author | wenzelm |
Mon, 04 Apr 2016 23:13:41 +0200 | |
changeset 62861 | cfd2749e1352 |
parent 61391 | 2332d9be352b |
child 63505 | 42e1dece537a |
permissions | -rw-r--r-- |
17441 | 1 |
(* Title: CTT/Arith.thy |
1474 | 2 |
Author: Lawrence C Paulson, Cambridge University Computer Laboratory |
0 | 3 |
Copyright 1991 University of Cambridge |
4 |
*) |
|
5 |
||
60770 | 6 |
section \<open>Elementary arithmetic\<close> |
17441 | 7 |
|
8 |
theory Arith |
|
9 |
imports Bool |
|
10 |
begin |
|
0 | 11 |
|
60770 | 12 |
subsection \<open>Arithmetic operators and their definitions\<close> |
17441 | 13 |
|
19762 | 14 |
definition |
58977 | 15 |
add :: "[i,i]\<Rightarrow>i" (infixr "#+" 65) where |
61391 | 16 |
"a#+b \<equiv> rec(a, b, \<lambda>u v. succ(v))" |
0 | 17 |
|
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21210
diff
changeset
|
18 |
definition |
58977 | 19 |
diff :: "[i,i]\<Rightarrow>i" (infixr "-" 65) where |
61391 | 20 |
"a-b \<equiv> rec(b, a, \<lambda>u v. rec(v, 0, \<lambda>x y. x))" |
19762 | 21 |
|
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21210
diff
changeset
|
22 |
definition |
58977 | 23 |
absdiff :: "[i,i]\<Rightarrow>i" (infixr "|-|" 65) where |
61391 | 24 |
"a|-|b \<equiv> (a-b) #+ (b-a)" |
19762 | 25 |
|
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21210
diff
changeset
|
26 |
definition |
58977 | 27 |
mult :: "[i,i]\<Rightarrow>i" (infixr "#*" 70) where |
61391 | 28 |
"a#*b \<equiv> rec(a, 0, \<lambda>u v. b #+ v)" |
10467
e6e7205e9e91
x-symbol support for Pi, Sigma, -->, : (membership)
paulson
parents:
3837
diff
changeset
|
29 |
|
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21210
diff
changeset
|
30 |
definition |
58977 | 31 |
mod :: "[i,i]\<Rightarrow>i" (infixr "mod" 70) where |
61391 | 32 |
"a mod b \<equiv> rec(a, 0, \<lambda>u v. rec(succ(v) |-| b, 0, \<lambda>x y. succ(v)))" |
19762 | 33 |
|
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21210
diff
changeset
|
34 |
definition |
58977 | 35 |
div :: "[i,i]\<Rightarrow>i" (infixr "div" 70) where |
61391 | 36 |
"a div b \<equiv> rec(a, 0, \<lambda>u v. rec(succ(u) mod b, succ(v), \<lambda>x y. v))" |
19762 | 37 |
|
17441 | 38 |
|
19761 | 39 |
lemmas arith_defs = add_def diff_def absdiff_def mult_def mod_def div_def |
40 |
||
41 |
||
60770 | 42 |
subsection \<open>Proofs about elementary arithmetic: addition, multiplication, etc.\<close> |
19761 | 43 |
|
44 |
(** Addition *) |
|
45 |
||
46 |
(*typing of add: short and long versions*) |
|
47 |
||
58977 | 48 |
lemma add_typing: "\<lbrakk>a:N; b:N\<rbrakk> \<Longrightarrow> a #+ b : N" |
19761 | 49 |
apply (unfold arith_defs) |
58972 | 50 |
apply typechk |
19761 | 51 |
done |
52 |
||
58977 | 53 |
lemma add_typingL: "\<lbrakk>a = c:N; b = d:N\<rbrakk> \<Longrightarrow> a #+ b = c #+ d : N" |
19761 | 54 |
apply (unfold arith_defs) |
58972 | 55 |
apply equal |
19761 | 56 |
done |
57 |
||
58 |
||
59 |
(*computation for add: 0 and successor cases*) |
