8746
|
1 |
\begin{isabelle}%
|
|
2 |
%
|
|
3 |
\begin{isamarkuptext}%
|
|
4 |
\noindent
|
|
5 |
The task is to develop a compiler from a generic type of expressions (built
|
|
6 |
up from variables, constants and binary operations) to a stack machine. This
|
|
7 |
generic type of expressions is a generalization of the boolean expressions in
|
|
8 |
\S\ref{sec:boolex}. This time we do not commit ourselves to a particular
|
|
9 |
type of variables or values but make them type parameters. Neither is there
|
|
10 |
a fixed set of binary operations: instead the expression contains the
|
|
11 |
appropriate function itself.%
|
|
12 |
\end{isamarkuptext}%
|
|
13 |
\isacommand{types}~'v~binop~=~{"}'v~{\isasymRightarrow}~'v~{\isasymRightarrow}~'v{"}\isanewline
|
|
14 |
\isacommand{datatype}~('a,'v)expr~=~Cex~'v\isanewline
|
|
15 |
~~~~~~~~~~~~~~~~~~~~~|~Vex~'a\isanewline
|
|
16 |
~~~~~~~~~~~~~~~~~~~~~|~Bex~{"}'v~binop{"}~~{"}('a,'v)expr{"}~~{"}('a,'v)expr{"}%
|
|
17 |
\begin{isamarkuptext}%
|
|
18 |
\noindent
|
|
19 |
The three constructors represent constants, variables and the combination of
|
|
20 |
two subexpressions with a binary operation.
|
|
21 |
|
|
22 |
The value of an expression w.r.t.\ an environment that maps variables to
|
|
23 |
values is easily defined:%
|
|
24 |
\end{isamarkuptext}%
|
|
25 |
\isacommand{consts}~value~::~{"}('a~{\isasymRightarrow}~'v)~{\isasymRightarrow}~('a,'v)expr~{\isasymRightarrow}~'v{"}\isanewline
|
|
26 |
\isacommand{primrec}\isanewline
|
|
27 |
{"}value~env~(Cex~v)~=~v{"}\isanewline
|
|
28 |
{"}value~env~(Vex~a)~=~env~a{"}\isanewline
|
|
29 |
{"}value~env~(Bex~f~e1~e2)~=~f~(value~env~e1)~(value~env~e2){"}%
|
|
30 |
\begin{isamarkuptext}%
|
|
31 |
The stack machine has three instructions: load a constant value onto the
|
|
32 |
stack, load the contents of a certain address onto the stack, and apply a
|
|
33 |
binary operation to the two topmost elements of the stack, replacing them by
|
|
34 |
the result. As for \isa{expr}, addresses and values are type parameters:%
|
|
35 |
\end{isamarkuptext}%
|
|
36 |
\isacommand{datatype}~('a,'v)~instr~=~Const~'v\isanewline
|
|
37 |
~~~~~~~~~~~~~~~~~~~~~~~|~Load~'a\isanewline
|
|
38 |
~~~~~~~~~~~~~~~~~~~~~~~|~Apply~{"}'v~binop{"}%
|
|
39 |
\begin{isamarkuptext}%
|
|
40 |
The execution of the stack machine is modelled by a function \isa{exec}
|
|
41 |
that takes a store (modelled as a function from addresses to values, just
|
|
42 |
like the environment for evaluating expressions), a stack (modelled as a
|
|
43 |
list) of values, and a list of instructions, and returns the stack at the end
|
|
44 |
of the execution---the store remains unchanged:%
|
|
45 |
\end{isamarkuptext}%
|
|
46 |
\isacommand{consts}~exec~::~{"}('a{\isasymRightarrow}'v)~{\isasymRightarrow}~'v~list~{\isasymRightarrow}~('a,'v)instr~list~{\isasymRightarrow}~'v~list{"}\isanewline
|
|
47 |
\isacommand{primrec}\isanewline
|
|
48 |
{"}exec~s~vs~[]~=~vs{"}\isanewline
|
|
49 |
{"}exec~s~vs~(i\#is)~=~(case~i~of\isanewline
|
|
50 |
~~~~Const~v~~{\isasymRightarrow}~exec~s~(v\#vs)~is\isanewline
|
|
51 |
~~|~Load~a~~~{\isasymRightarrow}~exec~s~((s~a)\#vs)~is\isanewline
|
|
52 |
~~|~Apply~f~~{\isasymRightarrow}~exec~s~(~(f~(hd~vs)~(hd(tl~vs)))\#(tl(tl~vs))~)~is){"}%
|
|
53 |
\begin{isamarkuptext}%
|
|
54 |
\noindent
|
|
55 |
Recall that \isa{hd} and \isa{tl}
|
|
56 |
return the first element and the remainder of a list.
