author | wenzelm |
Tue, 10 Jul 2007 23:29:43 +0200 | |
changeset 23719 | ccd9cb15c062 |
parent 23393 | 31781b2de73d |
child 23760 | aca2c7f80e2f |
permissions | -rw-r--r-- |
18266
55c201fe4c95
added an authors section (please let me know if somebody is left out or unhappy)
urbanc
parents:
18263
diff
changeset
|
1 |
(* $Id$ *) |
55c201fe4c95
added an authors section (please let me know if somebody is left out or unhappy)
urbanc
parents:
18263
diff
changeset
|
2 |
|
18577
a636846a02c7
added more documentation; will now try out a modification
urbanc
parents:
18424
diff
changeset
|
3 |
(*<*) |
19501 | 4 |
theory Fsub |
5 |
imports "../Nominal" |
|
18269 | 6 |
begin |
18577
a636846a02c7
added more documentation; will now try out a modification
urbanc
parents:
18424
diff
changeset
|
7 |
(*>*) |
18269 | 8 |
|
18577
a636846a02c7
added more documentation; will now try out a modification
urbanc
parents:
18424
diff
changeset
|
9 |
text{* Authors: Christian Urban, |
a636846a02c7
added more documentation; will now try out a modification
urbanc
parents:
18424
diff
changeset
|
10 |
Benjamin Pierce, |
18650 | 11 |
Dimitrios Vytiniotis |
12 |
Stephanie Weirich and |
|
13 |
Steve Zdancewic |
|
18266
55c201fe4c95
added an authors section (please let me know if somebody is left out or unhappy)
urbanc
parents:
18263
diff
changeset
|
14 |
|
18577
a636846a02c7
added more documentation; will now try out a modification
urbanc
parents:
18424
diff
changeset
|
15 |
with great help from Stefan Berghofer and Markus Wenzel. *} |
18246 | 16 |
|
18621 | 17 |
section {* Types for Names, Nominal Datatype Declaration for Types and Terms *} |
18424 | 18 |
|
18577
a636846a02c7
added more documentation; will now try out a modification
urbanc
parents:
18424
diff
changeset
|
19 |
text {* The main point of this solution is to use names everywhere (be they bound, |
18621 | 20 |
binding or free). In System \FSUB{} there are two kinds of names corresponding to |
21 |
type-variables and to term-variables. These two kinds of names are represented in |
|
18577
a636846a02c7
added more documentation; will now try out a modification
urbanc
parents:
18424
diff
changeset
|
22 |
the nominal datatype package as atom-types @{text "tyvrs"} and @{text "vrs"}: *} |
a636846a02c7
added more documentation; will now try out a modification
urbanc
parents:
18424
diff
changeset
|
23 |
|
18246 | 24 |
atom_decl tyvrs vrs |
25 |
||
18577
a636846a02c7
added more documentation; will now try out a modification
urbanc
parents:
18424
diff
changeset
|
26 |
text{* There are numerous facts that come with this declaration: for example that |
a636846a02c7
added more documentation; will now try out a modification
urbanc
parents:
18424
diff
changeset
|
27 |
there are infinitely many elements in @{text "tyvrs"} and @{text "vrs"}. *} |
a636846a02c7
added more documentation; will now try out a modification
urbanc
parents:
18424
diff
changeset
|
28 |
|
a636846a02c7
added more documentation; will now try out a modification
urbanc
parents:
18424
diff
changeset
|
29 |
text{* The constructors for types and terms in System \FSUB{} contain abstractions |
a636846a02c7
added more documentation; will now try out a modification
urbanc
parents:
18424
diff
changeset
|
30 |
over type-variables and term-variables. The nominal datatype-package uses |
a636846a02c7
added more documentation; will now try out a modification
urbanc
parents:
18424
diff
changeset
|
31 |
@{text "\<guillemotleft>\<dots>\<guillemotright>\<dots>"} to indicate where abstractions occur. *} |
a636846a02c7
added more documentation; will now try out a modification
urbanc
parents:
18424
diff
changeset
|
32 |
|
18424 | 33 |
nominal_datatype ty = |
18577
a636846a02c7
added more documentation; will now try out a modification
urbanc
parents:
18424
diff
changeset
|
34 |
Tvar "tyvrs" |
18424 | 35 |
| Top |
18577
a636846a02c7
added more documentation; will now try out a modification
urbanc
parents:
18424
diff
changeset
|
36 |
| Arrow "ty" "ty" ("_ \<rightarrow> _" [100,100] 100) |
a636846a02c7
added more documentation; will now try out a modification
urbanc
parents:
18424
diff
changeset
|
37 |
| Forall "\<guillemotleft>tyvrs\<guillemotright>ty" "ty" |
18246 | 38 |
|
18424 | 39 |
nominal_datatype trm = |
40 |
Var "vrs" |
|
18577
a636846a02c7
added more documentation; will now try out a modification
urbanc
parents:
18424
diff
changeset
|
41 |
| Lam "\<guillemotleft>vrs\<guillemotright>trm" "ty" |
a636846a02c7
added more documentation; will now try out a modification
urbanc
parents:
18424
diff
changeset
|
42 |
| Tabs "\<guillemotleft>tyvrs\<guillemotright>trm" "ty" |
18424 | 43 |
| App "trm" "trm" |
18577
a636846a02c7
added more documentation; will now try out a modification
urbanc
parents:
18424
diff
changeset
|
44 |
| Tapp "trm" "ty" |
a636846a02c7
added more documentation; will now try out a modification
urbanc
parents:
18424
diff
changeset
|
45 |
|
a636846a02c7
added more documentation; will now try out a modification
urbanc
parents:
18424
diff
changeset
|
46 |
text {* To be polite to the eye, some more familiar notation is introduced. |
18621 | 47 |
Because of the change in the order of arguments, one needs to use |
18577
a636846a02c7
added more documentation; will now try out a modification
urbanc
parents:
18424
diff
changeset
|
48 |
translation rules, instead of syntax annotations at the term-constructors |
18650 | 49 |
as given above for @{term "Arrow"}. *} |
18246 | 50 |
|
51 |
syntax |
|
18577
a636846a02c7
added more documentation; will now try out a modification
urbanc
parents:
18424
diff
changeset
|
52 |
Forall_syn :: "tyvrs \<Rightarrow> ty \<Rightarrow> ty \<Rightarrow> ty" ("\<forall>[_<:_]._" [100,100,100] 100) |
a636846a02c7
added more documentation; will now try out a modification
urbanc
parents:
18424
diff
changeset
|
53 |
Lam_syn :: "vrs \<Rightarrow> ty \<Rightarrow> trm \<Rightarrow> trm" ("Lam [_:_]._" [100,100,100] 100) |
a636846a02c7
added more documentation; will now try out a modification
urbanc
parents:
18424
diff
changeset
|
54 |
Tabs_syn :: "tyvrs \<Rightarrow> ty \<Rightarrow> trm \<Rightarrow> trm" ("Tabs [_<:_]._" [100,100,100] 100) |
18424 | 55 |
|
18246 | 56 |
translations |
18577
a636846a02c7
added more documentation; will now try out a modification
urbanc
parents:
18424
diff
changeset
|
57 |
"\<forall>[X<:T\<^isub>1].T\<^isub>2" \<rightleftharpoons> "ty.Forall X T\<^isub>2 T\<^isub>1" |
a636846a02c7
added more documentation; will now try out a modification
urbanc
parents:
18424
diff
changeset
|
58 |
"Lam [x:T].t" \<rightleftharpoons> "trm.Lam x t T" |
a636846a02c7
added more documentation; will now try out a modification
urbanc
parents:
18424
diff
changeset
|
59 |
"Tabs [X<:T].t" \<rightleftharpoons> "trm.Tabs X t T" |
18246 | 60 |
|
18621 | 61 |
text {* Again there are numerous facts that are proved automatically for @{typ "ty"} |
18650 | 62 |
and @{typ "trm"}: for example that the set of free variables, i.e.~the @{text "support"}, |
63 |
is finite. However note that nominal-datatype declarations do \emph{not} define |
|
64 |
``classical" constructor-based datatypes, but rather define $\alpha$-equivalence |
|
18621 | 65 |
classes---we can for example show that $\alpha$-equivalent @{typ "ty"}s |
18577
a636846a02c7
added more documentation; will now try out a modification
urbanc
parents:
18424
diff
changeset
|
66 |
and @{typ "trm"}s are equal: *} |
a636846a02c7
added more documentation; will now try out a modification
urbanc
parents:
18424
diff
changeset
|
67 |
|
a636846a02c7
added more documentation; will now try out a modification
urbanc
parents:
18424
diff
changeset
|
68 |
lemma alpha_illustration: |
a636846a02c7
added more documentation; will now try out a modification
urbanc
parents:
18424
diff
changeset
|
69 |
shows "\<forall>[X<:T].(Tvar X) = \<forall>[Y<:T].(Tvar Y)" |
a636846a02c7
added more documentation; will now try out a modification
urbanc
parents:
18424
diff
changeset
|
70 |
and "Lam [x:T].(Var x) = Lam [y:T].(Var y)" |
a636846a02c7
added more documentation; will now try out a modification
urbanc
parents:
18424
diff
changeset
|
71 |
by (simp_all add: ty.inject trm.inject alpha calc_atm fresh_atm) |
a636846a02c7
added more documentation; will now try out a modification
