| author | blanchet | 
| Fri, 30 Aug 2013 11:37:22 +0200 | |
| changeset 53304 | cfef783090eb | 
| parent 46953 | 2b6e55924af3 | 
| child 58871 | c399ae4b836f | 
| permissions | -rw-r--r-- | 
| 1478 | 1  | 
(* Title: ZF/OrderType.thy  | 
2  | 
Author: Lawrence C Paulson, Cambridge University Computer Laboratory  | 
|
| 435 | 3  | 
Copyright 1994 University of Cambridge  | 
4  | 
*)  | 
|
5  | 
||
| 13356 | 6  | 
header{*Order Types and Ordinal Arithmetic*}
 | 
7  | 
||
| 
26056
 
6a0801279f4c
Made theory names in ZF disjoint from HOL theory names to allow loading both developments
 
krauss 
parents: 
24893 
diff
changeset
 | 
8  | 
theory OrderType imports OrderArith OrdQuant Nat_ZF begin  | 
| 13221 | 9  | 
|
| 13356 | 10  | 
text{*The order type of a well-ordering is the least ordinal isomorphic to it.
 | 
11  | 
Ordinal arithmetic is traditionally defined in terms of order types, as it is  | 
|
12  | 
here. But a definition by transfinite recursion would be much simpler!*}  | 
|
13  | 
||
| 46820 | 14  | 
definition  | 
| 24893 | 15  | 
ordermap :: "[i,i]=>i" where  | 
| 46820 | 16  | 
"ordermap(A,r) == \<lambda>x\<in>A. wfrec[A](r, x, %x f. f `` pred(A,x,r))"  | 
| 435 | 17  | 
|
| 46820 | 18  | 
definition  | 
| 24893 | 19  | 
ordertype :: "[i,i]=>i" where  | 
| 
13125
 
be50e0b050b2
ordinal addition now coerces its arguments to ordinals
 
paulson 
parents: 
12114 
diff
changeset
 | 
20  | 
"ordertype(A,r) == ordermap(A,r)``A"  | 
| 850 | 21  | 
|
| 46820 | 22  | 
definition  | 
| 
13125
 
be50e0b050b2
ordinal addition now coerces its arguments to ordinals
 
paulson 
parents: 
12114 
diff
changeset
 | 
23  | 
(*alternative definition of ordinal numbers*)  | 
| 24893 | 24  | 
Ord_alt :: "i => o" where  | 
| 46820 | 25  | 
"Ord_alt(X) == well_ord(X, Memrel(X)) & (\<forall>u\<in>X. u=pred(X, u, Memrel(X)))"  | 
| 435 | 26  | 
|
| 46820 | 27  | 
definition  | 
| 
13125
 
be50e0b050b2
ordinal addition now coerces its arguments to ordinals
 
paulson 
parents: 
12114 
diff
changeset
 | 
28  | 
(*coercion to ordinal: if not, just 0*)  | 
| 24893 | 29  | 
ordify :: "i=>i" where  | 
| 
13125
 
be50e0b050b2
ordinal addition now coerces its arguments to ordinals
 
paulson 
parents: 
12114 
diff
changeset
 | 
30  | 
"ordify(x) == if Ord(x) then x else 0"  | 
| 
 
be50e0b050b2
ordinal addition now coerces its arguments to ordinals
 
paulson 
parents: 
12114 
diff
changeset
 | 
31  | 
|
| 46820 | 32  | 
definition  | 
| 850 | 33  | 
(*ordinal multiplication*)  | 
| 24893 | 34  | 
omult :: "[i,i]=>i" (infixl "**" 70) where  | 
| 
13125
 
be50e0b050b2
ordinal addition now coerces its arguments to ordinals
 
paulson 
parents: 
12114 
diff
changeset
 | 
35  | 
"i ** j == ordertype(j*i, rmult(j,Memrel(j),i,Memrel(i)))"  | 
| 850 | 36  | 
|
| 46820 | 37  | 
definition  | 
| 850 | 38  | 
(*ordinal addition*)  | 
| 24893 | 39  | 
raw_oadd :: "[i,i]=>i" where  | 
| 
13125
 
be50e0b050b2
ordinal addition now coerces its arguments to ordinals
 
paulson 
parents: 
12114 
diff
changeset
 | 
40  | 
"raw_oadd(i,j) == ordertype(i+j, radd(i,Memrel(i),j,Memrel(j)))"  | 
| 
 
be50e0b050b2
ordinal addition now coerces its arguments to ordinals
 
paulson 
parents: 
12114 
diff
changeset
 | 
41  | 
|
| 46820 | 42  | 
definition  | 
| 24893 | 43  | 
oadd :: "[i,i]=>i" (infixl "++" 65) where  | 
| 
13125
 
be50e0b050b2
ordinal addition now coerces its arguments to ordinals
 
paulson 
parents: 
12114 
diff
changeset
 | 
44  | 
"i ++ j == raw_oadd(ordify(i),ordify(j))"  | 
| 850 | 45  | 
|
| 46820 | 46  | 
definition  | 
| 1033 | 47  | 
(*ordinal subtraction*)  | 
| 24893 | 48  | 
odiff :: "[i,i]=>i" (infixl "--" 65) where  | 
| 
13125
 
be50e0b050b2
ordinal addition now coerces its arguments to ordinals
 
paulson 
parents: 
12114 
diff
changeset
 | 
49  | 
"i -- j == ordertype(i-j, Memrel(i))"  | 
| 1033 | 50  | 
|
| 46820 | 51  | 
|
| 24826 | 52  | 
notation (xsymbols)  | 
53  | 
omult (infixl "\<times>\<times>" 70)  | 
|
| 9964 | 54  | 
|
| 24826 | 55  | 
notation (HTML output)  | 
56  | 
omult (infixl "\<times>\<times>" 70)  | 
|
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
57  | 
|
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
58  | 
|
| 13269 | 59  | 
subsection{*Proofs needing the combination of Ordinal.thy and Order.thy*}
 | 
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
60  | 
|
| 46820 | 61  | 
lemma le_well_ord_Memrel: "j \<le> i ==> well_ord(j, Memrel(i))"  | 
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
62  | 
apply (rule well_ordI)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
63  | 
apply (rule wf_Memrel [THEN wf_imp_wf_on])  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
64  | 
apply (simp add: ltD lt_Ord linear_def  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
65  | 
ltI [THEN lt_trans2 [of _ j i]])  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
66  | 
apply (intro ballI Ord_linear)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
67  | 
apply (blast intro: Ord_in_Ord lt_Ord)+  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
68  | 
done  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
69  | 
|
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
70  | 
(*"Ord(i) ==> well_ord(i, Memrel(i))"*)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
71  | 
lemmas well_ord_Memrel = le_refl [THEN le_well_ord_Memrel]  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
72  | 
|
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
73  | 
(*Kunen's Theorem 7.3 (i), page 16; see also Ordinal/Ord_in_Ord  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
74  | 
The smaller ordinal is an initial segment of the larger *)  | 
| 46820 | 75  | 
lemma lt_pred_Memrel:  | 
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
76  | 
"j<i ==> pred(i, j, Memrel(i)) = j"  | 
| 
46841
 
49b91b716cbe
Structured and calculation-based proofs (with new trans rules!)
 