|
60 |
||
58977 | 61 |
lemma addC0: "b:N \<Longrightarrow> 0 #+ b = b : N" |
19761 | 62 |
apply (unfold arith_defs) |
58972 | 63 |
apply rew |
19761 | 64 |
done |
65 |
||
58977 | 66 |
lemma addC_succ: "\<lbrakk>a:N; b:N\<rbrakk> \<Longrightarrow> succ(a) #+ b = succ(a #+ b) : N" |
19761 | 67 |
apply (unfold arith_defs) |
58972 | 68 |
apply rew |
19761 | 69 |
done |
70 |
||
71 |
||
72 |
(** Multiplication *) |
|
73 |
||
74 |
(*typing of mult: short and long versions*) |
|
75 |
||
58977 | 76 |
lemma mult_typing: "\<lbrakk>a:N; b:N\<rbrakk> \<Longrightarrow> a #* b : N" |
19761 | 77 |
apply (unfold arith_defs) |
58972 | 78 |
apply (typechk add_typing) |
19761 | 79 |
done |
80 |
||
58977 | 81 |
lemma mult_typingL: "\<lbrakk>a = c:N; b = d:N\<rbrakk> \<Longrightarrow> a #* b = c #* d : N" |
19761 | 82 |
apply (unfold arith_defs) |
58972 | 83 |
apply (equal add_typingL) |
19761 | 84 |
done |
85 |
||
86 |
(*computation for mult: 0 and successor cases*) |
|
87 |
||
58977 | 88 |
lemma multC0: "b:N \<Longrightarrow> 0 #* b = 0 : N" |
19761 | 89 |
apply (unfold arith_defs) |
58972 | 90 |
apply rew |
19761 | 91 |
done |
92 |
||
58977 | 93 |
lemma multC_succ: "\<lbrakk>a:N; b:N\<rbrakk> \<Longrightarrow> succ(a) #* b = b #+ (a #* b) : N" |
19761 | 94 |
apply (unfold arith_defs) |
58972 | 95 |
apply rew |
19761 | 96 |
done |
97 |
||
98 |
||
99 |
(** Difference *) |
|
100 |
||
101 |
(*typing of difference*) |
|
102 |
||
58977 | 103 |
lemma diff_typing: "\<lbrakk>a:N; b:N\<rbrakk> \<Longrightarrow> a - b : N" |
19761 | 104 |
apply (unfold arith_defs) |
58972 | 105 |
apply typechk |
19761 | 106 |
done |
107 |
||
58977 | 108 |
lemma diff_typingL: "\<lbrakk>a = c:N; b = d:N\<rbrakk> \<Longrightarrow> a - b = c - d : N" |
19761 | 109 |
apply (unfold arith_defs) |
58972 | 110 |
apply equal |
19761 | 111 |
done |
112 |
||
113 |
||
114 |
(*computation for difference: 0 and successor cases*) |
|
115 |
||
58977 | 116 |
lemma diffC0: "a:N \<Longrightarrow> a - 0 = a : N" |
19761 | 117 |
apply (unfold arith_defs) |
58972 | 118 |
apply rew |
19761 | 119 |
done |
120 |
||
58977 | 121 |
(*Note: rec(a, 0, \<lambda>z w.z) is pred(a). *) |
19761 | 122 |
|
58977 | 123 |
lemma diff_0_eq_0: "b:N \<Longrightarrow> 0 - b = 0 : N" |
19761 | 124 |
apply (unfold arith_defs) |
58972 | 125 |
apply (NE b) |
126 |
apply hyp_rew |
|
19761 | 127 |
done |
128 |
||
129 |
||
130 |
(*Essential to simplify FIRST!! (Else we get a critical pair) |
|
131 |
succ(a) - succ(b) rewrites to pred(succ(a) - b) *) |
|
58977 | 132 |
lemma diff_succ_succ: "\<lbrakk>a:N; b:N\<rbrakk> \<Longrightarrow> succ(a) - succ(b) = a - b : N" |
19761 | 133 |
apply (unfold arith_defs) |
58972 | 134 |
apply hyp_rew |
135 |
apply (NE b) |
|
136 |
apply hyp_rew |
|
19761 | 137 |
done |
138 |
||
139 |
||
60770 | 140 |
subsection \<open>Simplification\<close> |
19761 | 141 |
|
142 |
lemmas arith_typing_rls = add_typing mult_typing diff_typing |
