: | 
| 14738 | 177 | "a*e + (b*e + c) = (a+b)*e + (c::'a::semiring)" | 
| 14272 
5efbb548107d
Tidying of the integer development; towards removing the
 paulson parents: 
14270diff
changeset | 178 | by (simp add: left_distrib add_ac) | 
| 
5efbb548107d
Tidying of the integer development; towards removing the
 paulson parents: 
14270diff
changeset | 179 | |
| 14265 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 180 | lemma minus_mult_left: "- (a * b) = (-a) * (b::'a::ring)" | 
| 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 181 | apply (rule equals_zero_I) | 
| 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 182 | apply (simp add: left_distrib [symmetric]) | 
| 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 183 | done | 
| 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 184 | |
| 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 185 | lemma minus_mult_right: "- (a * b) = a * -(b::'a::ring)" | 
| 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 186 | apply (rule equals_zero_I) | 
| 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 187 | apply (simp add: right_distrib [symmetric]) | 
| 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 188 | done | 
| 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 189 | |
| 14268 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 190 | lemma minus_mult_minus [simp]: "(- a) * (- b) = a * (b::'a::ring)" | 
| 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 191 | by (simp add: minus_mult_left [symmetric] minus_mult_right [symmetric]) | 
| 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 192 | |
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14353diff
changeset | 193 | lemma minus_mult_commute: "(- a) * b = a * (- b::'a::ring)" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14353diff
changeset | 194 | by (simp add: minus_mult_left [symmetric] minus_mult_right [symmetric]) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14353diff
changeset | 195 | |
| 14265 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 196 | lemma right_diff_distrib: "a * (b - c) = a * b - a * (c::'a::ring)" | 
| 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 197 | by (simp add: right_distrib diff_minus | 
| 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 198 | minus_mult_left [symmetric] minus_mult_right [symmetric]) | 
| 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 199 | |
| 14272 
5efbb548107d
Tidying of the integer development; towards removing the
 paulson parents: 
14270diff
changeset | 200 | lemma left_diff_distrib: "(a - b) * c = a * c - b * (c::'a::ring)" | 
| 14738 | 201 | by (simp add: left_distrib diff_minus | 
| 202 | minus_mult_left [symmetric] minus_mult_right [symmetric]) | |
| 14265 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 203 | |
| 23477 
f4b83f03cac9
tuned and renamed group_eq_simps and ring_eq_simps
 nipkow parents: 
23413diff
changeset | 204 | lemmas ring_distribs = | 
| 
f4b83f03cac9
tuned and renamed group_eq_simps and ring_eq_simps
 nipkow parents: 
23413diff
changeset | 205 | right_distrib left_distrib left_diff_distrib right_diff_distrib | 
| 
f4b83f03cac9
tuned and renamed group_eq_simps and ring_eq_simps
 nipkow parents: 
23413diff
changeset | 206 | |
| 
f4b83f03cac9
tuned and renamed group_eq_simps and ring_eq_simps
 nipkow parents: 
23413diff
changeset | 207 | text{*This list of rewrites simplifies ring terms by multiplying
 | 
| 
f4b83f03cac9
tuned and renamed group_eq_simps and ring_eq_simps
 nipkow parents: 
23413diff
changeset | 208 | everything out and bringing sums and products into a canonical form | 
| 
f4b83f03cac9
tuned and renamed group_eq_simps and ring_eq_simps
 nipkow parents: 
23413diff
changeset | 209 | (by ordered rewriting). As a result it decides ring equalities but | 
| 
f4b83f03cac9
tuned and renamed group_eq_simps and ring_eq_simps
 nipkow parents: 
23413diff
changeset | 210 | also helps with inequalities. *} | 
| 
f4b83f03cac9
tuned and renamed group_eq_simps and ring_eq_simps
 nipkow parents: 
23413diff
changeset | 211 | lemmas ring_simps = group_simps ring_distribs | 
| 
f4b83f03cac9
tuned and renamed group_eq_simps and ring_eq_simps
 nipkow parents: 
23413diff
changeset | 212 | |
| 22390 | 213 | class mult_mono = times + zero + ord + | 
| 24748 | 214 | assumes mult_left_mono: "a \<^loc>\<le> b \<Longrightarrow> \<^loc>0 \<^loc>\<le> c \<Longrightarrow> c \<^loc>* a \<^loc>\<le> c \<^loc>* b" | 
| 215 | assumes mult_right_mono: "a \<^loc>\<le> b \<Longrightarrow> \<^loc>0 \<^loc>\<le> c \<Longrightarrow> a \<^loc>* c \<^loc>\<le> b \<^loc>* c" | |
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 216 | |
| 22390 | 217 | class pordered_semiring = mult_mono + semiring_0 + pordered_ab_semigroup_add | 
| 21199 
2d83f93c3580
* Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
 krauss parents: 
20633diff
changeset | 218 | |
| 22390 | 219 | class pordered_cancel_semiring = mult_mono + pordered_ab_semigroup_add | 
| 22987 
550709aa8e66
instance division_ring < no_zero_divisors; clean up field instance proofs
 huffman parents: 
22842diff
changeset | 220 | + semiring + comm_monoid_add + cancel_ab_semigroup_add | 
| 14268 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 221 | |
| 14940 | 222 | instance pordered_cancel_semiring \<subseteq> semiring_0_cancel .. | 
| 223 | ||
| 21199 
2d83f93c3580
* Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
 krauss parents: 
20633diff
changeset | 224 | instance pordered_cancel_semiring \<subseteq> pordered_semiring .. | 
| 
2d83f93c3580
* Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
 krauss parents: 
20633diff
changeset | 225 | |
| 23521 | 226 | class ordered_semiring = semiring + comm_monoid_add + ordered_cancel_ab_semigroup_add + mult_mono | 
| 227 | ||
| 228 | instance ordered_semiring \<subseteq> pordered_cancel_semiring .. | |
| 229 | ||
| 22390 | 230 | class ordered_semiring_strict = semiring + comm_monoid_add + ordered_cancel_ab_semigroup_add + | 
| 24748 | 231 | assumes mult_strict_left_mono: "a \<^loc>< b \<Longrightarrow> \<^loc>0 \<^loc>< c \<Longrightarrow> c \<^loc>* a \<^loc>< c \<^loc>* b" | 
| 232 | assumes mult_strict_right_mono: "a \<^loc>< b \<Longrightarrow> \<^loc>0 \<^loc>< c \<Longrightarrow> a \<^loc>* c \<^loc>< b \<^loc>* c" | |
| 14341 
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
 paulson parents: 
14334diff
changeset | 233 | |
| 14940 | 234 | instance ordered_semiring_strict \<subseteq> semiring_0_cancel .. | 
| 235 | ||
| 23521 | 236 | instance ordered_semiring_strict \<subseteq> ordered_semiring | 
| 23550 | 237 | proof | 
| 238 | fix a b c :: 'a | |
| 239 | assume A: "a \<le> b" "0 \<le> c" | |
| 240 | from A show "c * a \<le> c * b" | |
| 241 | unfolding order_le_less | |
| 242 | using mult_strict_left_mono by auto | |
| 243 | from A show "a * c \<le> b * c" | |
| 244 | unfolding order_le_less | |
| 245 | using mult_strict_right_mono by auto | |
| 246 | qed | |
| 14270 | 247 | |
| 22390 | 248 | class mult_mono1 = times + zero + ord + | 
| 24748 | 249 | assumes mult_mono: "a \<^loc>\<le> b \<Longrightarrow> \<^loc>0 \<^loc>\<le> c \<Longrightarrow> c \<^loc>* a \<^loc>\<le> c \<^loc>* b" | 
| 14270 | 250 | |
| 22390 | 251 | class pordered_comm_semiring = comm_semiring_0 | 
| 252 | + pordered_ab_semigroup_add + mult_mono1 | |
| 14270 | 253 | |
| 22390 | 254 | class pordered_cancel_comm_semiring = comm_semiring_0_cancel | 
| 255 | + pordered_ab_semigroup_add + mult_mono1 | |
| 21199 
2d83f93c3580
* Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
 krauss parents: 
20633diff
changeset | 256 | |
| 14738 | 257 | instance pordered_cancel_comm_semiring \<subseteq> pordered_comm_semiring .. | 
| 14270 | 258 | |
| 22390 | 259 | class ordered_comm_semiring_strict = comm_semiring_0 + ordered_cancel_ab_semigroup_add + | 
| 24748 | 260 | assumes mult_strict_mono: "a \<^loc>< b \<Longrightarrow> \<^loc>0 \<^loc>< c \<Longrightarrow> c \<^loc>* a \<^loc>< c \<^loc>* b" | 
| 14265 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 261 | |
| 14738 | 262 | instance pordered_comm_semiring \<subseteq> pordered_semiring | 
| 21199 
2d83f93c3580
* Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
 krauss parents: 
20633diff
changeset | 263 | proof | 
| 
2d83f93c3580
* Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
 krauss parents: 
20633diff
changeset | 264 | fix a b c :: 'a | 
| 23550 | 265 | assume "a \<le> b" "0 \<le> c" | 
| 266 | thus "c * a \<le> c * b" by (rule mult_mono) | |
| 267 | thus "a * c \<le> b * c" by (simp only: mult_commute) | |
| 21199 
2d83f93c3580
* Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
 krauss parents: 
20633diff
changeset | 268 | qed | 
| 14265 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 269 | |
| 14738 | 270 | instance pordered_cancel_comm_semiring \<subseteq> pordered_cancel_semiring .. | 
| 14265 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 271 | |
| 14738 | 272 | instance ordered_comm_semiring_strict \<subseteq> ordered_semiring_strict | 
| 23550 | 273 | proof | 
| 274 | fix a b c :: 'a | |
| 275 | assume "a < b" "0 < c" | |
| 276 | thus "c * a < c * b" by (rule mult_strict_mono) | |
| 277 | thus "a * c < b * c" by (simp only: mult_commute) | |
| 278 | qed | |
| 14272 
5efbb548107d
Tidying of the integer development; towards removing the
 paulson parents: 
14270diff
changeset | 279 | |
| 14738 | 280 | instance ordered_comm_semiring_strict \<subseteq> pordered_cancel_comm_semiring | 
| 23550 | 281 | proof | 
| 282 | fix a b c :: 'a | |
| 283 | assume "a \<le> b" "0 \<le> c" | |
| 284 | thus "c * a \<le> c * b" | |
| 285 | unfolding order_le_less | |
| 286 | using mult_strict_mono by auto | |
| 287 | qed | |
| 14272 
5efbb548107d
Tidying of the integer development; towards removing the
 paulson parents: 
14270diff
changeset | 288 | |
| 22390 | 289 | class pordered_ring = ring + pordered_cancel_semiring | 
| 14270 | 290 | |
| 14738 | 291 | instance pordered_ring \<subseteq> pordered_ab_group_add .. | 
| 14270 | 292 | |
| 22452 
8a86fd2a1bf0
adjusted to new lattice theory developement in Lattices.thy / FixedPoint.thy
 haftmann parents: 
22422diff
changeset | 293 | class lordered_ring = pordered_ring + lordered_ab_group_abs | 
| 14270 | 294 | |
| 14940 | 295 | instance lordered_ring \<subseteq> lordered_ab_group_meet .. | 
| 296 | ||
| 297 | instance lordered_ring \<subseteq> lordered_ab_group_join .. | |
| 298 | ||
| 23879 | 299 | class abs_if = minus + ord + zero + abs + | 
| 24748 | 300 | assumes abs_if: "abs a = (if a \<^loc>< \<^loc>0 then (uminus a) else a)" | 
| 14270 | 301 | |
| 24506 | 302 | class sgn_if = sgn + zero + one + minus + ord + | 
| 24748 | 303 | assumes sgn_if: "sgn x = (if x = \<^loc>0 then \<^loc>0 else if \<^loc>0 \<^loc>< x then \<^loc>1 else uminus \<^loc>1)" | 
| 24506 | 304 | |
| 23521 | 305 | (* The "strict" suffix can be seen as describing the combination of ordered_ring and no_zero_divisors. | 
| 306 | Basically, ordered_ring + no_zero_divisors = ordered_ring_strict. | |
| 307 | *) | |
| 308 | class ordered_ring = ring + ordered_semiring + lordered_ab_group + abs_if | |
| 14270 | 309 | |
| 23550 | 310 | instance ordered_ring \<subseteq> lordered_ring | 
| 311 | proof | |
| 312 | fix x :: 'a | |
| 313 | show "\<bar>x\<bar> = sup x (- x)" | |
| 314 | by (simp only: abs_if sup_eq_if) | |
| 315 | qed | |
| 23521 | 316 | |
| 24506 | 317 | class ordered_ring_strict = | 
| 318 | ring + ordered_semiring_strict + lordered_ab_group + abs_if | |
| 23521 | 319 | |
| 320 | instance ordered_ring_strict \<subseteq> ordered_ring .. | |
| 14270 | 321 | |
| 22390 | 322 | class pordered_comm_ring = comm_ring + pordered_comm_semiring | 
| 14270 | 323 | |
| 23527 | 324 | instance pordered_comm_ring \<subseteq> pordered_ring .. | 
| 325 | ||
| 23073 | 326 | instance pordered_comm_ring \<subseteq> pordered_cancel_comm_semiring .. | 
| 327 | ||
| 22390 | 328 | class ordered_semidom = comm_semiring_1_cancel + ordered_comm_semiring_strict + | 
| 329 | (*previously ordered_semiring*) | |
| 24748 | 330 | assumes zero_less_one [simp]: "\<^loc>0 \<^loc>< \<^loc>1" | 
| 14270 | 331 | |
| 24422 | 332 | lemma pos_add_strict: | 
| 333 | fixes a b c :: "'a\<Colon>ordered_semidom" | |
| 334 | shows "0 < a \<Longrightarrow> b < c \<Longrightarrow> b < a + c" | |
| 335 | using add_strict_mono [of 0 a b c] by simp | |
| 336 | ||
| 24506 | 337 | class ordered_idom = | 
| 338 | comm_ring_1 + | |
| 339 | ordered_comm_semiring_strict + | |
| 340 | lordered_ab_group + | |
| 341 | abs_if + sgn_if | |
| 22390 | 342 | (*previously ordered_ring*) | 
| 14270 | 343 | |
| 14738 | 344 | instance ordered_idom \<subseteq> ordered_ring_strict .. | 
| 14272 
5efbb548107d
Tidying of the integer development; towards removing the
 paulson parents: 
14270diff
changeset | 345 | |
| 23073 | 346 | instance ordered_idom \<subseteq> pordered_comm_ring .. | 
| 347 | ||
| 22390 | 348 | class ordered_field = field + ordered_idom | 
| 14272 
5efbb548107d
Tidying of the integer development; towards removing the
 paulson parents: 
14270diff
changeset | 349 | |
| 24515 
d4dc5dc2db98
linorder_neqE_ordered_idom: proper proof, avoid illegal schematic type vars;
 wenzelm parents: 
24506diff
changeset | 350 | lemma linorder_neqE_ordered_idom: | 
| 
d4dc5dc2db98
linorder_neqE_ordered_idom: proper proof, avoid illegal schematic type vars;
 wenzelm parents: 
24506diff
changeset | 351 | fixes x y :: "'a :: ordered_idom" | 
| 
d4dc5dc2db98
linorder_neqE_ordered_idom: proper proof, avoid illegal schematic type vars;
 wenzelm parents: 
24506diff
changeset | 352 | assumes "x \<noteq> y" obtains "x < y" | "y < x" | 
| 
d4dc5dc2db98
linorder_neqE_ordered_idom: proper proof, avoid illegal schematic type vars;
 wenzelm parents: 
24506diff
changeset | 353 | using assms by (rule linorder_neqE) | 
| 15923 | 354 | |
| 14272 
5efbb548107d
Tidying of the integer development; towards removing the
 paulson parents: 
14270diff
changeset | 355 | lemma eq_add_iff1: | 
| 23477 
f4b83f03cac9
tuned and renamed group_eq_simps and ring_eq_simps
 nipkow parents: 
23413diff
changeset | 356 | "(a*e + c = b*e + d) = ((a-b)*e + c = (d::'a::ring))" | 
| 
f4b83f03cac9
tuned and renamed group_eq_simps and ring_eq_simps
 nipkow parents: 
23413diff
changeset | 357 | by (simp add: ring_simps) | 
| 14272 
5efbb548107d
Tidying of the integer development; towards removing the
 paulson parents: 
14270diff
changeset | 358 | |
| 
5efbb548107d
Tidying of the integer development; towards removing the
 paulson parents: 
14270diff
changeset | 359 | lemma eq_add_iff2: | 
| 23477 
f4b83f03cac9
tuned and renamed group_eq_simps and ring_eq_simps
 nipkow parents: 
23413diff
changeset | 360 | "(a*e + c = b*e + d) = (c = (b-a)*e + (d::'a::ring))" | 
| 
f4b83f03cac9
tuned and renamed group_eq_simps and ring_eq_simps
 nipkow parents: 
23413diff
changeset | 361 | by (simp add: ring_simps) | 
| 14272 
5efbb548107d
Tidying of the integer development; towards removing the
 paulson parents: 
14270diff
changeset | 362 | |
| 
5efbb548107d
Tidying of the integer development; towards removing the
 paulson parents: 
14270diff
changeset | 363 | lemma less_add_iff1: | 
| 23477 
f4b83f03cac9
tuned and renamed group_eq_simps and ring_eq_simps
 nipkow parents: 
23413diff
changeset | 364 | "(a*e + c < b*e + d) = ((a-b)*e + c < (d::'a::pordered_ring))" | 
| 
f4b83f03cac9
tuned and renamed group_eq_simps and ring_eq_simps
 nipkow parents: 
23413diff
changeset | 365 | by (simp add: ring_simps) | 
| 14272 
5efbb548107d
Tidying of the integer development; towards removing the
 paulson parents: 
14270diff
changeset | 366 | |
| 
5efbb548107d
Tidying of the integer development; towards removing the
 paulson parents: 
14270diff
changeset | 367 | lemma less_add_iff2: | 
| 23477 
f4b83f03cac9
tuned and renamed group_eq_simps and ring_eq_simps
 nipkow parents: 
23413diff
changeset | 368 | "(a*e + c < b*e + d) = (c < (b-a)*e + (d::'a::pordered_ring))" | 
| 
f4b83f03cac9
tuned and renamed group_eq_simps and ring_eq_simps
 nipkow parents: 
23413diff
changeset | 369 | by (simp add: ring_simps) | 
| 14272 
5efbb548107d
Tidying of the integer development; towards removing the
 paulson parents: 
14270diff
changeset | 370 | |
| 
5efbb548107d
Tidying of the integer development; towards removing the
 paulson parents: 
14270diff
changeset | 371 | lemma le_add_iff1: | 
| 23477 
f4b83f03cac9
tuned and renamed group_eq_simps and ring_eq_simps
 nipkow parents: 
23413diff
changeset | 372 | "(a*e + c \<le> b*e + d) = ((a-b)*e + c \<le> (d::'a::pordered_ring))" | 
| 
f4b83f03cac9
tuned and renamed group_eq_simps and ring_eq_simps
 nipkow parents: 
23413diff
changeset | 373 | by (simp add: ring_simps) | 
| 14272 
5efbb548107d
Tidying of the integer development; towards removing the
 paulson parents: 
14270diff
changeset | 374 | |
| 
5efbb548107d
Tidying of the integer development; towards removing the
 paulson parents: 
14270diff
changeset | 375 | lemma le_add_iff2: | 
| 23477 
f4b83f03cac9
tuned and renamed group_eq_simps and ring_eq_simps
 nipkow parents: 
23413diff
changeset | 376 | "(a*e + c \<le> b*e + d) = (c \<le> (b-a)*e + (d::'a::pordered_ring))" | 
| 
f4b83f03cac9
tuned and renamed group_eq_simps and ring_eq_simps
 nipkow parents: 
23413diff
changeset | 377 | by (simp add: ring_simps) | 
| 14272 
5efbb548107d
Tidying of the integer development; towards removing the
 paulson parents: 
14270diff
changeset | 378 | |
| 23389 | 379 | |
| 14270 | 380 | subsection {* Ordering Rules for Multiplication *}
 | 
| 381 | ||
| 14348 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
14341diff
changeset | 382 | lemma mult_left_le_imp_le: | 
| 23477 
f4b83f03cac9
tuned and renamed group_eq_simps and ring_eq_simps
 nipkow parents: 
23413diff
changeset | 383 | "[|c*a \<le> c*b; 0 < c|] ==> a \<le> (b::'a::ordered_semiring_strict)" | 
| 
f4b83f03cac9
tuned and renamed group_eq_simps and ring_eq_simps
 nipkow parents: 
23413diff
changeset | 384 | by (force simp add: mult_strict_left_mono linorder_not_less [symmetric]) | 
| 14348 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
14341diff
changeset | 385 | |
| 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
14341diff
changeset | 386 | lemma mult_right_le_imp_le: | 
| 23477 
f4b83f03cac9
tuned and renamed group_eq_simps and ring_eq_simps
 nipkow parents: 
23413diff
changeset | 387 | "[|a*c \<le> b*c; 0 < c|] ==> a \<le> (b::'a::ordered_semiring_strict)" | 
| 
f4b83f03cac9
tuned and renamed group_eq_simps and ring_eq_simps
 nipkow parents: 
23413diff
changeset | 388 | by (force simp add: mult_strict_right_mono linorder_not_less [symmetric]) | 
| 14348 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
14341diff
changeset | 389 | |
| 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
14341diff
changeset | 390 | lemma mult_left_less_imp_less: | 
| 23521 | 391 | "[|c*a < c*b; 0 \<le> c|] ==> a < (b::'a::ordered_semiring)" | 
| 23477 
f4b83f03cac9
tuned and renamed group_eq_simps and ring_eq_simps
 nipkow parents: 
23413diff
changeset | 392 | by (force simp add: mult_left_mono linorder_not_le [symmetric]) | 
| 14348 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
14341diff
changeset | 393 | |
| 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
14341diff
changeset | 394 | lemma mult_right_less_imp_less: | 
| 23521 | 395 | "[|a*c < b*c; 0 \<le> c|] ==> a < (b::'a::ordered_semiring)" | 
| 23477 
f4b83f03cac9
tuned and renamed group_eq_simps and ring_eq_simps
 nipkow parents: 
23413diff
changeset | 396 | by (force simp add: mult_right_mono linorder_not_le [symmetric]) | 
| 14348 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
14341diff
changeset | 397 | |
| 14265 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 398 | lemma mult_strict_left_mono_neg: | 
| 23477 
f4b83f03cac9
tuned and renamed group_eq_simps and ring_eq_simps
 nipkow parents: 
23413diff
changeset | 399 | "[|b < a; c < 0|] ==> c * a < c * (b::'a::ordered_ring_strict)" | 
| 14265 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 400 | apply (drule mult_strict_left_mono [of _ _ "-c"]) | 
| 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 401 | apply (simp_all add: minus_mult_left [symmetric]) | 
| 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 402 | done | 
| 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 403 | |
| 14738 | 404 | lemma mult_left_mono_neg: | 
| 23477 
f4b83f03cac9
tuned and renamed group_eq_simps and ring_eq_simps
 nipkow parents: 
23413diff
changeset | 405 | "[|b \<le> a; c \<le> 0|] ==> c * a \<le> c * (b::'a::pordered_ring)" | 
| 14738 | 406 | apply (drule mult_left_mono [of _ _ "-c"]) | 
| 407 | apply (simp_all add: minus_mult_left [symmetric]) | |
| 408 | done | |
| 409 | ||
| 14265 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 410 | lemma mult_strict_right_mono_neg: | 
| 23477 
f4b83f03cac9
tuned and renamed group_eq_simps and ring_eq_simps
 nipkow parents: 
23413diff
changeset | 411 | "[|b < a; c < 0|] ==> a * c < b * (c::'a::ordered_ring_strict)" | 
| 14265 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 412 | apply (drule mult_strict_right_mono [of _ _ "-c"]) | 
| 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 413 | apply (simp_all add: minus_mult_right [symmetric]) | 
| 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 414 | done | 
| 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 415 | |
| 14738 | 416 | lemma mult_right_mono_neg: | 
| 23477 
f4b83f03cac9
tuned and renamed group_eq_simps and ring_eq_simps
 nipkow parents: 
23413diff
changeset | 417 | "[|b \<le> a; c \<le> 0|] ==> a * c \<le> (b::'a::pordered_ring) * c" | 
| 14738 | 418 | apply (drule mult_right_mono [of _ _ "-c"]) | 
| 419 | apply (simp) | |
| 420 | apply (simp_all add: minus_mult_right [symmetric]) | |
| 421 | done | |
| 14265 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 422 | |
| 23389 | 423 | |
| 14265 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 424 | subsection{* Products of Signs *}
 | 
| 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 425 | |
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 426 | lemma mult_pos_pos: "[| (0::'a::ordered_semiring_strict) < a; 0 < b |] ==> 0 < a*b" | 
| 14265 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 427 | by (drule mult_strict_left_mono [of 0 b], auto) | 
| 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 428 | |
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 429 | lemma mult_nonneg_nonneg: "[| (0::'a::pordered_cancel_semiring) \<le> a; 0 \<le> b |] ==> 0 \<le> a*b" | 
| 14738 | 430 | by (drule mult_left_mono [of 0 b], auto) | 
| 431 | ||
| 432 | lemma mult_pos_neg: "[| (0::'a::ordered_semiring_strict) < a; b < 0 |] ==> a*b < 0" | |