paulson 
parents: 
46821 
diff
changeset
 | 
77  | 
apply (simp add: pred_def lt_def)  | 
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
78  | 
apply (blast intro: Ord_trans)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
79  | 
done  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
80  | 
|
| 46820 | 81  | 
lemma pred_Memrel:  | 
| 46953 | 82  | 
"x \<in> A ==> pred(A, x, Memrel(A)) = A \<inter> x"  | 
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
83  | 
by (unfold pred_def Memrel_def, blast)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
84  | 
|
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
85  | 
lemma Ord_iso_implies_eq_lemma:  | 
| 46953 | 86  | 
"[| j<i; f \<in> ord_iso(i,Memrel(i),j,Memrel(j)) |] ==> R"  | 
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
87  | 
apply (frule lt_pred_Memrel)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
88  | 
apply (erule ltE)  | 
| 46820 | 89  | 
apply (rule well_ord_Memrel [THEN well_ord_iso_predE, of i f j], auto)  | 
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
90  | 
apply (unfold ord_iso_def)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
91  | 
(*Combining the two simplifications causes looping*)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
92  | 
apply (simp (no_asm_simp))  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
93  | 
apply (blast intro: bij_is_fun [THEN apply_type] Ord_trans)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
94  | 
done  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
95  | 
|
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
96  | 
(*Kunen's Theorem 7.3 (ii), page 16. Isomorphic ordinals are equal*)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
97  | 
lemma Ord_iso_implies_eq:  | 
| 46953 | 98  | 
"[| Ord(i); Ord(j); f \<in> ord_iso(i,Memrel(i),j,Memrel(j)) |]  | 
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
99  | 
==> i=j"  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
100  | 
apply (rule_tac i = i and j = j in Ord_linear_lt)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
101  | 
apply (blast intro: ord_iso_sym Ord_iso_implies_eq_lemma)+  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
102  | 
done  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
103  | 
|
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
104  | 
|
| 13269 | 105  | 
subsection{*Ordermap and ordertype*}
 | 
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
106  | 
|
| 46820 | 107  | 
lemma ordermap_type:  | 
108  | 
"ordermap(A,r) \<in> A -> ordertype(A,r)"  | 
|
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
109  | 
apply (unfold ordermap_def ordertype_def)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
110  | 
apply (rule lam_type)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
111  | 
apply (rule lamI [THEN imageI], assumption+)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
112  | 
done  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
113  | 
|
| 13356 | 114  | 
subsubsection{*Unfolding of ordermap *}
 | 
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
115  | 
|
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
116  | 
(*Useful for cardinality reasoning; see CardinalArith.ML*)  | 
| 46820 | 117  | 
lemma ordermap_eq_image:  | 
| 46953 | 118  | 
"[| wf[A](r); x \<in> A |]  | 
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
119  | 
==> ordermap(A,r) ` x = ordermap(A,r) `` pred(A,x,r)"  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
120  | 
apply (unfold ordermap_def pred_def)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
121  | 
apply (simp (no_asm_simp))  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
122  | 
apply (erule wfrec_on [THEN trans], assumption)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
123  | 
apply (simp (no_asm_simp) add: subset_iff image_lam vimage_singleton_iff)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
124  | 
done  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
125  | 
|
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
126  | 
(*Useful for rewriting PROVIDED pred is not unfolded until later!*)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
127  | 
lemma ordermap_pred_unfold:  | 
| 46953 | 128  | 
"[| wf[A](r); x \<in> A |]  | 
| 46820 | 129  | 
      ==> ordermap(A,r) ` x = {ordermap(A,r)`y . y \<in> pred(A,x,r)}"
 | 
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
130  | 
by (simp add: ordermap_eq_image pred_subset ordermap_type [THEN image_fun])  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
131  | 
|
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
132  | 
(*pred-unfolded version. NOT suitable for rewriting -- loops!*)  | 
| 46820 | 133  | 
lemmas ordermap_unfold = ordermap_pred_unfold [simplified pred_def]  | 
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
134  | 
|
| 46820 | 135  | 
(*The theorem above is  | 
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
136  | 
|
| 46820 | 137  | 
[| wf[A](r); x \<in> A |]  | 
| 46953 | 138  | 
==> ordermap(A,r) ` x = {ordermap(A,r) ` y . y: {y \<in> A . <y,x> \<in> r}}
 | 
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
139  | 
|
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
140  | 
NOTE: the definition of ordermap used here delivers ordinals only if r is  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
141  | 
transitive. If r is the predecessor relation on the naturals then  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
142  | 
ordermap(nat,predr) ` n equals {n-1} and not n.  A more complicated definition,
 | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
143  | 
like  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
144  | 
|
| 46953 | 145  | 
  ordermap(A,r) ` x = Union{succ(ordermap(A,r) ` y) . y: {y \<in> A . <y,x> \<in> r}},
 | 
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
146  | 
|
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
147  | 
might eliminate the need for r to be transitive.  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
148  | 
*)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
149  | 
|
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
150  | 
|
| 13356 | 151  | 
subsubsection{*Showing that ordermap, ordertype yield ordinals *}
 | 
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
152  | 
|
| 46820 | 153  | 
lemma Ord_ordermap:  | 
| 46953 | 154  | 
"[| well_ord(A,r); x \<in> A |] ==> Ord(ordermap(A,r) ` x)"  | 
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
155  | 
apply (unfold well_ord_def tot_ord_def part_ord_def, safe)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
156  | 
apply (rule_tac a=x in wf_on_induct, assumption+)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
157  | 
apply (simp (no_asm_simp) add: ordermap_pred_unfold)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
158  | 
apply (rule OrdI [OF _ Ord_is_Transset])  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
159  | 
apply (unfold pred_def Transset_def)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
160  | 
apply (blast intro: trans_onD  | 
| 46820 | 161  | 
dest!: ordermap_unfold [THEN equalityD1])+  | 
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
162  | 
done  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
163  | 
|
| 46820 | 164  | 
lemma Ord_ordertype:  | 
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
165  | 
"well_ord(A,r) ==> Ord(ordertype(A,r))"  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
166  | 
apply (unfold ordertype_def)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
167  | 
apply (subst image_fun [OF ordermap_type subset_refl])  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
168  | 
apply (rule OrdI [OF _ Ord_is_Transset])  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
169  | 
prefer 2 apply (blast intro: Ord_ordermap)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
170  | 
apply (unfold Transset_def well_ord_def)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
171  | 
apply (blast intro: trans_onD  | 
| 
32960
 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 
wenzelm 
parents: 
26056 
diff
changeset
 | 
172  | 
dest!: ordermap_unfold [THEN equalityD1])  | 
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
173  | 
done  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
174  | 
|
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
175  | 
|
| 13356 | 176  | 
subsubsection{*ordermap preserves the orderings in both directions *}
 | 
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
177  | 
|
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
178  | 
lemma ordermap_mono:  | 
| 46953 | 179  | 
"[| <w,x>: r; wf[A](r); w \<in> A; x \<in> A |]  | 
| 46820 | 180  | 
==> ordermap(A,r)`w \<in> ordermap(A,r)`x"  | 
| 13163 | 181  | 
apply (erule_tac x1 = x in ordermap_unfold [THEN ssubst], assumption, blast)  | 
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
182  | 
done  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
183  | 
|
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
184  | 
(*linearity of r is crucial here*)  | 
| 46820 | 185  | 
lemma converse_ordermap_mono:  | 
| 46953 | 186  | 
"[| ordermap(A,r)`w \<in> ordermap(A,r)`x; well_ord(A,r); w \<in> A; x \<in> A |]  | 
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
187  | 
==> <w,x>: r"  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
188  | 
apply (unfold well_ord_def tot_ord_def, safe)  | 
| 46820 | 189  | 
apply (erule_tac x=w and y=x in linearE, assumption+)  | 
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
190  | 
apply (blast elim!: mem_not_refl [THEN notE])  | 
| 46820 | 191  | 
apply (blast dest: ordermap_mono intro: mem_asym)  | 
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
192  | 
done  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
193  | 
|
| 46820 | 194  | 
lemmas ordermap_surj =  | 
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
195  | 
ordermap_type [THEN surj_image, unfolded ordertype_def [symmetric]]  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
196  | 
|
| 46820 | 197  | 
lemma ordermap_bij:  | 
198  | 
"well_ord(A,r) ==> ordermap(A,r) \<in> bij(A, ordertype(A,r))"  | 
|
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
199  | 
apply (unfold well_ord_def tot_ord_def bij_def inj_def)  | 
| 46820 | 200  | 
apply (force intro!: ordermap_type ordermap_surj  | 
201  | 
elim: linearE dest: ordermap_mono  | 
|
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
202  | 
simp add: mem_not_refl)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
203  | 
done  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
204  | 
|
| 13356 | 205  | 
subsubsection{*Isomorphisms involving ordertype *}
 | 
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
206  | 
|
| 46820 | 207  | 
lemma ordertype_ord_iso:  | 
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
208  | 
"well_ord(A,r)  | 
| 46820 | 209  | 
==> ordermap(A,r) \<in> ord_iso(A,r, ordertype(A,r), Memrel(ordertype(A,r)))"  | 
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
210  | 
apply (unfold ord_iso_def)  | 
| 46820 | 211  | 
apply (safe elim!: well_ord_is_wf  | 
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
212  | 
intro!: ordermap_type [THEN apply_type] ordermap_mono ordermap_bij)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
213  | 
apply (blast dest!: converse_ordermap_mono)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
214  | 
done  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
215  | 
|
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
216  | 
lemma ordertype_eq:  | 
| 46953 | 217  | 
"[| f \<in> ord_iso(A,r,B,s); well_ord(B,s) |]  | 
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
218  | 
==> ordertype(A,r) = ordertype(B,s)"  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
219  | 
apply (frule well_ord_ord_iso, assumption)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
220  | 
apply (rule Ord_iso_implies_eq, (erule Ord_ordertype)+)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
221  | 
apply (blast intro: ord_iso_trans ord_iso_sym ordertype_ord_iso)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
222  | 
done  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
223  | 
|
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
224  | 
lemma ordertype_eq_imp_ord_iso:  | 
| 46820 | 225  | 
"[| ordertype(A,r) = ordertype(B,s); well_ord(A,r); well_ord(B,s) |]  | 
| 46953 | 226  | 
==> \<exists>f. f \<in> ord_iso(A,r,B,s)"  | 
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
227  | 
apply (rule exI)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
228  | 
apply (rule ordertype_ord_iso [THEN ord_iso_trans], assumption)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
229  | 
apply (erule ssubst)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
230  | 
apply (erule ordertype_ord_iso [THEN ord_iso_sym])  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
231  | 