urbanc
parents:
18424
diff
changeset
|
72 |
|
18621 | 73 |
section {* SubTyping Contexts *} |
18246 | 74 |
|
75 |
types ty_context = "(tyvrs\<times>ty) list" |
|
76 |
||
18650 | 77 |
text {* Typing contexts are represented as lists that ``grow" on the left; we |
18621 | 78 |
thereby deviating from the convention in the POPLmark-paper. The lists contain |
18650 | 79 |
pairs of type-variables and types (this is sufficient for Part 1A). *} |
18577
a636846a02c7
added more documentation; will now try out a modification
urbanc
parents:
18424
diff
changeset
|
80 |
|
18628 | 81 |
text {* In order to state validity-conditions for typing-contexts, the notion of |
18621 | 82 |
a @{text "domain"} of a typing-context is handy. *} |
18577
a636846a02c7
added more documentation; will now try out a modification
urbanc
parents:
18424
diff
changeset
|
83 |
|
18246 | 84 |
consts |
85 |
"domain" :: "ty_context \<Rightarrow> tyvrs set" |
|
86 |
primrec |
|
87 |
"domain [] = {}" |
|
88 |
"domain (X#\<Gamma>) = {fst X}\<union>(domain \<Gamma>)" |
|
89 |
||
22537 | 90 |
lemma domain_eqvt[eqvt]: |
18246 | 91 |
fixes pi::"tyvrs prm" |
22537 | 92 |
and pi'::"vrs prm" |
93 |
shows "pi\<bullet>(domain \<Gamma>) = domain (pi\<bullet>\<Gamma>)" |
|
94 |
and "pi'\<bullet>(domain \<Gamma>) = domain (pi'\<bullet>\<Gamma>)" |
|
22541
c33b542394f3
the name for the collection of equivariance lemmas is now eqvts (changed from eqvt) in order to avoid clashes with eqvt-lemmas generated in nominal_inductive
urbanc
parents:
22537
diff
changeset
|
95 |
by (induct \<Gamma>) (simp_all add: eqvts) |
18246 | 96 |
|
97 |
lemma finite_domain: |
|
98 |
shows "finite (domain \<Gamma>)" |
|
99 |
by (induct \<Gamma>, auto) |
|
100 |
||
18621 | 101 |
lemma domain_supp: |
102 |
shows "(supp (domain \<Gamma>)) = (domain \<Gamma>)" |
|
103 |
by (simp only: at_fin_set_supp at_tyvrs_inst finite_domain) |
|
104 |
||
18424 | 105 |
lemma domain_inclusion: |
106 |
assumes a: "(X,T)\<in>set \<Gamma>" |
|
107 |
shows "X\<in>(domain \<Gamma>)" |
|
108 |
using a by (induct \<Gamma>, auto) |
|
18246 | 109 |
|
18424 | 110 |
lemma domain_existence: |
111 |
assumes a: "X\<in>(domain \<Gamma>)" |
|
112 |
shows "\<exists>T.(X,T)\<in>set \<Gamma>" |
|
113 |
using a by (induct \<Gamma>, auto) |
|
18246 | 114 |
|
115 |
lemma domain_append: |
|
116 |
shows "domain (\<Gamma>@\<Delta>) = ((domain \<Gamma>) \<union> (domain \<Delta>))" |
|
117 |
by (induct \<Gamma>, auto) |
|
118 |
||
18621 | 119 |
lemma fresh_domain_cons: |
120 |
fixes X::"tyvrs" |
|
121 |
shows "X\<sharp>(domain (Y#\<Gamma>)) = (X\<sharp>(fst Y) \<and> X\<sharp>(domain \<Gamma>))" |
|
122 |
by (simp add: fresh_fin_insert pt_tyvrs_inst at_tyvrs_inst fs_tyvrs_inst finite_domain) |
|
123 |
||
124 |
lemma fresh_domain: |
|
125 |
fixes X::"tyvrs" |
|
126 |
assumes a: "X\<sharp>\<Gamma>" |
|
127 |
shows "X\<sharp>(domain \<Gamma>)" |
|
128 |
using a |
|
129 |
apply(induct \<Gamma>) |
|
130 |
apply(simp add: fresh_set_empty) |
|
131 |
apply(simp only: fresh_domain_cons) |
|
132 |
apply(auto simp add: fresh_prod fresh_list_cons) |
|
133 |
done |
|
134 |
||
18577
a636846a02c7
added more documentation; will now try out a modification
urbanc
parents:
18424
diff
changeset
|
135 |
text {* Not all lists of type @{typ "ty_context"} are well-formed. One condition |
a636846a02c7
added more documentation; will now try out a modification
urbanc
parents:
18424
diff
changeset
|
136 |
requires that in @{term "(X,S)#\<Gamma>"} all free variables of @{term "S"} must be |
18621 | 137 |
in the @{term "domain"} of @{term "\<Gamma>"}, that is @{term "S"} must be @{text "closed"} |
18650 | 138 |
in @{term "\<Gamma>"}. The set of free variables of @{term "S"} is the |
18621 | 139 |
@{text "support"} of @{term "S"}. *} |
18246 | 140 |
|
141 |
constdefs |
|
142 |
"closed_in" :: "ty \<Rightarrow> ty_context \<Rightarrow> bool" ("_ closed'_in _" [100,100] 100) |
|
143 |
"S closed_in \<Gamma> \<equiv> (supp S)\<subseteq>(domain \<Gamma>)" |
|
144 |
||
22537 | 145 |
lemma closed_in_eqvt[eqvt]: |
18246 | 146 |
fixes pi::"tyvrs prm" |
147 |
assumes a: "S closed_in \<Gamma>" |
|
148 |
shows "(pi\<bullet>S) closed_in (pi\<bullet>\<Gamma>)" |
|
149 |
using a |
|
150 |
proof (unfold "closed_in_def") |
|
18424 | 151 |
assume "supp S \<subseteq> (domain \<Gamma>)" |
18246 | 152 |
hence "pi\<bullet>(supp S) \<subseteq> pi\<bullet>(domain \<Gamma>)" |
153 |
by (simp add: pt_subseteq_eqvt[OF pt_tyvrs_inst, OF at_tyvrs_inst]) |
|
154 |
thus "(supp (pi\<bullet>S)) \<subseteq> (domain (pi\<bullet>\<Gamma>))" |
|
155 |
by (simp add: domain_eqvt pt_perm_supp[OF pt_tyvrs_inst, OF at_tyvrs_inst]) |
|
156 |
qed |
|
157 |
||
22537 | 158 |
lemma ty_vrs_prm_simp: |
159 |
fixes pi::"vrs prm" |
|
160 |
and S::"ty" |
|
161 |
shows "pi\<bullet>S = S" |
|
22542 | 162 |
by (induct S rule: ty.weak_induct) (auto simp add: calc_atm) |
22537 | 163 |
|
164 |
lemma ty_context_vrs_prm_simp: |
|
165 |
fixes pi::"vrs prm" |
|
166 |
and \<Gamma>::"ty_context" |
|
167 |
shows "pi\<bullet>\<Gamma> = \<Gamma>" |
|
168 |
by (induct \<Gamma>) |
|
169 |
(auto simp add: calc_atm ty_vrs_prm_simp) |
|
170 |
||
171 |
lemma closed_in_eqvt'[eqvt]: |
|
172 |
fixes pi::"vrs prm" |
|
173 |
assumes a: "S closed_in \<Gamma>" |
|
174 |
shows "(pi\<bullet>S) closed_in (pi\<bullet>\<Gamma>)" |
|
175 |
using a |
|
176 |
by (simp add: ty_vrs_prm_simp ty_context_vrs_prm_simp) |
|
177 |
||
18621 | 178 |
text {* Now validity of a context is a straightforward inductive definition. *} |
179 |
||
22537 | 180 |
inductive2 |
181 |
valid_rel :: "ty_context \<Rightarrow> bool" ("\<turnstile> _ ok" [100] 100) |
|
22436 | 182 |
where |
183 |
valid_nil[simp]: "\<turnstile> [] ok" |
|
184 |
| valid_cons[simp]: "\<lbrakk>\<turnstile> \<Gamma> ok; X\<sharp>(domain \<Gamma>); T closed_in \<Gamma>\<rbrakk> \<Longrightarrow> \<turnstile> ((X,T)#\<Gamma>) ok" |
|
18246 | 185 |
|
22537 | 186 |
equivariance valid_rel |
18246 | 187 |
|
188 |
lemma validE: |
|
189 |
assumes a: "\<turnstile> ((X,T)#\<Gamma>) ok" |
|
18621 | 190 |
shows "\<turnstile> \<Gamma> ok \<and> X\<sharp>(domain \<Gamma>) \<and> T closed_in \<Gamma>" |
18246 | 191 |
using a by (cases, auto) |
192 |
||
18424 | 193 |
lemma validE_append: |
194 |
assumes a: "\<turnstile> (\<Delta>@\<Gamma>) ok" |
|
195 |
shows "\<turnstile> \<Gamma> ok" |
|
196 |
using a by (induct \<Delta>, auto dest: validE) |
|
18246 | 197 |
|
18424 | 198 |
lemma replace_type: |
199 |
assumes a: "\<turnstile> (\<Delta>@(X,T)#\<Gamma>) ok" |
|
200 |
and b: "S closed_in \<Gamma>" |
|
201 |
shows "\<turnstile> (\<Delta>@(X,S)#\<Gamma>) ok" |
|
18621 | 202 |
using a b |
18246 | 203 |
apply(induct \<Delta>) |
18621 | 204 |
apply(auto dest!: validE intro!: valid_cons simp add: domain_append closed_in_def) |
18246 | 205 |
done |
206 |
||
18650 | 207 |
text {* Well-formed contexts have a unique type-binding for a type-variable. *} |
208 |
||
18246 | 209 |
lemma uniqueness_of_ctxt: |
210 |
fixes \<Gamma>::"ty_context" |
|
18412 | 211 |
assumes a: "\<turnstile> \<Gamma> ok" |
212 |
and b: "(X,T)\<in>set \<Gamma>" |
|
213 |
and c: "(X,S)\<in>set \<Gamma>" |
|
214 |
shows "T=S" |
|
18621 | 215 |
using a b c |
216 |
proof (induct) |
|
217 |
case valid_nil thus "T=S" by simp |
|
218 |
next |
|
22436 | 219 |
case valid_cons |
18621 | 220 |
moreover |
221 |
{ fix \<Gamma>::"ty_context" |
|
222 |
assume a: "X\<sharp>(domain \<Gamma>)" |
|
223 |
have "\<not>(\<exists>T.(X,T)\<in>(set \<Gamma>))" using a |
|
224 |
proof (induct \<Gamma>) |
|
225 |
case (Cons Y \<Gamma>) |
|
226 |
thus "\<not> (\<exists>T.(X,T)\<in>set(Y#\<Gamma>))" |
|
227 |
by (simp only: fresh_domain_cons, auto simp add: fresh_atm) |
|
228 |
qed (simp) |
|
229 |
} |
|
230 |
ultimately show "T=S" by auto |
|
231 |
qed |
|
18577
a636846a02c7
added more documentation; will now try out a modification
urbanc
parents:
18424
diff
changeset
|
232 |
|
18628 | 233 |
section {* Size and Capture-Avoiding Substitution for Types *} |
18621 | 234 |
|
21554 | 235 |
consts size_ty :: "ty \<Rightarrow> nat" |
20395
9a60e3151244
added definition for size and substitution using the recursion
urbanc
parents:
19972
diff
changeset
|
236 |
|
21554 | 237 |
nominal_primrec |
238 |
"size_ty (Tvar X) = 1" |
|
239 |
"size_ty (Top) = 1" |
|
240 |