| 14265 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 433 | by (drule mult_strict_left_mono [of b 0], auto) | 
| 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 434 | |
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 435 | lemma mult_nonneg_nonpos: "[| (0::'a::pordered_cancel_semiring) \<le> a; b \<le> 0 |] ==> a*b \<le> 0" | 
| 14738 | 436 | by (drule mult_left_mono [of b 0], auto) | 
| 437 | ||
| 438 | lemma mult_pos_neg2: "[| (0::'a::ordered_semiring_strict) < a; b < 0 |] ==> b*a < 0" | |
| 439 | by (drule mult_strict_right_mono[of b 0], auto) | |
| 440 | ||
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 441 | lemma mult_nonneg_nonpos2: "[| (0::'a::pordered_cancel_semiring) \<le> a; b \<le> 0 |] ==> b*a \<le> 0" | 
| 14738 | 442 | by (drule mult_right_mono[of b 0], auto) | 
| 443 | ||
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 444 | lemma mult_neg_neg: "[| a < (0::'a::ordered_ring_strict); b < 0 |] ==> 0 < a*b" | 
| 14265 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 445 | by (drule mult_strict_right_mono_neg, auto) | 
| 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 446 | |
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 447 | lemma mult_nonpos_nonpos: "[| a \<le> (0::'a::pordered_ring); b \<le> 0 |] ==> 0 \<le> a*b" | 
| 14738 | 448 | by (drule mult_right_mono_neg[of a 0 b ], auto) | 
| 449 | ||
| 14341 
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
 paulson parents: 
14334diff
changeset | 450 | lemma zero_less_mult_pos: | 
| 14738 | 451 | "[| 0 < a*b; 0 < a|] ==> 0 < (b::'a::ordered_semiring_strict)" | 
| 21328 | 452 | apply (cases "b\<le>0") | 
| 14265 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 453 | apply (auto simp add: order_le_less linorder_not_less) | 
| 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 454 | apply (drule_tac mult_pos_neg [of a b]) | 
| 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 455 | apply (auto dest: order_less_not_sym) | 
| 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 456 | done | 
| 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 457 | |
| 14738 | 458 | lemma zero_less_mult_pos2: | 
| 459 | "[| 0 < b*a; 0 < a|] ==> 0 < (b::'a::ordered_semiring_strict)" | |
| 21328 | 460 | apply (cases "b\<le>0") | 
| 14738 | 461 | apply (auto simp add: order_le_less linorder_not_less) | 
| 462 | apply (drule_tac mult_pos_neg2 [of a b]) | |
| 463 | apply (auto dest: order_less_not_sym) | |
| 464 | done | |
| 465 | ||
| 14265 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 466 | lemma zero_less_mult_iff: | 
| 14738 | 467 | "((0::'a::ordered_ring_strict) < a*b) = (0 < a & 0 < b | a < 0 & b < 0)" | 
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 468 | apply (auto simp add: order_le_less linorder_not_less mult_pos_pos | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 469 | mult_neg_neg) | 
| 14265 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 470 | apply (blast dest: zero_less_mult_pos) | 
| 14738 | 471 | apply (blast dest: zero_less_mult_pos2) | 
| 14265 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 472 | done | 
| 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 473 | |
| 22990 
775e9de3db48
added classes ring_no_zero_divisors and dom (non-commutative version of idom);
 huffman parents: 
22987diff
changeset | 474 | lemma mult_eq_0_iff [simp]: | 
| 
775e9de3db48
added classes ring_no_zero_divisors and dom (non-commutative version of idom);
 huffman parents: 
22987diff
changeset | 475 | fixes a b :: "'a::ring_no_zero_divisors" | 
| 
775e9de3db48
added classes ring_no_zero_divisors and dom (non-commutative version of idom);
 huffman parents: 
22987diff
changeset | 476 | shows "(a * b = 0) = (a = 0 \<or> b = 0)" | 
| 
775e9de3db48
added classes ring_no_zero_divisors and dom (non-commutative version of idom);
 huffman parents: 
22987diff
changeset | 477 | by (cases "a = 0 \<or> b = 0", auto dest: no_zero_divisors) | 
| 
775e9de3db48
added classes ring_no_zero_divisors and dom (non-commutative version of idom);
 huffman parents: 
22987diff
changeset | 478 | |
| 
775e9de3db48
added classes ring_no_zero_divisors and dom (non-commutative version of idom);
 huffman parents: 
22987diff
changeset | 479 | instance ordered_ring_strict \<subseteq> ring_no_zero_divisors | 
| 
775e9de3db48
added classes ring_no_zero_divisors and dom (non-commutative version of idom);
 huffman parents: 
22987diff
changeset | 480 | apply intro_classes | 
| 14265 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 481 | apply (auto simp add: linorder_not_less order_le_less linorder_neq_iff) | 
| 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 482 | apply (force dest: mult_strict_right_mono_neg mult_strict_right_mono)+ | 
| 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 483 | done | 
| 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 484 | |
| 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 485 | lemma zero_le_mult_iff: | 
| 14738 | 486 | "((0::'a::ordered_ring_strict) \<le> a*b) = (0 \<le> a & 0 \<le> b | a \<le> 0 & b \<le> 0)" | 
| 14265 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 487 | by (auto simp add: eq_commute [of 0] order_le_less linorder_not_less | 
| 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 488 | zero_less_mult_iff) | 
| 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 489 | |
| 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 490 | lemma mult_less_0_iff: | 
| 14738 | 491 | "(a*b < (0::'a::ordered_ring_strict)) = (0 < a & b < 0 | a < 0 & 0 < b)" | 
| 14265 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 492 | apply (insert zero_less_mult_iff [of "-a" b]) | 
| 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 493 | apply (force simp add: minus_mult_left[symmetric]) | 
| 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 494 | done | 
| 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 495 | |
| 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 496 | lemma mult_le_0_iff: | 
| 14738 | 497 | "(a*b \<le> (0::'a::ordered_ring_strict)) = (0 \<le> a & b \<le> 0 | a \<le> 0 & 0 \<le> b)" | 
| 14265 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 498 | apply (insert zero_le_mult_iff [of "-a" b]) | 
| 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 499 | apply (force simp add: minus_mult_left[symmetric]) | 
| 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 500 | done | 
| 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 501 | |
| 14738 | 502 | lemma split_mult_pos_le: "(0 \<le> a & 0 \<le> b) | (a \<le> 0 & b \<le> 0) \<Longrightarrow> 0 \<le> a * (b::_::pordered_ring)" | 
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 503 | by (auto simp add: mult_nonneg_nonneg mult_nonpos_nonpos) | 
| 14738 | 504 | |
| 505 | lemma split_mult_neg_le: "(0 \<le> a & b \<le> 0) | (a \<le> 0 & 0 \<le> b) \<Longrightarrow> a * b \<le> (0::_::pordered_cancel_semiring)" | |
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 506 | by (auto simp add: mult_nonneg_nonpos mult_nonneg_nonpos2) | 
| 14738 | 507 | |
| 23095 | 508 | lemma zero_le_square[simp]: "(0::'a::ordered_ring_strict) \<le> a*a" | 
| 509 | by (simp add: zero_le_mult_iff linorder_linear) | |
| 510 | ||
| 511 | lemma not_square_less_zero[simp]: "\<not> (a * a < (0::'a::ordered_ring_strict))" | |
| 512 | by (simp add: not_less) | |
| 14265 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 513 | |
| 14738 | 514 | text{*Proving axiom @{text zero_less_one} makes all @{text ordered_semidom}
 | 
| 515 |       theorems available to members of @{term ordered_idom} *}
 | |
| 516 | ||
| 517 | instance ordered_idom \<subseteq> ordered_semidom | |
| 14421 
ee97b6463cb4
new Ring_and_Field hierarchy, eliminating redundant axioms
 paulson parents: 
14398diff
changeset | 518 | proof | 
| 
ee97b6463cb4
new Ring_and_Field hierarchy, eliminating redundant axioms
 paulson parents: 
14398diff
changeset | 519 | have "(0::'a) \<le> 1*1" by (rule zero_le_square) | 
| 14430 
5cb24165a2e1
new material from Avigad, and simplified treatment of division by 0
 paulson parents: 
14421diff
changeset | 520 | thus "(0::'a) < 1" by (simp add: order_le_less) | 
| 14421 
ee97b6463cb4
new Ring_and_Field hierarchy, eliminating redundant axioms
 paulson parents: 
14398diff
changeset | 521 | qed | 
| 
ee97b6463cb4
new Ring_and_Field hierarchy, eliminating redundant axioms
 paulson parents: 
14398diff
changeset | 522 | |
| 14738 | 523 | instance ordered_idom \<subseteq> idom .. | 
| 524 | ||
| 14387 
e96d5c42c4b0
Polymorphic treatment of binary arithmetic using axclasses
 paulson parents: 
14377diff
changeset | 525 | text{*All three types of comparision involving 0 and 1 are covered.*}
 | 
| 
e96d5c42c4b0
Polymorphic treatment of binary arithmetic using axclasses
 paulson parents: 
14377diff
changeset | 526 | |
| 17085 | 527 | lemmas one_neq_zero = zero_neq_one [THEN not_sym] | 
| 528 | declare one_neq_zero [simp] | |
| 14387 
e96d5c42c4b0
Polymorphic treatment of binary arithmetic using axclasses
 paulson parents: 
14377diff
changeset | 529 | |
| 14738 | 530 | lemma zero_le_one [simp]: "(0::'a::ordered_semidom) \<le> 1" | 
| 14268 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 531 | by (rule zero_less_one [THEN order_less_imp_le]) | 
| 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 532 | |
| 14738 | 533 | lemma not_one_le_zero [simp]: "~ (1::'a::ordered_semidom) \<le> 0" | 
| 534 | by (simp add: linorder_not_le) | |
| 14387 
e96d5c42c4b0
Polymorphic treatment of binary arithmetic using axclasses
 paulson parents: 
14377diff
changeset | 535 | |
| 14738 | 536 | lemma not_one_less_zero [simp]: "~ (1::'a::ordered_semidom) < 0" | 
| 537 | by (simp add: linorder_not_less) | |
| 14268 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 538 | |
| 23389 | 539 | |
| 14268 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 540 | subsection{*More Monotonicity*}
 | 
| 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 541 | |
| 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 542 | text{*Strict monotonicity in both arguments*}
 | 
| 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 543 | lemma mult_strict_mono: | 
| 14738 | 544 | "[|a<b; c<d; 0<b; 0\<le>c|] ==> a * c < b * (d::'a::ordered_semiring_strict)" | 
| 21328 | 545 | apply (cases "c=0") | 
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 546 | apply (simp add: mult_pos_pos) | 
| 14268 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 547 | apply (erule mult_strict_right_mono [THEN order_less_trans]) | 
| 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 548 | apply (force simp add: order_le_less) | 
| 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 549 | apply (erule mult_strict_left_mono, assumption) | 
| 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 550 | done | 
| 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 551 | |
| 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 552 | text{*This weaker variant has more natural premises*}
 | 
| 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 553 | lemma mult_strict_mono': | 
| 14738 | 554 | "[| a<b; c<d; 0 \<le> a; 0 \<le> c|] ==> a * c < b * (d::'a::ordered_semiring_strict)" | 
| 14268 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 555 | apply (rule mult_strict_mono) | 
| 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 556 | apply (blast intro: order_le_less_trans)+ | 
| 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 557 | done | 
| 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 558 | |
| 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 559 | lemma mult_mono: | 
| 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 560 | "[|a \<le> b; c \<le> d; 0 \<le> b; 0 \<le> c|] | 
| 14738 | 561 | ==> a * c \<le> b * (d::'a::pordered_semiring)" | 
| 14268 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 562 | apply (erule mult_right_mono [THEN order_trans], assumption) | 
| 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 563 | apply (erule mult_left_mono, assumption) | 
| 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 564 | done | 
| 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 565 | |
| 21258 | 566 | lemma mult_mono': | 
| 567 | "[|a \<le> b; c \<le> d; 0 \<le> a; 0 \<le> c|] | |
| 568 | ==> a * c \<le> b * (d::'a::pordered_semiring)" | |
| 569 | apply (rule mult_mono) | |
| 570 | apply (fast intro: order_trans)+ | |
| 571 | done | |
| 572 | ||
| 14738 | 573 | lemma less_1_mult: "[| 1 < m; 1 < n |] ==> 1 < m*(n::'a::ordered_semidom)" | 
| 14387 
e96d5c42c4b0
Polymorphic treatment of binary arithmetic using axclasses
 paulson parents: 
14377diff
changeset | 574 | apply (insert mult_strict_mono [of 1 m 1 n]) | 
| 14430 
5cb24165a2e1
new material from Avigad, and simplified treatment of division by 0
 paulson parents: 
14421diff
changeset | 575 | apply (simp add: order_less_trans [OF zero_less_one]) | 
| 14387 
e96d5c42c4b0
Polymorphic treatment of binary arithmetic using axclasses
 paulson parents: 
14377diff
changeset | 576 | done | 
| 
e96d5c42c4b0
Polymorphic treatment of binary arithmetic using axclasses
 paulson parents: 
14377diff
changeset | 577 | |
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 578 | lemma mult_less_le_imp_less: "(a::'a::ordered_semiring_strict) < b ==> | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 579 | c <= d ==> 0 <= a ==> 0 < c ==> a * c < b * d" | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 580 | apply (subgoal_tac "a * c < b * c") | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 581 | apply (erule order_less_le_trans) | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 582 | apply (erule mult_left_mono) | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 583 | apply simp | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 584 | apply (erule mult_strict_right_mono) | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 585 | apply assumption | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 586 | done | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 587 | |
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 588 | lemma mult_le_less_imp_less: "(a::'a::ordered_semiring_strict) <= b ==> | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 589 | c < d ==> 0 < a ==> 0 <= c ==> a * c < b * d" | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 590 | apply (subgoal_tac "a * c <= b * c") | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 591 | apply (erule order_le_less_trans) | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 592 | apply (erule mult_strict_left_mono) | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 593 | apply simp | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 594 | apply (erule mult_right_mono) | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 595 | apply simp | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 596 | done | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 597 | |
| 23389 | 598 | |
| 14268 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 599 | subsection{*Cancellation Laws for Relationships With a Common Factor*}
 | 
| 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 600 | |
| 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 601 | text{*Cancellation laws for @{term "c*a < c*b"} and @{term "a*c < b*c"},
 | 
| 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 602 |    also with the relations @{text "\<le>"} and equality.*}
 | 
| 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 603 | |
| 15234 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 604 | text{*These ``disjunction'' versions produce two cases when the comparison is
 | 
| 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 605 | an assumption, but effectively four when the comparison is a goal.*} | 
| 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 606 | |
| 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 607 | lemma mult_less_cancel_right_disj: | 
| 14738 | 608 | "(a*c < b*c) = ((0 < c & a < b) | (c < 0 & b < (a::'a::ordered_ring_strict)))" | 
| 21328 | 609 | apply (cases "c = 0") | 
| 14268 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 610 | apply (auto simp add: linorder_neq_iff mult_strict_right_mono | 
| 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 611 | mult_strict_right_mono_neg) | 
| 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 612 | apply (auto simp add: linorder_not_less | 
| 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 613 | linorder_not_le [symmetric, of "a*c"] | 
| 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 614 | linorder_not_le [symmetric, of a]) | 
| 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 615 | apply (erule_tac [!] notE) | 
| 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 616 | apply (auto simp add: order_less_imp_le mult_right_mono | 
| 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 617 | mult_right_mono_neg) | 
| 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 618 | done | 
| 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 619 | |
| 15234 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 620 | lemma mult_less_cancel_left_disj: | 
| 14738 | 621 | "(c*a < c*b) = ((0 < c & a < b) | (c < 0 & b < (a::'a::ordered_ring_strict)))" | 
| 21328 | 622 | apply (cases "c = 0") | 
| 14738 | 623 | apply (auto simp add: linorder_neq_iff mult_strict_left_mono | 
| 624 | mult_strict_left_mono_neg) | |
| 625 | apply (auto simp add: linorder_not_less | |
| 626 | linorder_not_le [symmetric, of "c*a"] | |
| 627 | linorder_not_le [symmetric, of a]) | |
| 628 | apply (erule_tac [!] notE) | |
| 629 | apply (auto simp add: order_less_imp_le mult_left_mono | |
| 630 | mult_left_mono_neg) | |
| 631 | done | |
| 14268 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 632 | |
| 15234 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 633 | |
| 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 634 | text{*The ``conjunction of implication'' lemmas produce two cases when the
 | 
| 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 635 | comparison is a goal, but give four when the comparison is an assumption.*} | 
| 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 636 | |
| 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 637 | lemma mult_less_cancel_right: | 
| 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 638 | fixes c :: "'a :: ordered_ring_strict" | 
| 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 639 | shows "(a*c < b*c) = ((0 \<le> c --> a < b) & (c \<le> 0 --> b < a))" | 
| 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 640 | by (insert mult_less_cancel_right_disj [of a c b], auto) | 
| 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 641 | |
| 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 642 | lemma mult_less_cancel_left: | 
| 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 643 | fixes c :: "'a :: ordered_ring_strict" | 
| 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 644 | shows "(c*a < c*b) = ((0 \<le> c --> a < b) & (c \<le> 0 --> b < a))" | 
| 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 645 | by (insert mult_less_cancel_left_disj [of c a b], auto) | 
| 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 646 | |
| 14268 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 647 | lemma mult_le_cancel_right: | 
| 14738 | 648 | "(a*c \<le> b*c) = ((0<c --> a\<le>b) & (c<0 --> b \<le> (a::'a::ordered_ring_strict)))" | 
| 15234 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 649 | by (simp add: linorder_not_less [symmetric] mult_less_cancel_right_disj) | 
| 14268 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 650 | |
| 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 651 | lemma mult_le_cancel_left: | 
| 14738 | 652 | "(c*a \<le> c*b) = ((0<c --> a\<le>b) & (c<0 --> b \<le> (a::'a::ordered_ring_strict)))" | 
| 15234 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 653 | by (simp add: linorder_not_less [symmetric] mult_less_cancel_left_disj) | 
| 14268 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 654 | |
| 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 655 | lemma mult_less_imp_less_left: | 
| 14341 
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
 paulson parents: 
14334diff
changeset | 656 | assumes less: "c*a < c*b" and nonneg: "0 \<le> c" | 
| 14738 | 657 | shows "a < (b::'a::ordered_semiring_strict)" | 
| 14377 | 658 | proof (rule ccontr) | 
| 659 | assume "~ a < b" | |
| 660 | hence "b \<le> a" by (simp add: linorder_not_less) | |
| 23389 | 661 | hence "c*b \<le> c*a" using nonneg by (rule mult_left_mono) | 
| 14377 | 662 | with this and less show False | 
| 663 | by (simp add: linorder_not_less [symmetric]) | |
| 664 | qed | |
| 14268 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 665 | |
| 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 666 | lemma mult_less_imp_less_right: | 
| 14738 | 667 | assumes less: "a*c < b*c" and nonneg: "0 <= c" | 
| 668 | shows "a < (b::'a::ordered_semiring_strict)" | |
| 669 | proof (rule ccontr) | |
| 670 | assume "~ a < b" | |
| 671 | hence "b \<le> a" by (simp add: linorder_not_less) | |
| 23389 | 672 | hence "b*c \<le> a*c" using nonneg by (rule mult_right_mono) | 
| 14738 | 673 | with this and less show False | 
| 674 | by (simp add: linorder_not_less [symmetric]) | |
| 675 | qed | |
| 14268 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 676 | |
| 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 677 | text{*Cancellation of equalities with a common factor*}
 | 
| 24286 
7619080e49f0
ATP blacklisting is now in theory data, attribute noatp
 paulson parents: 
23879diff
changeset | 678 | lemma mult_cancel_right [simp,noatp]: | 
| 22990 
775e9de3db48
added classes ring_no_zero_divisors and dom (non-commutative version of idom);
 huffman parents: 
22987diff
changeset | 679 | fixes a b c :: "'a::ring_no_zero_divisors" | 
| 
775e9de3db48
added classes ring_no_zero_divisors and dom (non-commutative version of idom);
 huffman parents: 
22987diff
changeset | 680 | shows "(a * c = b * c) = (c = 0 \<or> a = b)" | 
| 
775e9de3db48
added classes ring_no_zero_divisors and dom (non-commutative version of idom);
 huffman parents: 
22987diff
changeset | 681 | proof - | 
| 
775e9de3db48
added classes ring_no_zero_divisors and dom (non-commutative version of idom);
 huffman parents: 
22987diff
changeset | 682 | have "(a * c = b * c) = ((a - b) * c = 0)" | 
| 23477 
f4b83f03cac9
tuned and renamed group_eq_simps and ring_eq_simps
 nipkow parents: 
23413diff
changeset | 683 | by (simp add: ring_distribs) | 
| 22990 
775e9de3db48
