(*
Ring homomorphism
$Id$
Author: Clemens Ballarin, started 15 April 1997
*)
header {* Ring homomorphism *}
theory RingHomo imports Ring2 begin
definition
homo :: "('a::ring => 'b::ring) => bool" where
"homo f \<longleftrightarrow> (ALL a b. f (a + b) = f a + f b &
f (a * b) = f a * f b) &
f 1 = 1"
lemma homoI:
"!! f. [| !! a b. f (a + b) = f a + f b; !! a b. f (a * b) = f a * f b;
f 1 = 1 |] ==> homo f"
unfolding homo_def by blast
lemma homo_add [simp]: "!! f. homo f ==> f (a + b) = f a + f b"
unfolding homo_def by blast
lemma homo_mult [simp]: "!! f. homo f ==> f (a * b) = f a * f b"
unfolding homo_def by blast
lemma homo_one [simp]: "!! f. homo f ==> f 1 = 1"
unfolding homo_def by blast
lemma homo_zero [simp]: "!! f::('a::ring=>'b::ring). homo f ==> f 0 = 0"
apply (rule_tac a = "f 0" in a_lcancel)
apply (simp (no_asm_simp) add: homo_add [symmetric])
done
lemma homo_uminus [simp]:
"!! f::('a::ring=>'b::ring). homo f ==> f (-a) = - f a"
apply (rule_tac a = "f a" in a_lcancel)
apply (frule homo_zero)
apply (simp (no_asm_simp) add: homo_add [symmetric])
done
lemma homo_power [simp]: "!! f::('a::ring=>'b::ring). homo f ==> f (a ^ n) = f a ^ n"
apply (induct_tac n)
apply (drule homo_one)
apply simp
apply (drule_tac a = "a^n" and b = "a" in homo_mult)
apply simp
done
lemma homo_SUM [simp]:
"!! f::('a::ring=>'b::ring).
homo f ==> f (setsum g {..n::nat}) = setsum (f o g) {..n}"
apply (induct_tac n)
apply simp
apply simp
done
lemma id_homo [simp]: "homo (%x. x)"
by (blast intro!: homoI)
end