done  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
232  | 
|
| 13356 | 233  | 
subsubsection{*Basic equalities for ordertype *}
 | 
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
234  | 
|
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
235  | 
(*Ordertype of Memrel*)  | 
| 46820 | 236  | 
lemma le_ordertype_Memrel: "j \<le> i ==> ordertype(j,Memrel(i)) = j"  | 
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
237  | 
apply (rule Ord_iso_implies_eq [symmetric])  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
238  | 
apply (erule ltE, assumption)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
239  | 
apply (blast intro: le_well_ord_Memrel Ord_ordertype)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
240  | 
apply (rule ord_iso_trans)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
241  | 
apply (erule_tac [2] le_well_ord_Memrel [THEN ordertype_ord_iso])  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
242  | 
apply (rule id_bij [THEN ord_isoI])  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
243  | 
apply (simp (no_asm_simp))  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
244  | 
apply (fast elim: ltE Ord_in_Ord Ord_trans)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
245  | 
done  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
246  | 
|
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
247  | 
(*"Ord(i) ==> ordertype(i, Memrel(i)) = i"*)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
248  | 
lemmas ordertype_Memrel = le_refl [THEN le_ordertype_Memrel]  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
249  | 
|
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
250  | 
lemma ordertype_0 [simp]: "ordertype(0,r) = 0"  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
251  | 
apply (rule id_bij [THEN ord_isoI, THEN ordertype_eq, THEN trans])  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
252  | 
apply (erule emptyE)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
253  | 
apply (rule well_ord_0)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
254  | 
apply (rule Ord_0 [THEN ordertype_Memrel])  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
255  | 
done  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
256  | 
|
| 46953 | 257  | 
(*Ordertype of rvimage: [| f \<in> bij(A,B); well_ord(B,s) |] ==>  | 
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
258  | 
ordertype(A, rvimage(A,f,s)) = ordertype(B,s) *)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
259  | 
lemmas bij_ordertype_vimage = ord_iso_rvimage [THEN ordertype_eq]  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
260  | 
|
| 13356 | 261  | 
subsubsection{*A fundamental unfolding law for ordertype. *}
 | 
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
262  | 
|
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
263  | 
(*Ordermap returns the same result if applied to an initial segment*)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
264  | 
lemma ordermap_pred_eq_ordermap:  | 
| 46953 | 265  | 
"[| well_ord(A,r); y \<in> A; z \<in> pred(A,y,r) |]  | 
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
266  | 
==> ordermap(pred(A,y,r), r) ` z = ordermap(A, r) ` z"  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
267  | 
apply (frule wf_on_subset_A [OF well_ord_is_wf pred_subset])  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
268  | 
apply (rule_tac a=z in wf_on_induct, assumption+)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
269  | 
apply (safe elim!: predE)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
270  | 
apply (simp (no_asm_simp) add: ordermap_pred_unfold well_ord_is_wf pred_iff)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
271  | 
(*combining these two simplifications LOOPS! *)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
272  | 
apply (simp (no_asm_simp) add: pred_pred_eq)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
273  | 
apply (simp add: pred_def)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
274  | 
apply (rule RepFun_cong [OF _ refl])  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
275  | 
apply (drule well_ord_is_trans_on)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
276  | 
apply (fast elim!: trans_onD)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
277  | 
done  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
278  | 
|
| 46820 | 279  | 
lemma ordertype_unfold:  | 
280  | 
    "ordertype(A,r) = {ordermap(A,r)`y . y \<in> A}"
 | 
|
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
281  | 
apply (unfold ordertype_def)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
282  | 
apply (rule image_fun [OF ordermap_type subset_refl])  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
283  | 
done  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
284  | 
|
| 14046 | 285  | 
text{*Theorems by Krzysztof Grabczewski; proofs simplified by lcp *}
 | 
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
286  | 
|
| 46953 | 287  | 
lemma ordertype_pred_subset: "[| well_ord(A,r); x \<in> A |] ==>  | 
| 46820 | 288  | 
ordertype(pred(A,x,r),r) \<subseteq> ordertype(A,r)"  | 
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
289  | 
apply (simp add: ordertype_unfold well_ord_subset [OF _ pred_subset])  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
290  | 
apply (fast intro: ordermap_pred_eq_ordermap elim: predE)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
291  | 
done  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
292  | 
|
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
293  | 
lemma ordertype_pred_lt:  | 
| 46953 | 294  | 
"[| well_ord(A,r); x \<in> A |]  | 
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
295  | 
==> ordertype(pred(A,x,r),r) < ordertype(A,r)"  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
296  | 
apply (rule ordertype_pred_subset [THEN subset_imp_le, THEN leE])  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
297  | 
apply (simp_all add: Ord_ordertype well_ord_subset [OF _ pred_subset])  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
298  | 
apply (erule sym [THEN ordertype_eq_imp_ord_iso, THEN exE])  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
299  | 
apply (erule_tac [3] well_ord_iso_predE)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
300  | 
apply (simp_all add: well_ord_subset [OF _ pred_subset])  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
301  | 
done  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
302  | 
|
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
303  | 
(*May rewrite with this -- provided no rules are supplied for proving that  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
304  | 
well_ord(pred(A,x,r), r) *)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
305  | 
lemma ordertype_pred_unfold:  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
306  | 
"well_ord(A,r)  | 
| 46953 | 307  | 
      ==> ordertype(A,r) = {ordertype(pred(A,x,r),r). x \<in> A}"
 | 
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
308  | 
apply (rule equalityI)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
309  | 
apply (safe intro!: ordertype_pred_lt [THEN ltD])  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
310  | 
apply (auto simp add: ordertype_def well_ord_is_wf [THEN ordermap_eq_image]  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
311  | 
ordermap_type [THEN image_fun]  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
312  | 
ordermap_pred_eq_ordermap pred_subset)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
313  | 
done  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
314  | 
|
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
315  | 
|
| 13269 | 316  | 
subsection{*Alternative definition of ordinal*}
 | 
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
317  | 
|
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
318  | 
(*proof by Krzysztof Grabczewski*)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
319  | 
lemma Ord_is_Ord_alt: "Ord(i) ==> Ord_alt(i)"  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
320  | 
apply (unfold Ord_alt_def)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
321  | 
apply (rule conjI)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
322  | 
apply (erule well_ord_Memrel)  | 
| 46820 | 323  | 
apply (unfold Ord_def Transset_def pred_def Memrel_def, blast)  | 
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
324  | 
done  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
325  | 
|
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
326  | 
(*proof by lcp*)  | 
| 46820 | 327  | 
lemma Ord_alt_is_Ord:  | 
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
328  | 
"Ord_alt(i) ==> Ord(i)"  | 
| 46820 | 329  | 
apply (unfold Ord_alt_def Ord_def Transset_def well_ord_def  | 
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
330  | 
tot_ord_def part_ord_def trans_on_def)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
331  | 
apply (simp add: pred_Memrel)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
332  | 
apply (blast elim!: equalityE)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
333  | 
done  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
334  | 
|
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
335  | 
|
| 13269 | 336  | 
subsection{*Ordinal Addition*}
 | 
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
337  | 
|
| 13356 | 338  | 
subsubsection{*Order Type calculations for radd *}
 | 
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
339  | 
|
| 14046 | 340  | 
text{*Addition with 0 *}
 | 
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
341  | 
|
| 46820 | 342  | 
lemma bij_sum_0: "(\<lambda>z\<in>A+0. case(%x. x, %y. y, z)) \<in> bij(A+0, A)"  | 
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
343  | 
apply (rule_tac d = Inl in lam_bijective, safe)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
344  | 
apply (simp_all (no_asm_simp))  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
345  | 
done  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
346  | 
|
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
347  | 
lemma ordertype_sum_0_eq:  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
348  | 
"well_ord(A,r) ==> ordertype(A+0, radd(A,r,0,s)) = ordertype(A,r)"  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
349  | 
apply (rule bij_sum_0 [THEN ord_isoI, THEN ordertype_eq])  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
350  | 
prefer 2 apply assumption  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
351  | 
apply force  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
352  | 
done  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
353  | 
|
| 46820 | 354  | 
lemma bij_0_sum: "(\<lambda>z\<in>0+A. case(%x. x, %y. y, z)) \<in> bij(0+A, A)"  | 
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
355  | 
apply (rule_tac d = Inr in lam_bijective, safe)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
356  | 
apply (simp_all (no_asm_simp))  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
357  | 
done  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
358  | 
|
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
359  | 
lemma ordertype_0_sum_eq:  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
360  | 
"well_ord(A,r) ==> ordertype(0+A, radd(0,s,A,r)) = ordertype(A,r)"  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
361  | 
apply (rule bij_0_sum [THEN ord_isoI, THEN ordertype_eq])  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
362  | 
prefer 2 apply assumption  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
363  | 
apply force  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
364  | 
done  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
365  | 
|
| 14046 | 366  | 
text{*Initial segments of radd.  Statements by Grabczewski *}
 | 
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
367  | 
|
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
368  | 
(*In fact, pred(A+B, Inl(a), radd(A,r,B,s)) = pred(A,a,r)+0 *)  | 
| 46820 | 369  | 
lemma pred_Inl_bij:  | 
| 46953 | 370  | 
"a \<in> A ==> (\<lambda>x\<in>pred(A,a,r). Inl(x))  | 
| 46820 | 371  | 
\<in> bij(pred(A,a,r), pred(A+B, Inl(a), radd(A,r,B,s)))"  | 
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
372  | 
apply (unfold pred_def)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
373  | 
apply (rule_tac d = "case (%x. x, %y. y) " in lam_bijective)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
374  | 
apply auto  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
375  | 
done  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
376  | 
|
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
377  | 
lemma ordertype_pred_Inl_eq:  | 
| 46953 | 378  | 
"[| a \<in> A; well_ord(A,r) |]  | 
| 46820 | 379  | 
==> ordertype(pred(A+B, Inl(a), radd(A,r,B,s)), radd(A,r,B,s)) =  | 
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