added classes ring_no_zero_divisors and dom (non-commutative version of idom);
 huffman parents: 
22987diff
changeset | 684 | thus ?thesis | 
| 
775e9de3db48
added classes ring_no_zero_divisors and dom (non-commutative version of idom);
 huffman parents: 
22987diff
changeset | 685 | by (simp add: disj_commute) | 
| 
775e9de3db48
added classes ring_no_zero_divisors and dom (non-commutative version of idom);
 huffman parents: 
22987diff
changeset | 686 | qed | 
| 14268 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 687 | |
| 24286 
7619080e49f0
ATP blacklisting is now in theory data, attribute noatp
 paulson parents: 
23879diff
changeset | 688 | lemma mult_cancel_left [simp,noatp]: | 
| 22990 
775e9de3db48
added classes ring_no_zero_divisors and dom (non-commutative version of idom);
 huffman parents: 
22987diff
changeset | 689 | fixes a b c :: "'a::ring_no_zero_divisors" | 
| 
775e9de3db48
added classes ring_no_zero_divisors and dom (non-commutative version of idom);
 huffman parents: 
22987diff
changeset | 690 | shows "(c * a = c * b) = (c = 0 \<or> a = b)" | 
| 
775e9de3db48
added classes ring_no_zero_divisors and dom (non-commutative version of idom);
 huffman parents: 
22987diff
changeset | 691 | proof - | 
| 
775e9de3db48
added classes ring_no_zero_divisors and dom (non-commutative version of idom);
 huffman parents: 
22987diff
changeset | 692 | have "(c * a = c * b) = (c * (a - b) = 0)" | 
| 23477 
f4b83f03cac9
tuned and renamed group_eq_simps and ring_eq_simps
 nipkow parents: 
23413diff
changeset | 693 | by (simp add: ring_distribs) | 
| 22990 
775e9de3db48
added classes ring_no_zero_divisors and dom (non-commutative version of idom);
 huffman parents: 
22987diff
changeset | 694 | thus ?thesis | 
| 
775e9de3db48
added classes ring_no_zero_divisors and dom (non-commutative version of idom);
 huffman parents: 
22987diff
changeset | 695 | by simp | 
| 
775e9de3db48
added classes ring_no_zero_divisors and dom (non-commutative version of idom);
 huffman parents: 
22987diff
changeset | 696 | qed | 
| 14268 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 697 | |
| 15234 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 698 | |
| 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 699 | subsubsection{*Special Cancellation Simprules for Multiplication*}
 | 
| 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 700 | |
| 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 701 | text{*These also produce two cases when the comparison is a goal.*}
 | 
| 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 702 | |
| 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 703 | lemma mult_le_cancel_right1: | 
| 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 704 | fixes c :: "'a :: ordered_idom" | 
| 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 705 | shows "(c \<le> b*c) = ((0<c --> 1\<le>b) & (c<0 --> b \<le> 1))" | 
| 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 706 | by (insert mult_le_cancel_right [of 1 c b], simp) | 
| 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 707 | |
| 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 708 | lemma mult_le_cancel_right2: | 
| 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 709 | fixes c :: "'a :: ordered_idom" | 
| 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 710 | shows "(a*c \<le> c) = ((0<c --> a\<le>1) & (c<0 --> 1 \<le> a))" | 
| 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 711 | by (insert mult_le_cancel_right [of a c 1], simp) | 
| 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 712 | |
| 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 713 | lemma mult_le_cancel_left1: | 
| 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 714 | fixes c :: "'a :: ordered_idom" | 
| 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 715 | shows "(c \<le> c*b) = ((0<c --> 1\<le>b) & (c<0 --> b \<le> 1))" | 
| 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 716 | by (insert mult_le_cancel_left [of c 1 b], simp) | 
| 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 717 | |
| 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 718 | lemma mult_le_cancel_left2: | 
| 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 719 | fixes c :: "'a :: ordered_idom" | 
| 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 720 | shows "(c*a \<le> c) = ((0<c --> a\<le>1) & (c<0 --> 1 \<le> a))" | 
| 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 721 | by (insert mult_le_cancel_left [of c a 1], simp) | 
| 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 722 | |
| 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 723 | lemma mult_less_cancel_right1: | 
| 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 724 | fixes c :: "'a :: ordered_idom" | 
| 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 725 | shows "(c < b*c) = ((0 \<le> c --> 1<b) & (c \<le> 0 --> b < 1))" | 
| 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 726 | by (insert mult_less_cancel_right [of 1 c b], simp) | 
| 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 727 | |
| 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 728 | lemma mult_less_cancel_right2: | 
| 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 729 | fixes c :: "'a :: ordered_idom" | 
| 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 730 | shows "(a*c < c) = ((0 \<le> c --> a<1) & (c \<le> 0 --> 1 < a))" | 
| 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 731 | by (insert mult_less_cancel_right [of a c 1], simp) | 
| 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 732 | |
| 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 733 | lemma mult_less_cancel_left1: | 
| 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 734 | fixes c :: "'a :: ordered_idom" | 
| 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 735 | shows "(c < c*b) = ((0 \<le> c --> 1<b) & (c \<le> 0 --> b < 1))" | 
| 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 736 | by (insert mult_less_cancel_left [of c 1 b], simp) | 
| 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 737 | |
| 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 738 | lemma mult_less_cancel_left2: | 
| 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 739 | fixes c :: "'a :: ordered_idom" | 
| 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 740 | shows "(c*a < c) = ((0 \<le> c --> a<1) & (c \<le> 0 --> 1 < a))" | 
| 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 741 | by (insert mult_less_cancel_left [of c a 1], simp) | 
| 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 742 | |
| 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 743 | lemma mult_cancel_right1 [simp]: | 
| 23544 | 744 | fixes c :: "'a :: ring_1_no_zero_divisors" | 
| 15234 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 745 | shows "(c = b*c) = (c = 0 | b=1)" | 
| 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 746 | by (insert mult_cancel_right [of 1 c b], force) | 
| 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 747 | |
| 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 748 | lemma mult_cancel_right2 [simp]: | 
| 23544 | 749 | fixes c :: "'a :: ring_1_no_zero_divisors" | 
| 15234 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 750 | shows "(a*c = c) = (c = 0 | a=1)" | 
| 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 751 | by (insert mult_cancel_right [of a c 1], simp) | 
| 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 752 | |
| 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 753 | lemma mult_cancel_left1 [simp]: | 
| 23544 | 754 | fixes c :: "'a :: ring_1_no_zero_divisors" | 
| 15234 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 755 | shows "(c = c*b) = (c = 0 | b=1)" | 
| 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 756 | by (insert mult_cancel_left [of c 1 b], force) | 
| 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 757 | |
| 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 758 | lemma mult_cancel_left2 [simp]: | 
| 23544 | 759 | fixes c :: "'a :: ring_1_no_zero_divisors" | 
| 15234 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 760 | shows "(c*a = c) = (c = 0 | a=1)" | 
| 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 761 | by (insert mult_cancel_left [of c a 1], simp) | 
| 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 762 | |
| 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 763 | |
| 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 764 | text{*Simprules for comparisons where common factors can be cancelled.*}
 | 
| 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 765 | lemmas mult_compare_simps = | 
| 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 766 | mult_le_cancel_right mult_le_cancel_left | 
| 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 767 | mult_le_cancel_right1 mult_le_cancel_right2 | 
| 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 768 | mult_le_cancel_left1 mult_le_cancel_left2 | 
| 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 769 | mult_less_cancel_right mult_less_cancel_left | 
| 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 770 | mult_less_cancel_right1 mult_less_cancel_right2 | 
| 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 771 | mult_less_cancel_left1 mult_less_cancel_left2 | 
| 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 772 | mult_cancel_right mult_cancel_left | 
| 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 773 | mult_cancel_right1 mult_cancel_right2 | 
| 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 774 | mult_cancel_left1 mult_cancel_left2 | 
| 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 775 | |
| 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 776 | |
| 14265 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 777 | subsection {* Fields *}
 | 
| 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 778 | |
| 14288 | 779 | lemma right_inverse_eq: "b \<noteq> 0 ==> (a / b = 1) = (a = (b::'a::field))" | 
| 780 | proof | |
| 781 | assume neq: "b \<noteq> 0" | |
| 782 |   {
 | |
| 783 | hence "a = (a / b) * b" by (simp add: divide_inverse mult_ac) | |
| 784 | also assume "a / b = 1" | |
| 785 | finally show "a = b" by simp | |
| 786 | next | |
| 787 | assume "a = b" | |
| 788 | with neq show "a / b = 1" by (simp add: divide_inverse) | |
| 789 | } | |
| 790 | qed | |
| 791 | ||
| 792 | lemma nonzero_inverse_eq_divide: "a \<noteq> 0 ==> inverse (a::'a::field) = 1/a" | |
| 793 | by (simp add: divide_inverse) | |
| 794 | ||
| 23398 | 795 | lemma divide_self[simp]: "a \<noteq> 0 ==> a / (a::'a::field) = 1" | 
| 14288 | 796 | by (simp add: divide_inverse) | 
| 797 | ||
| 14430 
5cb24165a2e1
new material from Avigad, and simplified treatment of division by 0
 paulson parents: 
14421diff
changeset | 798 | lemma divide_zero [simp]: "a / 0 = (0::'a::{field,division_by_zero})"
 | 
| 
5cb24165a2e1
new material from Avigad, and simplified treatment of division by 0
 paulson parents: 
14421diff
changeset | 799 | by (simp add: divide_inverse) | 
| 14277 
ad66687ece6e
more field division lemmas transferred from Real to Ring_and_Field
 paulson parents: 
14272diff
changeset | 800 | |
| 15228 | 801 | lemma divide_self_if [simp]: | 
| 802 |      "a / (a::'a::{field,division_by_zero}) = (if a=0 then 0 else 1)"
 | |
| 803 | by (simp add: divide_self) | |
| 804 | ||
| 14430 
5cb24165a2e1
new material from Avigad, and simplified treatment of division by 0
 paulson parents: 
14421diff
changeset | 805 | lemma divide_zero_left [simp]: "0/a = (0::'a::field)" | 
| 
5cb24165a2e1
new material from Avigad, and simplified treatment of division by 0
 paulson parents: 
14421diff
changeset | 806 | by (simp add: divide_inverse) | 
| 14277 
ad66687ece6e
more field division lemmas transferred from Real to Ring_and_Field
 paulson parents: 
14272diff
changeset | 807 | |
| 14430 
5cb24165a2e1
new material from Avigad, and simplified treatment of division by 0
 paulson parents: 
14421diff
changeset | 808 | lemma inverse_eq_divide: "inverse (a::'a::field) = 1/a" | 
| 
5cb24165a2e1
new material from Avigad, and simplified treatment of division by 0
 paulson parents: 
14421diff
changeset | 809 | by (simp add: divide_inverse) | 
| 14277 
ad66687ece6e
more field division lemmas transferred from Real to Ring_and_Field
 paulson parents: 
14272diff
changeset | 810 | |
| 14430 
5cb24165a2e1
new material from Avigad, and simplified treatment of division by 0
 paulson parents: 
14421diff
changeset | 811 | lemma add_divide_distrib: "(a+b)/(c::'a::field) = a/c + b/c" | 
| 23477 
f4b83f03cac9
tuned and renamed group_eq_simps and ring_eq_simps
 nipkow parents: 
23413diff
changeset | 812 | by (simp add: divide_inverse ring_distribs) | 
| 14293 | 813 | |
| 23482 | 814 | (* what ordering?? this is a straight instance of mult_eq_0_iff | 
| 14270 | 815 | text{*Compared with @{text mult_eq_0_iff}, this version removes the requirement
 | 
| 816 | of an ordering.*} | |
| 20496 
23eb6034c06d
added axclass division_ring (like field without commutativity; includes e.g. quaternions) and generalized some theorems from field to division_ring
 huffman parents: 
19404diff
changeset | 817 | lemma field_mult_eq_0_iff [simp]: | 
| 
23eb6034c06d
added axclass division_ring (like field without commutativity; includes e.g. quaternions) and generalized some theorems from field to division_ring
 huffman parents: 
19404diff
changeset | 818 | "(a*b = (0::'a::division_ring)) = (a = 0 | b = 0)" | 
| 22990 
775e9de3db48
added classes ring_no_zero_divisors and dom (non-commutative version of idom);
 huffman parents: 
22987diff
changeset | 819 | by simp | 
| 23482 | 820 | *) | 
| 23496 | 821 | (* subsumed by mult_cancel lemmas on ring_no_zero_divisors | 
| 14268 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 822 | text{*Cancellation of equalities with a common factor*}
 | 
| 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 823 | lemma field_mult_cancel_right_lemma: | 
| 20496 
23eb6034c06d
added axclass division_ring (like field without commutativity; includes e.g. quaternions) and generalized some theorems from field to division_ring
 huffman parents: 
19404diff
changeset | 824 | assumes cnz: "c \<noteq> (0::'a::division_ring)" | 
| 
23eb6034c06d
added axclass division_ring (like field without commutativity; includes e.g. quaternions) and generalized some theorems from field to division_ring
 huffman parents: 
19404diff
changeset | 825 | and eq: "a*c = b*c" | 
| 
23eb6034c06d
added axclass division_ring (like field without commutativity; includes e.g. quaternions) and generalized some theorems from field to division_ring
 huffman parents: 
19404diff
changeset | 826 | shows "a=b" | 
| 14377 | 827 | proof - | 
| 14268 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 828 | have "(a * c) * inverse c = (b * c) * inverse c" | 
| 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 829 | by (simp add: eq) | 
| 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 830 | thus "a=b" | 
| 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 831 | by (simp add: mult_assoc cnz) | 
| 14377 | 832 | qed | 
| 14268 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 833 | |
| 14348 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
14341diff
changeset | 834 | lemma field_mult_cancel_right [simp]: | 
| 20496 
23eb6034c06d
added axclass division_ring (like field without commutativity; includes e.g. quaternions) and generalized some theorems from field to division_ring
 huffman parents: 
19404diff
changeset | 835 | "(a*c = b*c) = (c = (0::'a::division_ring) | a=b)" | 
| 22990 
775e9de3db48
added classes ring_no_zero_divisors and dom (non-commutative version of idom);
 huffman parents: 
22987diff
changeset | 836 | by simp | 
| 14268 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 837 | |
| 14348 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
14341diff
changeset | 838 | lemma field_mult_cancel_left [simp]: | 
| 20496 
23eb6034c06d
added axclass division_ring (like field without commutativity; includes e.g. quaternions) and generalized some theorems from field to division_ring
 huffman parents: 
19404diff
changeset | 839 | "(c*a = c*b) = (c = (0::'a::division_ring) | a=b)" | 
| 22990 
775e9de3db48
added classes ring_no_zero_divisors and dom (non-commutative version of idom);
 huffman parents: 
22987diff
changeset | 840 | by simp | 
| 23496 | 841 | *) | 
| 20496 
23eb6034c06d
added axclass division_ring (like field without commutativity; includes e.g. quaternions) and generalized some theorems from field to division_ring
 huffman parents: 
19404diff
changeset | 842 | lemma nonzero_imp_inverse_nonzero: | 
| 
23eb6034c06d
added axclass division_ring (like field without commutativity; includes e.g. quaternions) and generalized some theorems from field to division_ring
 huffman parents: 
19404diff
changeset | 843 | "a \<noteq> 0 ==> inverse a \<noteq> (0::'a::division_ring)" | 
| 14377 | 844 | proof | 
| 14268 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 845 | assume ianz: "inverse a = 0" | 
| 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 846 | assume "a \<noteq> 0" | 
| 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 847 | hence "1 = a * inverse a" by simp | 
| 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 848 | also have "... = 0" by (simp add: ianz) | 
| 20496 
23eb6034c06d
added axclass division_ring (like field without commutativity; includes e.g. quaternions) and generalized some theorems from field to division_ring
 huffman parents: 
19404diff
changeset | 849 | finally have "1 = (0::'a::division_ring)" . | 
| 14268 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 850 | thus False by (simp add: eq_commute) | 
| 14377 | 851 | qed | 
| 14268 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 852 | |
| 14277 
ad66687ece6e
more field division lemmas transferred from Real to Ring_and_Field
 paulson parents: 
14272diff
changeset | 853 | |
| 
ad66687ece6e
more field division lemmas transferred from Real to Ring_and_Field
 paulson parents: 
14272diff
changeset | 854 | subsection{*Basic Properties of @{term inverse}*}
 | 
| 
ad66687ece6e
more field division lemmas transferred from Real to Ring_and_Field
 paulson parents: 
14272diff
changeset | 855 | |
| 20496 
23eb6034c06d
added axclass division_ring (like field without commutativity; includes e.g. quaternions) and generalized some theorems from field to division_ring
 huffman parents: 
19404diff
changeset | 856 | lemma inverse_zero_imp_zero: "inverse a = 0 ==> a = (0::'a::division_ring)" | 
| 14268 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 857 | apply (rule ccontr) | 
| 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 858 | apply (blast dest: nonzero_imp_inverse_nonzero) | 
| 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 859 | done | 
| 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 860 | |
| 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 861 | lemma inverse_nonzero_imp_nonzero: | 
| 20496 
23eb6034c06d
added axclass division_ring (like field without commutativity; includes e.g. quaternions) and generalized some theorems from field to division_ring
 huffman parents: 
19404diff
changeset | 862 | "inverse a = 0 ==> a = (0::'a::division_ring)" | 
| 14268 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 863 | apply (rule ccontr) | 
| 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 864 | apply (blast dest: nonzero_imp_inverse_nonzero) | 
| 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 865 | done | 
| 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 866 | |
| 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 867 | lemma inverse_nonzero_iff_nonzero [simp]: | 
| 20496 
23eb6034c06d
added axclass division_ring (like field without commutativity; includes e.g. quaternions) and generalized some theorems from field to division_ring
 huffman parents: 
19404diff
changeset | 868 |    "(inverse a = 0) = (a = (0::'a::{division_ring,division_by_zero}))"
 | 
| 14268 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 869 | by (force dest: inverse_nonzero_imp_nonzero) | 
| 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 870 | |
| 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 871 | lemma nonzero_inverse_minus_eq: | 
| 20496 
23eb6034c06d
added axclass division_ring (like field without commutativity; includes e.g. quaternions) and generalized some theorems from field to division_ring
 huffman parents: 
19404diff
changeset | 872 | assumes [simp]: "a\<noteq>0" | 
| 
23eb6034c06d
added axclass division_ring (like field without commutativity; includes e.g. quaternions) and generalized some theorems from field to division_ring
 huffman parents: 
19404diff
changeset | 873 | shows "inverse(-a) = -inverse(a::'a::division_ring)" | 
| 14377 | 874 | proof - | 
| 875 | have "-a * inverse (- a) = -a * - inverse a" | |
| 876 | by simp | |
| 877 | thus ?thesis | |
| 23496 | 878 | by (simp only: mult_cancel_left, simp) | 
| 14377 | 879 | qed | 
| 14268 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 880 | |
| 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 881 | lemma inverse_minus_eq [simp]: | 
| 20496 
23eb6034c06d
added axclass division_ring (like field without commutativity; includes e.g. quaternions) and generalized some theorems from field to division_ring
 huffman parents: 
19404diff
changeset | 882 |    "inverse(-a) = -inverse(a::'a::{division_ring,division_by_zero})"
 | 
| 14377 | 883 | proof cases | 
| 884 | assume "a=0" thus ?thesis by (simp add: inverse_zero) | |
| 885 | next | |
| 886 | assume "a\<noteq>0" | |
| 887 | thus ?thesis by (simp add: nonzero_inverse_minus_eq) | |
| 888 | qed | |
| 14268 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 889 | |
| 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 890 | lemma nonzero_inverse_eq_imp_eq: | 
| 14269 | 891 | assumes inveq: "inverse a = inverse b" | 
| 892 | and anz: "a \<noteq> 0" | |
| 893 | and bnz: "b \<noteq> 0" | |
| 20496 
23eb6034c06d
added axclass division_ring (like field without commutativity; includes e.g. quaternions) and generalized some theorems from field to division_ring
 huffman parents: 
19404diff
changeset | 894 | shows "a = (b::'a::division_ring)" | 
| 14377 | 895 | proof - | 
| 14268 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 896 | have "a * inverse b = a * inverse a" | 
| 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 897 | by (simp add: inveq) | 
| 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 898 | hence "(a * inverse b) * b = (a * inverse a) * b" | 
| 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 899 | by simp | 