"size_ty (T1 \<rightarrow> T2) = (size_ty T1) + (size_ty T2) + 1" |
|
241 |
"X\<sharp>T1 \<Longrightarrow> size_ty (\<forall>[X<:T1].T2) = (size_ty T1) + (size_ty T2) + 1" |
|
22418
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
urbanc
parents:
21554
diff
changeset
|
242 |
apply (finite_guess)+ |
21554 | 243 |
apply (rule TrueI)+ |
22418
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
urbanc
parents:
21554
diff
changeset
|
244 |
apply (simp add: fresh_nat) |
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
urbanc
parents:
21554
diff
changeset
|
245 |
apply (fresh_guess)+ |
21554 | 246 |
done |
20395
9a60e3151244
added definition for size and substitution using the recursion
urbanc
parents:
19972
diff
changeset
|
247 |
|
21554 | 248 |
consts subst_ty :: "tyvrs \<Rightarrow> ty \<Rightarrow> ty \<Rightarrow> ty" |
20395
9a60e3151244
added definition for size and substitution using the recursion
urbanc
parents:
19972
diff
changeset
|
249 |
|
9a60e3151244
added definition for size and substitution using the recursion
urbanc
parents:
19972
diff
changeset
|
250 |
syntax |
9a60e3151244
added definition for size and substitution using the recursion
urbanc
parents:
19972
diff
changeset
|
251 |
subst_ty_syn :: "ty \<Rightarrow> tyvrs \<Rightarrow> ty \<Rightarrow> ty" ("_[_:=_]\<^isub>t\<^isub>y" [100,100,100] 100) |
9a60e3151244
added definition for size and substitution using the recursion
urbanc
parents:
19972
diff
changeset
|
252 |
|
9a60e3151244
added definition for size and substitution using the recursion
urbanc
parents:
19972
diff
changeset
|
253 |
translations |
9a60e3151244
added definition for size and substitution using the recursion
urbanc
parents:
19972
diff
changeset
|
254 |
"T1[Y:=T2]\<^isub>t\<^isub>y" \<rightleftharpoons> "subst_ty Y T2 T1" |
18577
a636846a02c7
added more documentation; will now try out a modification
urbanc
parents:
18424
diff
changeset
|
255 |
|
21554 | 256 |
nominal_primrec |
257 |
"(Tvar X)[Y:=T]\<^isub>t\<^isub>y= (if X=Y then T else (Tvar X))" |
|
258 |
"(Top)[Y:=T]\<^isub>t\<^isub>y = Top" |
|
259 |
"(T\<^isub>1 \<rightarrow> T\<^isub>2)[Y:=T]\<^isub>t\<^isub>y = (T\<^isub>1[Y:=T]\<^isub>t\<^isub>y) \<rightarrow> (T\<^isub>2[Y:=T]\<^isub>t\<^isub>y)" |
|
260 |
"\<lbrakk>X\<sharp>(Y,T); X\<sharp>T\<^isub>1\<rbrakk> \<Longrightarrow> (\<forall>[X<:T\<^isub>1].T\<^isub>2)[Y:=T]\<^isub>t\<^isub>y = (\<forall>[X<:(T\<^isub>1[Y:=T]\<^isub>t\<^isub>y)].(T\<^isub>2[Y:=T]\<^isub>t\<^isub>y))" |
|
22418
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
urbanc
parents:
21554
diff
changeset
|
261 |
apply (finite_guess)+ |
21554 | 262 |
apply (rule TrueI)+ |
263 |
apply (simp add: abs_fresh) |
|
22418
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
urbanc
parents:
21554
diff
changeset
|
264 |
apply (fresh_guess)+ |
21554 | 265 |
done |
18577
a636846a02c7
added more documentation; will now try out a modification
urbanc
parents:
18424
diff
changeset
|
266 |
|
22537 | 267 |
consts |
268 |
subst_tyc :: "ty_context \<Rightarrow> tyvrs \<Rightarrow> ty \<Rightarrow> ty_context" ("_[_:=_]\<^isub>t\<^isub>y\<^isub>c" [100,100,100] 100) |
|
18577
a636846a02c7
added more documentation; will now try out a modification
urbanc
parents:
18424
diff
changeset
|
269 |
primrec |
a636846a02c7
added more documentation; will now try out a modification
urbanc
parents:
18424
diff
changeset
|
270 |
"([])[Y:=T]\<^isub>t\<^isub>y\<^isub>c= []" |
a636846a02c7
added more documentation; will now try out a modification
urbanc
parents:
18424
diff
changeset
|
271 |
"(XT#\<Gamma>)[Y:=T]\<^isub>t\<^isub>y\<^isub>c = (fst XT,(snd XT)[Y:=T]\<^isub>t\<^isub>y)#(\<Gamma>[Y:=T]\<^isub>t\<^isub>y\<^isub>c)" |
18246 | 272 |
|
18577
a636846a02c7
added more documentation; will now try out a modification
urbanc
parents:
18424
diff
changeset
|
273 |
section {* Subtyping-Relation *} |
18246 | 274 |
|
18650 | 275 |
text {* The definition for the subtyping-relation follows quite closely what is written |
276 |
in the POPLmark-paper, except for the premises dealing with well-formed contexts and |
|
277 |
the freshness constraint @{term "X\<sharp>\<Gamma>"} in the @{text "S_Forall"}-rule. (The freshness |
|
278 |
constraint is specific to the \emph{nominal approach}. Note, however, that the constraint |
|
279 |
does \emph{not} make the subtyping-relation ``partial"\ldots because we work over |
|
280 |
$\alpha$-equivalence classes.) *} |
|
18628 | 281 |
|
22537 | 282 |
inductive2 |
283 |
subtype_of :: "ty_context \<Rightarrow> ty \<Rightarrow> ty \<Rightarrow> bool" ("_\<turnstile>_<:_" [100,100,100] 100) |
|
22436 | 284 |
where |
285 |
S_Top[intro]: "\<lbrakk>\<turnstile> \<Gamma> ok; S closed_in \<Gamma>\<rbrakk> \<Longrightarrow> \<Gamma> \<turnstile> S <: Top" |
|
286 |
| S_Var[intro]: "\<lbrakk>(X,S) \<in> set \<Gamma>; \<Gamma> \<turnstile> S <: T\<rbrakk> \<Longrightarrow> \<Gamma> \<turnstile> (Tvar X) <: T" |
|
287 |
| S_Refl[intro]: "\<lbrakk>\<turnstile> \<Gamma> ok; X \<in> domain \<Gamma>\<rbrakk>\<Longrightarrow> \<Gamma> \<turnstile> Tvar X <: Tvar X" |
|
288 |
| S_Arrow[intro]: "\<lbrakk>\<Gamma> \<turnstile> T\<^isub>1 <: S\<^isub>1; \<Gamma> \<turnstile> S\<^isub>2 <: T\<^isub>2\<rbrakk> \<Longrightarrow> \<Gamma> \<turnstile> (S\<^isub>1 \<rightarrow> S\<^isub>2) <: (T\<^isub>1 \<rightarrow> T\<^isub>2)" |
|
22537 | 289 |
| S_Forall[intro]: "\<lbrakk>\<Gamma> \<turnstile> T\<^isub>1 <: S\<^isub>1; X\<sharp>\<Gamma>; ((X,T\<^isub>1)#\<Gamma>) \<turnstile> S\<^isub>2 <: T\<^isub>2\<rbrakk> \<Longrightarrow> \<Gamma> \<turnstile> \<forall>[X<:S\<^isub>1].S\<^isub>2 <: \<forall>[X<:T\<^isub>1].T\<^isub>2" |
290 |
||
291 |
lemma subtype_implies_ok: |
|
292 |
fixes X::"tyvrs" |
|
293 |
assumes a: "\<Gamma> \<turnstile> S <: T" |
|
294 |
shows "\<turnstile> \<Gamma> ok" |
|
295 |
using a by (induct) (auto) |
|
18246 | 296 |
|
297 |
lemma subtype_implies_closed: |
|
298 |
assumes a: "\<Gamma> \<turnstile> S <: T" |
|
299 |
shows "S closed_in \<Gamma> \<and> T closed_in \<Gamma>" |
|
300 |
using a |
|
301 |
proof (induct) |
|
22436 | 302 |
case (S_Top \<Gamma> S) |
18424 | 303 |
have "Top closed_in \<Gamma>" by (simp add: closed_in_def ty.supp) |
18246 | 304 |
moreover |
305 |
have "S closed_in \<Gamma>" by fact |
|
306 |
ultimately show "S closed_in \<Gamma> \<and> Top closed_in \<Gamma>" by simp |
|
307 |
next |
|
22436 | 308 |
case (S_Var X S \<Gamma> T) |
18246 | 309 |
have "(X,S)\<in>set \<Gamma>" by fact |
18424 | 310 |
hence "X \<in> domain \<Gamma>" by (rule domain_inclusion) |
18577
a636846a02c7
added more documentation; will now try out a modification
urbanc
parents:
18424
diff
changeset
|
311 |
hence "(Tvar X) closed_in \<Gamma>" by (simp add: closed_in_def ty.supp supp_atm) |
18246 | 312 |
moreover |
313 |
have "S closed_in \<Gamma> \<and> T closed_in \<Gamma>" by fact |
|
314 |
hence "T closed_in \<Gamma>" by force |
|
18577
a636846a02c7
added more documentation; will now try out a modification
urbanc
parents:
18424
diff
changeset
|
315 |
ultimately show "(Tvar X) closed_in \<Gamma> \<and> T closed_in \<Gamma>" by simp |
18424 | 316 |
qed (auto simp add: closed_in_def ty.supp supp_atm abs_supp) |
18246 | 317 |
|
318 |
lemma subtype_implies_fresh: |
|
319 |
fixes X::"tyvrs" |
|
320 |
assumes a1: "\<Gamma> \<turnstile> S <: T" |
|
321 |
and a2: "X\<sharp>\<Gamma>" |
|
18424 | 322 |
shows "X\<sharp>S \<and> X\<sharp>T" |
18246 | 323 |
proof - |
324 |
from a1 have "\<turnstile> \<Gamma> ok" by (rule subtype_implies_ok) |
|
18621 | 325 |
with a2 have "X\<sharp>domain(\<Gamma>)" by (simp add: fresh_domain) |
18424 | 326 |
moreover |
18246 | 327 |
from a1 have "S closed_in \<Gamma> \<and> T closed_in \<Gamma>" by (rule subtype_implies_closed) |
18424 | 328 |
hence "supp S \<subseteq> ((supp (domain \<Gamma>))::tyvrs set)" |
18621 | 329 |
and "supp T \<subseteq> ((supp (domain \<Gamma>))::tyvrs set)" by (simp_all add: domain_supp closed_in_def) |
18424 | 330 |
ultimately show "X\<sharp>S \<and> X\<sharp>T" by (force simp add: supp_prod fresh_def) |
18246 | 331 |
qed |
332 |
||
22730
8bcc8809ed3b
nominal_inductive no longer proves equivariance.
berghofe
parents:
22542
diff
changeset
|
333 |
equivariance subtype_of |
8bcc8809ed3b
nominal_inductive no longer proves equivariance.