380  | 
ordertype(pred(A,a,r), r)"  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
381  | 
apply (rule pred_Inl_bij [THEN ord_isoI, THEN ord_iso_sym, THEN ordertype_eq])  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
382  | 
apply (simp_all add: well_ord_subset [OF _ pred_subset])  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
383  | 
apply (simp add: pred_def)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
384  | 
done  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
385  | 
|
| 46820 | 386  | 
lemma pred_Inr_bij:  | 
| 46953 | 387  | 
"b \<in> B ==>  | 
| 46820 | 388  | 
id(A+pred(B,b,s))  | 
389  | 
\<in> bij(A+pred(B,b,s), pred(A+B, Inr(b), radd(A,r,B,s)))"  | 
|
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
390  | 
apply (unfold pred_def id_def)  | 
| 46820 | 391  | 
apply (rule_tac d = "%z. z" in lam_bijective, auto)  | 
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
392  | 
done  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
393  | 
|
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
394  | 
lemma ordertype_pred_Inr_eq:  | 
| 46953 | 395  | 
"[| b \<in> B; well_ord(A,r); well_ord(B,s) |]  | 
| 46820 | 396  | 
==> ordertype(pred(A+B, Inr(b), radd(A,r,B,s)), radd(A,r,B,s)) =  | 
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
397  | 
ordertype(A+pred(B,b,s), radd(A,r,pred(B,b,s),s))"  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
398  | 
apply (rule pred_Inr_bij [THEN ord_isoI, THEN ord_iso_sym, THEN ordertype_eq])  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
399  | 
prefer 2 apply (force simp add: pred_def id_def, assumption)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
400  | 
apply (blast intro: well_ord_radd well_ord_subset [OF _ pred_subset])  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
401  | 
done  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
402  | 
|
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
403  | 
|
| 13356 | 404  | 
subsubsection{*ordify: trivial coercion to an ordinal *}
 | 
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
405  | 
|
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
406  | 
lemma Ord_ordify [iff, TC]: "Ord(ordify(x))"  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
407  | 
by (simp add: ordify_def)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
408  | 
|
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
409  | 
(*Collapsing*)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
410  | 
lemma ordify_idem [simp]: "ordify(ordify(x)) = ordify(x)"  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
411  | 
by (simp add: ordify_def)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
412  | 
|
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
413  | 
|
| 13356 | 414  | 
subsubsection{*Basic laws for ordinal addition *}
 | 
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
415  | 
|
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
416  | 
lemma Ord_raw_oadd: "[|Ord(i); Ord(j)|] ==> Ord(raw_oadd(i,j))"  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
417  | 
by (simp add: raw_oadd_def ordify_def Ord_ordertype well_ord_radd  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
418  | 
well_ord_Memrel)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
419  | 
|
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
420  | 
lemma Ord_oadd [iff,TC]: "Ord(i++j)"  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
421  | 
by (simp add: oadd_def Ord_raw_oadd)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
422  | 
|
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
423  | 
|
| 14046 | 424  | 
text{*Ordinal addition with zero *}
 | 
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
425  | 
|
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
426  | 
lemma raw_oadd_0: "Ord(i) ==> raw_oadd(i,0) = i"  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
427  | 
by (simp add: raw_oadd_def ordify_def ordertype_sum_0_eq  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
428  | 
ordertype_Memrel well_ord_Memrel)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
429  | 
|
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
430  | 
lemma oadd_0 [simp]: "Ord(i) ==> i++0 = i"  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
431  | 
apply (simp (no_asm_simp) add: oadd_def raw_oadd_0 ordify_def)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
432  | 
done  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
433  | 
|
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
434  | 
lemma raw_oadd_0_left: "Ord(i) ==> raw_oadd(0,i) = i"  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
435  | 
by (simp add: raw_oadd_def ordify_def ordertype_0_sum_eq ordertype_Memrel  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
436  | 
well_ord_Memrel)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
437  | 
|
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
438  | 
lemma oadd_0_left [simp]: "Ord(i) ==> 0++i = i"  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
439  | 
by (simp add: oadd_def raw_oadd_0_left ordify_def)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
440  | 
|
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
441  | 
|
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
442  | 
lemma oadd_eq_if_raw_oadd:  | 
| 46820 | 443  | 
"i++j = (if Ord(i) then (if Ord(j) then raw_oadd(i,j) else i)  | 
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
444  | 
else (if Ord(j) then j else 0))"  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
445  | 
by (simp add: oadd_def ordify_def raw_oadd_0_left raw_oadd_0)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
446  | 
|
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
447  | 
lemma raw_oadd_eq_oadd: "[|Ord(i); Ord(j)|] ==> raw_oadd(i,j) = i++j"  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
448  | 
by (simp add: oadd_def ordify_def)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
449  | 
|
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
450  | 
(*** Further properties of ordinal addition. Statements by Grabczewski,  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
451  | 
proofs by lcp. ***)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
452  | 
|
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
453  | 
(*Surely also provable by transfinite induction on j?*)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
454  | 
lemma lt_oadd1: "k<i ==> k < i++j"  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
455  | 
apply (simp add: oadd_def ordify_def lt_Ord2 raw_oadd_0, clarify)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
456  | 
apply (simp add: raw_oadd_def)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
457  | 
apply (rule ltE, assumption)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
458  | 
apply (rule ltI)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
459  | 
apply (force simp add: ordertype_pred_unfold well_ord_radd well_ord_Memrel  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
460  | 
ordertype_pred_Inl_eq lt_pred_Memrel leI [THEN le_ordertype_Memrel])  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
461  | 
apply (blast intro: Ord_ordertype well_ord_radd well_ord_Memrel)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
462  | 
done  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
463  | 
|
| 46820 | 464  | 
(*Thus also we obtain the rule  @{term"i++j = k ==> i \<le> k"} *)
 | 
465  | 
lemma oadd_le_self: "Ord(i) ==> i \<le> i++j"  | 
|
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
466  | 
apply (rule all_lt_imp_le)  | 
| 46820 | 467  | 
apply (auto simp add: Ord_oadd lt_oadd1)  | 
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
468  | 
done  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
469  | 
|
| 14046 | 470  | 
text{*Various other results *}
 | 
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
471  | 
|
| 46820 | 472  | 
lemma id_ord_iso_Memrel: "A<=B ==> id(A) \<in> ord_iso(A, Memrel(A), A, Memrel(B))"  | 
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
473  | 
apply (rule id_bij [THEN ord_isoI])  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
474  | 
apply (simp (no_asm_simp))  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
475  | 
apply blast  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
476  | 
done  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
477  | 
|
| 13221 | 478  | 
lemma subset_ord_iso_Memrel:  | 
| 46953 | 479  | 
"[| f \<in> ord_iso(A,Memrel(B),C,r); A<=B |] ==> f \<in> ord_iso(A,Memrel(A),C,r)"  | 
| 46820 | 480  | 
apply (frule ord_iso_is_bij [THEN bij_is_fun, THEN fun_is_rel])  | 
481  | 
apply (frule ord_iso_trans [OF id_ord_iso_Memrel], assumption)  | 
|
482  | 
apply (simp add: right_comp_id)  | 
|
| 13221 | 483  | 
done  | 
484  | 
||
485  | 
lemma restrict_ord_iso:  | 
|
| 46820 | 486  | 
"[| f \<in> ord_iso(i, Memrel(i), Order.pred(A,a,r), r); a \<in> A; j < i;  | 
| 13221 | 487  | 
trans[A](r) |]  | 
488  | 
==> restrict(f,j) \<in> ord_iso(j, Memrel(j), Order.pred(A,f`j,r), r)"  | 
|
| 46820 | 489  | 
apply (frule ltD)  | 
490  | 
apply (frule ord_iso_is_bij [THEN bij_is_fun, THEN apply_type], assumption)  | 
|
491  | 
apply (frule ord_iso_restrict_pred, assumption)  | 
|
| 13221 | 492  | 
apply (simp add: pred_iff trans_pred_pred_eq lt_pred_Memrel)  | 
| 46820 | 493  | 
apply (blast intro!: subset_ord_iso_Memrel le_imp_subset [OF leI])  | 
| 13221 | 494  | 
done  | 
495  | 
||
496  | 
lemma restrict_ord_iso2:  | 
|
| 46820 | 497  | 
"[| f \<in> ord_iso(Order.pred(A,a,r), r, i, Memrel(i)); a \<in> A;  | 
| 13221 | 498  | 
j < i; trans[A](r) |]  | 
| 46820 | 499  | 
==> converse(restrict(converse(f), j))  | 
| 13221 | 500  | 
\<in> ord_iso(Order.pred(A, converse(f)`j, r), r, j, Memrel(j))"  | 
501  | 
by (blast intro: restrict_ord_iso ord_iso_sym ltI)  | 
|
502  | 
||
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
503  | 
lemma ordertype_sum_Memrel:  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
504  | 
"[| well_ord(A,r); k<j |]  | 
| 46820 | 505  | 
==> ordertype(A+k, radd(A, r, k, Memrel(j))) =  | 
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
506  | 
ordertype(A+k, radd(A, r, k, Memrel(k)))"  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
507  | 
apply (erule ltE)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
508  | 
apply (rule ord_iso_refl [THEN sum_ord_iso_cong, THEN ordertype_eq])  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
509  | 
apply (erule OrdmemD [THEN id_ord_iso_Memrel, THEN ord_iso_sym])  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
510  | 
apply (simp_all add: well_ord_radd well_ord_Memrel)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
511  | 
done  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
512  | 
|
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
513  | 
lemma oadd_lt_mono2: "k<j ==> i++k < i++j"  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
514  | 
apply (simp add: oadd_def ordify_def raw_oadd_0_left lt_Ord lt_Ord2, clarify)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
515  | 
apply (simp add: raw_oadd_def)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
516  | 
apply (rule ltE, assumption)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
517  | 
apply (rule ordertype_pred_unfold [THEN equalityD2, THEN subsetD, THEN ltI])  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
518  | 
apply (simp_all add: Ord_ordertype well_ord_radd well_ord_Memrel)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
519  | 
apply (rule bexI)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
520  | 
apply (erule_tac [2] InrI)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
521  | 
apply (simp add: ordertype_pred_Inr_eq well_ord_Memrel lt_pred_Memrel  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
522  | 
leI [THEN le_ordertype_Memrel] ordertype_sum_Memrel)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
523  | 
done  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
524  | 
|
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
525  | 
lemma oadd_lt_cancel2: "[| i++j < i++k; Ord(j) |] ==> j<k"  | 
| 13611 | 526  | 
apply (simp (asm_lr) add: oadd_eq_if_raw_oadd split add: split_if_asm)  | 
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
527  | 
prefer 2  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
528  | 
apply (frule_tac i = i and j = j in oadd_le_self)  | 
| 13611 | 529  | 
apply (simp (asm_lr) add: oadd_def ordify_def lt_Ord not_lt_iff_le [THEN iff_sym])  | 
| 46820 | 530  | 
apply (rule Ord_linear_lt, auto)  | 
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
531  | 
apply (simp_all add: raw_oadd_eq_oadd)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
532  | 
apply (blast dest: oadd_lt_mono2 elim: lt_irrefl lt_asym)+  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
533  | 
done  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
534  | 
|
| 
46821
 