| 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 900 | thus "a = b" | 
| 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 901 | by (simp add: mult_assoc anz bnz) | 
| 14377 | 902 | qed | 
| 14268 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 903 | |
| 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 904 | lemma inverse_eq_imp_eq: | 
| 20496 
23eb6034c06d
added axclass division_ring (like field without commutativity; includes e.g. quaternions) and generalized some theorems from field to division_ring
 huffman parents: 
19404diff
changeset | 905 |   "inverse a = inverse b ==> a = (b::'a::{division_ring,division_by_zero})"
 | 
| 21328 | 906 | apply (cases "a=0 | b=0") | 
| 14268 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 907 | apply (force dest!: inverse_zero_imp_zero | 
| 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 908 | simp add: eq_commute [of "0::'a"]) | 
| 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 909 | apply (force dest!: nonzero_inverse_eq_imp_eq) | 
| 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 910 | done | 
| 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 911 | |
| 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 912 | lemma inverse_eq_iff_eq [simp]: | 
| 20496 
23eb6034c06d
added axclass division_ring (like field without commutativity; includes e.g. quaternions) and generalized some theorems from field to division_ring
 huffman parents: 
19404diff
changeset | 913 |   "(inverse a = inverse b) = (a = (b::'a::{division_ring,division_by_zero}))"
 | 
| 
23eb6034c06d
added axclass division_ring (like field without commutativity; includes e.g. quaternions) and generalized some theorems from field to division_ring
 huffman parents: 
19404diff
changeset | 914 | by (force dest!: inverse_eq_imp_eq) | 
| 14268 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 915 | |
| 14270 | 916 | lemma nonzero_inverse_inverse_eq: | 
| 20496 
23eb6034c06d
added axclass division_ring (like field without commutativity; includes e.g. quaternions) and generalized some theorems from field to division_ring
 huffman parents: 
19404diff
changeset | 917 | assumes [simp]: "a \<noteq> 0" | 
| 
23eb6034c06d
added axclass division_ring (like field without commutativity; includes e.g. quaternions) and generalized some theorems from field to division_ring
 huffman parents: 
19404diff
changeset | 918 | shows "inverse(inverse (a::'a::division_ring)) = a" | 
| 14270 | 919 | proof - | 
| 920 | have "(inverse (inverse a) * inverse a) * a = a" | |
| 921 | by (simp add: nonzero_imp_inverse_nonzero) | |
| 922 | thus ?thesis | |
| 923 | by (simp add: mult_assoc) | |
| 924 | qed | |
| 925 | ||
| 926 | lemma inverse_inverse_eq [simp]: | |
| 20496 
23eb6034c06d
added axclass division_ring (like field without commutativity; includes e.g. quaternions) and generalized some theorems from field to division_ring
 huffman parents: 
19404diff
changeset | 927 |      "inverse(inverse (a::'a::{division_ring,division_by_zero})) = a"
 | 
| 14270 | 928 | proof cases | 
| 929 | assume "a=0" thus ?thesis by simp | |
| 930 | next | |
| 931 | assume "a\<noteq>0" | |
| 932 | thus ?thesis by (simp add: nonzero_inverse_inverse_eq) | |
| 933 | qed | |
| 934 | ||
| 20496 
23eb6034c06d
added axclass division_ring (like field without commutativity; includes e.g. quaternions) and generalized some theorems from field to division_ring
 huffman parents: 
19404diff
changeset | 935 | lemma inverse_1 [simp]: "inverse 1 = (1::'a::division_ring)" | 
| 14270 | 936 | proof - | 
| 20496 
23eb6034c06d
added axclass division_ring (like field without commutativity; includes e.g. quaternions) and generalized some theorems from field to division_ring
 huffman parents: 
19404diff
changeset | 937 | have "inverse 1 * 1 = (1::'a::division_ring)" | 
| 14270 | 938 | by (rule left_inverse [OF zero_neq_one [symmetric]]) | 
| 939 | thus ?thesis by simp | |
| 940 | qed | |
| 941 | ||
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15010diff
changeset | 942 | lemma inverse_unique: | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15010diff
changeset | 943 | assumes ab: "a*b = 1" | 
| 20496 
23eb6034c06d
added axclass division_ring (like field without commutativity; includes e.g. quaternions) and generalized some theorems from field to division_ring
 huffman parents: 
19404diff
changeset | 944 | shows "inverse a = (b::'a::division_ring)" | 
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15010diff
changeset | 945 | proof - | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15010diff
changeset | 946 | have "a \<noteq> 0" using ab by auto | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15010diff
changeset | 947 | moreover have "inverse a * (a * b) = inverse a" by (simp add: ab) | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15010diff
changeset | 948 | ultimately show ?thesis by (simp add: mult_assoc [symmetric]) | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15010diff
changeset | 949 | qed | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15010diff
changeset | 950 | |
| 14270 | 951 | lemma nonzero_inverse_mult_distrib: | 
| 952 | assumes anz: "a \<noteq> 0" | |
| 953 | and bnz: "b \<noteq> 0" | |
| 20496 
23eb6034c06d
added axclass division_ring (like field without commutativity; includes e.g. quaternions) and generalized some theorems from field to division_ring
 huffman parents: 
19404diff
changeset | 954 | shows "inverse(a*b) = inverse(b) * inverse(a::'a::division_ring)" | 
| 14270 | 955 | proof - | 
| 956 | have "inverse(a*b) * (a * b) * inverse(b) = inverse(b)" | |
| 23482 | 957 | by (simp add: anz bnz) | 
| 14270 | 958 | hence "inverse(a*b) * a = inverse(b)" | 
| 959 | by (simp add: mult_assoc bnz) | |
| 960 | hence "inverse(a*b) * a * inverse(a) = inverse(b) * inverse(a)" | |
| 961 | by simp | |
| 962 | thus ?thesis | |
| 963 | by (simp add: mult_assoc anz) | |
| 964 | qed | |
| 965 | ||
| 966 | text{*This version builds in division by zero while also re-orienting
 | |
| 967 | the right-hand side.*} | |
| 968 | lemma inverse_mult_distrib [simp]: | |
| 969 |      "inverse(a*b) = inverse(a) * inverse(b::'a::{field,division_by_zero})"
 | |
| 970 | proof cases | |
| 971 | assume "a \<noteq> 0 & b \<noteq> 0" | |
| 22993 | 972 | thus ?thesis | 
| 973 | by (simp add: nonzero_inverse_mult_distrib mult_commute) | |
| 14270 | 974 | next | 
| 975 | assume "~ (a \<noteq> 0 & b \<noteq> 0)" | |
| 22993 | 976 | thus ?thesis | 
| 977 | by force | |
| 14270 | 978 | qed | 
| 979 | ||
| 20496 
23eb6034c06d
added axclass division_ring (like field without commutativity; includes e.g. quaternions) and generalized some theorems from field to division_ring
 huffman parents: 
19404diff
changeset | 980 | lemma division_ring_inverse_add: | 
| 
23eb6034c06d
added axclass division_ring (like field without commutativity; includes e.g. quaternions) and generalized some theorems from field to division_ring
 huffman parents: 
19404diff
changeset | 981 | "[|(a::'a::division_ring) \<noteq> 0; b \<noteq> 0|] | 
| 
23eb6034c06d
added axclass division_ring (like field without commutativity; includes e.g. quaternions) and generalized some theorems from field to division_ring
 huffman parents: 
19404diff
changeset | 982 | ==> inverse a + inverse b = inverse a * (a+b) * inverse b" | 
| 23477 
f4b83f03cac9
tuned and renamed group_eq_simps and ring_eq_simps
 nipkow parents: 
23413diff
changeset | 983 | by (simp add: ring_simps) | 
| 20496 
23eb6034c06d
added axclass division_ring (like field without commutativity; includes e.g. quaternions) and generalized some theorems from field to division_ring
 huffman parents: 
19404diff
changeset | 984 | |
| 
23eb6034c06d
added axclass division_ring (like field without commutativity; includes e.g. quaternions) and generalized some theorems from field to division_ring
 huffman parents: 
19404diff
changeset | 985 | lemma division_ring_inverse_diff: | 
| 
23eb6034c06d
added axclass division_ring (like field without commutativity; includes e.g. quaternions) and generalized some theorems from field to division_ring
 huffman parents: 
19404diff
changeset | 986 | "[|(a::'a::division_ring) \<noteq> 0; b \<noteq> 0|] | 
| 
23eb6034c06d
added axclass division_ring (like field without commutativity; includes e.g. quaternions) and generalized some theorems from field to division_ring
 huffman parents: 
19404diff
changeset | 987 | ==> inverse a - inverse b = inverse a * (b-a) * inverse b" | 
| 23477 
f4b83f03cac9
tuned and renamed group_eq_simps and ring_eq_simps
 nipkow parents: 
23413diff
changeset | 988 | by (simp add: ring_simps) | 
| 20496 
23eb6034c06d
added axclass division_ring (like field without commutativity; includes e.g. quaternions) and generalized some theorems from field to division_ring
 huffman parents: 
19404diff
changeset | 989 | |
| 14270 | 990 | text{*There is no slick version using division by zero.*}
 | 
| 991 | lemma inverse_add: | |
| 23477 
f4b83f03cac9
tuned and renamed group_eq_simps and ring_eq_simps
 nipkow parents: 
23413diff
changeset | 992 | "[|a \<noteq> 0; b \<noteq> 0|] | 
| 
f4b83f03cac9
tuned and renamed group_eq_simps and ring_eq_simps
 nipkow parents: 
23413diff
changeset | 993 | ==> inverse a + inverse b = (a+b) * inverse a * inverse (b::'a::field)" | 
| 20496 
23eb6034c06d
added axclass division_ring (like field without commutativity; includes e.g. quaternions) and generalized some theorems from field to division_ring
 huffman parents: 
19404diff
changeset | 994 | by (simp add: division_ring_inverse_add mult_ac) | 
| 14270 | 995 | |
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14353diff
changeset | 996 | lemma inverse_divide [simp]: | 
| 23477 
f4b83f03cac9
tuned and renamed group_eq_simps and ring_eq_simps
 nipkow parents: 
23413diff
changeset | 997 |   "inverse (a/b) = b / (a::'a::{field,division_by_zero})"
 | 
| 
f4b83f03cac9
tuned and renamed group_eq_simps and ring_eq_simps
 nipkow parents: 
23413diff
changeset | 998 | by (simp add: divide_inverse mult_commute) | 
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14353diff
changeset | 999 | |
| 23389 | 1000 | |
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1001 | subsection {* Calculations with fractions *}
 | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1002 | |
| 23413 
5caa2710dd5b
tuned laws for cancellation in divisions for fields.
 nipkow parents: 
23406diff
changeset | 1003 | text{* There is a whole bunch of simp-rules just for class @{text
 | 
| 
5caa2710dd5b
tuned laws for cancellation in divisions for fields.
 nipkow parents: 
23406diff
changeset | 1004 | field} but none for class @{text field} and @{text nonzero_divides}
 | 
| 
5caa2710dd5b
tuned laws for cancellation in divisions for fields.
 nipkow parents: 
23406diff
changeset | 1005 | because the latter are covered by a simproc. *} | 
| 
5caa2710dd5b
tuned laws for cancellation in divisions for fields.
 nipkow parents: 
23406diff
changeset | 1006 | |
| 24427 | 1007 | lemma nonzero_mult_divide_mult_cancel_left[simp,noatp]: | 
| 23477 
f4b83f03cac9
tuned and renamed group_eq_simps and ring_eq_simps
 nipkow parents: 
23413diff
changeset | 1008 | assumes [simp]: "b\<noteq>0" and [simp]: "c\<noteq>0" shows "(c*a)/(c*b) = a/(b::'a::field)" | 
| 14277 
ad66687ece6e
more field division lemmas transferred from Real to Ring_and_Field
 paulson parents: 
14272diff
changeset | 1009 | proof - | 
| 
ad66687ece6e
more field division lemmas transferred from Real to Ring_and_Field
 paulson parents: 
14272diff
changeset | 1010 | have "(c*a)/(c*b) = c * a * (inverse b * inverse c)" | 
| 23482 | 1011 | by (simp add: divide_inverse nonzero_inverse_mult_distrib) | 
| 14277 
ad66687ece6e
more field division lemmas transferred from Real to Ring_and_Field
 paulson parents: 
14272diff
changeset | 1012 | also have "... = a * inverse b * (inverse c * c)" | 
| 
ad66687ece6e
more field division lemmas transferred from Real to Ring_and_Field
 paulson parents: 
14272diff
changeset | 1013 | by (simp only: mult_ac) | 
| 
ad66687ece6e
more field division lemmas transferred from Real to Ring_and_Field
 paulson parents: 
14272diff
changeset | 1014 | also have "... = a * inverse b" | 
| 
ad66687ece6e
more field division lemmas transferred from Real to Ring_and_Field
 paulson parents: 
14272diff
changeset | 1015 | by simp | 
| 
ad66687ece6e
more field division lemmas transferred from Real to Ring_and_Field
 paulson parents: 
14272diff
changeset | 1016 | finally show ?thesis | 
| 
ad66687ece6e
more field division lemmas transferred from Real to Ring_and_Field
 paulson parents: 
14272diff
changeset | 1017 | by (simp add: divide_inverse) | 
| 
ad66687ece6e
more field division lemmas transferred from Real to Ring_and_Field
 paulson parents: 
14272diff
changeset | 1018 | qed | 
| 
ad66687ece6e
more field division lemmas transferred from Real to Ring_and_Field
 paulson parents: 
14272diff
changeset | 1019 | |
| 23413 
5caa2710dd5b
tuned laws for cancellation in divisions for fields.
 nipkow parents: 
23406diff
changeset | 1020 | lemma mult_divide_mult_cancel_left: | 
| 23477 
f4b83f03cac9
tuned and renamed group_eq_simps and ring_eq_simps
 nipkow parents: 
23413diff
changeset | 1021 |   "c\<noteq>0 ==> (c*a) / (c*b) = a / (b::'a::{field,division_by_zero})"
 | 
| 21328 | 1022 | apply (cases "b = 0") | 
| 23413 
5caa2710dd5b
tuned laws for cancellation in divisions for fields.
 nipkow parents: 
23406diff
changeset | 1023 | apply (simp_all add: nonzero_mult_divide_mult_cancel_left) | 
| 14277 
ad66687ece6e
more field division lemmas transferred from Real to Ring_and_Field
 paulson parents: 
14272diff
changeset | 1024 | done | 
| 
ad66687ece6e
more field division lemmas transferred from Real to Ring_and_Field
 paulson parents: 
14272diff
changeset | 1025 | |
| 24427 | 1026 | lemma nonzero_mult_divide_mult_cancel_right [noatp]: | 
| 23477 
f4b83f03cac9
tuned and renamed group_eq_simps and ring_eq_simps
 nipkow parents: 
23413diff
changeset | 1027 | "[|b\<noteq>0; c\<noteq>0|] ==> (a*c) / (b*c) = a/(b::'a::field)" | 
| 23413 
5caa2710dd5b
tuned laws for cancellation in divisions for fields.
 nipkow parents: 
23406diff
changeset | 1028 | by (simp add: mult_commute [of _ c] nonzero_mult_divide_mult_cancel_left) | 
| 14321 | 1029 | |
| 23413 
5caa2710dd5b
tuned laws for cancellation in divisions for fields.
 nipkow parents: 
23406diff
changeset | 1030 | lemma mult_divide_mult_cancel_right: | 
| 23477 
f4b83f03cac9
tuned and renamed group_eq_simps and ring_eq_simps
 nipkow parents: 
23413diff
changeset | 1031 |   "c\<noteq>0 ==> (a*c) / (b*c) = a / (b::'a::{field,division_by_zero})"
 | 
| 21328 | 1032 | apply (cases "b = 0") | 
| 23413 
5caa2710dd5b
tuned laws for cancellation in divisions for fields.
 nipkow parents: 
23406diff
changeset | 1033 | apply (simp_all add: nonzero_mult_divide_mult_cancel_right) | 
| 14321 | 1034 | done | 
| 23413 
5caa2710dd5b
tuned laws for cancellation in divisions for fields.
 nipkow parents: 
23406diff
changeset | 1035 | |
| 14284 
f1abe67c448a
re-organisation of Real/RealArith0.ML; more `Isar scripts
 paulson parents: 
14277diff
changeset | 1036 | lemma divide_1 [simp]: "a/1 = (a::'a::field)" | 
| 23477 
f4b83f03cac9
tuned and renamed group_eq_simps and ring_eq_simps
 nipkow parents: 
23413diff
changeset | 1037 | by (simp add: divide_inverse) | 
| 14284 
f1abe67c448a
re-organisation of Real/RealArith0.ML; more `Isar scripts
 paulson parents: 
14277diff
changeset | 1038 | |
| 15234 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 1039 | lemma times_divide_eq_right: "a * (b/c) = (a*b) / (c::'a::field)" | 
| 14430 
5cb24165a2e1
new material from Avigad, and simplified treatment of division by 0
 paulson parents: 
14421diff
changeset | 1040 | by (simp add: divide_inverse mult_assoc) | 
| 14288 | 1041 | |
| 14430 
5cb24165a2e1
new material from Avigad, and simplified treatment of division by 0
 paulson parents: 
14421diff
changeset | 1042 | lemma times_divide_eq_left: "(b/c) * a = (b*a) / (c::'a::field)" | 
| 
5cb24165a2e1
new material from Avigad, and simplified treatment of division by 0
 paulson parents: 
14421diff
changeset | 1043 | by (simp add: divide_inverse mult_ac) | 
| 14288 | 1044 | |
| 23482 | 1045 | lemmas times_divide_eq = times_divide_eq_right times_divide_eq_left | 
| 1046 | ||
| 24286 
7619080e49f0
ATP blacklisting is now in theory data, attribute noatp
 paulson parents: 
23879diff
changeset | 1047 | lemma divide_divide_eq_right [simp,noatp]: | 
| 23477 
f4b83f03cac9
tuned and renamed group_eq_simps and ring_eq_simps
 nipkow parents: 
23413diff
changeset | 1048 |   "a / (b/c) = (a*c) / (b::'a::{field,division_by_zero})"
 | 
| 14430 
5cb24165a2e1
new material from Avigad, and simplified treatment of division by 0
 paulson parents: 
14421diff
changeset | 1049 | by (simp add: divide_inverse mult_ac) | 
| 14288 | 1050 | |
| 24286 
7619080e49f0
ATP blacklisting is now in theory data, attribute noatp
 paulson parents: 
23879diff
changeset | 1051 | lemma divide_divide_eq_left [simp,noatp]: | 
| 23477 
f4b83f03cac9
tuned and renamed group_eq_simps and ring_eq_simps
 nipkow parents: 
23413diff
changeset | 1052 |   "(a / b) / (c::'a::{field,division_by_zero}) = a / (b*c)"
 | 
| 14430 
5cb24165a2e1
new material from Avigad, and simplified treatment of division by 0
 paulson parents: 
14421diff
changeset | 1053 | by (simp add: divide_inverse mult_assoc) | 
| 14288 | 1054 | |
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1055 | lemma add_frac_eq: "(y::'a::field) ~= 0 ==> z ~= 0 ==> | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1056 | x / y + w / z = (x * z + w * y) / (y * z)" | 
| 23477 
f4b83f03cac9
tuned and renamed group_eq_simps and ring_eq_simps
 nipkow parents: 
23413diff
changeset | 1057 | apply (subgoal_tac "x / y = (x * z) / (y * z)") | 
| 
f4b83f03cac9
tuned and renamed group_eq_simps and ring_eq_simps
 nipkow parents: 
23413diff
changeset | 1058 | apply (erule ssubst) | 
| 
f4b83f03cac9
tuned and renamed group_eq_simps and ring_eq_simps
 nipkow parents: 
23413diff
changeset | 1059 | apply (subgoal_tac "w / z = (w * y) / (y * z)") | 
| 
f4b83f03cac9
tuned and renamed group_eq_simps and ring_eq_simps
 nipkow parents: 
23413diff
changeset | 1060 | apply (erule ssubst) | 
| 
f4b83f03cac9
tuned and renamed group_eq_simps and ring_eq_simps
 nipkow parents: 
23413diff
changeset | 1061 | apply (rule add_divide_distrib [THEN sym]) | 
| 
f4b83f03cac9
tuned and renamed group_eq_simps and ring_eq_simps
 nipkow parents: 
23413diff
changeset | 1062 | apply (subst mult_commute) | 
| 
f4b83f03cac9
tuned and renamed group_eq_simps and ring_eq_simps
 nipkow parents: 
23413diff
changeset | 1063 | apply (erule nonzero_mult_divide_mult_cancel_left [THEN sym]) | 
| 
f4b83f03cac9
tuned and renamed group_eq_simps and ring_eq_simps
 nipkow parents: 
23413diff
changeset | 1064 | apply assumption | 
| 
f4b83f03cac9
tuned and renamed group_eq_simps and ring_eq_simps
 nipkow parents: 
23413diff
changeset | 1065 | apply (erule nonzero_mult_divide_mult_cancel_right [THEN sym]) | 
| 
f4b83f03cac9
tuned and renamed group_eq_simps and ring_eq_simps
 nipkow parents: 
23413diff
changeset | 1066 | apply assumption | 
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1067 | done | 
| 14268 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 1068 | |
| 23389 | 1069 | |
| 15234 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 1070 | subsubsection{*Special Cancellation Simprules for Division*}
 | 
| 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 1071 | |
| 24427 | 1072 | lemma mult_divide_mult_cancel_left_if[simp,noatp]: | 
| 23477 
f4b83f03cac9
tuned and renamed group_eq_simps and ring_eq_simps
 nipkow parents: 
23413diff
changeset | 1073 | fixes c :: "'a :: {field,division_by_zero}"
 | 
| 
f4b83f03cac9
tuned and renamed group_eq_simps and ring_eq_simps
 nipkow parents: 
23413diff
changeset | 1074 | shows "(c*a) / (c*b) = (if c=0 then 0 else a/b)" | 
| 23413 
5caa2710dd5b
tuned laws for cancellation in divisions for fields.
 nipkow parents: 
23406diff
changeset | 1075 | by (simp add: mult_divide_mult_cancel_left) | 
| 
5caa2710dd5b
tuned laws for cancellation in divisions for fields.
 nipkow parents: 
23406diff
changeset | 1076 | |
| 24427 | 1077 | lemma nonzero_mult_divide_cancel_right[simp,noatp]: | 
| 23413 
5caa2710dd5b
tuned laws for cancellation in divisions for fields.
 nipkow parents: 
23406diff
changeset | 1078 | "b \<noteq> 0 \<Longrightarrow> a * b / b = (a::'a::field)" | 
| 
5caa2710dd5b
tuned laws for cancellation in divisions for fields.
 nipkow parents: 
23406diff
changeset | 1079 | using nonzero_mult_divide_mult_cancel_right[of 1 b a] by simp | 
| 
5caa2710dd5b
tuned laws for cancellation in divisions for fields.
 nipkow parents: 
23406diff
changeset | 1080 | |
| 24427 | 1081 | lemma nonzero_mult_divide_cancel_left[simp,noatp]: | 
| 23413 
5caa2710dd5b
tuned laws for cancellation in divisions for fields.
 nipkow parents: 
23406diff
changeset | 1082 | "a \<noteq> 0 \<Longrightarrow> a * b / a = (b::'a::field)" | 
| 
5caa2710dd5b
tuned laws for cancellation in divisions for fields.
 nipkow parents: 
23406diff
changeset | 1083 | using nonzero_mult_divide_mult_cancel_left[of 1 a b] by simp | 
| 
5caa2710dd5b
tuned laws for cancellation in divisions for fields.
 nipkow parents: 
23406diff
changeset | 1084 | |
| 
5caa2710dd5b
tuned laws for cancellation in divisions for fields.
 nipkow parents: 
23406diff
changeset | 1085 | |
| 24427 | 1086 | lemma nonzero_divide_mult_cancel_right[simp,noatp]: | 
| 23413 
5caa2710dd5b
tuned laws for cancellation in divisions for fields.
 nipkow parents: 
23406diff
changeset | 1087 | "\<lbrakk> a\<noteq>0; b\<noteq>0 \<rbrakk> \<Longrightarrow> b / (a * b) = 1/(a::'a::field)" | 
| 
5caa2710dd5b
tuned laws for cancellation in divisions for fields.
 nipkow parents: 
23406diff
changeset | 1088 | using nonzero_mult_divide_mult_cancel_right[of a b 1] by simp | 
| 
5caa2710dd5b
tuned laws for cancellation in divisions for fields.
 nipkow parents: 
23406diff
changeset | 1089 | |
| 24427 | 1090 | lemma nonzero_divide_mult_cancel_left[simp,noatp]: | 
| 23413 
5caa2710dd5b
tuned laws for cancellation in divisions for fields.
 nipkow parents: 
23406diff
changeset | 1091 | "\<lbrakk> a\<noteq>0; b\<noteq>0 \<rbrakk> \<Longrightarrow> a / (a * b) = 1/(b::'a::field)" | 
| 
5caa2710dd5b
tuned laws for cancellation in divisions for fields.
 nipkow parents: 
23406diff
changeset | 1092 | using nonzero_mult_divide_mult_cancel_left[of b a 1] by simp | 
| 
5caa2710dd5b
tuned laws for cancellation in divisions for fields.
 nipkow parents: 
23406diff
changeset | 1093 | |
| 
5caa2710dd5b
tuned laws for cancellation in divisions for fields.