berghofe
parents:
22542
diff
changeset
|
334 |
|
22537 | 335 |
nominal_inductive subtype_of |
336 |
by (simp_all add: abs_fresh subtype_implies_fresh) |
|
18628 | 337 |
|
22537 | 338 |
thm subtype_of.strong_induct |
18246 | 339 |
|
18621 | 340 |
section {* Reflexivity of Subtyping *} |
18246 | 341 |
|
342 |
lemma subtype_reflexivity: |
|
18353
4dd468ccfdf7
transitivity should be now in a reasonable state. But
urbanc
parents:
18306
diff
changeset
|
343 |
assumes a: "\<turnstile> \<Gamma> ok" |
18424 | 344 |
and b: "T closed_in \<Gamma>" |
18353
4dd468ccfdf7
transitivity should be now in a reasonable state. But
urbanc
parents:
18306
diff
changeset
|
345 |
shows "\<Gamma> \<turnstile> T <: T" |
4dd468ccfdf7
transitivity should be now in a reasonable state. But
urbanc
parents:
18306
diff
changeset
|
346 |
using a b |
18660
9968dc816cda
cahges to use the new induction-principle (now proved in
urbanc
parents:
18655
diff
changeset
|
347 |
proof(nominal_induct T avoiding: \<Gamma> rule: ty.induct) |
18577
a636846a02c7
added more documentation; will now try out a modification
urbanc
parents:
18424
diff
changeset
|
348 |
case (Forall X T\<^isub>1 T\<^isub>2) |
18747 | 349 |
have ih_T\<^isub>1: "\<And>\<Gamma>. \<lbrakk>\<turnstile> \<Gamma> ok; T\<^isub>1 closed_in \<Gamma>\<rbrakk> \<Longrightarrow> \<Gamma> \<turnstile> T\<^isub>1 <: T\<^isub>1" by fact |
350 |
have ih_T\<^isub>2: "\<And>\<Gamma>. \<lbrakk>\<turnstile> \<Gamma> ok; T\<^isub>2 closed_in \<Gamma>\<rbrakk> \<Longrightarrow> \<Gamma> \<turnstile> T\<^isub>2 <: T\<^isub>2" by fact |
|
18424 | 351 |
have fresh_cond: "X\<sharp>\<Gamma>" by fact |
18621 | 352 |
hence fresh_domain: "X\<sharp>(domain \<Gamma>)" by (simp add: fresh_domain) |
18424 | 353 |
have "(\<forall>[X<:T\<^isub>2].T\<^isub>1) closed_in \<Gamma>" by fact |
354 |
hence closed\<^isub>T\<^isub>2: "T\<^isub>2 closed_in \<Gamma>" and closed\<^isub>T\<^isub>1: "T\<^isub>1 closed_in ((X,T\<^isub>2)#\<Gamma>)" |
|
355 |
by (auto simp add: closed_in_def ty.supp abs_supp) |
|
356 |
have ok: "\<turnstile> \<Gamma> ok" by fact |
|
18621 | 357 |
hence ok': "\<turnstile> ((X,T\<^isub>2)#\<Gamma>) ok" using closed\<^isub>T\<^isub>2 fresh_domain by simp |
18424 | 358 |
have "\<Gamma> \<turnstile> T\<^isub>2 <: T\<^isub>2" using ih_T\<^isub>2 closed\<^isub>T\<^isub>2 ok by simp |
18353
4dd468ccfdf7
transitivity should be now in a reasonable state. But
urbanc
parents:
18306
diff
changeset
|
359 |
moreover |
18424 | 360 |
have "((X,T\<^isub>2)#\<Gamma>) \<turnstile> T\<^isub>1 <: T\<^isub>1" using ih_T\<^isub>1 closed\<^isub>T\<^isub>1 ok' by simp |
361 |
ultimately show "\<Gamma> \<turnstile> \<forall>[X<:T\<^isub>2].T\<^isub>1 <: \<forall>[X<:T\<^isub>2].T\<^isub>1" using fresh_cond |
|
18621 | 362 |
by (simp add: subtype_of.S_Forall) |
18246 | 363 |
qed (auto simp add: closed_in_def ty.supp supp_atm) |
364 |
||
18621 | 365 |
lemma subtype_reflexivity_semiautomated: |
18305
a780f9c1538b
changed everything until the interesting transitivity_narrowing
urbanc
parents:
18269
diff
changeset
|
366 |
assumes a: "\<turnstile> \<Gamma> ok" |
a780f9c1538b
changed everything until the interesting transitivity_narrowing
urbanc
parents:
18269
diff
changeset
|
367 |
and b: "T closed_in \<Gamma>" |
a780f9c1538b
changed everything until the interesting transitivity_narrowing
urbanc
parents:
18269
diff
changeset
|
368 |
shows "\<Gamma> \<turnstile> T <: T" |
a780f9c1538b
changed everything until the interesting transitivity_narrowing
urbanc
parents:
18269
diff
changeset
|
369 |
using a b |
18660
9968dc816cda
cahges to use the new induction-principle (now proved in
urbanc
parents:
18655
diff
changeset
|
370 |
apply(nominal_induct T avoiding: \<Gamma> rule: ty.induct) |
18747 | 371 |
apply(auto simp add: ty.supp abs_supp supp_atm closed_in_def) |
18577
a636846a02c7
added more documentation; will now try out a modification
urbanc
parents:
18424
diff
changeset
|
372 |
--{* Too bad that this instantiation cannot be found automatically by |
18621 | 373 |
\isakeyword{auto}; \isakeyword{blast} would find it if we had not used |
18628 | 374 |
an explicit definition for @{text "closed_in_def"}. *} |
18305
a780f9c1538b
changed everything until the interesting transitivity_narrowing
urbanc
parents:
18269
diff
changeset
|
375 |
apply(drule_tac x="(tyvrs, ty2)#\<Gamma>" in meta_spec) |
18747 | 376 |
apply(force dest: fresh_domain simp add: closed_in_def) |
18246 | 377 |
done |
378 |
||
18747 | 379 |
|
18628 | 380 |
section {* Weakening *} |
18246 | 381 |
|
18628 | 382 |
text {* In order to prove weakening we introduce the notion of a type-context extending |
383 |
another. This generalization seems to make the proof for weakening to be |
|
384 |
smoother than if we had strictly adhered to the version in the POPLmark-paper. *} |
|
18246 | 385 |
|
386 |
constdefs |
|
387 |
extends :: "ty_context \<Rightarrow> ty_context \<Rightarrow> bool" ("_ extends _" [100,100] 100) |
|
388 |
"\<Delta> extends \<Gamma> \<equiv> \<forall>X Q. (X,Q)\<in>set \<Gamma> \<longrightarrow> (X,Q)\<in>set \<Delta>" |
|
389 |
||
390 |
lemma extends_domain: |
|
391 |
assumes a: "\<Delta> extends \<Gamma>" |
|
392 |
shows "domain \<Gamma> \<subseteq> domain \<Delta>" |
|
393 |
using a |
|
394 |
apply (auto simp add: extends_def) |
|
395 |
apply (drule domain_existence) |
|
396 |
apply (force simp add: domain_inclusion) |
|
397 |
done |
|
398 |
||
399 |
lemma extends_closed: |
|
400 |
assumes a1: "T closed_in \<Gamma>" |
|
401 |
and a2: "\<Delta> extends \<Gamma>" |
|
402 |
shows "T closed_in \<Delta>" |
|
403 |
using a1 a2 |
|
404 |
by (auto dest: extends_domain simp add: closed_in_def) |
|
405 |
||
18424 | 406 |
lemma extends_memb: |
407 |
assumes a: "\<Delta> extends \<Gamma>" |
|
408 |
and b: "(X,T) \<in> set \<Gamma>" |
|
409 |
shows "(X,T) \<in> set \<Delta>" |
|
410 |
using a b by (simp add: extends_def) |
|
411 |
||
18246 | 412 |
lemma weakening: |
18353
4dd468ccfdf7
transitivity should be now in a reasonable state. But
urbanc
parents:
18306
diff
changeset
|
413 |
assumes a: "\<Gamma> \<turnstile> S <: T" |
18424 | 414 |
and b: "\<turnstile> \<Delta> ok" |
415 |
and c: "\<Delta> extends \<Gamma>" |
|
18353
4dd468ccfdf7
transitivity should be now in a reasonable state. But
urbanc
parents:
18306
diff
changeset
|
416 |
shows "\<Delta> \<turnstile> S <: T" |
4dd468ccfdf7
transitivity should be now in a reasonable state. But
urbanc
parents:
18306
diff
changeset
|
417 |
using a b c |
22537 | 418 |
proof (nominal_induct \<Gamma> S T avoiding: \<Delta> rule: subtype_of.strong_induct) |
18305
a780f9c1538b
changed everything until the interesting transitivity_narrowing
urbanc
parents:
18269
diff
changeset
|
419 |
case (S_Top \<Gamma> S) |
18246 | 420 |
have lh_drv_prem: "S closed_in \<Gamma>" by fact |
18353
4dd468ccfdf7
transitivity should be now in a reasonable state. But
urbanc
parents:
18306
diff
changeset
|
421 |
have "\<turnstile> \<Delta> ok" by fact |
4dd468ccfdf7
transitivity should be now in a reasonable state. But
urbanc
parents:
18306
diff
changeset
|
422 |
moreover |
4dd468ccfdf7
transitivity should be now in a reasonable state. But
urbanc
parents:
18306
diff
changeset
|
423 |
have "\<Delta> extends \<Gamma>" by fact |
18424 | 424 |
hence "S closed_in \<Delta>" using lh_drv_prem by (simp only: extends_closed) |
18353
4dd468ccfdf7
transitivity should be now in a reasonable state. But
urbanc
parents:
18306
diff
changeset
|
425 |
ultimately show "\<Delta> \<turnstile> S <: Top" by force |
18246 | 426 |
next |
22537 | 427 |
case (S_Var X S \<Gamma> T) |
18246 | 428 |
have lh_drv_prem: "(X,S) \<in> set \<Gamma>" by fact |
18353
4dd468ccfdf7
transitivity should be now in a reasonable state. But
urbanc
parents:
18306
diff
changeset
|
429 |
have ih: "\<And>\<Delta>. \<turnstile> \<Delta> ok \<Longrightarrow> \<Delta> extends \<Gamma> \<Longrightarrow> \<Delta> \<turnstile> S <: T" by fact |
4dd468ccfdf7
transitivity should be now in a reasonable state. But
urbanc
parents:
18306
diff
changeset
|
430 |
have ok: "\<turnstile> \<Delta> ok" by fact |
4dd468ccfdf7
transitivity should be now in a reasonable state. But
urbanc
parents:
18306
diff
changeset
|
431 |
have extends: "\<Delta> extends \<Gamma>" by fact |
18424 | 432 |
have "(X,S) \<in> set \<Delta>" using lh_drv_prem extends by (simp only: extends_memb) |
18353
4dd468ccfdf7
transitivity should be now in a reasonable state. But
urbanc
parents:
18306
diff
changeset
|
433 |
moreover |
4dd468ccfdf7
transitivity should be now in a reasonable state. But
urbanc
parents:
18306
diff
changeset
|
434 |
have "\<Delta> \<turnstile> S <: T" using ok extends ih by simp |