|
|
57 |
Because all functions are total, \isa{hd} is defined even for the empty
|
|
58 |
list, although we do not know what the result is. Thus our model of the
|
|
59 |
machine always terminates properly, although the above definition does not
|
|
60 |
tell us much about the result in situations where \isa{Apply} was executed
|
|
61 |
with fewer than two elements on the stack.
|
|
62 |
|
|
63 |
The compiler is a function from expressions to a list of instructions. Its
|
|
64 |
definition is pretty much obvious:%
|
|
65 |
\end{isamarkuptext}%
|
|
66 |
\isacommand{consts}~comp~::~{"}('a,'v)expr~{\isasymRightarrow}~('a,'v)instr~list{"}\isanewline
|
|
67 |
\isacommand{primrec}\isanewline
|
|
68 |
{"}comp~(Cex~v)~~~~~~~=~[Const~v]{"}\isanewline
|
|
69 |
{"}comp~(Vex~a)~~~~~~~=~[Load~a]{"}\isanewline
|
|
70 |
{"}comp~(Bex~f~e1~e2)~=~(comp~e2)~@~(comp~e1)~@~[Apply~f]{"}%
|
|
71 |
\begin{isamarkuptext}%
|
|
72 |
Now we have to prove the correctness of the compiler, i.e.\ that the
|
|
73 |
execution of a compiled expression results in the value of the expression:%
|
|
74 |
\end{isamarkuptext}%
|
|
75 |
\isacommand{theorem}~{"}exec~s~[]~(comp~e)~=~[value~s~e]{"}%
|
|
76 |
\begin{isamarkuptext}%
|
|
77 |
\noindent
|
|
78 |
This theorem needs to be generalized to%
|
|
79 |
\end{isamarkuptext}%
|
|
80 |
\isacommand{theorem}~{"}{\isasymforall}vs.~exec~s~vs~(comp~e)~=~(value~s~e)~\#~vs{"}%
|
|
81 |
\begin{isamarkuptxt}%
|
|
82 |
\noindent
|
|
83 |
which is proved by induction on \isa{e} followed by simplification, once
|
|
84 |
we have the following lemma about executing the concatenation of two
|
|
85 |
instruction sequences:%
|
|
86 |
\end{isamarkuptxt}%
|
|
87 |
\isacommand{lemma}~exec\_app[simp]:\isanewline
|
|
88 |
~~{"}{\isasymforall}vs.~exec~s~vs~(xs@ys)~=~exec~s~(exec~s~vs~xs)~ys{"}%
|
|
89 |
\begin{isamarkuptxt}%
|
|
90 |
\noindent
|
|
91 |
This requires induction on \isa{xs} and ordinary simplification for the
|
|
92 |
base cases. In the induction step, simplification leaves us with a formula
|
|
93 |
that contains two \isa{case}-expressions over instructions. Thus we add
|
|
94 |
automatic case splitting as well, which finishes the proof:%
|
|
95 |
\end{isamarkuptxt}%
|
|
96 |
\isacommand{apply}(induct\_tac~xs,~simp,~simp~split:~instr.split)\isacommand{.}%
|
|
97 |
\begin{isamarkuptext}%
|
|
98 |
\noindent
|
|
99 |
Note that because \isaindex{auto} performs simplification, it can
|
|
100 |
also be modified in the same way \isa{simp} can. Thus the proof can be
|
|
101 |
rewritten as%
|
|
102 |
\end{isamarkuptext}%
|
|
103 |
\isacommand{apply}(induct\_tac~xs,~auto~split:~instr.split)\isacommand{.}%
|
|
104 |
\begin{isamarkuptext}%
|
|
105 |
\noindent
|
|
106 |
Although this is more compact, it is less clear for the reader of the proof.
|
|
107 |
|
|
108 |
We could now go back and prove \isa{exec s [] (comp e) = [value s e]}
|
|
109 |
merely by simplification with the generalized version we just proved.
|
|
110 |
However, this is unnecessary because the generalized version fully subsumes
|
|
111 |
its instance.%
|
|
112 |
\end{isamarkuptext}%
|
|
113 |
\end{isabelle}%
|