 nipkow parents: 
23406diff
changeset | 1094 | |
| 24427 | 1095 | lemma nonzero_mult_divide_mult_cancel_left2[simp,noatp]: | 
| 23477 
f4b83f03cac9
tuned and renamed group_eq_simps and ring_eq_simps
 nipkow parents: 
23413diff
changeset | 1096 | "[|b\<noteq>0; c\<noteq>0|] ==> (c*a) / (b*c) = a/(b::'a::field)" | 
| 23413 
5caa2710dd5b
tuned laws for cancellation in divisions for fields.
 nipkow parents: 
23406diff
changeset | 1097 | using nonzero_mult_divide_mult_cancel_left[of b c a] by(simp add:mult_ac) | 
| 
5caa2710dd5b
tuned laws for cancellation in divisions for fields.
 nipkow parents: 
23406diff
changeset | 1098 | |
| 24427 | 1099 | lemma nonzero_mult_divide_mult_cancel_right2[simp,noatp]: | 
| 23477 
f4b83f03cac9
tuned and renamed group_eq_simps and ring_eq_simps
 nipkow parents: 
23413diff
changeset | 1100 | "[|b\<noteq>0; c\<noteq>0|] ==> (a*c) / (c*b) = a/(b::'a::field)" | 
| 23413 
5caa2710dd5b
tuned laws for cancellation in divisions for fields.
 nipkow parents: 
23406diff
changeset | 1101 | using nonzero_mult_divide_mult_cancel_right[of b c a] by(simp add:mult_ac) | 
| 
5caa2710dd5b
tuned laws for cancellation in divisions for fields.
 nipkow parents: 
23406diff
changeset | 1102 | |
| 15234 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 1103 | |
| 14293 | 1104 | subsection {* Division and Unary Minus *}
 | 
| 1105 | ||
| 1106 | lemma nonzero_minus_divide_left: "b \<noteq> 0 ==> - (a/b) = (-a) / (b::'a::field)" | |
| 1107 | by (simp add: divide_inverse minus_mult_left) | |
| 1108 | ||
| 1109 | lemma nonzero_minus_divide_right: "b \<noteq> 0 ==> - (a/b) = a / -(b::'a::field)" | |
| 1110 | by (simp add: divide_inverse nonzero_inverse_minus_eq minus_mult_right) | |
| 1111 | ||
| 1112 | lemma nonzero_minus_divide_divide: "b \<noteq> 0 ==> (-a)/(-b) = a / (b::'a::field)" | |
| 1113 | by (simp add: divide_inverse nonzero_inverse_minus_eq) | |
| 1114 | ||
| 14430 
5cb24165a2e1
new material from Avigad, and simplified treatment of division by 0
 paulson parents: 
14421diff
changeset | 1115 | lemma minus_divide_left: "- (a/b) = (-a) / (b::'a::field)" | 
| 
5cb24165a2e1
new material from Avigad, and simplified treatment of division by 0
 paulson parents: 
14421diff
changeset | 1116 | by (simp add: divide_inverse minus_mult_left [symmetric]) | 
| 14293 | 1117 | |
| 1118 | lemma minus_divide_right: "- (a/b) = a / -(b::'a::{field,division_by_zero})"
 | |
| 14430 
5cb24165a2e1
new material from Avigad, and simplified treatment of division by 0
 paulson parents: 
14421diff
changeset | 1119 | by (simp add: divide_inverse minus_mult_right [symmetric]) | 
| 
5cb24165a2e1
new material from Avigad, and simplified treatment of division by 0
 paulson parents: 
14421diff
changeset | 1120 | |
| 14293 | 1121 | |
| 1122 | text{*The effect is to extract signs from divisions*}
 | |
| 17085 | 1123 | lemmas divide_minus_left = minus_divide_left [symmetric] | 
| 1124 | lemmas divide_minus_right = minus_divide_right [symmetric] | |
| 1125 | declare divide_minus_left [simp] divide_minus_right [simp] | |
| 14293 | 1126 | |
| 14387 
e96d5c42c4b0
Polymorphic treatment of binary arithmetic using axclasses
 paulson parents: 
14377diff
changeset | 1127 | text{*Also, extract signs from products*}
 | 
| 17085 | 1128 | lemmas mult_minus_left = minus_mult_left [symmetric] | 
| 1129 | lemmas mult_minus_right = minus_mult_right [symmetric] | |
| 1130 | declare mult_minus_left [simp] mult_minus_right [simp] | |
| 14387 
e96d5c42c4b0
Polymorphic treatment of binary arithmetic using axclasses
 paulson parents: 
14377diff
changeset | 1131 | |
| 14293 | 1132 | lemma minus_divide_divide [simp]: | 
| 23477 
f4b83f03cac9
tuned and renamed group_eq_simps and ring_eq_simps
 nipkow parents: 
23413diff
changeset | 1133 |   "(-a)/(-b) = a / (b::'a::{field,division_by_zero})"
 | 
| 21328 | 1134 | apply (cases "b=0", simp) | 
| 14293 | 1135 | apply (simp add: nonzero_minus_divide_divide) | 
| 1136 | done | |
| 1137 | ||
| 14430 
5cb24165a2e1
new material from Avigad, and simplified treatment of division by 0
 paulson parents: 
14421diff
changeset | 1138 | lemma diff_divide_distrib: "(a-b)/(c::'a::field) = a/c - b/c" | 
| 14387 
e96d5c42c4b0
Polymorphic treatment of binary arithmetic using axclasses
 paulson parents: 
14377diff
changeset | 1139 | by (simp add: diff_minus add_divide_distrib) | 
| 
e96d5c42c4b0
Polymorphic treatment of binary arithmetic using axclasses
 paulson parents: 
14377diff
changeset | 1140 | |
| 23482 | 1141 | lemma add_divide_eq_iff: | 
| 1142 | "(z::'a::field) \<noteq> 0 \<Longrightarrow> x + y/z = (z*x + y)/z" | |
| 1143 | by(simp add:add_divide_distrib nonzero_mult_divide_cancel_left) | |
| 1144 | ||
| 1145 | lemma divide_add_eq_iff: | |
| 1146 | "(z::'a::field) \<noteq> 0 \<Longrightarrow> x/z + y = (x + z*y)/z" | |
| 1147 | by(simp add:add_divide_distrib nonzero_mult_divide_cancel_left) | |
| 1148 | ||
| 1149 | lemma diff_divide_eq_iff: | |
| 1150 | "(z::'a::field) \<noteq> 0 \<Longrightarrow> x - y/z = (z*x - y)/z" | |
| 1151 | by(simp add:diff_divide_distrib nonzero_mult_divide_cancel_left) | |
| 1152 | ||
| 1153 | lemma divide_diff_eq_iff: | |
| 1154 | "(z::'a::field) \<noteq> 0 \<Longrightarrow> x/z - y = (x - z*y)/z" | |
| 1155 | by(simp add:diff_divide_distrib nonzero_mult_divide_cancel_left) | |
| 1156 | ||
| 1157 | lemma nonzero_eq_divide_eq: "c\<noteq>0 ==> ((a::'a::field) = b/c) = (a*c = b)" | |
| 1158 | proof - | |
| 1159 | assume [simp]: "c\<noteq>0" | |
| 23496 | 1160 | have "(a = b/c) = (a*c = (b/c)*c)" by simp | 
| 1161 | also have "... = (a*c = b)" by (simp add: divide_inverse mult_assoc) | |
| 23482 | 1162 | finally show ?thesis . | 
| 1163 | qed | |
| 1164 | ||
| 1165 | lemma nonzero_divide_eq_eq: "c\<noteq>0 ==> (b/c = (a::'a::field)) = (b = a*c)" | |
| 1166 | proof - | |
| 1167 | assume [simp]: "c\<noteq>0" | |
| 23496 | 1168 | have "(b/c = a) = ((b/c)*c = a*c)" by simp | 
| 1169 | also have "... = (b = a*c)" by (simp add: divide_inverse mult_assoc) | |
| 23482 | 1170 | finally show ?thesis . | 
| 1171 | qed | |
| 1172 | ||
| 1173 | lemma eq_divide_eq: | |
| 1174 |   "((a::'a::{field,division_by_zero}) = b/c) = (if c\<noteq>0 then a*c = b else a=0)"
 | |
| 1175 | by (simp add: nonzero_eq_divide_eq) | |
| 1176 | ||
| 1177 | lemma divide_eq_eq: | |
| 1178 |   "(b/c = (a::'a::{field,division_by_zero})) = (if c\<noteq>0 then b = a*c else a=0)"
 | |
| 1179 | by (force simp add: nonzero_divide_eq_eq) | |
| 1180 | ||
| 1181 | lemma divide_eq_imp: "(c::'a::{division_by_zero,field}) ~= 0 ==>
 | |
| 1182 | b = a * c ==> b / c = a" | |
| 1183 | by (subst divide_eq_eq, simp) | |
| 1184 | ||
| 1185 | lemma eq_divide_imp: "(c::'a::{division_by_zero,field}) ~= 0 ==>
 | |
| 1186 | a * c = b ==> a = b / c" | |
| 1187 | by (subst eq_divide_eq, simp) | |
| 1188 | ||
| 1189 | ||
| 1190 | lemmas field_eq_simps = ring_simps | |
| 1191 | (* pull / out*) | |
| 1192 | add_divide_eq_iff divide_add_eq_iff | |
| 1193 | diff_divide_eq_iff divide_diff_eq_iff | |
| 1194 | (* multiply eqn *) | |
| 1195 | nonzero_eq_divide_eq nonzero_divide_eq_eq | |
| 1196 | (* is added later: | |
| 1197 | times_divide_eq_left times_divide_eq_right | |
| 1198 | *) | |
| 1199 | ||
| 1200 | text{*An example:*}
 | |
| 1201 | lemma fixes a b c d e f :: "'a::field" | |
| 1202 | shows "\<lbrakk>a\<noteq>b; c\<noteq>d; e\<noteq>f \<rbrakk> \<Longrightarrow> ((a-b)*(c-d)*(e-f))/((c-d)*(e-f)*(a-b)) = 1" | |
| 1203 | apply(subgoal_tac "(c-d)*(e-f)*(a-b) \<noteq> 0") | |
| 1204 | apply(simp add:field_eq_simps) | |
| 1205 | apply(simp) | |
| 1206 | done | |
| 1207 | ||
| 1208 | ||
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1209 | lemma diff_frac_eq: "(y::'a::field) ~= 0 ==> z ~= 0 ==> | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1210 | x / y - w / z = (x * z - w * y) / (y * z)" | 
| 23482 | 1211 | by (simp add:field_eq_simps times_divide_eq) | 
| 1212 | ||
| 1213 | lemma frac_eq_eq: "(y::'a::field) ~= 0 ==> z ~= 0 ==> | |
| 1214 | (x / y = w / z) = (x * z = w * y)" | |
| 1215 | by (simp add:field_eq_simps times_divide_eq) | |
| 14293 | 1216 | |
| 23389 | 1217 | |
| 14268 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 1218 | subsection {* Ordered Fields *}
 | 
| 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 1219 | |
| 14277 
ad66687ece6e
more field division lemmas transferred from Real to Ring_and_Field
 paulson parents: 
14272diff
changeset | 1220 | lemma positive_imp_inverse_positive: | 
| 23482 | 1221 | assumes a_gt_0: "0 < a" shows "0 < inverse (a::'a::ordered_field)" | 
| 1222 | proof - | |
| 14268 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 1223 | have "0 < a * inverse a" | 
| 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 1224 | by (simp add: a_gt_0 [THEN order_less_imp_not_eq2] zero_less_one) | 
| 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 1225 | thus "0 < inverse a" | 
| 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 1226 | by (simp add: a_gt_0 [THEN order_less_not_sym] zero_less_mult_iff) | 
| 23482 | 1227 | qed | 
| 14268 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 1228 | |
| 14277 
ad66687ece6e
more field division lemmas transferred from Real to Ring_and_Field
 paulson parents: 
14272diff
changeset | 1229 | lemma negative_imp_inverse_negative: | 
| 23482 | 1230 | "a < 0 ==> inverse a < (0::'a::ordered_field)" | 
| 1231 | by (insert positive_imp_inverse_positive [of "-a"], | |
| 1232 | simp add: nonzero_inverse_minus_eq order_less_imp_not_eq) | |
| 14268 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 1233 | |
| 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 1234 | lemma inverse_le_imp_le: | 
| 23482 | 1235 | assumes invle: "inverse a \<le> inverse b" and apos: "0 < a" | 
| 1236 | shows "b \<le> (a::'a::ordered_field)" | |
| 1237 | proof (rule classical) | |
| 14268 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 1238 | assume "~ b \<le> a" | 
| 23482 | 1239 | hence "a < b" by (simp add: linorder_not_le) | 
| 1240 | hence bpos: "0 < b" by (blast intro: apos order_less_trans) | |
| 14268 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 1241 | hence "a * inverse a \<le> a * inverse b" | 
| 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 1242 | by (simp add: apos invle order_less_imp_le mult_left_mono) | 
| 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 1243 | hence "(a * inverse a) * b \<le> (a * inverse b) * b" | 
| 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 1244 | by (simp add: bpos order_less_imp_le mult_right_mono) | 
| 23482 | 1245 | thus "b \<le> a" by (simp add: mult_assoc apos bpos order_less_imp_not_eq2) | 
| 1246 | qed | |
| 14268 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 1247 | |
| 14277 
ad66687ece6e
more field division lemmas transferred from Real to Ring_and_Field
 paulson parents: 
14272diff
changeset | 1248 | lemma inverse_positive_imp_positive: | 
| 23482 | 1249 | assumes inv_gt_0: "0 < inverse a" and nz: "a \<noteq> 0" | 
| 1250 | shows "0 < (a::'a::ordered_field)" | |
| 23389 | 1251 | proof - | 
| 14277 
ad66687ece6e
more field division lemmas transferred from Real to Ring_and_Field
 paulson parents: 
14272diff
changeset | 1252 | have "0 < inverse (inverse a)" | 
| 23389 | 1253 | using inv_gt_0 by (rule positive_imp_inverse_positive) | 
| 14277 
ad66687ece6e
more field division lemmas transferred from Real to Ring_and_Field
 paulson parents: 
14272diff
changeset | 1254 | thus "0 < a" | 
| 23389 | 1255 | using nz by (simp add: nonzero_inverse_inverse_eq) | 
| 1256 | qed | |
| 14277 
ad66687ece6e
more field division lemmas transferred from Real to Ring_and_Field
 paulson parents: 
14272diff
changeset | 1257 | |
| 
ad66687ece6e
more field division lemmas transferred from Real to Ring_and_Field
 paulson parents: 
14272diff
changeset | 1258 | lemma inverse_positive_iff_positive [simp]: | 
| 23482 | 1259 |   "(0 < inverse a) = (0 < (a::'a::{ordered_field,division_by_zero}))"
 | 
| 21328 | 1260 | apply (cases "a = 0", simp) | 
| 14277 
ad66687ece6e
more field division lemmas transferred from Real to Ring_and_Field
 paulson parents: 
14272diff
changeset | 1261 | apply (blast intro: inverse_positive_imp_positive positive_imp_inverse_positive) | 
| 
ad66687ece6e
more field division lemmas transferred from Real to Ring_and_Field
 paulson parents: 
14272diff
changeset | 1262 | done | 
| 
ad66687ece6e
more field division lemmas transferred from Real to Ring_and_Field
 paulson parents: 
14272diff
changeset | 1263 | |
| 
ad66687ece6e
more field division lemmas transferred from Real to Ring_and_Field
 paulson parents: 
14272diff
changeset | 1264 | lemma inverse_negative_imp_negative: | 
| 23482 | 1265 | assumes inv_less_0: "inverse a < 0" and nz: "a \<noteq> 0" | 
| 1266 | shows "a < (0::'a::ordered_field)" | |
| 23389 | 1267 | proof - | 
| 14277 
ad66687ece6e
more field division lemmas transferred from Real to Ring_and_Field
 paulson parents: 
14272diff
changeset | 1268 | have "inverse (inverse a) < 0" | 
| 23389 | 1269 | using inv_less_0 by (rule negative_imp_inverse_negative) | 
| 23482 | 1270 | thus "a < 0" using nz by (simp add: nonzero_inverse_inverse_eq) | 
| 23389 | 1271 | qed | 
| 14277 
ad66687ece6e
more field division lemmas transferred from Real to Ring_and_Field
 paulson parents: 
14272diff
changeset | 1272 | |
| 
ad66687ece6e
more field division lemmas transferred from Real to Ring_and_Field
 paulson parents: 
14272diff
changeset | 1273 | lemma inverse_negative_iff_negative [simp]: | 
| 23482 | 1274 |   "(inverse a < 0) = (a < (0::'a::{ordered_field,division_by_zero}))"
 | 
| 21328 | 1275 | apply (cases "a = 0", simp) | 
| 14277 
ad66687ece6e
more field division lemmas transferred from Real to Ring_and_Field
 paulson parents: 
14272diff
changeset | 1276 | apply (blast intro: inverse_negative_imp_negative negative_imp_inverse_negative) | 
| 
ad66687ece6e
more field division lemmas transferred from Real to Ring_and_Field
 paulson parents: 
14272diff
changeset | 1277 | done | 
| 
ad66687ece6e
more field division lemmas transferred from Real to Ring_and_Field
 paulson parents: 
14272diff
changeset | 1278 | |
| 
ad66687ece6e
more field division lemmas transferred from Real to Ring_and_Field
 paulson parents: 
14272diff
changeset | 1279 | lemma inverse_nonnegative_iff_nonnegative [simp]: | 
| 23482 | 1280 |   "(0 \<le> inverse a) = (0 \<le> (a::'a::{ordered_field,division_by_zero}))"
 | 
| 14277 
ad66687ece6e
more field division lemmas transferred from Real to Ring_and_Field
 paulson parents: 
14272diff
changeset | 1281 | by (simp add: linorder_not_less [symmetric]) | 
| 
ad66687ece6e
more field division lemmas transferred from Real to Ring_and_Field
 paulson parents: 
14272diff
changeset | 1282 | |
| 
ad66687ece6e
more field division lemmas transferred from Real to Ring_and_Field
 paulson parents: 
14272diff
changeset | 1283 | lemma inverse_nonpositive_iff_nonpositive [simp]: | 
| 23482 | 1284 |   "(inverse a \<le> 0) = (a \<le> (0::'a::{ordered_field,division_by_zero}))"
 | 
| 14277 
ad66687ece6e
more field division lemmas transferred from Real to Ring_and_Field
 paulson parents: 
14272diff
changeset | 1285 | by (simp add: linorder_not_less [symmetric]) | 
| 
ad66687ece6e
more field division lemmas transferred from Real to Ring_and_Field
 paulson parents: 
14272diff
changeset | 1286 | |
| 23406 
167b53019d6f
added theorems nonzero_mult_divide_cancel_right' nonzero_mult_divide_cancel_left' ordered_field_no_lb ordered_field_no_ub
 chaieb parents: 
23400diff
changeset | 1287 | lemma ordered_field_no_lb: "\<forall> x. \<exists>y. y < (x::'a::ordered_field)" | 
| 
167b53019d6f
added theorems nonzero_mult_divide_cancel_right' nonzero_mult_divide_cancel_left' ordered_field_no_lb ordered_field_no_ub
 chaieb parents: 
23400diff
changeset | 1288 | proof | 
| 
167b53019d6f
added theorems nonzero_mult_divide_cancel_right' nonzero_mult_divide_cancel_left' ordered_field_no_lb ordered_field_no_ub
 chaieb parents: 
23400diff
changeset | 1289 | fix x::'a | 
| 
167b53019d6f
added theorems nonzero_mult_divide_cancel_right' nonzero_mult_divide_cancel_left' ordered_field_no_lb ordered_field_no_ub
 chaieb parents: 
23400diff
changeset | 1290 | have m1: "- (1::'a) < 0" by simp | 
| 
167b53019d6f
added theorems nonzero_mult_divide_cancel_right' nonzero_mult_divide_cancel_left' ordered_field_no_lb ordered_field_no_ub
 chaieb parents: 
23400diff
changeset | 1291 | from add_strict_right_mono[OF m1, where c=x] | 
| 
167b53019d6f
added theorems nonzero_mult_divide_cancel_right' nonzero_mult_divide_cancel_left' ordered_field_no_lb ordered_field_no_ub
 chaieb parents: 
23400diff
changeset | 1292 | have "(- 1) + x < x" by simp | 
| 
167b53019d6f
added theorems nonzero_mult_divide_cancel_right' nonzero_mult_divide_cancel_left' ordered_field_no_lb ordered_field_no_ub
 chaieb parents: 
23400diff
changeset | 1293 | thus "\<exists>y. y < x" by blast | 
| 
167b53019d6f
added theorems nonzero_mult_divide_cancel_right' nonzero_mult_divide_cancel_left' ordered_field_no_lb ordered_field_no_ub
 chaieb parents: 
23400diff
changeset | 1294 | qed | 
| 
167b53019d6f
added theorems nonzero_mult_divide_cancel_right' nonzero_mult_divide_cancel_left' ordered_field_no_lb ordered_field_no_ub
 chaieb parents: 
23400diff
changeset | 1295 | |
| 
167b53019d6f
added theorems nonzero_mult_divide_cancel_right' nonzero_mult_divide_cancel_left' ordered_field_no_lb ordered_field_no_ub
 chaieb parents: 
23400diff
changeset | 1296 | lemma ordered_field_no_ub: "\<forall> x. \<exists>y. y > (x::'a::ordered_field)" | 
| 
167b53019d6f
added theorems nonzero_mult_divide_cancel_right' nonzero_mult_divide_cancel_left' ordered_field_no_lb ordered_field_no_ub
 chaieb parents: 
23400diff
changeset | 1297 | proof | 
| 
167b53019d6f
added theorems nonzero_mult_divide_cancel_right' nonzero_mult_divide_cancel_left' ordered_field_no_lb ordered_field_no_ub
 chaieb parents: 
23400diff
changeset | 1298 | fix x::'a | 
| 
167b53019d6f
added theorems nonzero_mult_divide_cancel_right' nonzero_mult_divide_cancel_left' ordered_field_no_lb ordered_field_no_ub
 chaieb parents: 
23400diff
changeset | 1299 | have m1: " (1::'a) > 0" by simp | 
| 
167b53019d6f
added theorems nonzero_mult_divide_cancel_right' nonzero_mult_divide_cancel_left' ordered_field_no_lb ordered_field_no_ub
 chaieb parents: 
23400diff
changeset | 1300 | from add_strict_right_mono[OF m1, where c=x] | 
| 
167b53019d6f
added theorems nonzero_mult_divide_cancel_right' nonzero_mult_divide_cancel_left' ordered_field_no_lb ordered_field_no_ub
 chaieb parents: 
23400diff
changeset | 1301 | have "1 + x > x" by simp | 
| 
167b53019d6f
added theorems nonzero_mult_divide_cancel_right' nonzero_mult_divide_cancel_left' ordered_field_no_lb ordered_field_no_ub
 chaieb parents: 
23400diff
changeset | 1302 | thus "\<exists>y. y > x" by blast | 
| 
167b53019d6f
added theorems nonzero_mult_divide_cancel_right' nonzero_mult_divide_cancel_left' ordered_field_no_lb ordered_field_no_ub
 chaieb parents: 
23400diff
changeset | 1303 | qed | 
| 14277 
ad66687ece6e
more field division lemmas transferred from Real to Ring_and_Field
 paulson parents: 
14272diff
changeset | 1304 | |
| 
ad66687ece6e
more field division lemmas transferred from Real to Ring_and_Field
 paulson parents: 
14272diff
changeset | 1305 | subsection{*Anti-Monotonicity of @{term inverse}*}
 | 
| 
ad66687ece6e
more field division lemmas transferred from Real to Ring_and_Field
 paulson parents: 
14272diff
changeset | 1306 | |
| 14268 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 1307 | lemma less_imp_inverse_less: | 
| 23482 | 1308 | assumes less: "a < b" and apos: "0 < a" | 
| 1309 | shows "inverse b < inverse (a::'a::ordered_field)" | |
| 1310 | proof (rule ccontr) | |
| 14268 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 1311 | assume "~ inverse b < inverse a" | 
| 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 1312 | hence "inverse a \<le> inverse b" | 
| 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 1313 | by (simp add: linorder_not_less) | 
| 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 1314 | hence "~ (a < b)" | 
| 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 1315 | by (simp add: linorder_not_less inverse_le_imp_le [OF _ apos]) | 
| 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 1316 | thus False | 
| 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 1317 | by (rule notE [OF _ less]) | 
| 23482 | 1318 | qed | 
| 14268 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 1319 | |
| 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 1320 | lemma inverse_less_imp_less: | 
| 23482 | 1321 | "[|inverse a < inverse b; 0 < a|] ==> b < (a::'a::ordered_field)" | 
| 14268 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 1322 | apply (simp add: order_less_le [of "inverse a"] order_less_le [of "b"]) | 
| 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 1323 | apply (force dest!: inverse_le_imp_le nonzero_inverse_eq_imp_eq) | 
| 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 1324 | done | 
| 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 1325 | |
| 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 1326 | text{*Both premises are essential. Consider -1 and 1.*}
 | 
| 24286 
7619080e49f0
ATP blacklisting is now in theory data, attribute noatp
 paulson parents: 
23879diff
changeset | 1327 | lemma inverse_less_iff_less [simp,noatp]: | 
| 23482 | 1328 | "[|0 < a; 0 < b|] ==> (inverse a < inverse b) = (b < (a::'a::ordered_field))" | 