|
143 |
and arith_congr_rls = add_typingL mult_typingL diff_typingL |
|
144 |
lemmas congr_rls = arith_congr_rls intrL2_rls elimL_rls |
|
145 |
||
146 |
lemmas arithC_rls = |
|
147 |
addC0 addC_succ |
|
148 |
multC0 multC_succ |
|
149 |
diffC0 diff_0_eq_0 diff_succ_succ |
|
150 |
||
60770 | 151 |
ML \<open> |
19761 | 152 |
|
153 |
structure Arith_simp_data: TSIMP_DATA = |
|
154 |
struct |
|
39159 | 155 |
val refl = @{thm refl_elem} |
156 |
val sym = @{thm sym_elem} |
|
157 |
val trans = @{thm trans_elem} |
|
158 |
val refl_red = @{thm refl_red} |
|
159 |
val trans_red = @{thm trans_red} |
|
160 |
val red_if_equal = @{thm red_if_equal} |
|
161 |
val default_rls = @{thms arithC_rls} @ @{thms comp_rls} |
|
162 |
val routine_tac = routine_tac (@{thms arith_typing_rls} @ @{thms routine_rls}) |
|
19761 | 163 |
end |
164 |
||
165 |
structure Arith_simp = TSimpFun (Arith_simp_data) |
|
166 |
||
39159 | 167 |
local val congr_rls = @{thms congr_rls} in |
19761 | 168 |
|
58963
26bf09b95dda
proper context for assume_tac (atac remains as fall-back without context);
wenzelm
parents:
58889
diff
changeset
|
169 |
fun arith_rew_tac ctxt prems = make_rew_tac ctxt |
58976 | 170 |
(Arith_simp.norm_tac ctxt (congr_rls, prems)) |
19761 | 171 |
|
58963
26bf09b95dda
proper context for assume_tac (atac remains as fall-back without context);
wenzelm
parents:
58889
diff
changeset
|
172 |
fun hyp_arith_rew_tac ctxt prems = make_rew_tac ctxt |
59498
50b60f501b05
proper context for resolve_tac, eresolve_tac, dresolve_tac, forward_tac etc.;
wenzelm
parents:
58977
diff
changeset
|
173 |
(Arith_simp.cond_norm_tac ctxt (prove_cond_tac ctxt, congr_rls, prems)) |
17441 | 174 |
|
0 | 175 |
end |
60770 | 176 |
\<close> |
19761 | 177 |
|
60770 | 178 |
method_setup arith_rew = \<open> |
58972 | 179 |
Attrib.thms >> (fn ths => fn ctxt => SIMPLE_METHOD (arith_rew_tac ctxt ths)) |
60770 | 180 |
\<close> |
58972 | 181 |
|
60770 | 182 |
method_setup hyp_arith_rew = \<open> |
58972 | 183 |
Attrib.thms >> (fn ths => fn ctxt => SIMPLE_METHOD (hyp_arith_rew_tac ctxt ths)) |
60770 | 184 |
\<close> |
58972 | 185 |
|
19761 | 186 |
|
60770 | 187 |
subsection \<open>Addition\<close> |
19761 | 188 |
|
189 |
(*Associative law for addition*) |
|
58977 | 190 |
lemma add_assoc: "\<lbrakk>a:N; b:N; c:N\<rbrakk> \<Longrightarrow> (a #+ b) #+ c = a #+ (b #+ c) : N" |
58972 | 191 |
apply (NE a) |
192 |
apply hyp_arith_rew |
|
19761 | 193 |
done |
194 |
||
195 |
||
196 |
(*Commutative law for addition. Can be proved using three inductions. |
|
197 |
Must simplify after first induction! Orientation of rewrites is delicate*) |
|
58977 | 198 |
lemma add_commute: "\<lbrakk>a:N; b:N\<rbrakk> \<Longrightarrow> a #+ b = b #+ a : N" |
58972 | 199 |
apply (NE a) |
200 |
apply hyp_arith_rew |
|
19761 | 201 |
apply (rule sym_elem) |
58972 | 202 |
prefer 2 |
203 |
apply (NE b) |
|
204 |
prefer 4 |
|
205 |
apply (NE b) |
|
206 |
apply hyp_arith_rew |
