author | wenzelm |
Tue, 10 Jul 2007 23:29:43 +0200 | |
changeset 23719 | ccd9cb15c062 |
parent 21423 | 6cdd0589aa73 |
child 27541 | 9e585e99b494 |
permissions | -rw-r--r-- |
7998 | 1 |
(* |
2 |
Ring homomorphism |
|
3 |
$Id$ |
|
4 |
Author: Clemens Ballarin, started 15 April 1997 |
|
5 |
*) |
|
6 |
||
21423 | 7 |
header {* Ring homomorphism *} |
8 |
||
20318
0e0ea63fe768
Restructured algebra library, added ideals and quotient rings.
ballarin
parents:
17479
diff
changeset
|
9 |
theory RingHomo imports Ring2 begin |
7998 | 10 |
|
21423 | 11 |
definition |
12 |
homo :: "('a::ring => 'b::ring) => bool" where |
|
13 |
"homo f \<longleftrightarrow> (ALL a b. f (a + b) = f a + f b & |
|
17479 | 14 |
f (a * b) = f a * f b) & |
15 |
f 1 = 1" |
|
7998 | 16 |
|
21423 | 17 |
|
18 |
lemma homoI: |
|
19 |
"!! f. [| !! a b. f (a + b) = f a + f b; !! a b. f (a * b) = f a * f b; |
|
20 |
f 1 = 1 |] ==> homo f" |
|
21 |
unfolding homo_def by blast |
|
22 |
||
23 |
lemma homo_add [simp]: "!! f. homo f ==> f (a + b) = f a + f b" |
|
24 |
unfolding homo_def by blast |
|
25 |
||
26 |
lemma homo_mult [simp]: "!! f. homo f ==> f (a * b) = f a * f b" |
|
27 |
unfolding homo_def by blast |
|
28 |
||
29 |
lemma homo_one [simp]: "!! f. homo f ==> f 1 = 1" |
|
30 |
unfolding homo_def by blast |
|
31 |
||
32 |
lemma homo_zero [simp]: "!! f::('a::ring=>'b::ring). homo f ==> f 0 = 0" |
|
33 |
apply (rule_tac a = "f 0" in a_lcancel) |
|
34 |
apply (simp (no_asm_simp) add: homo_add [symmetric]) |
|
35 |
done |
|
36 |
||
37 |
lemma homo_uminus [simp]: |
|
38 |
"!! f::('a::ring=>'b::ring). homo f ==> f (-a) = - f a" |
|
39 |
apply (rule_tac a = "f a" in a_lcancel) |
|
40 |
apply (frule homo_zero) |
|
41 |
apply (simp (no_asm_simp) add: homo_add [symmetric]) |
|
42 |
done |
|
43 |
||
44 |
lemma homo_power [simp]: "!! f::('a::ring=>'b::ring). homo f ==> f (a ^ n) = f a ^ n" |
|
45 |
apply (induct_tac n) |
|
46 |
apply (drule homo_one) |
|
47 |
apply simp |
|
48 |
apply (drule_tac a = "a^n" and b = "a" in homo_mult) |
|
49 |
apply simp |
|
50 |
done |
|
51 |
||
52 |
lemma homo_SUM [simp]: |
|
53 |
"!! f::('a::ring=>'b::ring). |
|
54 |
homo f ==> f (setsum g {..n::nat}) = setsum (f o g) {..n}" |
|
55 |
apply (induct_tac n) |
|
56 |
apply simp |
|
57 |
apply simp |
|
58 |
done |
|
59 |
||
60 |
lemma id_homo [simp]: "homo (%x. x)" |
|
61 |
by (blast intro!: homoI) |
|
62 |
||
7998 | 63 |
end |