18577
a636846a02c7
added more documentation; will now try out a modification
urbanc
parents:
18424
diff
changeset
|
435 |
ultimately show "\<Delta> \<turnstile> Tvar X <: T" using ok by force |
18246 | 436 |
next |
18305
a780f9c1538b
changed everything until the interesting transitivity_narrowing
urbanc
parents:
18269
diff
changeset
|
437 |
case (S_Refl \<Gamma> X) |
18246 | 438 |
have lh_drv_prem: "X \<in> domain \<Gamma>" by fact |
18353
4dd468ccfdf7
transitivity should be now in a reasonable state. But
urbanc
parents:
18306
diff
changeset
|
439 |
have "\<turnstile> \<Delta> ok" by fact |
4dd468ccfdf7
transitivity should be now in a reasonable state. But
urbanc
parents:
18306
diff
changeset
|
440 |
moreover |
4dd468ccfdf7
transitivity should be now in a reasonable state. But
urbanc
parents:
18306
diff
changeset
|
441 |
have "\<Delta> extends \<Gamma>" by fact |
4dd468ccfdf7
transitivity should be now in a reasonable state. But
urbanc
parents:
18306
diff
changeset
|
442 |
hence "X \<in> domain \<Delta>" using lh_drv_prem by (force dest: extends_domain) |
18577
a636846a02c7
added more documentation; will now try out a modification
urbanc
parents:
18424
diff
changeset
|
443 |
ultimately show "\<Delta> \<turnstile> Tvar X <: Tvar X" by force |
18246 | 444 |
next |
22537 | 445 |
case (S_Arrow \<Gamma> T\<^isub>1 S\<^isub>1 S\<^isub>2 T\<^isub>2) thus "\<Delta> \<turnstile> S\<^isub>1 \<rightarrow> S\<^isub>2 <: T\<^isub>1 \<rightarrow> T\<^isub>2" by blast |
18246 | 446 |
next |
22537 | 447 |
case (S_Forall \<Gamma> T\<^isub>1 S\<^isub>1 X S\<^isub>2 T\<^isub>2) |
18424 | 448 |
have fresh_cond: "X\<sharp>\<Delta>" by fact |
18621 | 449 |
hence fresh_domain: "X\<sharp>(domain \<Delta>)" by (simp add: fresh_domain) |
18424 | 450 |
have ih\<^isub>1: "\<And>\<Delta>. \<turnstile> \<Delta> ok \<Longrightarrow> \<Delta> extends \<Gamma> \<Longrightarrow> \<Delta> \<turnstile> T\<^isub>1 <: S\<^isub>1" by fact |
451 |
have ih\<^isub>2: "\<And>\<Delta>. \<turnstile> \<Delta> ok \<Longrightarrow> \<Delta> extends ((X,T\<^isub>1)#\<Gamma>) \<Longrightarrow> \<Delta> \<turnstile> S\<^isub>2 <: T\<^isub>2" by fact |
|
452 |
have lh_drv_prem: "\<Gamma> \<turnstile> T\<^isub>1 <: S\<^isub>1" by fact |
|
453 |
hence closed\<^isub>T\<^isub>1: "T\<^isub>1 closed_in \<Gamma>" by (simp add: subtype_implies_closed) |
|
18353
4dd468ccfdf7
transitivity should be now in a reasonable state. But
urbanc
parents:
18306
diff
changeset
|
454 |
have ok: "\<turnstile> \<Delta> ok" by fact |
18424 | 455 |
have ext: "\<Delta> extends \<Gamma>" by fact |
456 |
have "T\<^isub>1 closed_in \<Delta>" using ext closed\<^isub>T\<^isub>1 by (simp only: extends_closed) |
|
18621 | 457 |
hence "\<turnstile> ((X,T\<^isub>1)#\<Delta>) ok" using fresh_domain ok by force |
18353
4dd468ccfdf7
transitivity should be now in a reasonable state. But
urbanc
parents:
18306
diff
changeset
|
458 |
moreover |
18424 | 459 |
have "((X,T\<^isub>1)#\<Delta>) extends ((X,T\<^isub>1)#\<Gamma>)" using ext by (force simp add: extends_def) |
460 |
ultimately have "((X,T\<^isub>1)#\<Delta>) \<turnstile> S\<^isub>2 <: T\<^isub>2" using ih\<^isub>2 by simp |
|
18353
4dd468ccfdf7
transitivity should be now in a reasonable state. But
urbanc
parents:
18306
diff
changeset
|
461 |
moreover |
18424 | 462 |
have "\<Delta> \<turnstile> T\<^isub>1 <: S\<^isub>1" using ok ext ih\<^isub>1 by simp |
18621 | 463 |
ultimately show "\<Delta> \<turnstile> \<forall>[X<:S\<^isub>1].S\<^isub>2 <: \<forall>[X<:T\<^isub>1].T\<^isub>2" using ok by (force intro: S_Forall) |
18246 | 464 |
qed |
465 |
||
18650 | 466 |
text {* In fact all ``non-binding" cases can be solved automatically: *} |
18246 | 467 |
|
18628 | 468 |
lemma weakening_more_automated: |
18353
4dd468ccfdf7
transitivity should be now in a reasonable state. But
urbanc
parents:
18306
diff
changeset
|
469 |
assumes a: "\<Gamma> \<turnstile> S <: T" |
18424 | 470 |
and b: "\<turnstile> \<Delta> ok" |
471 |
and c: "\<Delta> extends \<Gamma>" |
|
18353
4dd468ccfdf7
transitivity should be now in a reasonable state. But
urbanc
parents:
18306
diff
changeset
|
472 |
shows "\<Delta> \<turnstile> S <: T" |
4dd468ccfdf7
transitivity should be now in a reasonable state. But
urbanc
parents:
18306
diff
changeset
|
473 |
using a b c |
22537 | 474 |
proof (nominal_induct \<Gamma> S T avoiding: \<Delta> rule: subtype_of.strong_induct) |
475 |
case (S_Forall \<Gamma> T\<^isub>1 S\<^isub>1 X S\<^isub>2 T\<^isub>2) |
|
18424 | 476 |
have fresh_cond: "X\<sharp>\<Delta>" by fact |
18621 | 477 |
hence fresh_domain: "X\<sharp>(domain \<Delta>)" by (simp add: fresh_domain) |
18424 | 478 |
have ih\<^isub>1: "\<And>\<Delta>. \<turnstile> \<Delta> ok \<Longrightarrow> \<Delta> extends \<Gamma> \<Longrightarrow> \<Delta> \<turnstile> T\<^isub>1 <: S\<^isub>1" by fact |
479 |
have ih\<^isub>2: "\<And>\<Delta>. \<turnstile> \<Delta> ok \<Longrightarrow> \<Delta> extends ((X,T\<^isub>1)#\<Gamma>) \<Longrightarrow> \<Delta> \<turnstile> S\<^isub>2 <: T\<^isub>2" by fact |
|
480 |
have lh_drv_prem: "\<Gamma> \<turnstile> T\<^isub>1 <: S\<^isub>1" by fact |
|
481 |
hence closed\<^isub>T\<^isub>1: "T\<^isub>1 closed_in \<Gamma>" by (simp add: subtype_implies_closed) |
|
18353
4dd468ccfdf7
transitivity should be now in a reasonable state. But
urbanc
parents:
18306
diff
changeset
|
482 |
have ok: "\<turnstile> \<Delta> ok" by fact |
18424 | 483 |
have ext: "\<Delta> extends \<Gamma>" by fact |
484 |
have "T\<^isub>1 closed_in \<Delta>" using ext closed\<^isub>T\<^isub>1 by (simp only: extends_closed) |
|
18621 | 485 |
hence "\<turnstile> ((X,T\<^isub>1)#\<Delta>) ok" using fresh_domain ok by force |
18628 | 486 |
moreover |
18424 | 487 |
have "((X,T\<^isub>1)#\<Delta>) extends ((X,T\<^isub>1)#\<Gamma>)" using ext by (force simp add: extends_def) |
488 |
ultimately have "((X,T\<^isub>1)#\<Delta>) \<turnstile> S\<^isub>2 <: T\<^isub>2" using ih\<^isub>2 by simp |
|
18353
4dd468ccfdf7
transitivity should be now in a reasonable state. But
urbanc
parents:
18306
diff
changeset
|
489 |
moreover |
18424 | 490 |
have "\<Delta> \<turnstile> T\<^isub>1 <: S\<^isub>1" using ok ext ih\<^isub>1 by simp |
18621 | 491 |
ultimately show "\<Delta> \<turnstile> \<forall>[X<:S\<^isub>1].S\<^isub>2 <: \<forall>[X<:T\<^isub>1].T\<^isub>2" using ok by (force intro: S_Forall) |
18424 | 492 |
qed (blast intro: extends_closed extends_memb dest: extends_domain)+ |
18246 | 493 |
|
18628 | 494 |
section {* Transitivity and Narrowing *} |
495 |
||
18650 | 496 |
text {* Some inversion lemmas that are needed in the transitivity and narrowing proof.*} |
497 |
||
498 |
lemma S_TopE: |
|
499 |
assumes a: "\<Gamma> \<turnstile> Top <: T" |
|
500 |
shows "T = Top" |
|
501 |
using a by (cases, auto) |
|
502 |
||
503 |
lemma S_ArrowE_left: |
|
504 |
assumes a: "\<Gamma> \<turnstile> S\<^isub>1 \<rightarrow> S\<^isub>2 <: T" |
|
505 |
shows "T = Top \<or> (\<exists>T\<^isub>1 T\<^isub>2. T = T\<^isub>1 \<rightarrow> T\<^isub>2 \<and> \<Gamma> \<turnstile> T\<^isub>1 <: S\<^isub>1 \<and> \<Gamma> \<turnstile> S\<^isub>2 <: T\<^isub>2)" |
|
506 |
using a by (cases, auto simp add: ty.inject) |
|
507 |
||
508 |
lemma S_ForallE_left: |
|
509 |
shows "\<lbrakk>\<Gamma> \<turnstile> \<forall>[X<:S\<^isub>1].S\<^isub>2 <: T; X\<sharp>\<Gamma>; X\<sharp>S\<^isub>1\<rbrakk> |
|
510 |
\<Longrightarrow> T = Top \<or> (\<exists>T\<^isub>1 T\<^isub>2. T = \<forall>[X<:T\<^isub>1].T\<^isub>2 \<and> \<Gamma> \<turnstile> T\<^isub>1 <: S\<^isub>1 \<and> ((X,T\<^isub>1)#\<Gamma>) \<turnstile> S\<^isub>2 <: T\<^isub>2)" |
|
511 |
apply(frule subtype_implies_ok) |
|
22436 | 512 |
apply(ind_cases2 "\<Gamma> \<turnstile> \<forall>[X<:S\<^isub>1].S\<^isub>2 <: T") |
18650 | 513 |
apply(auto simp add: ty.inject alpha) |
514 |
apply(rule_tac x="[(X,Xa)]\<bullet>T\<^isub>2" in exI) |
|
515 |
apply(rule conjI) |
|
516 |
apply(rule sym) |
|
517 |
apply(rule pt_bij2[OF pt_tyvrs_inst, OF at_tyvrs_inst]) |
|
518 |
apply(rule pt_tyvrs3) |
|
519 |
apply(simp) |
|
520 |
apply(rule at_ds5[OF at_tyvrs_inst]) |
|
521 |
apply(rule conjI) |
|
522 |
apply(simp add: pt_fresh_left[OF pt_tyvrs_inst, OF at_tyvrs_inst] calc_atm) |
|
523 |
apply(drule_tac \<Gamma>="((Xa,T\<^isub>1)#\<Gamma>)" in subtype_implies_closed)+ |
|
524 |
apply(simp add: closed_in_def) |
|
525 |
apply(drule fresh_domain)+ |
|
526 |
apply(simp add: fresh_def) |
|
527 |
apply(subgoal_tac "X \<notin> (insert Xa (domain \<Gamma>))")(*A*) |
|
528 |
apply(force) |
|
529 |
(*A*)apply(simp add: at_fin_set_supp[OF at_tyvrs_inst, OF finite_domain]) |
|
530 |
(* 2nd conjunct *)apply(frule_tac X="X" in subtype_implies_fresh) |