|
19761 | 207 |
done |
208 |
||
209 |
||
60770 | 210 |
subsection \<open>Multiplication\<close> |
19761 | 211 |
|
212 |
(*right annihilation in product*) |
|
58977 | 213 |
lemma mult_0_right: "a:N \<Longrightarrow> a #* 0 = 0 : N" |
58972 | 214 |
apply (NE a) |
215 |
apply hyp_arith_rew |
|
19761 | 216 |
done |
217 |
||
218 |
(*right successor law for multiplication*) |
|
58977 | 219 |
lemma mult_succ_right: "\<lbrakk>a:N; b:N\<rbrakk> \<Longrightarrow> a #* succ(b) = a #+ (a #* b) : N" |
58972 | 220 |
apply (NE a) |
221 |
apply (hyp_arith_rew add_assoc [THEN sym_elem]) |
|
19761 | 222 |
apply (assumption | rule add_commute mult_typingL add_typingL intrL_rls refl_elem)+ |
223 |
done |
|
224 |
||
225 |
(*Commutative law for multiplication*) |
|
58977 | 226 |
lemma mult_commute: "\<lbrakk>a:N; b:N\<rbrakk> \<Longrightarrow> a #* b = b #* a : N" |
58972 | 227 |
apply (NE a) |
228 |
apply (hyp_arith_rew mult_0_right mult_succ_right) |
|
19761 | 229 |
done |
230 |
||
231 |
(*addition distributes over multiplication*) |
|
58977 | 232 |
lemma add_mult_distrib: "\<lbrakk>a:N; b:N; c:N\<rbrakk> \<Longrightarrow> (a #+ b) #* c = (a #* c) #+ (b #* c) : N" |
58972 | 233 |
apply (NE a) |
234 |
apply (hyp_arith_rew add_assoc [THEN sym_elem]) |
|
19761 | 235 |
done |
236 |
||
237 |
(*Associative law for multiplication*) |
|
58977 | 238 |
lemma mult_assoc: "\<lbrakk>a:N; b:N; c:N\<rbrakk> \<Longrightarrow> (a #* b) #* c = a #* (b #* c) : N" |
58972 | 239 |
apply (NE a) |
240 |
apply (hyp_arith_rew add_mult_distrib) |
|
19761 | 241 |
done |
242 |
||
243 |
||
60770 | 244 |
subsection \<open>Difference\<close> |
19761 | 245 |
|
60770 | 246 |
text \<open> |
19761 | 247 |
Difference on natural numbers, without negative numbers |
60770 | 248 |
a - b = 0 iff a<=b a - b = succ(c) iff a>b\<close> |
19761 | 249 |
|
58977 | 250 |
lemma diff_self_eq_0: "a:N \<Longrightarrow> a - a = 0 : N" |
58972 | 251 |
apply (NE a) |
252 |
apply hyp_arith_rew |
|
19761 | 253 |
done |
254 |
||
255 |
||
58977 | 256 |
lemma add_0_right: "\<lbrakk>c : N; 0 : N; c : N\<rbrakk> \<Longrightarrow> c #+ 0 = c : N" |
19761 | 257 |
by (rule addC0 [THEN [3] add_commute [THEN trans_elem]]) |
258 |
||
259 |
(*Addition is the inverse of subtraction: if b<=x then b#+(x-b) = x. |
|
260 |
An example of induction over a quantified formula (a product). |
|
261 |
Uses rewriting with a quantified, implicative inductive hypothesis.*) |
|
61337 | 262 |
schematic_goal add_diff_inverse_lemma: |
61391 | 263 |
"b:N \<Longrightarrow> ?a : \<Prod>x:N. Eq(N, b-x, 0) \<longrightarrow> Eq(N, b #+ (x-b), x)" |
58972 | 264 |
apply (NE b) |
19761 | 265 |
(*strip one "universal quantifier" but not the "implication"*) |
266 |
apply (rule_tac [3] intr_rls) |
|
267 |
(*case analysis on x in |
|
61391 | 268 |
(succ(u) <= x) \<longrightarrow> (succ(u)#+(x-succ(u)) = x) *) |
58972 | 269 |
prefer 4 |
270 |
apply (NE x) |
|
271 |
apply assumption |
|