ff6b0c1087f2
Using mathematical notation for <-> and cardinal arithmetic
 
paulson 
parents: 
46820 
diff
changeset
 | 
535  | 
lemma oadd_lt_iff2: "Ord(j) ==> i++j < i++k \<longleftrightarrow> j<k"  | 
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
536  | 
by (blast intro!: oadd_lt_mono2 dest!: oadd_lt_cancel2)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
537  | 
|
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
538  | 
lemma oadd_inject: "[| i++j = i++k; Ord(j); Ord(k) |] ==> j=k"  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
539  | 
apply (simp add: oadd_eq_if_raw_oadd split add: split_if_asm)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
540  | 
apply (simp add: raw_oadd_eq_oadd)  | 
| 46820 | 541  | 
apply (rule Ord_linear_lt, auto)  | 
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
542  | 
apply (force dest: oadd_lt_mono2 [of concl: i] simp add: lt_not_refl)+  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
543  | 
done  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
544  | 
|
| 46820 | 545  | 
lemma lt_oadd_disj: "k < i++j ==> k<i | (\<exists>l\<in>j. k = i++l )"  | 
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
546  | 
apply (simp add: Ord_in_Ord' [of _ j] oadd_eq_if_raw_oadd  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
547  | 
split add: split_if_asm)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
548  | 
prefer 2  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
549  | 
apply (simp add: Ord_in_Ord' [of _ j] lt_def)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
550  | 
apply (simp add: ordertype_pred_unfold well_ord_radd well_ord_Memrel raw_oadd_def)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
551  | 
apply (erule ltD [THEN RepFunE])  | 
| 46820 | 552  | 
apply (force simp add: ordertype_pred_Inl_eq well_ord_Memrel ltI  | 
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
553  | 
lt_pred_Memrel le_ordertype_Memrel leI  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
554  | 
ordertype_pred_Inr_eq ordertype_sum_Memrel)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
555  | 
done  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
556  | 
|
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
557  | 
|
| 13356 | 558  | 
subsubsection{*Ordinal addition with successor -- via associativity! *}
 | 
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
559  | 
|
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
560  | 
lemma oadd_assoc: "(i++j)++k = i++(j++k)"  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
561  | 
apply (simp add: oadd_eq_if_raw_oadd Ord_raw_oadd raw_oadd_0 raw_oadd_0_left, clarify)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
562  | 
apply (simp add: raw_oadd_def)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
563  | 
apply (rule ordertype_eq [THEN trans])  | 
| 46820 | 564  | 
apply (rule sum_ord_iso_cong [OF ordertype_ord_iso [THEN ord_iso_sym]  | 
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
565  | 
ord_iso_refl])  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
566  | 
apply (simp_all add: Ord_ordertype well_ord_radd well_ord_Memrel)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
567  | 
apply (rule sum_assoc_ord_iso [THEN ordertype_eq, THEN trans])  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
568  | 
apply (rule_tac [2] ordertype_eq)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
569  | 
apply (rule_tac [2] sum_ord_iso_cong [OF ord_iso_refl ordertype_ord_iso])  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
570  | 
apply (blast intro: Ord_ordertype well_ord_radd well_ord_Memrel)+  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
571  | 
done  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
572  | 
|
| 46820 | 573  | 
lemma oadd_unfold: "[| Ord(i);  Ord(j) |] ==> i++j = i \<union> (\<Union>k\<in>j. {i++k})"
 | 
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
574  | 
apply (rule subsetI [THEN equalityI])  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
575  | 
apply (erule ltI [THEN lt_oadd_disj, THEN disjE])  | 
| 46820 | 576  | 
apply (blast intro: Ord_oadd)  | 
577  | 
apply (blast elim!: ltE, blast)  | 
|
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
578  | 
apply (force intro: lt_oadd1 oadd_lt_mono2 simp add: Ord_mem_iff_lt)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
579  | 
done  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
580  | 
|
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
581  | 
lemma oadd_1: "Ord(i) ==> i++1 = succ(i)"  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
582  | 
apply (simp (no_asm_simp) add: oadd_unfold Ord_1 oadd_0)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
583  | 
apply blast  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
584  | 
done  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
585  | 
|
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
586  | 
lemma oadd_succ [simp]: "Ord(j) ==> i++succ(j) = succ(i++j)"  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
587  | 
apply (simp add: oadd_eq_if_raw_oadd, clarify)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
588  | 
apply (simp add: raw_oadd_eq_oadd)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
589  | 
apply (simp add: oadd_1 [of j, symmetric] oadd_1 [of "i++j", symmetric]  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
590  | 
oadd_assoc)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
591  | 
done  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
592  | 
|
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
593  | 
|
| 14046 | 594  | 
text{*Ordinal addition with limit ordinals *}
 | 
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
595  | 
|
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
596  | 
lemma oadd_UN:  | 
| 46953 | 597  | 
"[| !!x. x \<in> A ==> Ord(j(x)); a \<in> A |]  | 
| 
13615
 
449a70d88b38
Numerous cosmetic changes, prompted by the new simplifier
 
paulson 
parents: 
13611 
diff
changeset
 | 
598  | 
==> i ++ (\<Union>x\<in>A. j(x)) = (\<Union>x\<in>A. i++j(x))"  | 
| 46820 | 599  | 
by (blast intro: ltI Ord_UN Ord_oadd lt_oadd1 [THEN ltD]  | 
600  | 
oadd_lt_mono2 [THEN ltD]  | 
|
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
601  | 
elim!: ltE dest!: ltI [THEN lt_oadd_disj])  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
602  | 
|
| 
13615
 
449a70d88b38
Numerous cosmetic changes, prompted by the new simplifier
 
paulson 
parents: 
13611 
diff
changeset
 | 
603  | 
lemma oadd_Limit: "Limit(j) ==> i++j = (\<Union>k\<in>j. i++k)"  | 
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
604  | 
apply (frule Limit_has_0 [THEN ltD])  | 
| 46820 | 605  | 
apply (simp add: Limit_is_Ord [THEN Ord_in_Ord] oadd_UN [symmetric]  | 
| 13356 | 606  | 
Union_eq_UN [symmetric] Limit_Union_eq)  | 
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
607  | 
done  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
608  | 
|
| 
46821
 
ff6b0c1087f2
Using mathematical notation for <-> and cardinal arithmetic
 
paulson 
parents: 
46820 
diff
changeset
 | 
609  | 
lemma oadd_eq_0_iff: "[| Ord(i); Ord(j) |] ==> (i ++ j) = 0 \<longleftrightarrow> i=0 & j=0"  | 
| 13221 | 610  | 
apply (erule trans_induct3 [of j])  | 
611  | 
apply (simp_all add: oadd_Limit)  | 
|
612  | 
apply (simp add: Union_empty_iff Limit_def lt_def, blast)  | 
|
613  | 
done  | 
|
614  | 
||
| 
46821
 
ff6b0c1087f2
Using mathematical notation for <-> and cardinal arithmetic
 
paulson 
parents: 
46820 
diff
changeset
 | 
615  | 
lemma oadd_eq_lt_iff: "[| Ord(i); Ord(j) |] ==> 0 < (i ++ j) \<longleftrightarrow> 0<i | 0<j"  | 
| 13221 | 616  | 
by (simp add: Ord_0_lt_iff [symmetric] oadd_eq_0_iff)  | 
617  | 
||
618  | 
lemma oadd_LimitI: "[| Ord(i); Limit(j) |] ==> Limit(i ++ j)"  | 
|
619  | 
apply (simp add: oadd_Limit)  | 
|
620  | 
apply (frule Limit_has_1 [THEN ltD])  | 
|
621  | 
apply (rule increasing_LimitI)  | 
|
622  | 
apply (rule Ord_0_lt)  | 
|
623  | 
apply (blast intro: Ord_in_Ord [OF Limit_is_Ord])  | 
|
624  | 
apply (force simp add: Union_empty_iff oadd_eq_0_iff  | 
|
625  | 
Limit_is_Ord [of j, THEN Ord_in_Ord], auto)  | 
|
| 
13339
 