|
531 |
apply(assumption) |
|
532 |
apply(drule_tac X="Xa" in subtype_implies_fresh) |
|
533 |
apply(assumption) |
|
534 |
apply(simp add: fresh_prod) |
|
22542 | 535 |
apply(drule_tac pi="[(X,Xa)]" in subtype_of.eqvt(2)) |
18650 | 536 |
apply(simp add: calc_atm) |
537 |
apply(simp add: pt_fresh_fresh[OF pt_tyvrs_inst, OF at_tyvrs_inst]) |
|
538 |
done |
|
539 |
||
540 |
text {* Next we prove the transitivity and narrowing for the subtyping-relation. |
|
18621 | 541 |
The POPLmark-paper says the following: |
542 |
||
18650 | 543 |
\begin{quote} |
18621 | 544 |
\begin{lemma}[Transitivity and Narrowing] \ |
545 |
\begin{enumerate} |
|
546 |
\item If @{term "\<Gamma> \<turnstile> S<:Q"} and @{term "\<Gamma> \<turnstile> Q<:T"}, then @{term "\<Gamma> \<turnstile> S<:T"}. |
|
547 |
\item If @{text "\<Gamma>,X<:Q,\<Delta> \<turnstile> M<:N"} and @{term "\<Gamma> \<turnstile> P<:Q"} then @{text "\<Gamma>,X<:P,\<Delta> \<turnstile> M<:N"}. |
|
548 |
\end{enumerate} |
|
549 |
\end{lemma} |
|
550 |
||
551 |
The two parts are proved simultaneously, by induction on the size |
|
552 |
of @{term "Q"}. The argument for part (2) assumes that part (1) has |
|
553 |
been established already for the @{term "Q"} in question; part (1) uses |
|
554 |
part (2) only for strictly smaller @{term "Q"}. |
|
18650 | 555 |
\end{quote} |
18621 | 556 |
|
557 |
For the induction on the size of @{term "Q"}, we use the induction-rule |
|
558 |
@{text "measure_induct_rule"}: |
|
559 |
||
560 |
\begin{center} |
|
561 |
@{thm measure_induct_rule[of "size_ty",no_vars]} |
|
562 |
\end{center} |
|
18410 | 563 |
|
18628 | 564 |
That means in order to show a property @{term "P a"} for all @{term "a"}, |
18650 | 565 |
the induct-rule requires to prove that for all @{term x} @{term "P x"} holds using the |
18621 | 566 |
assumption that for all @{term y} whose size is strictly smaller than |
567 |
that of @{term x} the property @{term "P y"} holds. *} |
|
18353
4dd468ccfdf7
transitivity should be now in a reasonable state. But
urbanc
parents:
18306
diff
changeset
|
568 |
|
18621 | 569 |
lemma |
570 |
shows trans: "\<Gamma>\<turnstile>S<:Q \<Longrightarrow> \<Gamma>\<turnstile>Q<:T \<Longrightarrow> \<Gamma>\<turnstile>S<:T" |
|
571 |
and narrow: "(\<Delta>@[(X,Q)]@\<Gamma>)\<turnstile>M<:N \<Longrightarrow> \<Gamma>\<turnstile>P<:Q \<Longrightarrow> (\<Delta>@[(X,P)]@\<Gamma>)\<turnstile>M<:N" |
|
20503 | 572 |
proof (induct Q arbitrary: \<Gamma> S T \<Delta> X P M N taking: "size_ty" rule: measure_induct_rule) |
18621 | 573 |
case (less Q) |
574 |
--{* \begin{minipage}[t]{0.9\textwidth} |
|
575 |
First we mention the induction hypotheses of the outer induction for later |
|
576 |
reference:\end{minipage}*} |
|
577 |
have IH_trans: |
|
578 |
"\<And>Q' \<Gamma> S T. \<lbrakk>size_ty Q' < size_ty Q; \<Gamma>\<turnstile>S<:Q'; \<Gamma>\<turnstile>Q'<:T\<rbrakk> \<Longrightarrow> \<Gamma>\<turnstile>S<:T" by fact |
|
579 |
have IH_narrow: |
|
580 |
"\<And>Q' \<Delta> \<Gamma> X M N P. \<lbrakk>size_ty Q' < size_ty Q; (\<Delta>@[(X,Q')]@\<Gamma>)\<turnstile>M<:N; \<Gamma>\<turnstile>P<:Q'\<rbrakk> |
|
581 |
\<Longrightarrow> (\<Delta>@[(X,P)]@\<Gamma>)\<turnstile>M<:N" by fact |
|
582 |
--{* \begin{minipage}[t]{0.9\textwidth} |
|
583 |
We proceed with the transitivity proof as an auxiliary lemma, because it needs |
|
584 |
to be referenced in the narrowing proof.\end{minipage}*} |
|
585 |
have transitivity_aux: |
|
586 |
"\<And>\<Gamma> S T. \<lbrakk>\<Gamma> \<turnstile> S <: Q; \<Gamma> \<turnstile> Q <: T\<rbrakk> \<Longrightarrow> \<Gamma> \<turnstile> S <: T" |
|
18246 | 587 |
proof - |
18424 | 588 |
fix \<Gamma>' S' T |
18621 | 589 |
assume "\<Gamma>' \<turnstile> S' <: Q" --{* left-hand derivation *} |
590 |
and "\<Gamma>' \<turnstile> Q <: T" --{* right-hand derivation *} |
|
591 |
thus "\<Gamma>' \<turnstile> S' <: T" |
|
22537 | 592 |
proof (nominal_induct \<Gamma>' S' Q\<equiv>Q rule: subtype_of.strong_induct) |
18424 | 593 |
case (S_Top \<Gamma> S) |
18621 | 594 |
--{* \begin{minipage}[t]{0.9\textwidth} |
595 |
In this case the left-hand derivation is @{term "\<Gamma> \<turnstile> S <: Top"}, giving |
|
596 |
us @{term "\<turnstile> \<Gamma> ok"} and @{term "S closed_in \<Gamma>"}. This case is straightforward, |
|
597 |
because the right-hand derivation must be of the form @{term "\<Gamma> \<turnstile> Top <: Top"} |
|
598 |
giving us the equation @{term "T = Top"}.\end{minipage}*} |
|
18424 | 599 |
hence rh_drv: "\<Gamma> \<turnstile> Top <: T" by simp |
600 |
hence T_inst: "T = Top" by (simp add: S_TopE) |
|
18621 | 601 |
have "\<turnstile> \<Gamma> ok" |
23393 | 602 |
and "S closed_in \<Gamma>" by fact+ |
18621 | 603 |
hence "\<Gamma> \<turnstile> S <: Top" by (simp add: subtype_of.S_Top) |
18424 | 604 |
thus "\<Gamma> \<turnstile> S <: T" using T_inst by simp |
18246 | 605 |
next |
22537 | 606 |
case (S_Var Y U \<Gamma>) |
18621 | 607 |
-- {* \begin{minipage}[t]{0.9\textwidth} |
608 |
In this case the left-hand derivation is @{term "\<Gamma> \<turnstile> Tvar Y <: Q"} |
|
609 |
with @{term "S = Tvar Y"}. We have therefore @{term "(Y,U)"} |
|
18650 | 610 |
is in @{term "\<Gamma>"} and by inner induction hypothesis that @{term "\<Gamma> \<turnstile> U <: T"}. |
18621 | 611 |
By @{text "S_Var"} follows @{term "\<Gamma> \<turnstile> Tvar Y <: T"}.\end{minipage}*} |
18424 | 612 |
hence IH_inner: "\<Gamma> \<turnstile> U <: T" by simp |
18621 | 613 |
have "(Y,U) \<in> set \<Gamma>" by fact |
614 |
with IH_inner show "\<Gamma> \<turnstile> Tvar Y <: T" by (simp add: subtype_of.S_Var) |
|
18246 | 615 |
next |
18424 | 616 |
case (S_Refl \<Gamma> X) |
18621 | 617 |
--{* \begin{minipage}[t]{0.9\textwidth} |
618 |
In this case the left-hand derivation is @{term "\<Gamma>\<turnstile>(Tvar X) <: (Tvar X)"} with |
|
619 |
@{term "Q=Tvar X"}. The goal then follows immediately from the right-hand |
|
620 |
derivation.\end{minipage}*} |
|
18577
a636846a02c7
added more documentation; will now try out a modification
urbanc
parents:
18424
diff
changeset
|
621 |
thus "\<Gamma> \<turnstile> Tvar X <: T" by simp |
18246 | 622 |
next |
22537 | 623 |
case (S_Arrow \<Gamma> Q\<^isub>1 S\<^isub>1 S\<^isub>2 Q\<^isub>2) |
18621 | 624 |
--{* \begin{minipage}[t]{0.9\textwidth} |
625 |
In this case the left-hand derivation is @{term "\<Gamma> \<turnstile> S\<^isub>1 \<rightarrow> S\<^isub>2 <: Q\<^isub>1 \<rightarrow> Q\<^isub>2"} with |
|
626 |
@{term "S\<^isub>1\<rightarrow>S\<^isub>2=S"} and @{term "Q\<^isub>1\<rightarrow>Q\<^isub>2=Q"}. We know that the @{text "size_ty"} of |
|
627 |
@{term Q\<^isub>1} and @{term Q\<^isub>2} is smaller than that of @{term Q}; |
|
628 |
so we can apply the outer induction hypotheses for @{term Q\<^isub>1} and @{term Q\<^isub>2}. |
|
629 |
We also have the sub-derivations @{term "\<Gamma>\<turnstile>Q\<^isub>1<:S\<^isub>1"} and @{term "\<Gamma>\<turnstile>S\<^isub>2<:Q\<^isub>2"}. |
|
18628 | 630 |
The right-hand derivation is @{term "\<Gamma> \<turnstile> Q\<^isub>1 \<rightarrow> Q\<^isub>2 <: T"}. There exist types |
18621 | 631 |
@{text "T\<^isub>1,T\<^isub>2"} such that @{term "T=Top \<or> T=T\<^isub>1\<rightarrow>T\<^isub>2"}. The @{term "Top"}-case is |
632 |
straightforward once we know @{term "(S\<^isub>1 \<rightarrow> S\<^isub>2) closed_in \<Gamma>"} and @{term "\<turnstile> \<Gamma> ok"}. |
|
633 |
In the other case we have the sub-derivations @{term "\<Gamma>\<turnstile>T\<^isub>1<:Q\<^isub>1"} and @{term "\<Gamma>\<turnstile>Q\<^isub>2<:T\<^isub>2"}. |
|
634 |
Using the outer induction hypothesis for transitivity we can derive @{term "\<Gamma>\<turnstile>T\<^isub>1<:S\<^isub>1"} |
|
635 |
and @{term "\<Gamma>\<turnstile>S\<^isub>2<:T\<^isub>2"}. By rule @{text "S_Arrow"} follows @{term "\<Gamma> \<turnstile> S\<^isub>1 \<rightarrow> S\<^isub>2 <: T\<^isub>1 \<rightarrow> T\<^isub>2"}, |
|
636 |
which is @{term "\<Gamma> \<turnstile> S\<^isub>1 \<rightarrow> S\<^isub>2 <: T\<^isub>"}.\end{minipage}*} |
|
637 |
hence rh_drv: "\<Gamma> \<turnstile> Q\<^isub>1 \<rightarrow> Q\<^isub>2 <: T" by simp |
|
638 |
from `Q\<^isub>1 \<rightarrow> Q\<^isub>2 = Q` |
|
639 |
have Q\<^isub>1\<^isub>2_less: "size_ty Q\<^isub>1 < size_ty Q" "size_ty Q\<^isub>2 < size_ty Q" by auto |
|
640 |
have lh_drv_prm\<^isub>1: "\<Gamma> \<turnstile> Q\<^isub>1 <: S\<^isub>1" by fact |
|
641 |
have lh_drv_prm\<^isub>2: "\<Gamma> \<turnstile> S\<^isub>2 <: Q\<^isub>2" by fact |
|
642 |
from rh_drv have "T=Top \<or> (\<exists>T\<^isub>1 T\<^isub>2. T=T\<^isub>1\<rightarrow>T\<^isub>2 \<and> \<Gamma>\<turnstile>T\<^isub>1<:Q\<^isub>1 \<and> \<Gamma>\<turnstile>Q\<^isub>2<:T\<^isub>2)" |
|