19761 | 272 |
(*Prepare for simplification of types -- the antecedent succ(u)<=x *) |
58972 | 273 |
apply (rule_tac [2] replace_type) |
274 |
apply (rule_tac [1] replace_type) |
|
275 |
apply arith_rew |
|
19761 | 276 |
(*Solves first 0 goal, simplifies others. Two sugbgoals remain. |
277 |
Both follow by rewriting, (2) using quantified induction hyp*) |
|
58972 | 278 |
apply intr (*strips remaining PRODs*) |
279 |
apply (hyp_arith_rew add_0_right) |
|
19761 | 280 |
apply assumption |
281 |
done |
|
282 |
||
283 |
||
284 |
(*Version of above with premise b-a=0 i.e. a >= b. |
|
285 |
Using ProdE does not work -- for ?B(?a) is ambiguous. |
|
286 |
Instead, add_diff_inverse_lemma states the desired induction scheme |
|
287 |
the use of RS below instantiates Vars in ProdE automatically. *) |
|
58977 | 288 |
lemma add_diff_inverse: "\<lbrakk>a:N; b:N; b - a = 0 : N\<rbrakk> \<Longrightarrow> b #+ (a-b) = a : N" |
19761 | 289 |
apply (rule EqE) |
290 |
apply (rule add_diff_inverse_lemma [THEN ProdE, THEN ProdE]) |
|
291 |
apply (assumption | rule EqI)+ |
|
292 |
done |
|
293 |
||
294 |
||
60770 | 295 |
subsection \<open>Absolute difference\<close> |
19761 | 296 |
|
297 |
(*typing of absolute difference: short and long versions*) |
|
298 |
||
58977 | 299 |
lemma absdiff_typing: "\<lbrakk>a:N; b:N\<rbrakk> \<Longrightarrow> a |-| b : N" |
19761 | 300 |
apply (unfold arith_defs) |
58972 | 301 |
apply typechk |
19761 | 302 |
done |
303 |
||
58977 | 304 |
lemma absdiff_typingL: "\<lbrakk>a = c:N; b = d:N\<rbrakk> \<Longrightarrow> a |-| b = c |-| d : N" |
19761 | 305 |
apply (unfold arith_defs) |
58972 | 306 |
apply equal |
19761 | 307 |
done |
308 |
||
58977 | 309 |
lemma absdiff_self_eq_0: "a:N \<Longrightarrow> a |-| a = 0 : N" |
19761 | 310 |
apply (unfold absdiff_def) |
58972 | 311 |
apply (arith_rew diff_self_eq_0) |
19761 | 312 |
done |
313 |
||
58977 | 314 |
lemma absdiffC0: "a:N \<Longrightarrow> 0 |-| a = a : N" |
19761 | 315 |
apply (unfold absdiff_def) |
58972 | 316 |
apply hyp_arith_rew |
19761 | 317 |
done |
318 |
||
319 |
||
58977 | 320 |
lemma absdiff_succ_succ: "\<lbrakk>a:N; b:N\<rbrakk> \<Longrightarrow> succ(a) |-| succ(b) = a |-| b : N" |
19761 | 321 |
apply (unfold absdiff_def) |
58972 | 322 |
apply hyp_arith_rew |
19761 | 323 |
done |
324 |
||
325 |
(*Note how easy using commutative laws can be? ...not always... *) |
|
58977 | 326 |
lemma absdiff_commute: "\<lbrakk>a:N; b:N\<rbrakk> \<Longrightarrow> a |-| b = b |-| a : N" |
19761 | 327 |
apply (unfold absdiff_def) |
328 |
apply (rule add_commute) |
|
58972 | 329 |
apply (typechk diff_typing) |
19761 | 330 |
done |
331 |
||
332 |
(*If a+b=0 then a=0. Surprisingly tedious*) |
|
61391 | 333 |
schematic_goal add_eq0_lemma: "\<lbrakk>a:N; b:N\<rbrakk> \<Longrightarrow> ?c : \<Prod>u: Eq(N,a#+b,0) . Eq(N,a,0)" |
58972 | 334 |
apply (NE a) |
19761 | 335 |
apply (rule_tac [3] replace_type) |
58972 | 336 |
apply arith_rew |
