src/HOL/Lex/AutoMaxChop.thy
author webertj
Wed, 10 Mar 2004 22:33:48 +0100
changeset 14456 cca28ec5f9a6
parent 14431 ade3d26e0caf
permissions -rw-r--r--
support for non-recursive IDTs, The, arbitrary, Hilbert_Choice.Eps

(*  Title:      HOL/Lex/AutoMaxChop.thy
    ID:         $Id$
    Author:     Tobias Nipkow
    Copyright   1998 TUM
*)

theory AutoMaxChop = DA + MaxChop:

consts
 auto_split :: "('a,'s)da => 's  => 'a list * 'a list => 'a list => 'a splitter"
primrec
"auto_split A q res ps []     = (if fin A q then (ps,[]) else res)"
"auto_split A q res ps (x#xs) =
   auto_split A (next A x q) (if fin A q then (ps,x#xs) else res) (ps@[x]) xs"

constdefs
 auto_chop :: "('a,'s)da => 'a chopper"
"auto_chop A == chop (%xs. auto_split A (start A) ([],xs) [] xs)"


lemma delta_snoc: "delta A (xs@[y]) q = next A y (delta A xs q)";
by simp

lemma auto_split_lemma:
 "!!q ps res. auto_split A (delta A ps q) res ps xs =
              maxsplit (%ys. fin A (delta A ys q)) res ps xs"
apply (induct xs)
 apply simp
apply (simp add: delta_snoc[symmetric] del: delta_append)
done

lemma auto_split_is_maxsplit:
 "auto_split A (start A) res [] xs = maxsplit (accepts A) res [] xs"
apply (unfold accepts_def)
apply (subst delta_Nil[where s = "start A", symmetric])
apply (subst auto_split_lemma)
apply simp
done

lemma is_maxsplitter_auto_split:
 "is_maxsplitter (accepts A) (%xs. auto_split A (start A) ([],xs) [] xs)"
by (simp add: auto_split_is_maxsplit is_maxsplitter_maxsplit)


lemma is_maxchopper_auto_chop:
 "is_maxchopper (accepts A) (auto_chop A)"
apply (unfold auto_chop_def)
apply (rule is_maxchopper_chop)
apply (rule is_maxsplitter_auto_split)
done

end