0f89104dd377
Fixed quantified variable name preservation for ball and bex (bounded quants)
 
paulson 
parents: 
13269 
diff
changeset
 | 
626  | 
apply (rule_tac x="succ(y)" in bexI)  | 
| 13221 | 627  | 
apply (simp add: ltI Limit_is_Ord [of j, THEN Ord_in_Ord])  | 
| 46820 | 628  | 
apply (simp add: Limit_def lt_def)  | 
| 13221 | 629  | 
done  | 
630  | 
||
| 14046 | 631  | 
text{*Order/monotonicity properties of ordinal addition *}
 | 
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
632  | 
|
| 46820 | 633  | 
lemma oadd_le_self2: "Ord(i) ==> i \<le> j++i"  | 
| 46927 | 634  | 
proof (induct i rule: trans_induct3)  | 
| 46953 | 635  | 
case 0 thus ?case by (simp add: Ord_0_le)  | 
| 46927 | 636  | 
next  | 
| 46953 | 637  | 
case (succ i) thus ?case by (simp add: oadd_succ succ_leI)  | 
| 46927 | 638  | 
next  | 
639  | 
case (limit l)  | 
|
| 46953 | 640  | 
hence "l = (\<Union>x\<in>l. x)"  | 
| 46927 | 641  | 
by (simp add: Union_eq_UN [symmetric] Limit_Union_eq)  | 
| 46953 | 642  | 
also have "... \<le> (\<Union>x\<in>l. j++x)"  | 
643  | 
by (rule le_implies_UN_le_UN) (rule limit.hyps)  | 
|
| 46927 | 644  | 
finally have "l \<le> (\<Union>x\<in>l. j++x)" .  | 
645  | 
thus ?case using limit.hyps by (simp add: oadd_Limit)  | 
|
646  | 
qed  | 
|
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
647  | 
|
| 46820 | 648  | 
lemma oadd_le_mono1: "k \<le> j ==> k++i \<le> j++i"  | 
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
649  | 
apply (frule lt_Ord)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
650  | 
apply (frule le_Ord2)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
651  | 
apply (simp add: oadd_eq_if_raw_oadd, clarify)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
652  | 
apply (simp add: raw_oadd_eq_oadd)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
653  | 
apply (erule_tac i = i in trans_induct3)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
654  | 
apply (simp (no_asm_simp))  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
655  | 
apply (simp (no_asm_simp) add: oadd_succ succ_le_iff)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
656  | 
apply (simp (no_asm_simp) add: oadd_Limit)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
657  | 
apply (rule le_implies_UN_le_UN, blast)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
658  | 
done  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
659  | 
|
| 46820 | 660  | 
lemma oadd_lt_mono: "[| i' \<le> i; j'<j |] ==> i'++j' < i++j"  | 
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
661  | 
by (blast intro: lt_trans1 oadd_le_mono1 oadd_lt_mono2 Ord_succD elim: ltE)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
662  | 
|
| 46820 | 663  | 
lemma oadd_le_mono: "[| i' \<le> i; j' \<le> j |] ==> i'++j' \<le> i++j"  | 
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
664  | 
by (simp del: oadd_succ add: oadd_succ [symmetric] le_Ord2 oadd_lt_mono)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
665  | 
|
| 
46821
 
ff6b0c1087f2
Using mathematical notation for <-> and cardinal arithmetic
 
paulson 
parents: 
46820 
diff
changeset
 | 
666  | 
lemma oadd_le_iff2: "[| Ord(j); Ord(k) |] ==> i++j \<le> i++k \<longleftrightarrow> j \<le> k"  | 
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
667  | 
by (simp del: oadd_succ add: oadd_lt_iff2 oadd_succ [symmetric] Ord_succ)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
668  | 
|
| 13221 | 669  | 
lemma oadd_lt_self: "[| Ord(i); 0<j |] ==> i < i++j"  | 
| 46820 | 670  | 
apply (rule lt_trans2)  | 
671  | 
apply (erule le_refl)  | 
|
672  | 
apply (simp only: lt_Ord2 oadd_1 [of i, symmetric])  | 
|
| 13221 | 673  | 
apply (blast intro: succ_leI oadd_le_mono)  | 
674  | 
done  | 
|
675  | 
||
| 13269 | 676  | 
text{*Every ordinal is exceeded by some limit ordinal.*}
 | 
677  | 
lemma Ord_imp_greater_Limit: "Ord(i) ==> \<exists>k. i<k & Limit(k)"  | 
|
| 46820 | 678  | 
apply (rule_tac x="i ++ nat" in exI)  | 
| 13269 | 679  | 
apply (blast intro: oadd_LimitI oadd_lt_self Limit_nat [THEN Limit_has_0])  | 
680  | 
done  | 
|
681  | 
||
682  | 
lemma Ord2_imp_greater_Limit: "[|Ord(i); Ord(j)|] ==> \<exists>k. i<k & j<k & Limit(k)"  | 
|
| 46820 | 683  | 
apply (insert Ord_Un [of i j, THEN Ord_imp_greater_Limit])  | 
684  | 
apply (simp add: Un_least_lt_iff)  | 
|
| 13269 | 685  | 
done  | 
686  | 
||
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
687  | 
|
| 14046 | 688  | 
subsection{*Ordinal Subtraction*}
 | 
689  | 
||
690  | 
text{*The difference is @{term "ordertype(j-i, Memrel(j))"}.
 | 
|
691  | 
It's probably simpler to define the difference recursively!*}  | 
|
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
692  | 
|
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
693  | 
lemma bij_sum_Diff:  | 
| 46953 | 694  | 
"A<=B ==> (\<lambda>y\<in>B. if(y \<in> A, Inl(y), Inr(y))) \<in> bij(B, A+(B-A))"  | 
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
695  | 
apply (rule_tac d = "case (%x. x, %y. y) " in lam_bijective)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
696  | 
apply (blast intro!: if_type)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
697  | 
apply (fast intro!: case_type)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
698  | 
apply (erule_tac [2] sumE)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
699  | 
apply (simp_all (no_asm_simp))  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
700  | 
done  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
701  | 
|
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
702  | 
lemma ordertype_sum_Diff:  | 
| 46820 | 703  | 
"i \<le> j ==>  | 
704  | 
ordertype(i+(j-i), radd(i,Memrel(j),j-i,Memrel(j))) =  | 
|
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
705  | 
ordertype(j, Memrel(j))"  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
706  | 
apply (safe dest!: le_subset_iff [THEN iffD1])  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
707  | 
apply (rule bij_sum_Diff [THEN ord_isoI, THEN ord_iso_sym, THEN ordertype_eq])  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
708  | 
apply (erule_tac [3] well_ord_Memrel, assumption)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
709  | 
apply (simp (no_asm_simp))  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
710  | 
apply (frule_tac j = y in Ord_in_Ord, assumption)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
711  | 
apply (frule_tac j = x in Ord_in_Ord, assumption)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
712  | 
apply (simp (no_asm_simp) add: Ord_mem_iff_lt lt_Ord not_lt_iff_le)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
713  | 
apply (blast intro: lt_trans2 lt_trans)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
714  | 
done  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
715  | 
|
| 46820 | 716  | 
lemma Ord_odiff [simp,TC]:  | 
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
717  | 
"[| Ord(i); Ord(j) |] ==> Ord(i--j)"  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
718  | 
apply (unfold odiff_def)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
719  | 
apply (blast intro: Ord_ordertype Diff_subset well_ord_subset well_ord_Memrel)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
720  | 
done  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
721  | 
|
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
722  | 
|
| 46820 | 723  | 
lemma raw_oadd_ordertype_Diff:  | 
724  | 
"i \<le> j  | 
|
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
725  | 
==> raw_oadd(i,j--i) = ordertype(i+(j-i), radd(i,Memrel(j),j-i,Memrel(j)))"  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
726  | 
apply (simp add: raw_oadd_def odiff_def)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
727  | 
apply (safe dest!: le_subset_iff [THEN iffD1])  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
728  | 
apply (rule sum_ord_iso_cong [THEN ordertype_eq])  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
729  | 
apply (erule id_ord_iso_Memrel)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
730  | 
apply (rule ordertype_ord_iso [THEN ord_iso_sym])  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
731  | 
apply (blast intro: well_ord_radd Diff_subset well_ord_subset well_ord_Memrel)+  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
732  | 
done  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
733  | 
|
| 46820 | 734  | 
lemma oadd_odiff_inverse: "i \<le> j ==> i ++ (j--i) = j"  | 
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
735  | 
by (simp add: lt_Ord le_Ord2 oadd_def ordify_def raw_oadd_ordertype_Diff  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
736  | 
ordertype_sum_Diff ordertype_Memrel lt_Ord2 [THEN Ord_succD])  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
737  | 
|
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
738  | 
(*By oadd_inject, the difference between i and j is unique. Note that we get  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
739  | 
i++j = k ==> j = k--i. *)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
740  | 
lemma odiff_oadd_inverse: "[| Ord(i); Ord(j) |] ==> (i++j) -- i = j"  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
741  | 
apply (rule oadd_inject)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
742  | 
apply (blast intro: oadd_odiff_inverse oadd_le_self)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
743  | 
apply (blast intro: Ord_ordertype Ord_oadd Ord_odiff)+  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
744  | 
done  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
745  | 
|
| 46820 | 746  | 
lemma odiff_lt_mono2: "[| i<j; k \<le> i |] ==> i--k < j--k"  | 
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
747  | 
apply (rule_tac i = k in oadd_lt_cancel2)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
748  | 
apply (simp add: oadd_odiff_inverse)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
749  | 
apply (subst oadd_odiff_inverse)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
750  | 
apply (blast intro: le_trans leI, assumption)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
751  | 
apply (simp (no_asm_simp) add: lt_Ord le_Ord2)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
752  | 
done  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
753  | 
|
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
754  | 
|
| 13269 | 755  | 
subsection{*Ordinal Multiplication*}
 | 
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
756  | 
|
| 46820 | 757  | 
lemma Ord_omult [simp,TC]:  | 
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
758  | 
"[| Ord(i); Ord(j) |] ==> Ord(i**j)"  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
759  | 
apply (unfold omult_def)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
760  | 
apply (blast intro: Ord_ordertype well_ord_rmult well_ord_Memrel)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
761  | 
done  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
762  | 
|
| 13356 | 763  | 
subsubsection{*A useful unfolding law *}
 | 
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
764  | 
|
| 46820 | 765  | 
lemma pred_Pair_eq:  | 
| 46953 | 766  | 
"[| a \<in> A; b \<in> B |] ==> pred(A*B, <a,b>, rmult(A,r,B,s)) =  | 
| 46820 | 767  | 
                      pred(A,a,r)*B \<union> ({a} * pred(B,b,s))"
 | 
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
768  | 
apply (unfold pred_def, blast)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
769  | 
done  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
770  | 
|
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
771  | 
lemma ordertype_pred_Pair_eq:  | 
| 46953 | 772  | 
"[| a \<in> A; b \<in> B; well_ord(A,r); well_ord(B,s) |] ==>  | 
| 46820 | 773  | 
ordertype(pred(A*B, <a,b>, rmult(A,r,B,s)), rmult(A,r,B,s)) =  | 
774  | 
ordertype(pred(A,a,r)*B + pred(B,b,s),  | 
|
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
775  | 
radd(A*B, rmult(A,r,B,s), B, s))"  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
776  | 
apply (simp (no_asm_simp) add: pred_Pair_eq)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
777  | 
apply (rule ordertype_eq [symmetric])  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
778  | 
apply (rule prod_sum_singleton_ord_iso)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
779  | 
apply (simp_all add: pred_subset well_ord_rmult [THEN well_ord_subset])  | 
| 46820 | 780  | 
apply (blast intro: pred_subset well_ord_rmult [THEN well_ord_subset]  | 
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
781  | 
elim!: predE)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
782  | 
done  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
783  | 
|
| 46820 | 784  | 
lemma ordertype_pred_Pair_lemma:  | 
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
785  | 
"[| i'<i; j'<j |]  | 
| 46820 | 786  | 
==> ordertype(pred(i*j, <i',j'>, rmult(i,Memrel(i),j,Memrel(j))),  | 
787  | 
rmult(i,Memrel(i),j,Memrel(j))) =  | 
|
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
788  | 
raw_oadd (j**i', j')"  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
789  | 
apply (unfold raw_oadd_def omult_def)  | 
| 46820 | 790  | 
apply (simp add: ordertype_pred_Pair_eq lt_pred_Memrel ltD lt_Ord2  | 
| 13356 | 791  | 
well_ord_Memrel)  | 
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
792  | 
apply (rule trans)  | 
| 46820 | 793  | 
apply (rule_tac [2] ordertype_ord_iso  | 
| 13356 | 794  | 
[THEN sum_ord_iso_cong, THEN ordertype_eq])  | 
795  | 
apply (rule_tac [3] ord_iso_refl)  | 
|
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
796  | 
apply (rule id_bij [THEN ord_isoI, THEN ordertype_eq])  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
797  | 
apply (elim SigmaE sumE ltE ssubst)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
798  | 
apply (simp_all add: well_ord_rmult well_ord_radd well_ord_Memrel  | 
| 46820 | 799  | 
Ord_ordertype lt_Ord lt_Ord2)  | 
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
800  | 
apply (blast intro: Ord_trans)+  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
801  | 
done  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
802  | 
|
| 46820 | 803  | 
lemma lt_omult:  | 
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
804  | 
"[| Ord(i); Ord(j); k<j**i |]  | 
| 46820 | 805  | 
==> \<exists>j' i'. k = j**i' ++ j' & j'<j & i'<i"  | 
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
806  | 
apply (unfold omult_def)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
807  | 
apply (simp add: ordertype_pred_unfold well_ord_rmult well_ord_Memrel)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
808  | 
apply (safe elim!: ltE)  | 
| 46820 | 809  | 
apply (simp add: ordertype_pred_Pair_lemma ltI raw_oadd_eq_oadd  | 
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
810  | 
omult_def [symmetric] Ord_in_Ord' [of _ i] Ord_in_Ord' [of _ j])  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
811  | 
apply (blast intro: ltI)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
812  | 
done  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
813  | 
|
| 46820 | 814  | 
lemma omult_oadd_lt:  | 
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
815  | 
"[| j'<j; i'<i |] ==> j**i' ++ j' < j**i"  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
816  | 
apply (unfold omult_def)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
817  | 
apply (rule ltI)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
818  | 
prefer 2  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
819  | 
apply (simp add: Ord_ordertype well_ord_rmult well_ord_Memrel lt_Ord2)  | 
| 13356 | 820  | 
apply (simp add: ordertype_pred_unfold well_ord_rmult well_ord_Memrel lt_Ord2)  | 
| 46820 | 821  | 
apply (rule bexI [of _ i'])  | 
822  | 
apply (rule bexI [of _ j'])  | 
|
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
823  | 
apply (simp add: ordertype_pred_Pair_lemma ltI omult_def [symmetric])  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
824  | 
apply (simp add: lt_Ord lt_Ord2 raw_oadd_eq_oadd)  | 
| 46820 | 825  | 
apply (simp_all add: lt_def)  | 
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
826  | 
done  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
827  | 
|
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
828  | 
lemma omult_unfold:  | 
| 
13615
 