337 |
apply intr (*strips remaining PRODs*) |
|
19761 | 338 |
apply (rule_tac [2] zero_ne_succ [THEN FE]) |
339 |
apply (erule_tac [3] EqE [THEN sym_elem]) |
|
58972 | 340 |
apply (typechk add_typing) |
19761 | 341 |
done |
342 |
||
343 |
(*Version of above with the premise a+b=0. |
|
344 |
Again, resolution instantiates variables in ProdE *) |
|
58977 | 345 |
lemma add_eq0: "\<lbrakk>a:N; b:N; a #+ b = 0 : N\<rbrakk> \<Longrightarrow> a = 0 : N" |
19761 | 346 |
apply (rule EqE) |
347 |
apply (rule add_eq0_lemma [THEN ProdE]) |
|
348 |
apply (rule_tac [3] EqI) |
|
58972 | 349 |
apply typechk |
19761 | 350 |
done |
351 |
||
352 |
(*Here is a lemma to infer a-b=0 and b-a=0 from a|-|b=0, below. *) |
|
61337 | 353 |
schematic_goal absdiff_eq0_lem: |
61391 | 354 |
"\<lbrakk>a:N; b:N; a |-| b = 0 : N\<rbrakk> \<Longrightarrow> ?a : \<Sum>v: Eq(N, a-b, 0) . Eq(N, b-a, 0)" |
19761 | 355 |
apply (unfold absdiff_def) |
58972 | 356 |
apply intr |
357 |
apply eqintr |
|
19761 | 358 |
apply (rule_tac [2] add_eq0) |
359 |
apply (rule add_eq0) |
|
360 |
apply (rule_tac [6] add_commute [THEN trans_elem]) |
|
58972 | 361 |
apply (typechk diff_typing) |
19761 | 362 |
done |
363 |
||
364 |
(*if a |-| b = 0 then a = b |
|
365 |
proof: a-b=0 and b-a=0, so b = a+(b-a) = a+0 = a*) |
|
58977 | 366 |
lemma absdiff_eq0: "\<lbrakk>a |-| b = 0 : N; a:N; b:N\<rbrakk> \<Longrightarrow> a = b : N" |
19761 | 367 |
apply (rule EqE) |
368 |
apply (rule absdiff_eq0_lem [THEN SumE]) |
|
58972 | 369 |
apply eqintr |
19761 | 370 |
apply (rule add_diff_inverse [THEN sym_elem, THEN trans_elem]) |
58972 | 371 |
apply (erule_tac [3] EqE) |
372 |
apply (hyp_arith_rew add_0_right) |
|
19761 | 373 |
done |
374 |
||
375 |
||
60770 | 376 |
subsection \<open>Remainder and Quotient\<close> |
19761 | 377 |
|
378 |
(*typing of remainder: short and long versions*) |
|
379 |
||
58977 | 380 |
lemma mod_typing: "\<lbrakk>a:N; b:N\<rbrakk> \<Longrightarrow> a mod b : N" |
19761 | 381 |
apply (unfold mod_def) |
58972 | 382 |
apply (typechk absdiff_typing) |
19761 | 383 |
done |
384 |
||
58977 | 385 |
lemma mod_typingL: "\<lbrakk>a = c:N; b = d:N\<rbrakk> \<Longrightarrow> a mod b = c mod d : N" |
19761 | 386 |
apply (unfold mod_def) |
58972 | 387 |
apply (equal absdiff_typingL) |
19761 | 388 |
done |
389 |
||
390 |
||
391 |
(*computation for mod : 0 and successor cases*) |
|
392 |
||
58977 | 393 |
lemma modC0: "b:N \<Longrightarrow> 0 mod b = 0 : N" |
19761 | 394 |
apply (unfold mod_def) |
58972 | 395 |
apply (rew absdiff_typing) |
19761 | 396 |
done |
397 |
||
58977 | 398 |
lemma modC_succ: "\<lbrakk>a:N; b:N\<rbrakk> \<Longrightarrow> |
399 |
succ(a) mod b = rec(succ(a mod b) |-| b, 0, \<lambda>x y. succ(a mod b)) : N" |
|
19761 | 400 |
apply (unfold mod_def) |
58972 | 401 |
apply (rew absdiff_typing) |
19761 | 402 |
done |
403 |
||
404 |
||
405 |
(*typing of quotient: short and long versions*) |
|
406 |
||
58977 | 407 |