643 |
by (simp add: S_ArrowE_left) |
|
644 |
moreover |
|
645 |
have "S\<^isub>1 closed_in \<Gamma>" and "S\<^isub>2 closed_in \<Gamma>" |
|
646 |
using lh_drv_prm\<^isub>1 lh_drv_prm\<^isub>2 by (simp_all add: subtype_implies_closed) |
|
647 |
hence "(S\<^isub>1 \<rightarrow> S\<^isub>2) closed_in \<Gamma>" by (simp add: closed_in_def ty.supp) |
|
18353
4dd468ccfdf7
transitivity should be now in a reasonable state. But
urbanc
parents:
18306
diff
changeset
|
648 |
moreover |
18424 | 649 |
have "\<turnstile> \<Gamma> ok" using rh_drv by (rule subtype_implies_ok) |
18353
4dd468ccfdf7
transitivity should be now in a reasonable state. But
urbanc
parents:
18306
diff
changeset
|
650 |
moreover |
18621 | 651 |
{ assume "\<exists>T\<^isub>1 T\<^isub>2. T=T\<^isub>1\<rightarrow>T\<^isub>2 \<and> \<Gamma>\<turnstile>T\<^isub>1<:Q\<^isub>1 \<and> \<Gamma>\<turnstile>Q\<^isub>2<:T\<^isub>2" |
652 |
then obtain T\<^isub>1 T\<^isub>2 |
|
653 |
where T_inst: "T = T\<^isub>1 \<rightarrow> T\<^isub>2" |
|
654 |
and rh_drv_prm\<^isub>1: "\<Gamma> \<turnstile> T\<^isub>1 <: Q\<^isub>1" |
|
655 |
and rh_drv_prm\<^isub>2: "\<Gamma> \<turnstile> Q\<^isub>2 <: T\<^isub>2" by force |
|
656 |
from IH_trans[of "Q\<^isub>1"] |
|
657 |
have "\<Gamma> \<turnstile> T\<^isub>1 <: S\<^isub>1" using Q\<^isub>1\<^isub>2_less rh_drv_prm\<^isub>1 lh_drv_prm\<^isub>1 by simp |
|
18246 | 658 |
moreover |
18621 | 659 |
from IH_trans[of "Q\<^isub>2"] |
660 |
have "\<Gamma> \<turnstile> S\<^isub>2 <: T\<^isub>2" using Q\<^isub>1\<^isub>2_less rh_drv_prm\<^isub>2 lh_drv_prm\<^isub>2 by simp |
|
661 |
ultimately have "\<Gamma> \<turnstile> S\<^isub>1 \<rightarrow> S\<^isub>2 <: T\<^isub>1 \<rightarrow> T\<^isub>2" by (simp add: subtype_of.S_Arrow) |
|
662 |
hence "\<Gamma> \<turnstile> S\<^isub>1 \<rightarrow> S\<^isub>2 <: T" using T_inst by simp |
|
18353
4dd468ccfdf7
transitivity should be now in a reasonable state. But
urbanc
parents:
18306
diff
changeset
|
663 |
} |
18621 | 664 |
ultimately show "\<Gamma> \<turnstile> S\<^isub>1 \<rightarrow> S\<^isub>2 <: T" by blast |
18246 | 665 |
next |
22537 | 666 |
case (S_Forall \<Gamma> Q\<^isub>1 S\<^isub>1 X S\<^isub>2 Q\<^isub>2) |
18621 | 667 |
--{* \begin{minipage}[t]{0.9\textwidth} |
668 |
In this case the left-hand derivation is @{text "\<Gamma>\<turnstile>\<forall>[X<:S\<^isub>1].S\<^isub>2 <: \<forall>[X<:Q\<^isub>1].Q\<^isub>2"} with |
|
669 |
@{text "\<forall>[X<:S\<^isub>1].S\<^isub>2=S"} and @{text "\<forall>[X<:Q\<^isub>1].Q\<^isub>2=Q"}. We therefore have the sub-derivations |
|
670 |
@{term "\<Gamma>\<turnstile>Q\<^isub>1<:S\<^isub>1"} and @{term "((X,Q\<^isub>1)#\<Gamma>)\<turnstile>S\<^isub>2<:Q\<^isub>2"}. Since @{term "X"} is a binder, we |
|
671 |
assume that it is sufficiently fresh; in particular we have the freshness conditions |
|
18650 | 672 |
@{term "X\<sharp>\<Gamma>"} and @{term "X\<sharp>Q\<^isub>1"} (these assumptions are provided by the strong |
673 |
induction-rule @{text "subtype_of_induct"}). We know that the @{text "size_ty"} of |
|
18621 | 674 |
@{term Q\<^isub>1} and @{term Q\<^isub>2} is smaller than that of @{term Q}; |
675 |
so we can apply the outer induction hypotheses for @{term Q\<^isub>1} and @{term Q\<^isub>2}. |
|
676 |
The right-hand derivation is @{text "\<Gamma> \<turnstile> \<forall>[X<:Q\<^isub>1].Q\<^isub>2 <: T"}. Since @{term "X\<sharp>\<Gamma>"} |
|
677 |
and @{term "X\<sharp>Q\<^isub>1"} there exists types @{text "T\<^isub>1,T\<^isub>2"} such that |
|
678 |
@{text "T=Top \<or> T=\<forall>[X<:T\<^isub>1].T\<^isub>2"}. The @{term "Top"}-case is straightforward once we know |
|
679 |
@{text "(\<forall>[X<:S\<^isub>1].S\<^isub>2) closed_in \<Gamma>"} and @{term "\<turnstile> \<Gamma> ok"}. In the other case we have |
|
18628 | 680 |
the sub-derivations @{term "\<Gamma>\<turnstile>T\<^isub>1<:Q\<^isub>1"} and @{term "((X,T\<^isub>1)#\<Gamma>)\<turnstile>Q\<^isub>2<:T\<^isub>2"}. Using the outer |
18621 | 681 |
induction hypothesis for transitivity we can derive @{term "\<Gamma>\<turnstile>T\<^isub>1<:S\<^isub>1"}. From the outer |
18628 | 682 |
induction for narrowing we get @{term "((X,T\<^isub>1)#\<Gamma>) \<turnstile> S\<^isub>2 <: Q\<^isub>2"} and then using again |
683 |
induction for transitivity we obtain @{term "((X,T\<^isub>1)#\<Gamma>) \<turnstile> S\<^isub>2 <: T\<^isub>2"}. By rule |
|
684 |
@{text "S_Forall"} and the freshness condition @{term "X\<sharp>\<Gamma>"} follows |
|
18650 | 685 |
@{text "\<Gamma> \<turnstile> \<forall>[X<:S\<^isub>1].S\<^isub>2 <: \<forall>[X<:T\<^isub>1].T\<^isub>2"}, which is @{text "\<Gamma> \<turnstile> \<forall>[X<:S\<^isub>1].S\<^isub>2 <: T\<^isub>"}. |
18628 | 686 |
\end{minipage}*} |
18621 | 687 |
hence rh_drv: "\<Gamma> \<turnstile> \<forall>[X<:Q\<^isub>1].Q\<^isub>2 <: T" by simp |
688 |
have lh_drv_prm\<^isub>1: "\<Gamma> \<turnstile> Q\<^isub>1 <: S\<^isub>1" by fact |
|
689 |
have lh_drv_prm\<^isub>2: "((X,Q\<^isub>1)#\<Gamma>) \<turnstile> S\<^isub>2 <: Q\<^isub>2" by fact |
|
22537 | 690 |
have "X\<sharp>\<Gamma>" by fact |
691 |
then have fresh_cond: "X\<sharp>\<Gamma>" "X\<sharp>Q\<^isub>1" using lh_drv_prm\<^isub>1 by (simp_all add: subtype_implies_fresh) |
|
18621 | 692 |
from `\<forall>[X<:Q\<^isub>1].Q\<^isub>2 = Q` |
20395
9a60e3151244
added definition for size and substitution using the recursion
urbanc
parents:
19972
diff
changeset
|
693 |
have Q\<^isub>1\<^isub>2_less: "size_ty Q\<^isub>1 < size_ty Q" "size_ty Q\<^isub>2 < size_ty Q " using fresh_cond by auto |
18621 | 694 |
from rh_drv |
695 |
have "T=Top \<or> (\<exists>T\<^isub>1 T\<^isub>2. T=\<forall>[X<:T\<^isub>1].T\<^isub>2 \<and> \<Gamma>\<turnstile>T\<^isub>1<:Q\<^isub>1 \<and> ((X,T\<^isub>1)#\<Gamma>)\<turnstile>Q\<^isub>2<:T\<^isub>2)" |
|
696 |
using fresh_cond by (simp add: S_ForallE_left) |
|
697 |
moreover |
|
698 |
have "S\<^isub>1 closed_in \<Gamma>" and "S\<^isub>2 closed_in ((X,Q\<^isub>1)#\<Gamma>)" |
|
699 |
using lh_drv_prm\<^isub>1 lh_drv_prm\<^isub>2 by (simp_all add: subtype_implies_closed) |
|
700 |
hence "(\<forall>[X<:S\<^isub>1].S\<^isub>2) closed_in \<Gamma>" by (force simp add: closed_in_def ty.supp abs_supp) |
|
18353
4dd468ccfdf7
transitivity should be now in a reasonable state. But
urbanc
parents:
18306
diff
changeset
|
701 |
moreover |
18424 | 702 |
have "\<turnstile> \<Gamma> ok" using rh_drv by (rule subtype_implies_ok) |
18353
4dd468ccfdf7
transitivity should be now in a reasonable state. But
urbanc
parents:
18306
diff
changeset
|
703 |
moreover |
18621 | 704 |
{ assume "\<exists>T\<^isub>1 T\<^isub>2. T=\<forall>[X<:T\<^isub>1].T\<^isub>2 \<and> \<Gamma>\<turnstile>T\<^isub>1<:Q\<^isub>1 \<and> ((X,T\<^isub>1)#\<Gamma>)\<turnstile>Q\<^isub>2<:T\<^isub>2" |
705 |
then obtain T\<^isub>1 T\<^isub>2 |
|
706 |
where T_inst: "T = \<forall>[X<:T\<^isub>1].T\<^isub>2" |
|
707 |
and rh_drv_prm\<^isub>1: "\<Gamma> \<turnstile> T\<^isub>1 <: Q\<^isub>1" |
|
708 |
and rh_drv_prm\<^isub>2:"((X,T\<^isub>1)#\<Gamma>) \<turnstile> Q\<^isub>2 <: T\<^isub>2" by force |
|
709 |
from IH_trans[of "Q\<^isub>1"] |
|
710 |
have "\<Gamma> \<turnstile> T\<^isub>1 <: S\<^isub>1" using lh_drv_prm\<^isub>1 rh_drv_prm\<^isub>1 Q\<^isub>1\<^isub>2_less by blast |
|
711 |
moreover |
|
712 |
from IH_narrow[of "Q\<^isub>1" "[]"] |
|
713 |
have "((X,T\<^isub>1)#\<Gamma>) \<turnstile> S\<^isub>2 <: Q\<^isub>2" using Q\<^isub>1\<^isub>2_less lh_drv_prm\<^isub>2 rh_drv_prm\<^isub>1 by simp |
|
714 |
with IH_trans[of "Q\<^isub>2"] |
|
715 |
have "((X,T\<^isub>1)#\<Gamma>) \<turnstile> S\<^isub>2 <: T\<^isub>2" using Q\<^isub>1\<^isub>2_less rh_drv_prm\<^isub>2 by simp |
|
716 |
ultimately have "\<Gamma> \<turnstile> \<forall>[X<:S\<^isub>1].S\<^isub>2 <: \<forall>[X<:T\<^isub>1].T\<^isub>2" |
|
717 |
using fresh_cond by (simp add: subtype_of.S_Forall) |
|
718 |
hence "\<Gamma> \<turnstile> \<forall>[X<:S\<^isub>1].S\<^isub>2 <: T" using T_inst by simp |
|
18353
4dd468ccfdf7
transitivity should be now in a reasonable state. But
urbanc
parents:
18306
diff
changeset
|
719 |
} |
18621 | 720 |
ultimately show "\<Gamma> \<turnstile> \<forall>[X<:S\<^isub>1].S\<^isub>2 <: T" by blast |
18246 | 721 |
qed |
722 |
qed |
|
723 |
||
18621 | 724 |
{ --{* The transitivity proof is now by the auxiliary lemma. *} |
725 |
case 1 |
|
726 |
have "\<Gamma> \<turnstile> S <: Q" |
|
23393 | 727 |
and "\<Gamma> \<turnstile> Q <: T" by fact+ |
18621 | 728 |
thus "\<Gamma> \<turnstile> S <: T" by (rule transitivity_aux) |
729 |
next |
|
730 |
--{* The narrowing proof proceeds by an induction over @{term "(\<Delta>@[(X,Q)]@\<Gamma>) \<turnstile> M <: N"}. *} |
|
731 |
case 2 |
|
732 |