449a70d88b38
Numerous cosmetic changes, prompted by the new simplifier
 
paulson 
parents: 
13611 
diff
changeset
 | 
829  | 
     "[| Ord(i);  Ord(j) |] ==> j**i = (\<Union>j'\<in>j. \<Union>i'\<in>i. {j**i' ++ j'})"
 | 
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
830  | 
apply (rule subsetI [THEN equalityI])  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
831  | 
apply (rule lt_omult [THEN exE])  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
832  | 
apply (erule_tac [3] ltI)  | 
| 46820 | 833  | 
apply (simp_all add: Ord_omult)  | 
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
834  | 
apply (blast elim!: ltE)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
835  | 
apply (blast intro: omult_oadd_lt [THEN ltD] ltI)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
836  | 
done  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
837  | 
|
| 13356 | 838  | 
subsubsection{*Basic laws for ordinal multiplication *}
 | 
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
839  | 
|
| 14046 | 840  | 
text{*Ordinal multiplication by zero *}
 | 
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
841  | 
|
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
842  | 
lemma omult_0 [simp]: "i**0 = 0"  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
843  | 
apply (unfold omult_def)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
844  | 
apply (simp (no_asm_simp))  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
845  | 
done  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
846  | 
|
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
847  | 
lemma omult_0_left [simp]: "0**i = 0"  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
848  | 
apply (unfold omult_def)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
849  | 
apply (simp (no_asm_simp))  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
850  | 
done  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
851  | 
|
| 14046 | 852  | 
text{*Ordinal multiplication by 1 *}
 | 
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
853  | 
|
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
854  | 
lemma omult_1 [simp]: "Ord(i) ==> i**1 = i"  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
855  | 
apply (unfold omult_def)  | 
| 46820 | 856  | 
apply (rule_tac s1="Memrel(i)"  | 
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
857  | 
in ord_isoI [THEN ordertype_eq, THEN trans])  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
858  | 
apply (rule_tac c = snd and d = "%z.<0,z>" in lam_bijective)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
859  | 
apply (auto elim!: snd_type well_ord_Memrel ordertype_Memrel)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
860  | 
done  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
861  | 
|
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
862  | 
lemma omult_1_left [simp]: "Ord(i) ==> 1**i = i"  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
863  | 
apply (unfold omult_def)  | 
| 46820 | 864  | 
apply (rule_tac s1="Memrel(i)"  | 
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
865  | 
in ord_isoI [THEN ordertype_eq, THEN trans])  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
866  | 
apply (rule_tac c = fst and d = "%z.<z,0>" in lam_bijective)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
867  | 
apply (auto elim!: fst_type well_ord_Memrel ordertype_Memrel)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
868  | 
done  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
869  | 
|
| 14046 | 870  | 
text{*Distributive law for ordinal multiplication and addition *}
 | 
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
871  | 
|
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
872  | 
lemma oadd_omult_distrib:  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
873  | 
"[| Ord(i); Ord(j); Ord(k) |] ==> i**(j++k) = (i**j)++(i**k)"  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
874  | 
apply (simp add: oadd_eq_if_raw_oadd)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
875  | 
apply (simp add: omult_def raw_oadd_def)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
876  | 
apply (rule ordertype_eq [THEN trans])  | 
| 46820 | 877  | 
apply (rule prod_ord_iso_cong [OF ordertype_ord_iso [THEN ord_iso_sym]  | 
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
878  | 
ord_iso_refl])  | 
| 46820 | 879  | 
apply (simp_all add: well_ord_rmult well_ord_radd well_ord_Memrel  | 
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
880  | 
Ord_ordertype)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
881  | 
apply (rule sum_prod_distrib_ord_iso [THEN ordertype_eq, THEN trans])  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
882  | 
apply (rule_tac [2] ordertype_eq)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
883  | 
apply (rule_tac [2] sum_ord_iso_cong [OF ordertype_ord_iso ordertype_ord_iso])  | 
| 46820 | 884  | 
apply (simp_all add: well_ord_rmult well_ord_radd well_ord_Memrel  | 
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
885  | 
Ord_ordertype)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
886  | 
done  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
887  | 
|
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
888  | 
lemma omult_succ: "[| Ord(i); Ord(j) |] ==> i**succ(j) = (i**j)++i"  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
889  | 
by (simp del: oadd_succ add: oadd_1 [of j, symmetric] oadd_omult_distrib)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
890  | 
|
| 14046 | 891  | 
text{*Associative law *}
 | 
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
892  | 
|
| 46820 | 893  | 
lemma omult_assoc:  | 
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
894  | 
"[| Ord(i); Ord(j); Ord(k) |] ==> (i**j)**k = i**(j**k)"  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
895  | 
apply (unfold omult_def)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
896  | 
apply (rule ordertype_eq [THEN trans])  | 
| 46820 | 897  | 
apply (rule prod_ord_iso_cong [OF ord_iso_refl  | 
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
898  | 
ordertype_ord_iso [THEN ord_iso_sym]])  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
899  | 
apply (blast intro: well_ord_rmult well_ord_Memrel)+  | 
| 46820 | 900  | 
apply (rule prod_assoc_ord_iso  | 
| 13356 | 901  | 
[THEN ord_iso_sym, THEN ordertype_eq, THEN trans])  | 
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
902  | 
apply (rule_tac [2] ordertype_eq)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
903  | 
apply (rule_tac [2] prod_ord_iso_cong [OF ordertype_ord_iso ord_iso_refl])  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
904  | 
apply (blast intro: well_ord_rmult well_ord_Memrel Ord_ordertype)+  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
905  | 
done  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
906  | 
|
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
907  | 
|
| 14046 | 908  | 
text{*Ordinal multiplication with limit ordinals *}
 | 
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
909  | 
|
| 46820 | 910  | 
lemma omult_UN:  | 
| 46953 | 911  | 
"[| Ord(i); !!x. x \<in> A ==> Ord(j(x)) |]  | 
| 
13615
 