lemma div_typing: "\<lbrakk>a:N; b:N\<rbrakk> \<Longrightarrow> a div b : N" |
19761 | 408 |
apply (unfold div_def) |
58972 | 409 |
apply (typechk absdiff_typing mod_typing) |
19761 | 410 |
done |
411 |
||
58977 | 412 |
lemma div_typingL: "\<lbrakk>a = c:N; b = d:N\<rbrakk> \<Longrightarrow> a div b = c div d : N" |
19761 | 413 |
apply (unfold div_def) |
58972 | 414 |
apply (equal absdiff_typingL mod_typingL) |
19761 | 415 |
done |
416 |
||
417 |
lemmas div_typing_rls = mod_typing div_typing absdiff_typing |
|
418 |
||
419 |
||
420 |
(*computation for quotient: 0 and successor cases*) |
|
421 |
||
58977 | 422 |
lemma divC0: "b:N \<Longrightarrow> 0 div b = 0 : N" |
19761 | 423 |
apply (unfold div_def) |
58972 | 424 |
apply (rew mod_typing absdiff_typing) |
19761 | 425 |
done |
426 |
||
58977 | 427 |
lemma divC_succ: "\<lbrakk>a:N; b:N\<rbrakk> \<Longrightarrow> |
428 |
succ(a) div b = rec(succ(a) mod b, succ(a div b), \<lambda>x y. a div b) : N" |
|
19761 | 429 |
apply (unfold div_def) |
58972 | 430 |
apply (rew mod_typing) |
19761 | 431 |
done |
432 |
||
433 |
||
434 |
(*Version of above with same condition as the mod one*) |
|
58977 | 435 |
lemma divC_succ2: "\<lbrakk>a:N; b:N\<rbrakk> \<Longrightarrow> |
436 |
succ(a) div b =rec(succ(a mod b) |-| b, succ(a div b), \<lambda>x y. a div b) : N" |
|
19761 | 437 |
apply (rule divC_succ [THEN trans_elem]) |
58972 | 438 |
apply (rew div_typing_rls modC_succ) |
439 |
apply (NE "succ (a mod b) |-|b") |
|
440 |
apply (rew mod_typing div_typing absdiff_typing) |
|
19761 | 441 |
done |
442 |
||
443 |
(*for case analysis on whether a number is 0 or a successor*) |
|
58977 | 444 |
lemma iszero_decidable: "a:N \<Longrightarrow> rec(a, inl(eq), \<lambda>ka kb. inr(<ka, eq>)) : |
61391 | 445 |
Eq(N,a,0) + (\<Sum>x:N. Eq(N,a, succ(x)))" |
58972 | 446 |
apply (NE a) |
19761 | 447 |
apply (rule_tac [3] PlusI_inr) |
448 |
apply (rule_tac [2] PlusI_inl) |
|
58972 | 449 |
apply eqintr |
450 |
apply equal |
|
19761 | 451 |
done |
452 |
||
453 |
(*Main Result. Holds when b is 0 since a mod 0 = a and a div 0 = 0 *) |
|
58977 | 454 |
lemma mod_div_equality: "\<lbrakk>a:N; b:N\<rbrakk> \<Longrightarrow> a mod b #+ (a div b) #* b = a : N" |
58972 | 455 |
apply (NE a) |
456 |
apply (arith_rew div_typing_rls modC0 modC_succ divC0 divC_succ2) |
|
19761 | 457 |
apply (rule EqE) |
458 |
(*case analysis on succ(u mod b)|-|b *) |
|
459 |
apply (rule_tac a1 = "succ (u mod b) |-| b" in iszero_decidable [THEN PlusE]) |
|
460 |
apply (erule_tac [3] SumE) |
|
58972 | 461 |
apply (hyp_arith_rew div_typing_rls modC0 modC_succ divC0 divC_succ2) |
58318 | 462 |
(*Replace one occurrence of b by succ(u mod b). Clumsy!*) |
19761 | 463 |
apply (rule add_typingL [THEN trans_elem]) |
464 |
apply (erule EqE [THEN absdiff_eq0, THEN sym_elem]) |
|
465 |
apply (rule_tac [3] refl_elem) |
|
58972 | 466 |
apply (hyp_arith_rew div_typing_rls) |
19761 | 467 |
done |
468 |
||
469 |
end |