have "(\<Delta>@[(X,Q)]@\<Gamma>) \<turnstile> M <: N" --{* left-hand derivation *} |
|
23393 | 733 |
and "\<Gamma> \<turnstile> P<:Q" by fact+ --{* right-hand derivation *} |
18621 | 734 |
thus "(\<Delta>@[(X,P)]@\<Gamma>) \<turnstile> M <: N" |
22537 | 735 |
proof (nominal_induct \<Gamma>\<equiv>"\<Delta>@[(X,Q)]@\<Gamma>" M N avoiding: \<Delta> \<Gamma> X rule: subtype_of.strong_induct) |
18424 | 736 |
case (S_Top _ S \<Delta> \<Gamma> X) |
18621 | 737 |
--{* \begin{minipage}[t]{0.9\textwidth} |
738 |
In this case the left-hand derivation is @{term "(\<Delta>@[(X,Q)]@\<Gamma>) \<turnstile> S <: Top"}. We show |
|
739 |
that the context @{term "\<Delta>@[(X,P)]@\<Gamma>"} is ok and that @{term S} is closed in |
|
740 |
@{term "\<Delta>@[(X,P)]@\<Gamma>"}. Then we can apply the @{text "S_Top"}-rule.\end{minipage}*} |
|
741 |
hence lh_drv_prm\<^isub>1: "\<turnstile> (\<Delta>@[(X,Q)]@\<Gamma>) ok" |
|
742 |
and lh_drv_prm\<^isub>2: "S closed_in (\<Delta>@[(X,Q)]@\<Gamma>)" by simp_all |
|
18424 | 743 |
have rh_drv: "\<Gamma> \<turnstile> P <: Q" by fact |
744 |
hence "P closed_in \<Gamma>" by (simp add: subtype_implies_closed) |
|
18621 | 745 |
with lh_drv_prm\<^isub>1 have "\<turnstile> (\<Delta>@[(X,P)]@\<Gamma>) ok" by (simp add: replace_type) |
18412 | 746 |
moreover |
18621 | 747 |
from lh_drv_prm\<^isub>2 have "S closed_in (\<Delta>@[(X,P)]@\<Gamma>)" |
748 |
by (simp add: closed_in_def domain_append) |
|
18577
a636846a02c7
added more documentation; will now try out a modification
urbanc
parents:
18424
diff
changeset
|
749 |
ultimately show "(\<Delta>@[(X,P)]@\<Gamma>) \<turnstile> S <: Top" by (simp add: subtype_of.S_Top) |
18246 | 750 |
next |
22537 | 751 |
case (S_Var Y S _ N \<Delta> \<Gamma> X) |
18621 | 752 |
--{* \begin{minipage}[t]{0.9\textwidth} |
18628 | 753 |
In this case the left-hand derivation is @{term "(\<Delta>@[(X,Q)]@\<Gamma>) \<turnstile> Tvar Y <: N"} and |
754 |
by inner induction hypothesis we have @{term "(\<Delta>@[(X,P)]@\<Gamma>) \<turnstile> S <: N"}. We therefore |
|
18621 | 755 |
know that the contexts @{term "\<Delta>@[(X,Q)]@\<Gamma>"} and @{term "\<Delta>@[(X,P)]@\<Gamma>"} are ok, and that |
18628 | 756 |
@{term "(Y,S)"} is in @{term "\<Delta>@[(X,Q)]@\<Gamma>"}. We need to show that |
757 |
@{term "(\<Delta>@[(X,P)]@\<Gamma>) \<turnstile> Tvar Y <: N"} holds. In case @{term "X\<noteq>Y"} we know that |
|
758 |
@{term "(Y,S)"} is in @{term "\<Delta>@[(X,P)]@\<Gamma>"} and can use the inner induction hypothesis |
|
759 |
and rule @{text "S_Var"} to conclude. In case @{term "X=Y"} we can infer that |
|
760 |
@{term "S=Q"}; moreover we have that @{term "(\<Delta>@[(X,P)]@\<Gamma>) extends \<Gamma>"} and therefore |
|
761 |
by @{text "weakening"} that @{term "(\<Delta>@[(X,P)]@\<Gamma>) \<turnstile> P <: Q"} holds. By transitivity we |
|
762 |
obtain then @{term "(\<Delta>@[(X,P)]@\<Gamma>) \<turnstile> P <: N"} and can conclude by applying rule |
|
763 |
@{text "S_Var"}.\end{minipage}*} |
|
18621 | 764 |
hence IH_inner: "(\<Delta>@[(X,P)]@\<Gamma>) \<turnstile> S <: N" |
765 |
and lh_drv_prm: "(Y,S) \<in> set (\<Delta>@[(X,Q)]@\<Gamma>)" |
|
766 |
and rh_drv: "\<Gamma> \<turnstile> P<:Q" |
|
767 |
and ok\<^isub>Q: "\<turnstile> (\<Delta>@[(X,Q)]@\<Gamma>) ok" by (simp_all add: subtype_implies_ok) |
|
768 |
hence ok\<^isub>P: "\<turnstile> (\<Delta>@[(X,P)]@\<Gamma>) ok" by (simp add: subtype_implies_ok) |
|
769 |
show "(\<Delta>@[(X,P)]@\<Gamma>) \<turnstile> Tvar Y <: N" |
|
770 |
proof (cases "X=Y") |
|
771 |
case False |
|
772 |
have "X\<noteq>Y" by fact |
|
773 |
hence "(Y,S)\<in>set (\<Delta>@[(X,P)]@\<Gamma>)" using lh_drv_prm by simp |
|
774 |
with IH_inner show "(\<Delta>@[(X,P)]@\<Gamma>) \<turnstile> Tvar Y <: N" by (simp add: subtype_of.S_Var) |
|
775 |
next |
|
776 |
case True |
|
777 |
have memb\<^isub>X\<^isub>Q: "(X,Q)\<in>set (\<Delta>@[(X,Q)]@\<Gamma>)" by simp |
|
778 |
have memb\<^isub>X\<^isub>P: "(X,P)\<in>set (\<Delta>@[(X,P)]@\<Gamma>)" by simp |
|
779 |
have eq: "X=Y" by fact |
|
780 |
hence "S=Q" using ok\<^isub>Q lh_drv_prm memb\<^isub>X\<^isub>Q by (simp only: uniqueness_of_ctxt) |
|
18424 | 781 |
hence "(\<Delta>@[(X,P)]@\<Gamma>) \<turnstile> Q <: N" using IH_inner by simp |
782 |
moreover |
|
783 |
have "(\<Delta>@[(X,P)]@\<Gamma>) extends \<Gamma>" by (simp add: extends_def) |
|
18621 | 784 |
hence "(\<Delta>@[(X,P)]@\<Gamma>) \<turnstile> P <: Q" using rh_drv ok\<^isub>P by (simp only: weakening) |
785 |
ultimately have "(\<Delta>@[(X,P)]@\<Gamma>) \<turnstile> P <: N" by (simp add: transitivity_aux) |
|
786 |
thus "(\<Delta>@[(X,P)]@\<Gamma>) \<turnstile> Tvar Y <: N" using memb\<^isub>X\<^isub>P eq by (simp only: subtype_of.S_Var) |
|
787 |
qed |
|
18246 | 788 |
next |
18424 | 789 |
case (S_Refl _ Y \<Delta> \<Gamma> X) |
18621 | 790 |
--{* \begin{minipage}[t]{0.9\textwidth} |
791 |
In this case the left-hand derivation is @{term "(\<Delta>@[(X,Q)]@\<Gamma>) \<turnstile> Tvar Y <: Tvar Y"} and we |
|
18628 | 792 |
therefore know that @{term "\<Delta>@[(X,Q)]@\<Gamma>"} is ok and that @{term "Y"} is in |
18621 | 793 |
the domain of @{term "\<Delta>@[(X,Q)]@\<Gamma>"}. We therefore know that @{term "\<Delta>@[(X,P)]@\<Gamma>"} is ok |
794 |
and that @{term Y} is in the domain of @{term "\<Delta>@[(X,P)]@\<Gamma>"}. We can conclude by applying |
|
795 |
rule @{text "S_Refl"}.\end{minipage}*} |
|
796 |
hence lh_drv_prm\<^isub>1: "\<turnstile> (\<Delta>@[(X,Q)]@\<Gamma>) ok" |
|
797 |
and lh_drv_prm\<^isub>2: "Y \<in> domain (\<Delta>@[(X,Q)]@\<Gamma>)" by simp_all |
|
18424 | 798 |
have "\<Gamma> \<turnstile> P <: Q" by fact |
799 |
hence "P closed_in \<Gamma>" by (simp add: subtype_implies_closed) |
|
18621 | 800 |
with lh_drv_prm\<^isub>1 have "\<turnstile> (\<Delta>@[(X,P)]@\<Gamma>) ok" by (simp add: replace_type) |
18424 | 801 |
moreover |
18621 | 802 |
from lh_drv_prm\<^isub>2 have "Y \<in> domain (\<Delta>@[(X,P)]@\<Gamma>)" by (simp add: domain_append) |
18577
a636846a02c7
added more documentation; will now try out a modification
urbanc
parents:
18424
diff
changeset
|
803 |
ultimately show "(\<Delta>@[(X,P)]@\<Gamma>) \<turnstile> Tvar Y <: Tvar Y" by (simp add: subtype_of.S_Refl) |
18246 | 804 |
next |
22537 | 805 |
case (S_Arrow _ S\<^isub>1 Q\<^isub>1 Q\<^isub>2 S\<^isub>2 \<Delta> \<Gamma> X) |
18621 | 806 |
--{* \begin{minipage}[t]{0.9\textwidth} |
807 |
In this case the left-hand derivation is @{term "(\<Delta>@[(X,Q)]@\<Gamma>) \<turnstile> Q\<^isub>1 \<rightarrow> Q\<^isub>2 <: S\<^isub>1 \<rightarrow> S\<^isub>2"} |
|
808 |
and the proof is trivial.\end{minipage}*} |
|
809 |
thus "(\<Delta>@[(X,P)]@\<Gamma>) \<turnstile> Q\<^isub>1 \<rightarrow> Q\<^isub>2 <: S\<^isub>1 \<rightarrow> S\<^isub>2" by blast |
|
18424 | 810 |
next |
22537 | 811 |
case (S_Forall _ T\<^isub>1 S\<^isub>1 Y S\<^isub>2 T\<^isub>2 \<Delta> \<Gamma> X) |
18621 | 812 |
--{* \begin{minipage}[t]{0.9\textwidth} |
18628 | 813 |
In this case the left-hand derivation is @{text "(\<Delta>@[(X,Q)]@\<Gamma>) \<turnstile> \<forall>[Y<:S\<^isub>1].S\<^isub>2 <: \<forall>[Y<:T\<^isub>1].T\<^isub>2"} |
18621 | 814 |
and therfore we know that the binder @{term Y} is fresh for @{term "\<Delta>@[(X,Q)]@\<Gamma>"}. By |
815 |
the inner induction hypothesis we have that @{term "(\<Delta>@[(X,P)]@\<Gamma>) \<turnstile> T\<^isub>1 <: S\<^isub>1"} and |
|
816 |
@{term "((Y,T\<^isub>1)#\<Delta>@[(X,P)]@\<Gamma>) \<turnstile> S\<^isub>2 <: T\<^isub>2"}. Since @{term P} is a subtype of @{term Q} |
|
817 |
we can infer that @{term Y} is fresh for @{term P} and thus also fresh for |
|
818 |
@{term "\<Delta>@[(X,P)]@\<Gamma>"}. We can then conclude by applying rule @{text "S_Forall"}. |
|
819 |
\end{minipage}*} |
|
820 |
hence IH_inner\<^isub>1: "(\<Delta>@[(X,P)]@\<Gamma>) \<turnstile> T\<^isub>1 <: S\<^isub>1" |
|
821 |
and IH_inner\<^isub>2: "((Y,T\<^isub>1)#\<Delta>@[(X,P)]@\<Gamma>) \<turnstile> S\<^isub>2 <: T\<^isub>2" |
|
822 |
and lh_drv_prm: "Y\<sharp>(\<Delta>@[(X,Q)]@\<Gamma>)" by force+ |
|
18424 | 823 |
have rh_drv: "\<Gamma> \<turnstile> P <: Q" by fact |
18621 | 824 |
hence "Y\<sharp>P" using lh_drv_prm by (simp only: fresh_list_append subtype_implies_fresh) |
825 |
hence "Y\<sharp>(\<Delta>@[(X,P)]@\<Gamma>)" using lh_drv_prm |
|
18424 | 826 |
by (simp add: fresh_list_append fresh_list_cons fresh_prod) |
18621 | 827 |
with IH_inner\<^isub>1 IH_inner\<^isub>2 |
828 |
show "(\<Delta>@[(X,P)]@\<Gamma>) \<turnstile> \<forall>[Y<:S\<^isub>1].S\<^isub>2 <: \<forall>[Y<:T\<^isub>1].T\<^isub>2" by (simp add: subtype_of.S_Forall) |
|
18246 | 829 |
qed |
18621 | 830 |
} |
18246 | 831 |
qed |
832 |
||
18416 | 833 |
end |