- Renamed <predicate>_eqvt to <predicate>.eqvt
- Renamed induct_weak to weak_induct
--- a/src/HOL/Nominal/Examples/CR.thy Wed Mar 28 18:25:23 2007 +0200
+++ b/src/HOL/Nominal/Examples/CR.thy Wed Mar 28 19:16:11 2007 +0200
@@ -271,7 +271,7 @@
apply(rule conjI)
apply(simp add: pt_fresh_left[OF pt_name_inst, OF at_name_inst])
apply(simp add: calc_atm)
- apply(force intro!: One_eqvt)
+ apply(force intro!: One.eqvt)
done
lemma one_app:
@@ -314,7 +314,7 @@
apply(simp add: subst_rename)
(*A*)
apply(force intro: one_fresh_preserv)
- apply(force intro: One_eqvt)
+ apply(force intro: One.eqvt)
done
text {* first case in Lemma 3.2.4*}
--- a/src/HOL/Nominal/Examples/Class.thy Wed Mar 28 18:25:23 2007 +0200
+++ b/src/HOL/Nominal/Examples/Class.thy Wed Mar 28 19:16:11 2007 +0200
@@ -35,7 +35,7 @@
text {* Induction principles *}
-thm trm.induct_weak --"weak"
+thm trm.weak_induct --"weak"
thm trm.induct --"strong"
thm trm.induct' --"strong with explicit context (rarely needed)"
--- a/src/HOL/Nominal/Examples/Crary.thy Wed Mar 28 18:25:23 2007 +0200
+++ b/src/HOL/Nominal/Examples/Crary.thy Wed Mar 28 19:16:11 2007 +0200
@@ -32,7 +32,7 @@
fixes T::"ty"
and pi::"name prm"
shows "pi\<bullet>T = T"
- by (induct T rule: ty.induct_weak) (simp_all)
+ by (induct T rule: ty.weak_induct) (simp_all)
lemma fresh_ty[simp]:
fixes x::"name"
@@ -43,7 +43,7 @@
lemma ty_cases:
fixes T::ty
shows "(\<exists> T\<^isub>1 T\<^isub>2. T=T\<^isub>1\<rightarrow>T\<^isub>2) \<or> T=TUnit \<or> T=TBase"
-by (induct T rule:ty.induct_weak) (auto)
+by (induct T rule:ty.weak_induct) (auto)
instance ty :: size ..
@@ -399,11 +399,11 @@
using a
apply(induct)
apply(rule QAN_Reduce)
-apply(rule whr_def_eqvt)
+apply(rule whr_def.eqvt)
apply(assumption)+
apply(rule QAN_Normal)
apply(auto)
-apply(drule_tac pi="rev pi" in whr_def_eqvt)
+apply(drule_tac pi="rev pi" in whr_def.eqvt)
apply(perm_simp)
done
@@ -494,7 +494,7 @@
obtain y where fs2: "y\<sharp>(\<Gamma>,t,u)" and "(y,T\<^isub>1)#\<Gamma> \<turnstile> App t (Var y) \<Leftrightarrow> App u (Var y) : T\<^isub>2"
using h by auto
then have "([(x,y)]\<bullet>((y,T\<^isub>1)#\<Gamma>)) \<turnstile> [(x,y)]\<bullet> App t (Var y) \<Leftrightarrow> [(x,y)]\<bullet> App u (Var y) : T\<^isub>2"
- using alg_equiv_eqvt[simplified] by blast
+ using alg_equiv.eqvt[simplified] by blast
then show ?thesis using fs fs2 by (perm_simp)
qed
--- a/src/HOL/Nominal/Examples/Fsub.thy Wed Mar 28 18:25:23 2007 +0200
+++ b/src/HOL/Nominal/Examples/Fsub.thy Wed Mar 28 19:16:11 2007 +0200
@@ -159,7 +159,7 @@
fixes pi::"vrs prm"
and S::"ty"
shows "pi\<bullet>S = S"
-by (induct S rule: ty.induct_weak) (auto simp add: calc_atm)
+by (induct S rule: ty.weak_induct) (auto simp add: calc_atm)
lemma ty_context_vrs_prm_simp:
fixes pi::"vrs prm"
@@ -530,7 +530,7 @@
apply(drule_tac X="Xa" in subtype_implies_fresh)
apply(assumption)
apply(simp add: fresh_prod)
- apply(drule_tac pi="[(X,Xa)]" in subtype_of_eqvt(2))
+ apply(drule_tac pi="[(X,Xa)]" in subtype_of.eqvt(2))
apply(simp add: calc_atm)
apply(simp add: pt_fresh_fresh[OF pt_tyvrs_inst, OF at_tyvrs_inst])
done