449a70d88b38
Numerous cosmetic changes, prompted by the new simplifier
 
paulson 
parents: 
13611 
diff
changeset
 | 
912  | 
==> i ** (\<Union>x\<in>A. j(x)) = (\<Union>x\<in>A. i**j(x))"  | 
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
913  | 
by (simp (no_asm_simp) add: Ord_UN omult_unfold, blast)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
914  | 
|
| 
13615
 
449a70d88b38
Numerous cosmetic changes, prompted by the new simplifier
 
paulson 
parents: 
13611 
diff
changeset
 | 
915  | 
lemma omult_Limit: "[| Ord(i); Limit(j) |] ==> i**j = (\<Union>k\<in>j. i**k)"  | 
| 46820 | 916  | 
by (simp add: Limit_is_Ord [THEN Ord_in_Ord] omult_UN [symmetric]  | 
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
917  | 
Union_eq_UN [symmetric] Limit_Union_eq)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
918  | 
|
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
919  | 
|
| 13356 | 920  | 
subsubsection{*Ordering/monotonicity properties of ordinal multiplication *}
 | 
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
921  | 
|
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
922  | 
(*As a special case we have "[| 0<i; 0<j |] ==> 0 < i**j" *)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
923  | 
lemma lt_omult1: "[| k<i; 0<j |] ==> k < i**j"  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
924  | 
apply (safe elim!: ltE intro!: ltI Ord_omult)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
925  | 
apply (force simp add: omult_unfold)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
926  | 
done  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
927  | 
|
| 46820 | 928  | 
lemma omult_le_self: "[| Ord(i); 0<j |] ==> i \<le> i**j"  | 
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
929  | 
by (blast intro: all_lt_imp_le Ord_omult lt_omult1 lt_Ord2)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
930  | 
|
| 46927 | 931  | 
lemma omult_le_mono1:  | 
932  | 
assumes kj: "k \<le> j" and i: "Ord(i)" shows "k**i \<le> j**i"  | 
|
933  | 
proof -  | 
|
934  | 
have o: "Ord(k)" "Ord(j)" by (rule lt_Ord [OF kj] le_Ord2 [OF kj])+  | 
|
935  | 
show ?thesis using i  | 
|
936  | 
proof (induct i rule: trans_induct3)  | 
|
| 46953 | 937  | 
case 0 thus ?case  | 
| 46927 | 938  | 
by simp  | 
939  | 
next  | 
|
| 46953 | 940  | 
case (succ i) thus ?case  | 
941  | 
by (simp add: o kj omult_succ oadd_le_mono)  | 
|
| 46927 | 942  | 
next  | 
943  | 
case (limit l)  | 
|
| 46953 | 944  | 
thus ?case  | 
945  | 
by (auto simp add: o kj omult_Limit le_implies_UN_le_UN)  | 
|
| 46927 | 946  | 
qed  | 
| 46953 | 947  | 
qed  | 
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
948  | 
|
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
949  | 
lemma omult_lt_mono2: "[| k<j; 0<i |] ==> i**k < i**j"  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
950  | 
apply (rule ltI)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
951  | 
apply (simp (no_asm_simp) add: omult_unfold lt_Ord2)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
952  | 
apply (safe elim!: ltE intro!: Ord_omult)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
953  | 
apply (force simp add: Ord_omult)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
954  | 
done  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
955  | 
|
| 46820 | 956  | 
lemma omult_le_mono2: "[| k \<le> j; Ord(i) |] ==> i**k \<le> i**j"  | 
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
957  | 
apply (rule subset_imp_le)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
958  | 
apply (safe elim!: ltE dest!: Ord_succD intro!: Ord_omult)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
959  | 
apply (simp add: omult_unfold)  | 
| 46820 | 960  | 
apply (blast intro: Ord_trans)  | 
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
961  | 
done  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
962  | 
|
| 46820 | 963  | 
lemma omult_le_mono: "[| i' \<le> i; j' \<le> j |] ==> i'**j' \<le> i**j"  | 
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
964  | 
by (blast intro: le_trans omult_le_mono1 omult_le_mono2 Ord_succD elim: ltE)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
965  | 
|
| 46820 | 966  | 
lemma omult_lt_mono: "[| i' \<le> i; j'<j; 0<i |] ==> i'**j' < i**j"  | 
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
967  | 
by (blast intro: lt_trans1 omult_le_mono1 omult_lt_mono2 Ord_succD elim: ltE)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
968  | 
|
| 46953 | 969  | 
lemma omult_le_self2:  | 
| 46927 | 970  | 
assumes i: "Ord(i)" and j: "0<j" shows "i \<le> j**i"  | 
971  | 
proof -  | 
|
972  | 
have oj: "Ord(j)" by (rule lt_Ord2 [OF j])  | 
|
973  | 
show ?thesis using i  | 
|
974  | 
proof (induct i rule: trans_induct3)  | 
|
| 46953 | 975  | 
case 0 thus ?case  | 
| 46927 | 976  | 
by simp  | 
977  | 
next  | 
|
| 46953 | 978  | 
case (succ i)  | 
979  | 
have "j \<times>\<times> i ++ 0 < j \<times>\<times> i ++ j"  | 
|
980  | 
by (rule oadd_lt_mono2 [OF j])  | 
|
981  | 
with succ.hyps show ?case  | 
|
| 46927 | 982  | 
by (simp add: oj j omult_succ ) (rule lt_trans1)  | 
983  | 
next  | 
|
984  | 
case (limit l)  | 
|
| 46953 | 985  | 
hence "l = (\<Union>x\<in>l. x)"  | 
| 46927 | 986  | 
by (simp add: Union_eq_UN [symmetric] Limit_Union_eq)  | 
| 46953 | 987  | 
also have "... \<le> (\<Union>x\<in>l. j**x)"  | 
988  | 
by (rule le_implies_UN_le_UN) (rule limit.hyps)  | 
|
| 46927 | 989  | 
finally have "l \<le> (\<Union>x\<in>l. j**x)" .  | 
990  | 
thus ?case using limit.hyps by (simp add: oj omult_Limit)  | 
|
991  | 
qed  | 
|
| 46953 | 992  | 
qed  | 
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
993  | 
|
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
994  | 
|
| 14046 | 995  | 
text{*Further properties of ordinal multiplication *}
 | 
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
996  | 
|
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
997  | 
lemma omult_inject: "[| i**j = i**k; 0<i; Ord(j); Ord(k) |] ==> j=k"  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
998  | 
apply (rule Ord_linear_lt)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
999  | 
prefer 4 apply assumption  | 
| 46820 | 1000  | 
apply auto  | 
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
1001  | 
apply (force dest: omult_lt_mono2 simp add: lt_not_refl)+  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
1002  | 
done  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
13125 
diff
changeset
 | 
1003  | 
|
| 14046 | 1004  | 
subsection{*The Relation @{term Lt}*}
 | 
1005  | 
||
1006  | 
lemma wf_Lt: "wf(Lt)"  | 
|
| 46820 | 1007  | 
apply (rule wf_subset)  | 
1008  | 
apply (rule wf_Memrel)  | 
|
1009  | 
apply (auto simp add: Lt_def Memrel_def lt_def)  | 
|
| 14046 | 1010  | 
done  | 
1011  | 
||
1012  | 
lemma irrefl_Lt: "irrefl(A,Lt)"  | 
|
1013  | 
by (auto simp add: Lt_def irrefl_def)  | 
|
1014  | 
||
1015  | 
lemma trans_Lt: "trans[A](Lt)"  | 
|
| 46820 | 1016  | 
apply (simp add: Lt_def trans_on_def)  | 
1017  | 
apply (blast intro: lt_trans)  | 
|
| 14046 | 1018  | 
done  | 
1019  | 
||
1020  | 
lemma part_ord_Lt: "part_ord(A,Lt)"  | 
|
1021  | 
by (simp add: part_ord_def irrefl_Lt trans_Lt)  | 
|
1022  | 
||
1023  | 
lemma linear_Lt: "linear(nat,Lt)"  | 
|
| 46820 | 1024  | 
apply (auto dest!: not_lt_imp_le simp add: Lt_def linear_def le_iff)  | 
1025  | 
apply (drule lt_asym, auto)  | 
|
| 14046 | 1026  | 
done  | 
1027  | 
||
1028  | 
lemma tot_ord_Lt: "tot_ord(nat,Lt)"  | 
|
1029  | 
by (simp add: tot_ord_def linear_Lt part_ord_Lt)  | 
|
1030  | 
||
| 14052 | 1031  | 
lemma well_ord_Lt: "well_ord(nat,Lt)"  | 
1032  | 
by (simp add: well_ord_def wf_Lt wf_imp_wf_on tot_ord_Lt)  | 
|
1033  | 
||
| 435 | 1034  | 
end  |