|
4714
|
1 |
(* Title: HOL/Lex/AutoMaxChop.thy
|
|
|
2 |
ID: $Id$
|
|
|
3 |
Author: Tobias Nipkow
|
|
|
4 |
Copyright 1998 TUM
|
|
|
5 |
*)
|
|
|
6 |
|
|
14428
|
7 |
theory AutoMaxChop = DA + MaxChop:
|
|
4714
|
8 |
|
|
|
9 |
consts
|
|
4910
|
10 |
auto_split :: "('a,'s)da => 's => 'a list * 'a list => 'a list => 'a splitter"
|
|
5184
|
11 |
primrec
|
|
4910
|
12 |
"auto_split A q res ps [] = (if fin A q then (ps,[]) else res)"
|
|
|
13 |
"auto_split A q res ps (x#xs) =
|
|
|
14 |
auto_split A (next A x q) (if fin A q then (ps,x#xs) else res) (ps@[x]) xs"
|
|
4714
|
15 |
|
|
|
16 |
constdefs
|
|
4832
|
17 |
auto_chop :: "('a,'s)da => 'a chopper"
|
|
4910
|
18 |
"auto_chop A == chop (%xs. auto_split A (start A) ([],xs) [] xs)"
|
|
14431
|
19 |
|
|
|
20 |
|
|
|
21 |
lemma delta_snoc: "delta A (xs@[y]) q = next A y (delta A xs q)";
|
|
|
22 |
by simp
|
|
|
23 |
|
|
|
24 |
lemma auto_split_lemma:
|
|
|
25 |
"!!q ps res. auto_split A (delta A ps q) res ps xs =
|
|
|
26 |
maxsplit (%ys. fin A (delta A ys q)) res ps xs"
|
|
|
27 |
apply (induct xs)
|
|
|
28 |
apply simp
|
|
|
29 |
apply (simp add: delta_snoc[symmetric] del: delta_append)
|
|
|
30 |
done
|
|
|
31 |
|
|
|
32 |
lemma auto_split_is_maxsplit:
|
|
|
33 |
"auto_split A (start A) res [] xs = maxsplit (accepts A) res [] xs"
|
|
|
34 |
apply (unfold accepts_def)
|
|
|
35 |
apply (subst delta_Nil[where s = "start A", symmetric])
|
|
|
36 |
apply (subst auto_split_lemma)
|
|
|
37 |
apply simp
|
|
|
38 |
done
|
|
|
39 |
|
|
|
40 |
lemma is_maxsplitter_auto_split:
|
|
|
41 |
"is_maxsplitter (accepts A) (%xs. auto_split A (start A) ([],xs) [] xs)"
|
|
|
42 |
by (simp add: auto_split_is_maxsplit is_maxsplitter_maxsplit)
|
|
|
43 |
|
|
|
44 |
|
|
|
45 |
lemma is_maxchopper_auto_chop:
|
|
|
46 |
"is_maxchopper (accepts A) (auto_chop A)"
|
|
|
47 |
apply (unfold auto_chop_def)
|
|
|
48 |
apply (rule is_maxchopper_chop)
|
|
|
49 |
apply (rule is_maxsplitter_auto_split)
|
|
|
50 |
done
|
|
|
51 |
|
|
4714
|
52 |
end
|