| 14268 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 1329 | by (blast intro: less_imp_inverse_less dest: inverse_less_imp_less) | 
| 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 1330 | |
| 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 1331 | lemma le_imp_inverse_le: | 
| 23482 | 1332 | "[|a \<le> b; 0 < a|] ==> inverse b \<le> inverse (a::'a::ordered_field)" | 
| 1333 | by (force simp add: order_le_less less_imp_inverse_less) | |
| 14268 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 1334 | |
| 24286 
7619080e49f0
ATP blacklisting is now in theory data, attribute noatp
 paulson parents: 
23879diff
changeset | 1335 | lemma inverse_le_iff_le [simp,noatp]: | 
| 23482 | 1336 | "[|0 < a; 0 < b|] ==> (inverse a \<le> inverse b) = (b \<le> (a::'a::ordered_field))" | 
| 14268 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 1337 | by (blast intro: le_imp_inverse_le dest: inverse_le_imp_le) | 
| 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 1338 | |
| 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 1339 | |
| 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 1340 | text{*These results refer to both operands being negative.  The opposite-sign
 | 
| 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 1341 | case is trivial, since inverse preserves signs.*} | 
| 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 1342 | lemma inverse_le_imp_le_neg: | 
| 23482 | 1343 | "[|inverse a \<le> inverse b; b < 0|] ==> b \<le> (a::'a::ordered_field)" | 
| 1344 | apply (rule classical) | |
| 1345 | apply (subgoal_tac "a < 0") | |
| 1346 | prefer 2 apply (force simp add: linorder_not_le intro: order_less_trans) | |
| 1347 | apply (insert inverse_le_imp_le [of "-b" "-a"]) | |
| 1348 | apply (simp add: order_less_imp_not_eq nonzero_inverse_minus_eq) | |
| 1349 | done | |
| 14268 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 1350 | |
| 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 1351 | lemma less_imp_inverse_less_neg: | 
| 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 1352 | "[|a < b; b < 0|] ==> inverse b < inverse (a::'a::ordered_field)" | 
| 23482 | 1353 | apply (subgoal_tac "a < 0") | 
| 1354 | prefer 2 apply (blast intro: order_less_trans) | |
| 1355 | apply (insert less_imp_inverse_less [of "-b" "-a"]) | |
| 1356 | apply (simp add: order_less_imp_not_eq nonzero_inverse_minus_eq) | |
| 1357 | done | |
| 14268 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 1358 | |
| 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 1359 | lemma inverse_less_imp_less_neg: | 
| 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 1360 | "[|inverse a < inverse b; b < 0|] ==> b < (a::'a::ordered_field)" | 
| 23482 | 1361 | apply (rule classical) | 
| 1362 | apply (subgoal_tac "a < 0") | |
| 1363 | prefer 2 | |
| 1364 | apply (force simp add: linorder_not_less intro: order_le_less_trans) | |
| 1365 | apply (insert inverse_less_imp_less [of "-b" "-a"]) | |
| 1366 | apply (simp add: order_less_imp_not_eq nonzero_inverse_minus_eq) | |
| 1367 | done | |
| 14268 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 1368 | |
| 24286 
7619080e49f0
ATP blacklisting is now in theory data, attribute noatp
 paulson parents: 
23879diff
changeset | 1369 | lemma inverse_less_iff_less_neg [simp,noatp]: | 
| 23482 | 1370 | "[|a < 0; b < 0|] ==> (inverse a < inverse b) = (b < (a::'a::ordered_field))" | 
| 1371 | apply (insert inverse_less_iff_less [of "-b" "-a"]) | |
| 1372 | apply (simp del: inverse_less_iff_less | |
| 1373 | add: order_less_imp_not_eq nonzero_inverse_minus_eq) | |
| 1374 | done | |
| 14268 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 1375 | |
| 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 1376 | lemma le_imp_inverse_le_neg: | 
| 23482 | 1377 | "[|a \<le> b; b < 0|] ==> inverse b \<le> inverse (a::'a::ordered_field)" | 
| 1378 | by (force simp add: order_le_less less_imp_inverse_less_neg) | |
| 14268 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 1379 | |
| 24286 
7619080e49f0
ATP blacklisting is now in theory data, attribute noatp
 paulson parents: 
23879diff
changeset | 1380 | lemma inverse_le_iff_le_neg [simp,noatp]: | 
| 23482 | 1381 | "[|a < 0; b < 0|] ==> (inverse a \<le> inverse b) = (b \<le> (a::'a::ordered_field))" | 
| 14268 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 1382 | by (blast intro: le_imp_inverse_le_neg dest: inverse_le_imp_le_neg) | 
| 14265 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 1383 | |
| 14277 
ad66687ece6e
more field division lemmas transferred from Real to Ring_and_Field
 paulson parents: 
14272diff
changeset | 1384 | |
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14353diff
changeset | 1385 | subsection{*Inverses and the Number One*}
 | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14353diff
changeset | 1386 | |
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14353diff
changeset | 1387 | lemma one_less_inverse_iff: | 
| 23482 | 1388 |   "(1 < inverse x) = (0 < x & x < (1::'a::{ordered_field,division_by_zero}))"
 | 
| 1389 | proof cases | |
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14353diff
changeset | 1390 | assume "0 < x" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14353diff
changeset | 1391 | with inverse_less_iff_less [OF zero_less_one, of x] | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14353diff
changeset | 1392 | show ?thesis by simp | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14353diff
changeset | 1393 | next | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14353diff
changeset | 1394 | assume notless: "~ (0 < x)" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14353diff
changeset | 1395 | have "~ (1 < inverse x)" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14353diff
changeset | 1396 | proof | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14353diff
changeset | 1397 | assume "1 < inverse x" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14353diff
changeset | 1398 | also with notless have "... \<le> 0" by (simp add: linorder_not_less) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14353diff
changeset | 1399 | also have "... < 1" by (rule zero_less_one) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14353diff
changeset | 1400 | finally show False by auto | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14353diff
changeset | 1401 | qed | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14353diff
changeset | 1402 | with notless show ?thesis by simp | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14353diff
changeset | 1403 | qed | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14353diff
changeset | 1404 | |
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14353diff
changeset | 1405 | lemma inverse_eq_1_iff [simp]: | 
| 23482 | 1406 |   "(inverse x = 1) = (x = (1::'a::{field,division_by_zero}))"
 | 
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14353diff
changeset | 1407 | by (insert inverse_eq_iff_eq [of x 1], simp) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14353diff
changeset | 1408 | |
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14353diff
changeset | 1409 | lemma one_le_inverse_iff: | 
| 23482 | 1410 |   "(1 \<le> inverse x) = (0 < x & x \<le> (1::'a::{ordered_field,division_by_zero}))"
 | 
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14353diff
changeset | 1411 | by (force simp add: order_le_less one_less_inverse_iff zero_less_one | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14353diff
changeset | 1412 | eq_commute [of 1]) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14353diff
changeset | 1413 | |
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14353diff
changeset | 1414 | lemma inverse_less_1_iff: | 
| 23482 | 1415 |   "(inverse x < 1) = (x \<le> 0 | 1 < (x::'a::{ordered_field,division_by_zero}))"
 | 
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14353diff
changeset | 1416 | by (simp add: linorder_not_le [symmetric] one_le_inverse_iff) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14353diff
changeset | 1417 | |
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14353diff
changeset | 1418 | lemma inverse_le_1_iff: | 
| 23482 | 1419 |   "(inverse x \<le> 1) = (x \<le> 0 | 1 \<le> (x::'a::{ordered_field,division_by_zero}))"
 | 
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14353diff
changeset | 1420 | by (simp add: linorder_not_less [symmetric] one_less_inverse_iff) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14353diff
changeset | 1421 | |
| 23389 | 1422 | |
| 14288 | 1423 | subsection{*Simplification of Inequalities Involving Literal Divisors*}
 | 
| 1424 | ||
| 1425 | lemma pos_le_divide_eq: "0 < (c::'a::ordered_field) ==> (a \<le> b/c) = (a*c \<le> b)" | |
| 1426 | proof - | |
| 1427 | assume less: "0<c" | |
| 1428 | hence "(a \<le> b/c) = (a*c \<le> (b/c)*c)" | |
| 1429 | by (simp add: mult_le_cancel_right order_less_not_sym [OF less]) | |
| 1430 | also have "... = (a*c \<le> b)" | |
| 1431 | by (simp add: order_less_imp_not_eq2 [OF less] divide_inverse mult_assoc) | |
| 1432 | finally show ?thesis . | |
| 1433 | qed | |
| 1434 | ||
| 1435 | lemma neg_le_divide_eq: "c < (0::'a::ordered_field) ==> (a \<le> b/c) = (b \<le> a*c)" | |
| 1436 | proof - | |
| 1437 | assume less: "c<0" | |
| 1438 | hence "(a \<le> b/c) = ((b/c)*c \<le> a*c)" | |
| 1439 | by (simp add: mult_le_cancel_right order_less_not_sym [OF less]) | |
| 1440 | also have "... = (b \<le> a*c)" | |
| 1441 | by (simp add: order_less_imp_not_eq [OF less] divide_inverse mult_assoc) | |
| 1442 | finally show ?thesis . | |
| 1443 | qed | |
| 1444 | ||
| 1445 | lemma le_divide_eq: | |
| 1446 | "(a \<le> b/c) = | |
| 1447 | (if 0 < c then a*c \<le> b | |
| 1448 | else if c < 0 then b \<le> a*c | |
| 1449 |              else  a \<le> (0::'a::{ordered_field,division_by_zero}))"
 | |
| 21328 | 1450 | apply (cases "c=0", simp) | 
| 14288 | 1451 | apply (force simp add: pos_le_divide_eq neg_le_divide_eq linorder_neq_iff) | 
| 1452 | done | |
| 1453 | ||
| 1454 | lemma pos_divide_le_eq: "0 < (c::'a::ordered_field) ==> (b/c \<le> a) = (b \<le> a*c)" | |
| 1455 | proof - | |
| 1456 | assume less: "0<c" | |
| 1457 | hence "(b/c \<le> a) = ((b/c)*c \<le> a*c)" | |
| 1458 | by (simp add: mult_le_cancel_right order_less_not_sym [OF less]) | |
| 1459 | also have "... = (b \<le> a*c)" | |
| 1460 | by (simp add: order_less_imp_not_eq2 [OF less] divide_inverse mult_assoc) | |
| 1461 | finally show ?thesis . | |
| 1462 | qed | |
| 1463 | ||
| 1464 | lemma neg_divide_le_eq: "c < (0::'a::ordered_field) ==> (b/c \<le> a) = (a*c \<le> b)" | |
| 1465 | proof - | |
| 1466 | assume less: "c<0" | |
| 1467 | hence "(b/c \<le> a) = (a*c \<le> (b/c)*c)" | |
| 1468 | by (simp add: mult_le_cancel_right order_less_not_sym [OF less]) | |
| 1469 | also have "... = (a*c \<le> b)" | |
| 1470 | by (simp add: order_less_imp_not_eq [OF less] divide_inverse mult_assoc) | |
| 1471 | finally show ?thesis . | |
| 1472 | qed | |
| 1473 | ||
| 1474 | lemma divide_le_eq: | |
| 1475 | "(b/c \<le> a) = | |
| 1476 | (if 0 < c then b \<le> a*c | |
| 1477 | else if c < 0 then a*c \<le> b | |
| 1478 |              else 0 \<le> (a::'a::{ordered_field,division_by_zero}))"
 | |
| 21328 | 1479 | apply (cases "c=0", simp) | 
| 14288 | 1480 | apply (force simp add: pos_divide_le_eq neg_divide_le_eq linorder_neq_iff) | 
| 1481 | done | |
| 1482 | ||
| 1483 | lemma pos_less_divide_eq: | |
| 1484 | "0 < (c::'a::ordered_field) ==> (a < b/c) = (a*c < b)" | |
| 1485 | proof - | |
| 1486 | assume less: "0<c" | |
| 1487 | hence "(a < b/c) = (a*c < (b/c)*c)" | |
| 15234 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 1488 | by (simp add: mult_less_cancel_right_disj order_less_not_sym [OF less]) | 
| 14288 | 1489 | also have "... = (a*c < b)" | 
| 1490 | by (simp add: order_less_imp_not_eq2 [OF less] divide_inverse mult_assoc) | |
| 1491 | finally show ?thesis . | |
| 1492 | qed | |
| 1493 | ||
| 1494 | lemma neg_less_divide_eq: | |
| 1495 | "c < (0::'a::ordered_field) ==> (a < b/c) = (b < a*c)" | |
| 1496 | proof - | |
| 1497 | assume less: "c<0" | |
| 1498 | hence "(a < b/c) = ((b/c)*c < a*c)" | |
| 15234 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 1499 | by (simp add: mult_less_cancel_right_disj order_less_not_sym [OF less]) | 
| 14288 | 1500 | also have "... = (b < a*c)" | 
| 1501 | by (simp add: order_less_imp_not_eq [OF less] divide_inverse mult_assoc) | |
| 1502 | finally show ?thesis . | |
| 1503 | qed | |
| 1504 | ||
| 1505 | lemma less_divide_eq: | |
| 1506 | "(a < b/c) = | |
| 1507 | (if 0 < c then a*c < b | |
| 1508 | else if c < 0 then b < a*c | |
| 1509 |              else  a < (0::'a::{ordered_field,division_by_zero}))"
 | |
| 21328 | 1510 | apply (cases "c=0", simp) | 
| 14288 | 1511 | apply (force simp add: pos_less_divide_eq neg_less_divide_eq linorder_neq_iff) | 
| 1512 | done | |
| 1513 | ||
| 1514 | lemma pos_divide_less_eq: | |
| 1515 | "0 < (c::'a::ordered_field) ==> (b/c < a) = (b < a*c)" | |
| 1516 | proof - | |
| 1517 | assume less: "0<c" | |
| 1518 | hence "(b/c < a) = ((b/c)*c < a*c)" | |
| 15234 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 1519 | by (simp add: mult_less_cancel_right_disj order_less_not_sym [OF less]) | 
| 14288 | 1520 | also have "... = (b < a*c)" | 
| 1521 | by (simp add: order_less_imp_not_eq2 [OF less] divide_inverse mult_assoc) | |
| 1522 | finally show ?thesis . | |
| 1523 | qed | |
| 1524 | ||
| 1525 | lemma neg_divide_less_eq: | |
| 1526 | "c < (0::'a::ordered_field) ==> (b/c < a) = (a*c < b)" | |
| 1527 | proof - | |
| 1528 | assume less: "c<0" | |
| 1529 | hence "(b/c < a) = (a*c < (b/c)*c)" | |
| 15234 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 1530 | by (simp add: mult_less_cancel_right_disj order_less_not_sym [OF less]) | 
| 14288 | 1531 | also have "... = (a*c < b)" | 
| 1532 | by (simp add: order_less_imp_not_eq [OF less] divide_inverse mult_assoc) | |
| 1533 | finally show ?thesis . | |
| 1534 | qed | |
| 1535 | ||
| 1536 | lemma divide_less_eq: | |
| 1537 | "(b/c < a) = | |
| 1538 | (if 0 < c then b < a*c | |
| 1539 | else if c < 0 then a*c < b | |
| 1540 |              else 0 < (a::'a::{ordered_field,division_by_zero}))"
 | |
| 21328 | 1541 | apply (cases "c=0", simp) | 
| 14288 | 1542 | apply (force simp add: pos_divide_less_eq neg_divide_less_eq linorder_neq_iff) | 
| 1543 | done | |
| 1544 | ||
| 23482 | 1545 | |
| 1546 | subsection{*Field simplification*}
 | |
| 1547 | ||
| 1548 | text{* Lemmas @{text field_simps} multiply with denominators in
 | |
| 1549 | in(equations) if they can be proved to be non-zero (for equations) or | |
| 1550 | positive/negative (for inequations). *} | |
| 14288 | 1551 | |
| 23482 | 1552 | lemmas field_simps = field_eq_simps | 
| 1553 | (* multiply ineqn *) | |
| 1554 | pos_divide_less_eq neg_divide_less_eq | |
| 1555 | pos_less_divide_eq neg_less_divide_eq | |
| 1556 | pos_divide_le_eq neg_divide_le_eq | |
| 1557 | pos_le_divide_eq neg_le_divide_eq | |
| 14288 | 1558 | |
| 23482 | 1559 | text{* Lemmas @{text sign_simps} is a first attempt to automate proofs
 | 
| 23483 | 1560 | of positivity/negativity needed for @{text field_simps}. Have not added @{text
 | 
| 23482 | 1561 | sign_simps} to @{text field_simps} because the former can lead to case
 | 
| 1562 | explosions. *} | |
| 14288 | 1563 | |
| 23482 | 1564 | lemmas sign_simps = group_simps | 
| 1565 | zero_less_mult_iff mult_less_0_iff | |
| 14288 | 1566 | |
| 23482 | 1567 | (* Only works once linear arithmetic is installed: | 
| 1568 | text{*An example:*}
 | |
| 1569 | lemma fixes a b c d e f :: "'a::ordered_field" | |
| 1570 | shows "\<lbrakk>a>b; c<d; e<f; 0 < u \<rbrakk> \<Longrightarrow> | |
| 1571 | ((a-b)*(c-d)*(e-f))/((c-d)*(e-f)*(a-b)) < | |
| 1572 | ((e-f)*(a-b)*(c-d))/((e-f)*(a-b)*(c-d)) + u" | |
| 1573 | apply(subgoal_tac "(c-d)*(e-f)*(a-b) > 0") | |
| 1574 | prefer 2 apply(simp add:sign_simps) | |
| 1575 | apply(subgoal_tac "(c-d)*(e-f)*(a-b)*u > 0") | |
| 1576 | prefer 2 apply(simp add:sign_simps) | |
| 1577 | apply(simp add:field_simps) | |
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1578 | done | 
| 23482 | 1579 | *) | 
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1580 | |
| 23389 | 1581 | |
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1582 | subsection{*Division and Signs*}
 | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1583 | |
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1584 | lemma zero_less_divide_iff: | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1585 |      "((0::'a::{ordered_field,division_by_zero}) < a/b) = (0 < a & 0 < b | a < 0 & b < 0)"
 | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1586 | by (simp add: divide_inverse zero_less_mult_iff) | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1587 | |
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1588 | lemma divide_less_0_iff: | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1589 |      "(a/b < (0::'a::{ordered_field,division_by_zero})) = 
 | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1590 | (0 < a & b < 0 | a < 0 & 0 < b)" | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1591 | by (simp add: divide_inverse mult_less_0_iff) | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1592 | |
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1593 | lemma zero_le_divide_iff: | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1594 |      "((0::'a::{ordered_field,division_by_zero}) \<le> a/b) =
 | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1595 | (0 \<le> a & 0 \<le> b | a \<le> 0 & b \<le> 0)" | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1596 | by (simp add: divide_inverse zero_le_mult_iff) | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1597 | |
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1598 | lemma divide_le_0_iff: | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1599 |      "(a/b \<le> (0::'a::{ordered_field,division_by_zero})) =
 | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1600 | (0 \<le> a & b \<le> 0 | a \<le> 0 & 0 \<le> b)" | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1601 | by (simp add: divide_inverse mult_le_0_iff) | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1602 | |
| 24286 
7619080e49f0
ATP blacklisting is now in theory data, attribute noatp
 paulson parents: 
23879diff
changeset | 1603 | lemma divide_eq_0_iff [simp,noatp]: | 
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1604 |      "(a/b = 0) = (a=0 | b=(0::'a::{field,division_by_zero}))"
 | 
| 23482 | 1605 | by (simp add: divide_inverse) | 
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1606 | |
| 23482 | 1607 | lemma divide_pos_pos: | 
| 1608 | "0 < (x::'a::ordered_field) ==> 0 < y ==> 0 < x / y" | |
| 1609 | by(simp add:field_simps) | |
| 1610 | ||
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1611 | |
| 23482 | 1612 | lemma divide_nonneg_pos: | 
| 1613 | "0 <= (x::'a::ordered_field) ==> 0 < y ==> 0 <= x / y" | |
| 1614 | by(simp add:field_simps) | |
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1615 | |
| 23482 | 1616 | lemma divide_neg_pos: | 
| 1617 | "(x::'a::ordered_field) < 0 ==> 0 < y ==> x / y < 0" | |
| 1618 | by(simp add:field_simps) | |
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1619 | |
| 23482 | 1620 | lemma divide_nonpos_pos: | 
| 1621 | "(x::'a::ordered_field) <= 0 ==> 0 < y ==> x / y <= 0" | |
| 1622 | by(simp add:field_simps) | |
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1623 | |
| 23482 | 1624 | lemma divide_pos_neg: | 
| 1625 | "0 < (x::'a::ordered_field) ==> y < 0 ==> x / y < 0" | |
| 1626 | by(simp add:field_simps) | |
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1627 | |
| 23482 | 1628 | lemma divide_nonneg_neg: | 
| 1629 | "0 <= (x::'a::ordered_field) ==> y < 0 ==> x / y <= 0" | |
| 1630 | by(simp add:field_simps) | |
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1631 | |
| 23482 | 1632 | lemma divide_neg_neg: | 
| 1633 | "(x::'a::ordered_field) < 0 ==> y < 0 ==> 0 < x / y" | |
| 1634 | by(simp add:field_simps) | |
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1635 | |
| 23482 | 1636 | lemma divide_nonpos_neg: | 
| 1637 | "(x::'a::ordered_field) <= 0 ==> y < 0 ==> 0 <= x / y" | |
| 1638 | by(simp add:field_simps) | |
| 15234 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 1639 | |
| 23389 | 1640 | |
| 14288 | 1641 | subsection{*Cancellation Laws for Division*}
 | 
| 1642 | ||
| 24286 
7619080e49f0
ATP blacklisting is now in theory data, attribute noatp
 paulson parents: 
23879diff
changeset | 1643 | lemma divide_cancel_right [simp,noatp]: | 
| 14288 | 1644 |      "(a/c = b/c) = (c = 0 | a = (b::'a::{field,division_by_zero}))"
 | 
| 23482 | 1645 | apply (cases "c=0", simp) | 
| 23496 | 1646 | apply (simp add: divide_inverse) | 
| 14288 | 1647 | done | 
| 1648 | ||
| 24286 
7619080e49f0
ATP blacklisting is now in theory data, attribute noatp
 paulson parents: 
23879diff
changeset | 1649 | lemma divide_cancel_left [simp,noatp]: | 
| 14288 | 1650 |      "(c/a = c/b) = (c = 0 | a = (b::'a::{field,division_by_zero}))" 
 | 
| 23482 | 1651 | apply (cases "c=0", simp) | 
| 23496 | 1652 | apply (simp add: divide_inverse) | 
| 14288 | 1653 | done | 
| 1654 | ||
| 23389 | 1655 | |
| 14353 
79f9fbef9106
Added lemmas to Ring_and_Field with slightly modified simplification rules
 paulson parents: 
14348diff
changeset | 1656 | subsection {* Division and the Number One *}