--- a/src/HOL/Nominal/Examples/SN.thy Wed Mar 28 18:25:23 2007 +0200
+++ b/src/HOL/Nominal/Examples/SN.thy Wed Mar 28 19:16:11 2007 +0200
@@ -211,7 +211,7 @@
lemma t3_elim: "\<lbrakk>\<Gamma> \<turnstile> Lam [a].t : \<sigma>;a\<sharp>\<Gamma>\<rbrakk>\<Longrightarrow> \<exists>\<tau> \<tau>'. \<sigma>=\<tau>\<rightarrow>\<tau>' \<and> ((a,\<tau>)#\<Gamma>) \<turnstile> t : \<tau>'"
apply(ind_cases2 "\<Gamma> \<turnstile> Lam [a].t : \<sigma>")
apply(auto simp add: lam.distinct lam.inject alpha)
-apply(drule_tac pi="[(a,aa)]::name prm" in typing_eqvt)
+apply(drule_tac pi="[(a,aa)]::name prm" in typing.eqvt)
apply(simp)
apply(subgoal_tac "([(a,aa)]::name prm)\<bullet>\<Gamma> = \<Gamma>")(*A*)
apply(force simp add: calc_atm)
--- a/src/HOL/Nominal/Examples/SOS.thy Wed Mar 28 18:25:23 2007 +0200
+++ b/src/HOL/Nominal/Examples/SOS.thy Wed Mar 28 19:16:11 2007 +0200
@@ -46,13 +46,13 @@
fixes D::"data"
and pi::"name prm"
shows "pi\<bullet>D = D"
- by (induct D rule: data.induct_weak) (simp_all)
+ by (induct D rule: data.weak_induct) (simp_all)
lemma perm_ty[simp]:
fixes T::"ty"
and pi::"name prm"
shows "pi\<bullet>T = T"
- by (induct T rule: ty.induct_weak) (simp_all)
+ by (induct T rule: ty.weak_induct) (simp_all)
lemma fresh_ty[simp]:
fixes x::"name"
@@ -269,7 +269,7 @@
nominal_inductive typing
by (simp_all add: abs_fresh fresh_prod fresh_atm)
-lemmas typing_eqvt' = typing_eqvt[simplified]
+lemmas typing_eqvt' = typing.eqvt[simplified]
lemma typing_implies_valid:
assumes "\<Gamma> \<turnstile> t : T"
@@ -311,7 +311,7 @@
then have fs: "c\<sharp>\<Gamma>" "c\<noteq>x" "c\<noteq>x'" "c\<sharp>t" "c\<sharp>t'" by (simp_all add: fresh_atm[symmetric])
then have b5: "[(x',c)]\<bullet>t'=[(x,c)]\<bullet>t" using b3 fs by (simp add: alpha')
have "([(x,c)]\<bullet>[(x',c)]\<bullet>((x',T\<^isub>1)#\<Gamma>)) \<turnstile> ([(x,c)]\<bullet>[(x',c)]\<bullet>t') : T\<^isub>2" using b2
- by (simp only: typing_eqvt[simplified perm_ty])
+ by (simp only: typing_eqvt')
then have "(x,T\<^isub>1)#\<Gamma> \<turnstile> t : T\<^isub>2" using fs b1 a2 b5 by (perm_simp add: calc_atm)
then show ?thesis using prems b4 by simp
qed
@@ -505,7 +505,7 @@
shows "t \<Down> t'"
using a
apply -
-apply(drule_tac pi="rev pi" in big_eqvt)
+apply(drule_tac pi="rev pi" in big.eqvt)
apply(perm_simp)
done
@@ -541,9 +541,9 @@
using assms
apply -
apply(erule b_App_inv_auto)
- apply(drule_tac pi="[(xa,x)]" in big_eqvt)
- apply(drule_tac pi="[(xa,x)]" in big_eqvt)
- apply(drule_tac pi="[(xa,x)]" in big_eqvt)
+ apply(drule_tac pi="[(xa,x)]" in big.eqvt)
+ apply(drule_tac pi="[(xa,x)]" in big.eqvt)
+ apply(drule_tac pi="[(xa,x)]" in big.eqvt)
apply(perm_simp add: calc_atm eqvts)
done
@@ -853,7 +853,7 @@
apply(auto)
apply(rule_tac x="pi\<bullet>v'" in exI)
apply(auto)
-apply(drule_tac pi="pi" in big_eqvt)
+apply(drule_tac pi="pi" in big.eqvt)
apply(perm_simp add: eqvts)
done
@@ -886,7 +886,7 @@
apply(auto)
apply(rule_tac x="[(a,a')]\<bullet>v'" in exI)
apply(auto)
-apply(drule_tac pi="[(a,a')]" in big_eqvt)
+apply(drule_tac pi="[(a,a')]" in big.eqvt)
apply(perm_simp add: eqvts calc_atm)
apply(simp add: V_eqvt)
(*A*)