 | 
| 
79f9fbef9106
Added lemmas to Ring_and_Field with slightly modified simplification rules
 paulson parents: 
14348diff
changeset | 1657 | |
| 
79f9fbef9106
Added lemmas to Ring_and_Field with slightly modified simplification rules
 paulson parents: 
14348diff
changeset | 1658 | text{*Simplify expressions equated with 1*}
 | 
| 24286 
7619080e49f0
ATP blacklisting is now in theory data, attribute noatp
 paulson parents: 
23879diff
changeset | 1659 | lemma divide_eq_1_iff [simp,noatp]: | 
| 14353 
79f9fbef9106
Added lemmas to Ring_and_Field with slightly modified simplification rules
 paulson parents: 
14348diff
changeset | 1660 |      "(a/b = 1) = (b \<noteq> 0 & a = (b::'a::{field,division_by_zero}))"
 | 
| 23482 | 1661 | apply (cases "b=0", simp) | 
| 1662 | apply (simp add: right_inverse_eq) | |
| 14353 
79f9fbef9106
Added lemmas to Ring_and_Field with slightly modified simplification rules
 paulson parents: 
14348diff
changeset | 1663 | done | 
| 
79f9fbef9106
Added lemmas to Ring_and_Field with slightly modified simplification rules
 paulson parents: 
14348diff
changeset | 1664 | |
| 24286 
7619080e49f0
ATP blacklisting is now in theory data, attribute noatp
 paulson parents: 
23879diff
changeset | 1665 | lemma one_eq_divide_iff [simp,noatp]: | 
| 14353 
79f9fbef9106
Added lemmas to Ring_and_Field with slightly modified simplification rules
 paulson parents: 
14348diff
changeset | 1666 |      "(1 = a/b) = (b \<noteq> 0 & a = (b::'a::{field,division_by_zero}))"
 | 
| 23482 | 1667 | by (simp add: eq_commute [of 1]) | 
| 14353 
79f9fbef9106
Added lemmas to Ring_and_Field with slightly modified simplification rules
 paulson parents: 
14348diff
changeset | 1668 | |
| 24286 
7619080e49f0
ATP blacklisting is now in theory data, attribute noatp
 paulson parents: 
23879diff
changeset | 1669 | lemma zero_eq_1_divide_iff [simp,noatp]: | 
| 14353 
79f9fbef9106
Added lemmas to Ring_and_Field with slightly modified simplification rules
 paulson parents: 
14348diff
changeset | 1670 |      "((0::'a::{ordered_field,division_by_zero}) = 1/a) = (a = 0)"
 | 
| 23482 | 1671 | apply (cases "a=0", simp) | 
| 1672 | apply (auto simp add: nonzero_eq_divide_eq) | |
| 14353 
79f9fbef9106
Added lemmas to Ring_and_Field with slightly modified simplification rules
 paulson parents: 
14348diff
changeset | 1673 | done | 
| 
79f9fbef9106
Added lemmas to Ring_and_Field with slightly modified simplification rules
 paulson parents: 
14348diff
changeset | 1674 | |
| 24286 
7619080e49f0
ATP blacklisting is now in theory data, attribute noatp
 paulson parents: 
23879diff
changeset | 1675 | lemma one_divide_eq_0_iff [simp,noatp]: | 
| 14353 
79f9fbef9106
Added lemmas to Ring_and_Field with slightly modified simplification rules
 paulson parents: 
14348diff
changeset | 1676 |      "(1/a = (0::'a::{ordered_field,division_by_zero})) = (a = 0)"
 | 
| 23482 | 1677 | apply (cases "a=0", simp) | 
| 1678 | apply (insert zero_neq_one [THEN not_sym]) | |
| 1679 | apply (auto simp add: nonzero_divide_eq_eq) | |
| 14353 
79f9fbef9106
Added lemmas to Ring_and_Field with slightly modified simplification rules
 paulson parents: 
14348diff
changeset | 1680 | done | 
| 
79f9fbef9106
Added lemmas to Ring_and_Field with slightly modified simplification rules
 paulson parents: 
14348diff
changeset | 1681 | |
| 
79f9fbef9106
Added lemmas to Ring_and_Field with slightly modified simplification rules
 paulson parents: 
14348diff
changeset | 1682 | text{*Simplify expressions such as @{text "0 < 1/x"} to @{text "0 < x"}*}
 | 
| 18623 | 1683 | lemmas zero_less_divide_1_iff = zero_less_divide_iff [of 1, simplified] | 
| 1684 | lemmas divide_less_0_1_iff = divide_less_0_iff [of 1, simplified] | |
| 1685 | lemmas zero_le_divide_1_iff = zero_le_divide_iff [of 1, simplified] | |
| 1686 | lemmas divide_le_0_1_iff = divide_le_0_iff [of 1, simplified] | |
| 17085 | 1687 | |
| 1688 | declare zero_less_divide_1_iff [simp] | |
| 24286 
7619080e49f0
ATP blacklisting is now in theory data, attribute noatp
 paulson parents: 
23879diff
changeset | 1689 | declare divide_less_0_1_iff [simp,noatp] | 
| 17085 | 1690 | declare zero_le_divide_1_iff [simp] | 
| 24286 
7619080e49f0
ATP blacklisting is now in theory data, attribute noatp
 paulson parents: 
23879diff
changeset | 1691 | declare divide_le_0_1_iff [simp,noatp] | 
| 14353 
79f9fbef9106
Added lemmas to Ring_and_Field with slightly modified simplification rules
 paulson parents: 
14348diff
changeset | 1692 | |
| 23389 | 1693 | |
| 14293 | 1694 | subsection {* Ordering Rules for Division *}
 | 
| 1695 | ||
| 1696 | lemma divide_strict_right_mono: | |
| 1697 | "[|a < b; 0 < c|] ==> a / c < b / (c::'a::ordered_field)" | |
| 1698 | by (simp add: order_less_imp_not_eq2 divide_inverse mult_strict_right_mono | |
| 23482 | 1699 | positive_imp_inverse_positive) | 
| 14293 | 1700 | |
| 1701 | lemma divide_right_mono: | |
| 1702 |      "[|a \<le> b; 0 \<le> c|] ==> a/c \<le> b/(c::'a::{ordered_field,division_by_zero})"
 | |
| 23482 | 1703 | by (force simp add: divide_strict_right_mono order_le_less) | 
| 14293 | 1704 | |
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1705 | lemma divide_right_mono_neg: "(a::'a::{division_by_zero,ordered_field}) <= b 
 | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1706 | ==> c <= 0 ==> b / c <= a / c" | 
| 23482 | 1707 | apply (drule divide_right_mono [of _ _ "- c"]) | 
| 1708 | apply auto | |
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1709 | done | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1710 | |
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1711 | lemma divide_strict_right_mono_neg: | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1712 | "[|b < a; c < 0|] ==> a / c < b / (c::'a::ordered_field)" | 
| 23482 | 1713 | apply (drule divide_strict_right_mono [of _ _ "-c"], simp) | 
| 1714 | apply (simp add: order_less_imp_not_eq nonzero_minus_divide_right [symmetric]) | |
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1715 | done | 
| 14293 | 1716 | |
| 1717 | text{*The last premise ensures that @{term a} and @{term b} 
 | |
| 1718 | have the same sign*} | |
| 1719 | lemma divide_strict_left_mono: | |
| 23482 | 1720 | "[|b < a; 0 < c; 0 < a*b|] ==> c / a < c / (b::'a::ordered_field)" | 
| 1721 | by(auto simp: field_simps times_divide_eq zero_less_mult_iff mult_strict_right_mono) | |
| 14293 | 1722 | |
| 1723 | lemma divide_left_mono: | |
| 23482 | 1724 | "[|b \<le> a; 0 \<le> c; 0 < a*b|] ==> c / a \<le> c / (b::'a::ordered_field)" | 
| 1725 | by(auto simp: field_simps times_divide_eq zero_less_mult_iff mult_right_mono) | |
| 14293 | 1726 | |
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1727 | lemma divide_left_mono_neg: "(a::'a::{division_by_zero,ordered_field}) <= b 
 | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1728 | ==> c <= 0 ==> 0 < a * b ==> c / a <= c / b" | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1729 | apply (drule divide_left_mono [of _ _ "- c"]) | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1730 | apply (auto simp add: mult_commute) | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1731 | done | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1732 | |
| 14293 | 1733 | lemma divide_strict_left_mono_neg: | 
| 23482 | 1734 | "[|a < b; c < 0; 0 < a*b|] ==> c / a < c / (b::'a::ordered_field)" | 
| 1735 | by(auto simp: field_simps times_divide_eq zero_less_mult_iff mult_strict_right_mono_neg) | |
| 1736 | ||
| 14293 | 1737 | |
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1738 | text{*Simplify quotients that are compared with the value 1.*}
 | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1739 | |
| 24286 
7619080e49f0
ATP blacklisting is now in theory data, attribute noatp
 paulson parents: 
23879diff
changeset | 1740 | lemma le_divide_eq_1 [noatp]: | 
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1741 |   fixes a :: "'a :: {ordered_field,division_by_zero}"
 | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1742 | shows "(1 \<le> b / a) = ((0 < a & a \<le> b) | (a < 0 & b \<le> a))" | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1743 | by (auto simp add: le_divide_eq) | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1744 | |
| 24286 
7619080e49f0
ATP blacklisting is now in theory data, attribute noatp
 paulson parents: 
23879diff
changeset | 1745 | lemma divide_le_eq_1 [noatp]: | 
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1746 |   fixes a :: "'a :: {ordered_field,division_by_zero}"
 | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1747 | shows "(b / a \<le> 1) = ((0 < a & b \<le> a) | (a < 0 & a \<le> b) | a=0)" | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1748 | by (auto simp add: divide_le_eq) | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1749 | |
| 24286 
7619080e49f0
ATP blacklisting is now in theory data, attribute noatp
 paulson parents: 
23879diff
changeset | 1750 | lemma less_divide_eq_1 [noatp]: | 
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1751 |   fixes a :: "'a :: {ordered_field,division_by_zero}"
 | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1752 | shows "(1 < b / a) = ((0 < a & a < b) | (a < 0 & b < a))" | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1753 | by (auto simp add: less_divide_eq) | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1754 | |
| 24286 
7619080e49f0
ATP blacklisting is now in theory data, attribute noatp
 paulson parents: 
23879diff
changeset | 1755 | lemma divide_less_eq_1 [noatp]: | 
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1756 |   fixes a :: "'a :: {ordered_field,division_by_zero}"
 | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1757 | shows "(b / a < 1) = ((0 < a & b < a) | (a < 0 & a < b) | a=0)" | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1758 | by (auto simp add: divide_less_eq) | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1759 | |
| 23389 | 1760 | |
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1761 | subsection{*Conditional Simplification Rules: No Case Splits*}
 | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1762 | |
| 24286 
7619080e49f0
ATP blacklisting is now in theory data, attribute noatp
 paulson parents: 
23879diff
changeset | 1763 | lemma le_divide_eq_1_pos [simp,noatp]: | 
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1764 |   fixes a :: "'a :: {ordered_field,division_by_zero}"
 | 
| 18649 
bb99c2e705ca
tidied, and added missing thm divide_less_eq_1_neg
 paulson parents: 
18623diff
changeset | 1765 | shows "0 < a \<Longrightarrow> (1 \<le> b/a) = (a \<le> b)" | 
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1766 | by (auto simp add: le_divide_eq) | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1767 | |
| 24286 
7619080e49f0
ATP blacklisting is now in theory data, attribute noatp
 paulson parents: 
23879diff
changeset | 1768 | lemma le_divide_eq_1_neg [simp,noatp]: | 
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1769 |   fixes a :: "'a :: {ordered_field,division_by_zero}"
 | 
| 18649 
bb99c2e705ca
tidied, and added missing thm divide_less_eq_1_neg
 paulson parents: 
18623diff
changeset | 1770 | shows "a < 0 \<Longrightarrow> (1 \<le> b/a) = (b \<le> a)" | 
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1771 | by (auto simp add: le_divide_eq) | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1772 | |
| 24286 
7619080e49f0
ATP blacklisting is now in theory data, attribute noatp
 paulson parents: 
23879diff
changeset | 1773 | lemma divide_le_eq_1_pos [simp,noatp]: | 
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1774 |   fixes a :: "'a :: {ordered_field,division_by_zero}"
 | 
| 18649 
bb99c2e705ca
tidied, and added missing thm divide_less_eq_1_neg
 paulson parents: 
18623diff
changeset | 1775 | shows "0 < a \<Longrightarrow> (b/a \<le> 1) = (b \<le> a)" | 
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1776 | by (auto simp add: divide_le_eq) | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1777 | |
| 24286 
7619080e49f0
ATP blacklisting is now in theory data, attribute noatp
 paulson parents: 
23879diff
changeset | 1778 | lemma divide_le_eq_1_neg [simp,noatp]: | 
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1779 |   fixes a :: "'a :: {ordered_field,division_by_zero}"
 | 
| 18649 
bb99c2e705ca
tidied, and added missing thm divide_less_eq_1_neg
 paulson parents: 
18623diff
changeset | 1780 | shows "a < 0 \<Longrightarrow> (b/a \<le> 1) = (a \<le> b)" | 
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1781 | by (auto simp add: divide_le_eq) | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1782 | |
| 24286 
7619080e49f0
ATP blacklisting is now in theory data, attribute noatp
 paulson parents: 
23879diff
changeset | 1783 | lemma less_divide_eq_1_pos [simp,noatp]: | 
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1784 |   fixes a :: "'a :: {ordered_field,division_by_zero}"
 | 
| 18649 
bb99c2e705ca
tidied, and added missing thm divide_less_eq_1_neg
 paulson parents: 
18623diff
changeset | 1785 | shows "0 < a \<Longrightarrow> (1 < b/a) = (a < b)" | 
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1786 | by (auto simp add: less_divide_eq) | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1787 | |
| 24286 
7619080e49f0
ATP blacklisting is now in theory data, attribute noatp
 paulson parents: 
23879diff
changeset | 1788 | lemma less_divide_eq_1_neg [simp,noatp]: | 
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1789 |   fixes a :: "'a :: {ordered_field,division_by_zero}"
 | 
| 18649 
bb99c2e705ca
tidied, and added missing thm divide_less_eq_1_neg
 paulson parents: 
18623diff
changeset | 1790 | shows "a < 0 \<Longrightarrow> (1 < b/a) = (b < a)" | 
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1791 | by (auto simp add: less_divide_eq) | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1792 | |
| 24286 
7619080e49f0
ATP blacklisting is now in theory data, attribute noatp
 paulson parents: 
23879diff
changeset | 1793 | lemma divide_less_eq_1_pos [simp,noatp]: | 
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1794 |   fixes a :: "'a :: {ordered_field,division_by_zero}"
 | 
| 18649 
bb99c2e705ca
tidied, and added missing thm divide_less_eq_1_neg
 paulson parents: 
18623diff
changeset | 1795 | shows "0 < a \<Longrightarrow> (b/a < 1) = (b < a)" | 
| 
bb99c2e705ca
tidied, and added missing thm divide_less_eq_1_neg
 paulson parents: 
18623diff
changeset | 1796 | by (auto simp add: divide_less_eq) | 
| 
bb99c2e705ca
tidied, and added missing thm divide_less_eq_1_neg
 paulson parents: 
18623diff
changeset | 1797 | |
| 24286 
7619080e49f0
ATP blacklisting is now in theory data, attribute noatp
 paulson parents: 
23879diff
changeset | 1798 | lemma divide_less_eq_1_neg [simp,noatp]: | 
| 18649 
bb99c2e705ca
tidied, and added missing thm divide_less_eq_1_neg
 paulson parents: 
18623diff
changeset | 1799 |   fixes a :: "'a :: {ordered_field,division_by_zero}"
 | 
| 
bb99c2e705ca
tidied, and added missing thm divide_less_eq_1_neg
 paulson parents: 
18623diff
changeset | 1800 | shows "a < 0 \<Longrightarrow> b/a < 1 <-> a < b" | 
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1801 | by (auto simp add: divide_less_eq) | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1802 | |
| 24286 
7619080e49f0
ATP blacklisting is now in theory data, attribute noatp
 paulson parents: 
23879diff
changeset | 1803 | lemma eq_divide_eq_1 [simp,noatp]: | 
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1804 |   fixes a :: "'a :: {ordered_field,division_by_zero}"
 | 
| 18649 
bb99c2e705ca
tidied, and added missing thm divide_less_eq_1_neg
 paulson parents: 
18623diff
changeset | 1805 | shows "(1 = b/a) = ((a \<noteq> 0 & a = b))" | 
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1806 | by (auto simp add: eq_divide_eq) | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1807 | |
| 24286 
7619080e49f0
ATP blacklisting is now in theory data, attribute noatp
 paulson parents: 
23879diff
changeset | 1808 | lemma divide_eq_eq_1 [simp,noatp]: | 
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1809 |   fixes a :: "'a :: {ordered_field,division_by_zero}"
 | 
| 18649 
bb99c2e705ca
tidied, and added missing thm divide_less_eq_1_neg
 paulson parents: 
18623diff
changeset | 1810 | shows "(b/a = 1) = ((a \<noteq> 0 & a = b))" | 
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1811 | by (auto simp add: divide_eq_eq) | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1812 | |
| 23389 | 1813 | |
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1814 | subsection {* Reasoning about inequalities with division *}
 | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1815 | |
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1816 | lemma mult_right_le_one_le: "0 <= (x::'a::ordered_idom) ==> 0 <= y ==> y <= 1 | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1817 | ==> x * y <= x" | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1818 | by (auto simp add: mult_compare_simps); | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1819 | |
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1820 | lemma mult_left_le_one_le: "0 <= (x::'a::ordered_idom) ==> 0 <= y ==> y <= 1 | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1821 | ==> y * x <= x" | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1822 | by (auto simp add: mult_compare_simps); | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1823 | |
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1824 | lemma mult_imp_div_pos_le: "0 < (y::'a::ordered_field) ==> x <= z * y ==> | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1825 | x / y <= z"; | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1826 | by (subst pos_divide_le_eq, assumption+); | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1827 | |
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1828 | lemma mult_imp_le_div_pos: "0 < (y::'a::ordered_field) ==> z * y <= x ==> | 
| 23482 | 1829 | z <= x / y" | 
| 1830 | by(simp add:field_simps) | |
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1831 | |
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1832 | lemma mult_imp_div_pos_less: "0 < (y::'a::ordered_field) ==> x < z * y ==> | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1833 | x / y < z" | 
| 23482 | 1834 | by(simp add:field_simps) | 
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1835 | |
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1836 | lemma mult_imp_less_div_pos: "0 < (y::'a::ordered_field) ==> z * y < x ==> | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1837 | z < x / y" | 
| 23482 | 1838 | by(simp add:field_simps) | 
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1839 | |
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1840 | lemma frac_le: "(0::'a::ordered_field) <= x ==> | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1841 | x <= y ==> 0 < w ==> w <= z ==> x / z <= y / w" | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1842 | apply (rule mult_imp_div_pos_le) | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1843 | apply simp; | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1844 | apply (subst times_divide_eq_left); | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1845 | apply (rule mult_imp_le_div_pos, assumption) | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1846 | apply (rule mult_mono) | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1847 | apply simp_all | 
| 14293 | 1848 | done | 
| 1849 | ||
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1850 | lemma frac_less: "(0::'a::ordered_field) <= x ==> | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1851 | x < y ==> 0 < w ==> w <= z ==> x / z < y / w" | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1852 | apply (rule mult_imp_div_pos_less) | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1853 | apply simp; | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1854 | apply (subst times_divide_eq_left); | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1855 | apply (rule mult_imp_less_div_pos, assumption) | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1856 | apply (erule mult_less_le_imp_less) | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1857 | apply simp_all | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1858 | done | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1859 | |
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1860 | lemma frac_less2: "(0::'a::ordered_field) < x ==> | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1861 | x <= y ==> 0 < w ==> w < z ==> x / z < y / w" | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1862 | apply (rule mult_imp_div_pos_less) | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1863 | apply simp_all | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1864 | apply (subst times_divide_eq_left); | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1865 | apply (rule mult_imp_less_div_pos, assumption) | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1866 | apply (erule mult_le_less_imp_less) | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1867 | apply simp_all | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1868 | done | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1869 | |
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1870 | text{*It's not obvious whether these should be simprules or not. 
 | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1871 | Their effect is to gather terms into one big fraction, like | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1872 | a*b*c / x*y*z. The rationale for that is unclear, but many proofs | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1873 | seem to need them.*} | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1874 | |
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1875 | declare times_divide_eq [simp] | 
| 14293 | 1876 | |
| 23389 | 1877 | |
| 14293 | 1878 | subsection {* Ordered Fields are Dense *}
 | 
| 1879 | ||
| 14738 | 1880 | lemma less_add_one: "a < (a+1::'a::ordered_semidom)" | 
| 14293 | 1881 | proof - | 
| 14738 | 1882 | have "a+0 < (a+1::'a::ordered_semidom)" | 
| 23482 | 1883 | by (blast intro: zero_less_one add_strict_left_mono) | 
| 14293 | 1884 | thus ?thesis by simp | 
| 1885 | qed | |
| 1886 | ||
| 14738 | 1887 | lemma zero_less_two: "0 < (1+1::'a::ordered_semidom)" | 
| 23482 | 1888 | by (blast intro: order_less_trans zero_less_one less_add_one) | 
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14353diff
changeset | 1889 | |
| 14293 | 1890 | lemma less_half_sum: "a < b ==> a < (a+b) / (1+1::'a::ordered_field)" | 
| 23482 | 1891 | by (simp add: field_simps zero_less_two) | 
| 14293 | 1892 | |
| 1893 | lemma gt_half_sum: "a < b ==> (a+b)/(1+1::'a::ordered_field) < b" | |
| 23482 | 1894 | by (simp add: field_simps zero_less_two) | 
| 14293 | 1895 | |
| 24422 | 1896 | instance ordered_field < dense_linear_order | 
| 1897 | proof | |
| 1898 | fix x y :: 'a | |
| 1899 | have "x < x + 1" by simp | |
| 1900 | then show "\<exists>y. x < y" .. | |
| 1901 | have "x - 1 < x" by simp | |
| 1902 | then show "\<exists>y. y < x" .. | |
| 1903 | show "x < y \<Longrightarrow> \<exists>z>x. z < y" by (blast intro!: less_half_sum gt_half_sum) | |
| 1904 | qed | |
| 14293 | 1905 | |
| 15234 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 1906 | |
| 14293 | 1907 | subsection {* Absolute Value *}
 | 
| 1908 | ||
| 24491 | 1909 | lemma mult_sgn_abs: "sgn x * abs x = (x::'a::{ordered_idom,linorder})"
 | 
| 1910 | using less_linear[of x 0] | |
| 24506 | 1911 | by(auto simp: sgn_if abs_if) | 
| 24491 | 1912 | |
| 14738 | 1913 | lemma abs_one [simp]: "abs 1 = (1::'a::ordered_idom)" | 
| 23477 
f4b83f03cac9
tuned and renamed group_eq_simps and ring_eq_simps
 nipkow parents: 
23413diff
changeset | 1914 | by (simp add: abs_if zero_less_one [THEN order_less_not_sym]) | 
| 14294 
f4d806fd72ce
absolute value theorems moved to HOL/Ring_and_Field
 paulson parents: 
14293diff
changeset | 1915 | |
| 14738 | 1916 | lemma abs_le_mult: "abs (a * b) \<le> (abs a) * (abs (b::'a::lordered_ring))" | 
| 1917 | proof - | |
| 1918 | let ?x = "pprt a * pprt b - pprt a * nprt b - nprt a * pprt b + nprt a * nprt b" | |
| 1919 | let ?y = "pprt a * pprt b + pprt a * nprt b + nprt a * pprt b + nprt a * nprt b" | |
| 1920 | have a: "(abs a) * (abs b) = ?x" | |
| 23477 
f4b83f03cac9
tuned and renamed group_eq_simps and ring_eq_simps
 nipkow parents: 
23413diff
changeset | 1921 | by (simp only: abs_prts[of a] abs_prts[of b] ring_simps) | 
| 14738 | 1922 |   {
 | 
| 1923 | fix u v :: 'a | |
| 15481 | 1924 | have bh: "\<lbrakk>u = a; v = b\<rbrakk> \<Longrightarrow> | 
| 1925 | u * v = pprt a * pprt b + pprt a * nprt b + | |
| 1926 | nprt a * pprt b + nprt a * nprt b" | |
| 14738 | 1927 | apply (subst prts[of u], subst prts[of v]) | 
| 23477 
f4b83f03cac9
tuned and renamed group_eq_simps and ring_eq_simps
 nipkow parents: 
23413diff
changeset | 1928 | apply (simp add: ring_simps) | 
| 14738 | 1929 | done | 
| 1930 | } | |
| 1931 | note b = this[OF refl[of a] refl[of b]] | |
| 1932 | note addm = add_mono[of "0::'a" _ "0::'a", simplified] | |
| 1933 | note addm2 = add_mono[of _ "0::'a" _ "0::'a", simplified] | |
| 1934 | have xy: "- ?x <= ?y" | |
| 14754 
a080eeeaec14
Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
 obua parents: 
14738diff
changeset | 1935 | apply (simp) | 
| 
a080eeeaec14
Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
 obua parents: 
14738diff
changeset | 1936 | apply (rule_tac y="0::'a" in order_trans) | 
| 16568 | 1937 | apply (rule addm2) | 
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1938 | apply (simp_all add: mult_nonneg_nonneg mult_nonpos_nonpos) | 
| 16568 | 1939 | apply (rule addm) | 
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1940 | apply (simp_all add: mult_nonneg_nonneg mult_nonpos_nonpos) | 
| 14754 
a080eeeaec14
Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
 obua parents: 
14738diff
changeset | 1941 | done | 
| 14738 | 1942 | have yx: "?y <= ?x" | 
| 16568 | 1943 | apply (simp add:diff_def) | 
| 14754 
a080eeeaec14
Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
 obua parents: 
14738diff
changeset | 1944 | apply (rule_tac y=0 in order_trans) | 
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1945 | apply (rule addm2, (simp add: mult_nonneg_nonpos mult_nonneg_nonpos2)+) | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1946 | apply (rule addm, (simp add: mult_nonneg_nonpos mult_nonneg_nonpos2)+) | 
| 14738 | 1947 | done | 
| 1948 | have i1: "a*b <= abs a * abs b" by (simp only: a b yx) | |
| 1949 | have i2: "- (abs a * abs b) <= a*b" by (simp only: a b xy) | |
| 1950 | show ?thesis | |
| 1951 | apply (rule abs_leI) | |
| 1952 | apply (simp add: i1) | |
| 1953 | apply (simp add: i2[simplified minus_le_iff]) | |
| 1954 | done | |
| 1955 | qed | |
| 14294 
f4d806fd72ce
absolute value theorems moved to HOL/Ring_and_Field
 paulson parents: 
14293diff
changeset | 1956 | |
| 14738 | 1957 | lemma abs_eq_mult: | 
| 1958 | assumes "(0 \<le> a \<or> a \<le> 0) \<and> (0 \<le> b \<or> b \<le> 0)" | |
| 1959 | shows "abs (a*b) = abs a * abs (b::'a::lordered_ring)" | |
| 1960 | proof - | |
| 1961 | have s: "(0 <= a*b) | (a*b <= 0)" | |
| 1962 | apply (auto) | |
| 1963 | apply (rule_tac split_mult_pos_le) | |
| 1964 | apply (rule_tac contrapos_np[of "a*b <= 0"]) | |
| 1965 | apply (simp) | |
| 1966 | apply (rule_tac split_mult_neg_le) | |
| 1967 | apply (insert prems) | |
| 1968 | apply (blast) | |
| 1969 | done | |
| 1970 | have mulprts: "a * b = (pprt a + nprt a) * (pprt b + nprt b)" | |
| 1971 | by (simp add: prts[symmetric]) | |
| 1972 | show ?thesis | |
| 1973 | proof cases | |
| 1974 | assume "0 <= a * b" | |
| 1975 | then show ?thesis | |
| 1976 | apply (simp_all add: mulprts abs_prts) | |
| 1977 | apply (insert prems) | |
| 14754 
a080eeeaec14
Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
 obua parents: 
14738diff
changeset | 1978 | apply (auto simp add: | 
| 23477 
f4b83f03cac9
tuned and renamed group_eq_simps and ring_eq_simps
 nipkow parents: 
23413diff
changeset | 1979 | ring_simps | 
| 14754 
a080eeeaec14
Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
 obua parents: 
14738diff
changeset | 1980 | iff2imp[OF zero_le_iff_zero_nprt] iff2imp[OF le_zero_iff_zero_pprt] | 
| 15197 | 1981 | iff2imp[OF le_zero_iff_pprt_id] iff2imp[OF zero_le_iff_nprt_id]) | 
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1982 | apply(drule (1) mult_nonneg_nonpos[of a b], simp) | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1983 | apply(drule (1) mult_nonneg_nonpos2[of b a], simp) | 
| 14738 | 1984 | done | 
| 1985 | next | |
| 1986 | assume "~(0 <= a*b)" | |
| 1987 | with s have "a*b <= 0" by simp | |
| 1988 | then show ?thesis | |
| 1989 | apply (simp_all add: mulprts abs_prts) | |
| 1990 | apply (insert prems) | |
| 23477 
f4b83f03cac9
tuned and renamed group_eq_simps and ring_eq_simps
 nipkow parents: 
23413diff
changeset | 1991 | apply (auto simp add: ring_simps) | 
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1992 | apply(drule (1) mult_nonneg_nonneg[of a b],simp) | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1993 | apply(drule (1) mult_nonpos_nonpos[of a b],simp) | 
| 14738 | 1994 | done | 
| 1995 | qed | |
| 1996 | qed | |
| 14294 
f4d806fd72ce
absolute value theorems moved to HOL/Ring_and_Field
 paulson parents: 
14293diff
changeset | 1997 | |
| 14738 | 1998 | lemma abs_mult: "abs (a * b) = abs a * abs (b::'a::ordered_idom)" | 
| 1999 | by (simp add: abs_eq_mult linorder_linear) | |
| 14293 | 2000 | |
| 14738 | 2001 | lemma abs_mult_self: "abs a * abs a = a * (a::'a::ordered_idom)" | 
| 2002 | by (simp add: abs_if) | |
| 14294 
f4d806fd72ce
absolute value theorems moved to HOL/Ring_and_Field
 paulson parents: 
14293diff
changeset | 2003 | |
| 
f4d806fd72ce
absolute value theorems moved to HOL/Ring_and_Field
 paulson parents: 
14293diff
changeset | 2004 | lemma nonzero_abs_inverse: | 
| 
f4d806fd72ce
absolute value theorems moved to HOL/Ring_and_Field
 paulson parents: 
14293diff
changeset | 2005 | "a \<noteq> 0 ==> abs (inverse (a::'a::ordered_field)) = inverse (abs a)" | 
| 
f4d806fd72ce
absolute value theorems moved to HOL/Ring_and_Field
 paulson parents: 
14293diff
changeset | 2006 | apply (auto simp add: linorder_neq_iff abs_if nonzero_inverse_minus_eq | 
| 
f4d806fd72ce
absolute value theorems moved to HOL/Ring_and_Field
 paulson parents: 
14293diff
changeset | 2007 | negative_imp_inverse_negative) | 
| 
f4d806fd72ce
absolute value theorems moved to HOL/Ring_and_Field
 paulson parents: 
14293diff
changeset | 2008 | apply (blast intro: positive_imp_inverse_positive elim: order_less_asym) | 
| 
f4d806fd72ce
absolute value theorems moved to HOL/Ring_and_Field
 paulson parents: 
14293diff
changeset | 2009 | done | 
| 
f4d806fd72ce
absolute value theorems moved to HOL/Ring_and_Field
 paulson parents: 
14293diff
changeset | 2010 | |
| 
f4d806fd72ce
absolute value theorems moved to HOL/Ring_and_Field
 paulson parents: 
14293diff
changeset | 2011 | lemma abs_inverse [simp]: | 
| 
f4d806fd72ce
absolute value theorems moved to HOL/Ring_and_Field
 paulson parents: 
14293diff
changeset | 2012 |      "abs (inverse (a::'a::{ordered_field,division_by_zero})) = 
 | 
| 
f4d806fd72ce
absolute value theorems moved to HOL/Ring_and_Field
 paulson parents: 
14293diff
changeset | 2013 | inverse (abs a)" | 
| 21328 | 2014 | apply (cases "a=0", simp) | 
| 14294 
f4d806fd72ce
absolute value theorems moved to HOL/Ring_and_Field
 paulson parents: 
14293diff
changeset | 2015 | apply (simp add: nonzero_abs_inverse) | 
| 
f4d806fd72ce
absolute value theorems moved to HOL/Ring_and_Field
 paulson parents: 
14293diff
changeset | 2016 | done | 
| 
f4d806fd72ce
absolute value theorems moved to HOL/Ring_and_Field
 paulson parents: 
14293diff
changeset | 2017 | |
| 
f4d806fd72ce
absolute value theorems moved to HOL/Ring_and_Field
 paulson parents: 
14293diff
changeset | 2018 | lemma nonzero_abs_divide: | 
| 
f4d806fd72ce
absolute value theorems moved to HOL/Ring_and_Field
 paulson parents: 
14293diff
changeset | 2019 | "b \<noteq> 0 ==> abs (a / (b::'a::ordered_field)) = abs a / abs b" | 
| 
f4d806fd72ce
absolute value theorems moved to HOL/Ring_and_Field
 paulson parents: 
14293diff
changeset | 2020 | by (simp add: divide_inverse abs_mult nonzero_abs_inverse) | 
| 
f4d806fd72ce
absolute value theorems moved to HOL/Ring_and_Field
 paulson parents: 
14293diff
changeset | 2021 | |
| 15234 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 2022 | lemma abs_divide [simp]: | 
| 14294 
f4d806fd72ce
absolute value theorems moved to HOL/Ring_and_Field
 paulson parents: 
14293diff
changeset | 2023 |      "abs (a / (b::'a::{ordered_field,division_by_zero})) = abs a / abs b"
 | 
| 21328 | 2024 | apply (cases "b=0", simp) | 
| 14294 
f4d806fd72ce
absolute value theorems moved to HOL/Ring_and_Field
 paulson parents: 
14293diff
changeset | 2025 | apply (simp add: nonzero_abs_divide) | 
| 
f4d806fd72ce
absolute value theorems moved to HOL/Ring_and_Field
 paulson parents: 
14293diff
changeset | 2026 | done | 
| 
f4d806fd72ce
absolute value theorems moved to HOL/Ring_and_Field
 paulson parents: 
14293diff
changeset | 2027 | |
| 
f4d806fd72ce
absolute value theorems moved to HOL/Ring_and_Field
 paulson parents: 
14293diff
changeset | 2028 | lemma abs_mult_less: | 
| 14738 | 2029 | "[| abs a < c; abs b < d |] ==> abs a * abs b < c*(d::'a::ordered_idom)" | 
| 14294 
f4d806fd72ce
absolute value theorems moved to HOL/Ring_and_Field
 paulson parents: 
14293diff
changeset | 2030 | proof - | 
| 
f4d806fd72ce
absolute value theorems moved to HOL/Ring_and_Field
 paulson parents: 
14293diff
changeset | 2031 | assume ac: "abs a < c" | 
| 
f4d806fd72ce
absolute value theorems moved to HOL/Ring_and_Field
 paulson parents: 
14293diff
changeset | 2032 | hence cpos: "0<c" by (blast intro: order_le_less_trans abs_ge_zero) | 
| 
f4d806fd72ce
absolute value theorems moved to HOL/Ring_and_Field
 paulson parents: 
14293diff
changeset | 2033 | assume "abs b < d" | 
| 
f4d806fd72ce
absolute value theorems moved to HOL/Ring_and_Field
 paulson parents: 
14293diff
changeset | 2034 | thus ?thesis by (simp add: ac cpos mult_strict_mono) | 
| 
f4d806fd72ce
absolute value theorems moved to HOL/Ring_and_Field
 paulson parents: 
14293diff
changeset | 2035 | qed | 
| 14293 | 2036 | |
| 14738 | 2037 | lemma eq_minus_self_iff: "(a = -a) = (a = (0::'a::ordered_idom))" | 
| 2038 | by (force simp add: order_eq_iff le_minus_self_iff minus_le_self_iff) | |
| 2039 | ||
| 2040 | lemma less_minus_self_iff: "(a < -a) = (a < (0::'a::ordered_idom))" | |
| 2041 | by (simp add: order_less_le le_minus_self_iff eq_minus_self_iff) | |
| 2042 | ||
| 2043 | lemma abs_less_iff: "(abs a < b) = (a < b & -a < (b::'a::ordered_idom))" | |
| 2044 | apply (simp add: order_less_le abs_le_iff) | |
| 2045 | apply (auto simp add: abs_if minus_le_self_iff eq_minus_self_iff) | |
| 2046 | apply (simp add: le_minus_self_iff linorder_neq_iff) | |
| 2047 | done | |
| 2048 | ||
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 2049 | lemma abs_mult_pos: "(0::'a::ordered_idom) <= x ==> | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 2050 | (abs y) * x = abs (y * x)"; | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 2051 | apply (subst abs_mult); | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 2052 | apply simp; | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 2053 | done; | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 2054 | |
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 2055 | lemma abs_div_pos: "(0::'a::{division_by_zero,ordered_field}) < y ==> 
 | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 2056 | abs x / y = abs (x / y)"; | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 2057 | apply (subst abs_divide); | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 2058 | apply (simp add: order_less_imp_le); | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 2059 | done; | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 2060 | |
| 23389 | 2061 | |
| 19404 | 2062 | subsection {* Bounds of products via negative and positive Part *}
 | 
| 15178 | 2063 | |
| 15580 | 2064 | lemma mult_le_prts: | 
| 2065 | assumes | |
| 2066 | "a1 <= (a::'a::lordered_ring)" | |
| 2067 | "a <= a2" | |
| 2068 | "b1 <= b" | |
| 2069 | "b <= b2" | |
| 2070 | shows | |
| 2071 | "a * b <= pprt a2 * pprt b2 + pprt a1 * nprt b2 + nprt a2 * pprt b1 + nprt a1 * nprt b1" | |
| 2072 | proof - | |
| 2073 | have "a * b = (pprt a + nprt a) * (pprt b + nprt b)" | |
| 2074 | apply (subst prts[symmetric])+ | |
| 2075 | apply simp | |
| 2076 | done | |
| 2077 | then have "a * b = pprt a * pprt b + pprt a * nprt b + nprt a * pprt b + nprt a * nprt b" | |
| 23477 
f4b83f03cac9
tuned and renamed group_eq_simps and ring_eq_simps
 nipkow parents: 
23413diff
changeset | 2078 | by (simp add: ring_simps) | 
| 15580 | 2079 | moreover have "pprt a * pprt b <= pprt a2 * pprt b2" | 
| 2080 | by (simp_all add: prems mult_mono) | |
| 2081 | moreover have "pprt a * nprt b <= pprt a1 * nprt b2" | |
| 2082 | proof - | |
| 2083 | have "pprt a * nprt b <= pprt a * nprt b2" | |
| 2084 | by (simp add: mult_left_mono prems) | |
| 2085 | moreover have "pprt a * nprt b2 <= pprt a1 * nprt b2" | |
| 2086 | by (simp add: mult_right_mono_neg prems) | |
| 2087 | ultimately show ?thesis | |
| 2088 | by simp | |
| 2089 | qed | |
| 2090 | moreover have "nprt a * pprt b <= nprt a2 * pprt b1" | |
| 2091 | proof - | |
| 2092 | have "nprt a * pprt b <= nprt a2 * pprt b" | |
| 2093 | by (simp add: mult_right_mono prems) | |
| 2094 | moreover have "nprt a2 * pprt b <= nprt a2 * pprt b1" | |
| 2095 | by (simp add: mult_left_mono_neg prems) | |
| 2096 | ultimately show ?thesis | |
| 2097 | by simp | |
| 2098 | qed | |
| 2099 | moreover have "nprt a * nprt b <= nprt a1 * nprt b1" | |
| 2100 | proof - | |
| 2101 | have "nprt a * nprt b <= nprt a * nprt b1" | |
| 2102 | by (simp add: mult_left_mono_neg prems) | |
| 2103 | moreover have "nprt a * nprt b1 <= nprt a1 * nprt b1" | |
| 2104 | by (simp add: mult_right_mono_neg prems) | |
| 2105 | ultimately show ?thesis | |
| 2106 | by simp | |
| 2107 | qed | |
| 2108 | ultimately show ?thesis | |
| 2109 | by - (rule add_mono | simp)+ | |
| 2110 | qed | |
| 19404 | 2111 | |
| 2112 | lemma mult_ge_prts: | |
| 15178 | 2113 | assumes | 
| 19404 | 2114 | "a1 <= (a::'a::lordered_ring)" | 
| 2115 | "a <= a2" | |
| 2116 | "b1 <= b" | |
| 2117 | "b <= b2" | |
| 15178 | 2118 | shows | 
| 19404 | 2119 | "a * b >= nprt a1 * pprt b2 + nprt a2 * nprt b2 + pprt a1 * pprt b1 + pprt a2 * nprt b1" | 
| 2120 | proof - | |
| 2121 | from prems have a1:"- a2 <= -a" by auto | |
| 2122 | from prems have a2: "-a <= -a1" by auto | |
| 2123 | from mult_le_prts[of "-a2" "-a" "-a1" "b1" b "b2", OF a1 a2 prems(3) prems(4), simplified nprt_neg pprt_neg] | |
| 2124 | have le: "- (a * b) <= - nprt a1 * pprt b2 + - nprt a2 * nprt b2 + - pprt a1 * pprt b1 + - pprt a2 * nprt b1" by simp | |
| 2125 | then have "-(- nprt a1 * pprt b2 + - nprt a2 * nprt b2 + - pprt a1 * pprt b1 + - pprt a2 * nprt b1) <= a * b" | |
| 2126 | by (simp only: minus_le_iff) | |
| 2127 | then show ?thesis by simp | |
| 15178 | 2128 | qed | 
| 2129 | ||
| 23389 | 2130 | |
| 22842 | 2131 | subsection {* Theorems for proof tools *}
 | 
| 2132 | ||
| 24427 | 2133 | lemma add_mono_thms_ordered_semiring [noatp]: | 
| 22842 | 2134 | fixes i j k :: "'a\<Colon>pordered_ab_semigroup_add" | 
| 2135 | shows "i \<le> j \<and> k \<le> l \<Longrightarrow> i + k \<le> j + l" | |
| 2136 | and "i = j \<and> k \<le> l \<Longrightarrow> i + k \<le> j + l" | |
| 2137 | and "i \<le> j \<and> k = l \<Longrightarrow> i + k \<le> j + l" | |
| 2138 | and "i = j \<and> k = l \<Longrightarrow> i + k = j + l" | |
| 2139 | by (rule add_mono, clarify+)+ | |
| 2140 | ||
| 24427 | 2141 | lemma add_mono_thms_ordered_field [noatp]: | 
| 22842 | 2142 | fixes i j k :: "'a\<Colon>pordered_cancel_ab_semigroup_add" | 
| 2143 | shows "i < j \<and> k = l \<Longrightarrow> i + k < j + l" | |
| 2144 | and "i = j \<and> k < l \<Longrightarrow> i + k < j + l" | |
| 2145 | and "i < j \<and> k \<le> l \<Longrightarrow> i + k < j + l" | |
| 2146 | and "i \<le> j \<and> k < l \<Longrightarrow> i + k < j + l" | |
| 2147 | and "i < j \<and> k < l \<Longrightarrow> i + k < j + l" | |
| 2148 | by (auto intro: add_strict_right_mono add_strict_left_mono | |
| 2149 | add_less_le_mono add_le_less_mono add_strict_mono) | |
| 2150 | ||
| 14265 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 2151 | end |